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Abstract

Roughly two-thirds of all stars are locked in binary or higher-multiple systems. Given

that over 97% of all stars also end their lives as white dwarfs, it is not surprising that more

and more white dwarfs are being found as part of binary systems. A general introduction to

white dwarfs and binary stars is presented in Chapter 1 and the techniques used throughout

this thesis are presented in Chapter 2.

Then, Chapters 3 and 4 present detailed studies of two close double white dwarf binaries.

The first, CSS 41177, is also an eclipsing binary, which allows for detailed measurements

of the white dwarf masses and radii. With the help of statistical analyses of far-ultraviolet

spectroscopy from the Hubble Space Telescope, I also determine the effective temperatures

and surface gravities of both stars. For the second binary, SDSSJ1257+5428, previous

publications were inconclusive, and therefore prompted the far-ultraviolet HST observa-

tions featured in this thesis. Using these data, I present a detailed analysis of the system

and the still paradoxical results which indicate that the more massive of the two white

dwarfs is younger rather than older than its lower-mass white dwarf companion.

In Chapter 5 I detail the observations and aims of my eclipse timing programme, set

up to measure apparent and/or real variations in the orbital periods of close white dwarf

binaries. With more than 600 high-speed eclipse light curves, spread over more than 70

targets, I try to find general trends and hints of the underlying cause of such variations.

Chapter 6 then presents a detailed study of the eclipsing semi-detached white dwarf +

M-dwarf binary HUAqr, which is part of the timing programme. In fact, it is one of the

most controversial targets in this programme, since none of the theoretical explanations fit

the large-scale eclipse timing variations observed in this binary.

Finally, I end with a concluding summary in Chapter 7.
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Chapter 1

Introduction

1.1 Introduction

The common thread that links the research presented in this thesis is the white dwarf

population that exists in close binary systems. White dwarfs are compact objects and the

remnants of stellar evolution for over 97% of all stars. Through the correlation between

the progenitor star’s initial mass and the white dwarf’s final mass (Weidemann, 2000),

they trace the initial stellar distribution, and contain a history of the evolution of their

progenitor stars. With the use of cooling models, temperature measurements of the oldest

white dwarfs provide useful and independent age estimates when found in, for example,

binary stars, globular clusters (Hansen et al., 2004, 2013) and Galactic populations such as

the disc (Wood, 1992) and halo. Comparing observed magnitudes with absolute magnitudes

derived from models that match the observed flux at all wavelengths also provide distance

estimates to systems such as globular clusters (Woodley et al., 2012; Renzini et al., 1996).

White dwarfs also feature as the most likely candidates for supernova Type Ia progen-

itors (Nomoto, 1982; Iben & Tutukov, 1984; Whelan & Iben, 1973). The theory that the

stars need to reach a specific mass before detonating as a Type Ia supernova forms the basis

of the idea that light curves of these supernovae consistently produce a certain peak lumi-

nosity and can therefore be scaled to a standard (Phillips, 1993; Leibundgut et al., 1991).

This characteristic makes it relatively easy to measure distances to observed supernovae

Type Ia, which is why they can be used as standard candles in cosmology (Perlmutter et al.,

1999; Riess et al., 1998). In addition, white dwarfs are prominent in accreting binaries such

as cataclysmic variables (Warner, 2003; Hellier, 2001) and AM CVn binaries (Breedt et al.,

2012; Kilic et al., 2014b), which experience the same mass-transfer related processes as,

for example, active galactic nuclei. Besides the fact that these semi-detached white dwarf

binaries are numerous, the significantly smaller scale associated with them means that phe-

nomena such as accretion disks and variability develop on much shorter time scales, and

are therefore more accessible for study. Furthermore, double white dwarfs are potential

progenitors of single hot sdB/sdO stars (Heber, 2009), R CrB stars and extreme helium

stars (Webbink, 1984), as well as supernovae Type .Ia (Bildsten et al., 2007).

Despite the abundance and importance of white dwarfs, many detailed aspects of the

physics governing them have yet to be determined accurately. Chapter 1 gives an introduc-

tion to the topic of white dwarf stars and summarises what is known so far, both for single

white dwarfs as well as for white dwarfs in detached and semi-detached close binary sys-

1



Chapter 1. Introduction 2

tems. The rest of this thesis aims to expand that knowledge further. It has proven difficult

to measure fundamental parameters such as white dwarf masses and radii directly, with-

out using theoretical mass – radius relations, therefore leaving the empirical basis for such

theoretical calculations relatively uncertain (Schmidt, 1996). However, as is demonstrated

in Chapter 3 for CSS 41177, combining high time-resolution photometry and spectroscopy

of white dwarfs in eclipsing binary stars enables high precision in determining both masses

and radii (see also Bours et al., 2014a). This chapter also includes an analysis of the effec-

tive temperatures and surface gravities of the two white dwarfs, through fits of the spectral

energy distribution covering far-ultraviolet to optical wavelengths (Bours et al., 2015a).

A similar approach is used in Chapter 4 for the non-eclipsing double white dwarf binary

SDSSJ1257+5428, for which the results surprisingly suggest that the extremely low-mass

white dwarf in this binary is much older than the high-mass white dwarf. This is in direct

contradiction with the generally accepted theory of stellar evolution that massive stars

evolve faster than low-mass stars, leading to the conclusion that this binary is somewhat

of a mystery (see also Bours et al., 2015b).

The emphasis then moves away from detailed parameter studies, as Chapter 5 intro-

duces a large programme for which more than 600 white dwarf eclipse observations were

obtained, covering a wide variety of close binaries. Through precise timing of the white

dwarf eclipses the aim of this programme is to discover the underlying cause of variations

in eclipse arrival times as observed in an ever increasing number of these binaries. By

searching for correlations between the amplitudes of such variations and characteristics of

the binaries such as the orbital period, the stellar spectral types and the size of the stars

relative to the binary separation, I hope to discover the foundation of this behaviour. A

complicating factor that is also discussed in this context is the duration of the eclipse obser-

vations, since this differs for different binaries in the programme. Following this, Chapter 6

provides a detailed look at one of the binaries in this programme, namely HUAqr (see also

Bours et al., 2014b). This semi-detached system is currently a topic of much debate, as it

shows extreme variations which have previously been speculated to be the result of several

planets orbiting this close binary. My data contradict this theory, but given the extreme

behaviour this binary has shown throughout the years I am unable to produce a satisfactory

alternative explanation.

Finally, this thesis closes with a few general conclusions in Chapter 7.

1.2 End points of stellar evolution

All stars begin their lives in molecular clouds. Such interstellar clouds, or parts of them,

may be taken out of hydrostatic equilibrium by collisions with other clouds or by shock

waves resulting from a nearby supernova explosion. If the mass of a cloud or fragment

exceeds the so-called Jeans mass (Jeans, 1902), it will proceed to collapse. The Jeans

mass spans a range of values, depending on the temperature and particle density of the

environment, and therefore this process forms the basis of the formation of galaxies, stellar

clusters as well as individual stars. For the latter, once enough angular momentum is



Chapter 1. Introduction 3

lost to form a cloud fragment that is bound by self-gravity and has become opaque to

its own radiation, a protostar is born. If its mass is below the lower stellar mass-limit of

about 0.08 M⊙, the core will never be able to reach the critical density and temperature

that allow fusion of hydrogen into helium. Therefore, such low-mass objects will never

become stars, instead simply cooling away into oblivion. Such objects have been observed,

both directly and through their influence on brighter binary companions (Rebolo et al.,

1995; Maxted et al., 2006; Littlefair et al., 2014), and are known as brown dwarfs (BD).

If instead the mass of the collapsed cloud fragment exceeds the minimum stellar mass

limit, hydrogen fusion does ignite in the core. Once the energy generated by this nuclear

fusion dominates and the energy that was generated during the gravitational collapse is

mostly lost, a star is officially born. In the path of stellar evolution, the star emerges

at the so-called zero-age main-sequence (ZAMS). In large populations, the distribution of

ZAMS masses is described by the initial mass function (IMF), a power law which dictates

that low-mass stars far outnumber their high-mass counterparts (Salpeter, 1955; Kroupa

et al., 2013). The mass of an individual star, which is the main parameter determining its

subsequent evolution, depends on the conditions in the cloud from which it forms, such as

the mass of the cloud fragments and the metallicity of the cloud.

For all single stars, as well as for those stars in multiple systems wide enough for the

stars to evolve independently and not influence each other except through gravitational

forces, the core will continue to fuse hydrogen into helium until it is almost fully depleted

of hydrogen. This main-sequence (MS) phase lasts for most of the star’s lifetime (Hurley

et al., 2000). Given the lower central temperature and pressure, the duration of this phase is

longer for low-mass stars than it is for high-mass stars. Fig. 1.1 shows a Hertzsprung-Russell

diagram with a distribution of MS stars in a large population such as our own Galaxy, and

Fig. 1.2 shows a schematic summary of stellar evolution. When the core of a star becomes

depleted of hydrogen it generates less and less energy, thereby destroying the hydrostatic

equilibrium and initiating contraction of the core. This causes the central density and

temperature to increase while hydrogen burning continues in a shell surrounding the core

which moves outwards as it burns through the available fuel. While the core contracts, the

density and temperature decrease in the outer envelope due to conservation of gravitational

and thermal energy, and the star expands to roughly 100 times its former size. Depending

on the star’s ZAMS mass, its core either becomes hot and dense enough to start fusing

helium and move onto the giant branch in the Hertzsprung-Russell diagram (Figs 1.1; 1.2),

or it is not. A star that has a helium core and fuses hydrogen in a layer surrounding the

core is defined as a red giant star (RG).

For stars with a ZAMS mass of ∼ 0.1 - 0.7 M⊙, helium is never ignited (Kippenhahn &

Weigert, 1990, Chapter 33). The envelope of the star is lost and returned to the interstellar

medium, and the stellar remnant left is the helium core: a helium (He) white dwarf with

a mass . 0.4 M⊙. However, MS lifetimes increase with decreasing ZAMS mass and the

lifetimes for He white dwarf progenitors still exceed the age of our Galaxy. Therefore no

He white dwarfs have formed yet naturally, without binary or other interactions that force
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Figure 1.1: Hertzsprung Russell Diagram, based on Hipparcos data and showing the B-V colour,
V-band magnitude, effective temperature and luminosity of 20546 nearby stars, with the main-
sequence (MS; bottom right to top left), the horizontal branch (HB), giant branch (GB) and white
dwarfs (WDs) indicated by the corresponding abbreviations at the end of the arrows. The solid
lines show theoretical evolutionary tracks for a 0.5 M⊙, 1 M⊙, 2.5 M⊙, 5 M⊙ and 10 M⊙ star up
to the end of the asymptotic giant branch. The dashed line shows the subsequent evolution of the
1 M⊙ star into a white dwarf. Courtesy of Marc van der Sluys.

an early termination of core-hydrogen burning and ejection of the envelope. This latter

evolutionary path is discussed in more detail later (see also Chapter 4).

For ZAMS masses exceeding ∼ 0.7 M⊙, the core will become dense and hot enough

for nuclear fusion of helium to take place, converting this element primarily into carbon

and halting the core contraction. At the same time, hydrogen fusion continues in the

shell separating the core from the outer envelope. The star has now reached another

stable configuration, but because there is less energy to gain from helium fusion than

from hydrogen fusion and because the luminosity of the star is higher, this horizontal

branch (HB) phase will last roughly 10 times shorter than the MS phase. Once the core is

depleted of helium and consists of a carbon/oxygen mixture, it will contract further while

the envelope expands once more. In the meantime, the hydrogen burning shell has moved

outwards, consuming hydrogen as it moves along and leaving a helium layer behind. Near

the core, the bottom of this layer will ignite and undergo helium fusion. The star is now

in the asymptotic giant branch phase and experiences double shell burning, and again one
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Figure 1.2: Schematic representation of the different stellar evolutionary phases. Critical points
depend on the whether the star is massive enough to cross the threshold for a core helium flash
(MHeF), the maximum mass of a star ending its life as a white dwarf (Mup) and the mass required
for electron capture to turn the remnant in a neutron star or even a black hole (Mec). Solid lines
indicate irreversible evolutionary steps, while dashed and dotted lines may also indicate steps that
could be reversible, for example through mass loss or mass gain. Figure from Hurley et al. (2000).

of two scenarios can occur. For ZAMS masses of ∼ 0.7 - 8 M⊙ the contraction of the star’s

core is not sufficient to reach conditions necessary for carbon fusion and so it will keep

contracting and start to cool. By this route, a carbon/oxygen (C/O) white dwarf of ∼ 0.5

- 1.2 M⊙ is formed.

For ZAMS masses exceeding ∼ 8 M⊙ the core is able to fuse carbon as well, after which

it either cools down as a 1.2 - 1.4 M⊙ oxygen/neon (O/Ne) white dwarf, or continues

nuclear fusion of heavier elements. In the latter scenario, the star will end its life once the

core collapses into a neutron star or, if the ZAMS mass exceeds ∼ 40 M⊙, a black hole.

See Fig. 1.2 for these stellar evolutionary paths.

The exact ZAMS mass boundaries that result in the different end products are still

uncertain and remain a topic of ongoing research (see for example Fig. 5 in Doherty et al.,

2014). However, given the steepness of the IMF, more than 97% of all stars will end their

lives as slowly cooling white dwarfs.

Contrary to MS or RG stars, white dwarfs do not experience nuclear fusion, and there-

fore do not resist gravitational collapse through radiative pressures. Instead, it is the pres-

ence of an electron degenerate gas that ensures a stable configuration. In the contracting
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stellar core of the pre-white dwarf star the electrons are pushed ever closer together un-

til quantum-mechanical interactions become important. According to the Pauli exclusion

principle only two electrons, with opposite spins, can occupy the same quantum-mechanical

state at a given time. When multiple electrons are pushed together nonetheless, they will

start to fill higher energy levels, thereby generating an outward pressure. When this de-

generacy pressure equals the gravitational pressure the white dwarf has reached a stable

configuration. However, as explained in more detail in the next section, in the relativis-

tic limit the relation between energy and momentum changes and from the corresponding

change in the equation of state it follows that a maximum mass exists for white dwarfs. If

this limit is exceeded, degeneracy pressure will not be able to keep the star from gravita-

tionally collapsing and forming a neutron star (in turn supported by neutron degeneracy

pressure). This famous limit was predicted in the early 1930’s, is set near 1.4 M⊙, and is

called the Chandrasekhar mass MCh (Chandrasekhar, 1931).

1.3 General properties

1.3.1 Temperatures & surface gravities

White dwarfs emerging from the planetary nebulae that are the expelled outer layers of

their progenitor stars are extremely hot due to the gravitational energy released during

contraction of the pre-white dwarf star’s core. In their interiors, a number of processes

involving electroweak interactions generate large quantities of neutrinos. These quickly

escape from the white dwarf, taking energy with them, and initiating the cooling of the

star. At some point the neutrino luminosity decreases to below the photon luminosity and

thermal cooling takes over (Fontaine et al., 2001). The radiated luminosity of the white

dwarf causes a decrease in temperature of the star, while energy released by a small amount

of accompanying contraction is sufficient to sustain the degenerate nature of the electron

gas (Koester, 2013). For this reason, the evolution of white dwarfs is often simply referred

to as cooling.

As the white dwarf approaches lower temperatures, elements in the outer layers start

to recombine, thereby increasing the opacity of those layers. Although the helium and

hydrogen layers are expected to be thin, close to 10−2 and 10−4 of the white dwarf mass

respectively (Althaus et al., 2013; Wood, 1995), they regulate the energy outflow due to

their opaque nature and therefore play an essential role in the white dwarf cooling process.

The steep temperature gradient from the core to the surface leads to the formation of

bulk convective motions in the envelope. The bottom of this convective zone will reach

ever deeper as the white dwarf cools further, until it touches the outer boundary of the

isothermal core (Althaus et al., 2010). This so-called convective coupling speeds up the

cooling significantly, since the core’s energy can now effectively be transported to the outer

atmosphere where it is radiated away. A second important process that occurs as the white

dwarf cools is crystallisation. When the ionic matter in the white dwarf’s core has cooled

sufficiently it will experience a first-order phase transition and become a solid. This process
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Figure 1.3: Comparison of the observational luminosity function of local white dwarfs and theo-
retical calculations for the Galactic disk for different ages. Figure from Fontaine et al. (2001), using
data from Leggett et al. (1998) and Knox et al. (1999).

is accompanied by a release of latent heat and consequently slows down the cooling. When

and in which order these two processes occur depends mainly on the mass of the white

dwarf (Fontaine et al., 2001). Irrespective of the order in which these processes occur, the

white dwarf will eventually be a crystallised, very low-temperature degenerate remnant,

referred to as a black dwarf.

The monotonic decrease of temperature as a function of age is a unique and very useful

aspect of white dwarf stars. It means that they can be used as independent age estimators

of the population they are in, including the local neighbourhood, open clusters, or the

Galactic disc and halo (Renzini et al., 1996; Hansen et al., 2004, 2013; Wood, 1992). This

branch of astronomy, where the main aim is deriving ages, is called cosmochronology. For

accurate measurements with white dwarfs it is necessary to precisely compute theoretical

white dwarf cooling rates in order to link the measured temperature (or luminosity) to

the star’s age. White dwarfs in the Solar neighbourhood can be individually targeted

and studied (Bergeron et al., 2001), but this becomes more difficult when analysing stars

in distant clusters (Richer et al., 1997, 1998, 2008). In such cases, and for other large

samples, it is useful to create both a theoretical and observational luminosity function.

The former is calculated by assuming a certain star formation rate for a synthetic sample

of stars, which are then evolved using detailed stellar evolution calculations and later white

dwarf cooling models. The resulting theoretical luminosity function can then be compared

with observed numbers of white dwarfs with a given magnitude per volume element, as

is illustrated in Fig. 1.3 (see also Wood, 1992). Since the current-day luminosity function

depends on the star formation history, knowing more about the latter can help constrain
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Figure 1.4: Histogram of surface grav-
ities (log g) of a spectroscopic sample
from the Palomar Green Survey con-
sisting of 298 white dwarfs with ef-
fective temperatures Teff > 13000 K
and with hydrogen-rich atmospheres
(Liebert et al., 2005).

the former. This can be done through, for example, studies of complete, volume limited

white dwarf samples, combined with initial – final mass relations and white dwarf cooling

times (Tremblay et al., 2014).

Besides temperature, the most important parameter describing a white dwarf is the

surface gravity, log g, typically expressed as a logarithm with g in cgs units of cm/s2 (so

for the Earth log g⊕ ≃ 3). The bulk of white dwarf stars have a surface gravity close to

log g ≃ 8 (Fig. 1.4; Liebert et al., 2005; Gianninas et al., 2006; Kleinman et al., 2013). These

represent by far the largest group of white dwarf remnants, those with C/O cores. We will

see more about masses and white dwarfs with different core compositions in Sect. 1.3.2.

For a given combination of effective white dwarf temperature Teff , surface gravity log g

and chemical composition of hydrogen, helium and heavier elements, XY Z respectively,

accurate models can be calculated that describe a white dwarf’s atmosphere. These model

atmospheres can then be used to calculate the emitted radiation at different wavelengths,

and therefore to create model spectra (Bergeron et al., 1991; Koester, 2010; Tremblay et al.,

2013b). Observed spectra of white dwarfs can then be compared to grids of such model

spectra (usually the composition XY Z is fixed), and from the best fit one finds the star’s

effective temperature and surface gravity. The exact composition of the white dwarf’s

core as well as the thickness of the multi-layered atmosphere is not unimportant, as these

influence both the temperature and surface gravity. Note that a white dwarf’s temperature

and surface gravity cannot be measured directly, therefore requiring them to be derived by

comparison to physical models as just described. Hence this approach does not only rely

on high-quality spectroscopic data, but also on a proper theoretical understanding of the

relevant physics of white dwarf structures and cooling processes.

Fitting model spectra to spectroscopic data generally focuses on the Balmer absorption

lines, which are present in the spectra of most white dwarfs. Because distances to stars are

unknown, or at the very least uncertain, the measured flux does not constrain the white

dwarf temperature. Also the slope of the spectrum’s continuum alone is insufficient to

constrain the star’s temperature, because it is influenced by the amount of reddening due
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to dust along the line of sight towards the target. Instead it is the shape and width of

the hydrogen absorption lines that are sensitive to both temperature and surface gravity,

allowing determination of both these parameters by fitting the line profiles (Bergeron et al.,

1991; Gianninas et al., 2011; Giammichele et al., 2012).

Note that until recently the models included a 1-dimensional mixing-length theory to

approximate convective motion. The latest models are based on 3-dimensional calcula-

tions instead (Tremblay et al., 2013a), and revealed that the former 1D approximation

overpredicted surface gravities and, to a lesser extent, effective temperatures when these

atmospheric parameters were deduced through Balmer line fitting. Tremblay et al. (2013b)

provided analytical formulae with which parameter values from fits with 1D models can be

corrected to the more accurate values that would result from fits with 3D model spectra.

As white dwarfs cool, they reach a combination of effective temperature and surface

gravity, dependent on their chemical composition, at which they experience pulsational

instabilities. These are mainly driven by changes in the opacities of the different elements

that are present. Four empirical classes of white dwarf pulsators are known, separated by

the composition of their core and/or atmosphere: the hot pre-white dwarfs (PG1159 or

DOV stars, McGraw et al. 1979), white dwarfs with helium-rich atmospheres (V777Her

or DBV, see for example Winget et al. 1982; Provencal et al. 2009; Østensen et al. 2011),

those with carbon-rich atmospheres (DQV, see Montgomery et al. 2008; Dufour et al.

2008) and white dwarfs with hydrogen-rich atmospheres (ZZCeti or DAVs, see Landolt

1968; Gianninas et al. 2011). The latter are by far the largest known group of pulsating

white dwarfs.

The time scale of radial pulsations is set by the dynamical time scale, which is only

a few seconds for white dwarfs. The observed pulsations have periods on the order of a

few minutes to tens of minutes (see for example Gianninas et al., 2006; Hermes et al.,

2013c,d), therefore consistent with non-radial g-mode pulsations, so called because the

dominant restoring force is gravity. Another group of pulsations is also thought to exist,

the non-radial p-mode pulsations, where the restoring force is due to pressure. However,

oscillations with typical p-mode periods and amplitudes have not yet been observed, partly

due to the fact that they are likely to occur on time scales of only a few seconds, as well as

with significantly lower amplitudes than the g-mode pulsations (Winget & Kepler, 2008).

For white dwarfs with hydrogen-rich atmospheres, the observed g-mode pulsations are

driven by ionisation of hydrogen. This requires a certain combination of surface gravity

and effective temperature, which is why there is a relatively well-defined instability strip

in this parameter space. Empirically, this strip occurs at an effective temperature close

to Teff = 12000 K for high-mass white dwarfs (log g ∼ 8) and slants to Teff = 9500 K

for extremely low-mass white dwarfs (log g ∼ 6.5) (Gianninas et al., 2014a). This agrees

reasonably well with theoretical calculations (Van Grootel et al., 2012, 2013). Whether the

strip is continuous or not, whether it covers the full range of surface gravities, and whether

or not the strip is pure and contains only pulsating white dwarfs has yet to be determined.

Fig. 1.5 shows the current observational knowledge. Note that asteroseismology, the study
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Figure 1.5: ZZCeti diagram, showing the position of the instability strip for white dwarfs with
hydrogen-rich atmospheres as a function of surface gravity and effective temperature of those stars.
Shown in black are confirmed pulsating white dwarfs (Gianninas et al., 2011, 2014a; Greiss et al.,
2014; Hermes et al., 2011, 2013a, 2014b; Pyrzas et al., 2015) and in grey non-pulsating white dwarfs
(Bours et al., 2014a, 2015a; Gianninas et al., 2011, 2014a; Hermes et al., 2013c,d; Steinfadt et al.,
2012). The dotted lines follow the empirical instability strip as in Gianninas et al. (2014a).

of pulsating stars (Aerts et al., 2010), is a very powerful tool that can be used to probe

the interior of stars, and to determine masses and bulk compositions (Winget & Kepler,

2008).

1.3.2 Masses & radii

The internal structure of a star as a function of its radius can be approximately described

by a polytrope with index n. The polytropic equation describes the density profile of the

star, and hence the pressure profile via the equation of state which links these two variables

such that P ∝ ρ1+
1
n . This assumption results in the Lane-Emden equation for describing

a gaseous sphere:
1

ξ2
d

dξ

(

ξ2
dθ

dξ

)

= −θn , (1.1)

where ξ is a dimensionless variable representing the stellar radius and θ is a dimensionless

variable relating the density to the central density through ρ = ρcθ
n. Stars that are dense

enough to be dominated by non-relativistic electron degeneracy pressure, such as white

dwarfs, can be accurately described by a polytrope with index n = 3/2. For this index, the

solution of the Lane-Emden equation reduces to a mass – radius relation where

R ∝ M−1/3 (1.2)

(see for example Prialnik, 2000; Kippenhahn & Weigert, 1990). This explains one of the

key characteristics of white dwarfs, namely that those with higher masses have smaller

radii. In the extreme case where the electron degenerate gas is fully relativistic, the star is
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better described by a polytrope with index n = 3. In this solution, the mass is independent

of the radius, and it can therefore be used to derive an absolute upper mass limit for white

dwarf stars. Using appropriate numbers, this results in the Chandrasekhar mass limit of

MCh ≃ 1.4 M⊙ (Chandrasekhar, 1931).

The inverse relationship in Eq. 1.2 between a white dwarf’s mass and radius has been

known for a long time, but determining exact mass – radius relations has turned out to be

much more complicated, and is still work in progress (Wood, 1995; Benvenuto & Althaus,

1998; Althaus et al., 2013). Part of the complexity can be explained by the fact that the

relations differ for white dwarfs with different core compositions. In addition they are

sensitive to the star’s temperature, because a white dwarf with a non-zero temperature

becomes ‘bloated’ due to thermal pressure, which particularly influences the outer non-

degenerate layers of the star. For testing and improving theoretical mass – radius relations,

empirical data is essential, but it is not always easy to measure the relevant parameters.

Besides using asteroseismological tools on those white dwarfs that measurably pulsate,

detailed studies can be performed on white dwarfs in resolved binary systems. Using these

nearby, wide binaries, masses can be derived from the visible orbital motion as projected

on the plane of the sky and radii can be derived from parallax observations and knowledge

of effective temperatures from spectroscopic observations (Provencal et al., 2002, 1998;

Holberg et al., 1998; Shipman et al., 1997). Knowledge of the distance to the white dwarf

allows one to use the observed flux to calculate the flux emitted at the white dwarf’s

surface, which depends upon the star’s temperature and radius. Note that this approach

is independent of any mass – radius relation, but still relies on model spectra to obtain a

temperature by fitting spectroscopic data.

Masses and radii can also be derived for white dwarfs in unresolved binaries, although

in order to get proper parameter constraints these binaries then need to show certain

spectral features as well as show eclipses from the Earth’s point of view (see for example

Chapter 3; Bours et al., 2014a; Parsons et al., 2010a, 2012a; Maxted et al., 2004; O’Brien

et al., 2001). For such binaries, masses can be derived by measuring the radial velocity

amplitudes K1 and K2 of the stars through phase-resolved spectroscopy. This requires

accurate spectroscopy, ideally covering at least a full orbital cycle, as well as the presence

of deep, sharp line cores originating in both stars from which the radial velocities can

be measured. The radial velocity amplitudes of the stars are linked to the mass ratio

q = K1/K2 = M2/M1, and, when the orbital inclination with respect to the plane of the

sky i is known as well, the individual masses can be determined through

2π

Porb
a sin(i) = K1 +K2 (1.3)

and the use of Kepler’s third law given by

a3

G(M1 +M2)
=

P 2
orb

4π2
. (1.4)

Generally the inclination i is not known beforehand. Removing the degeneracy between
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Figure 1.6: Schematic diagram
of an eclipse, during which a white
dwarf (small, black) gets obscured
by a main-sequence star compan-
ion (large, grey). The total eclipse
lasts from time t1 to t4, while the
ingress and egress last from t1 to
t2 and t3 to t4 respectively.

the masses and the orbital inclination can be achieved by combining the spectroscopic ob-

servations with high-speed photometric eclipse observations. These latter are also essential

in deriving the stellar radii, which determine the duration of the ingress (t2 - t1) and egress

(t4 - t3), as well as the duration of the entire eclipse (t3 - t1 = t4 - t2), see Fig. 1.6. At

the third and fourth contact points, t3 and t4, the orbital phases φ3 and φ4 can be used to

derive the relative radii of the two stars. Assuming that R2 > R1, the radii scaled by the

orbital separation a are given by

R1 +R2

a
=

√

1− sin2i cos22πφ4 , (1.5)

R2 −R1

a
=

√

1− sin2i cos22πφ3 , (1.6)

although again the orbital inclination i plays a role. Combining the spectroscopic and

photometric data sets removes the degeneracy introduced by the orbital inclination and

therefore allows measurements of stellar masses and radii independently of theoretical

mass – radius relations or model spectra. Although accurate, the observations are time

consuming and this technique can only be applied to a limited number of stars, since they

need to both have sharp spectral lines and show eclipses.

For larger sample sizes other approaches have proven more useful. This includes the one

used by Liebert et al. (2005), who determined white dwarf masses by combining evolution-

ary models with temperatures and surface gravities obtained from fitting model spectra

to spectroscopic data. Their distribution of masses for white dwarfs with temperatures

Teff > 13000 K is shown in Fig. 1.7. The cooler white dwarfs are removed from this sample

to avoid additional complexity due to the increasing importance of convection at these

temperatures (Tassoul et al., 1990). The histogram shows a dominant, central component

at a mass close to 0.6 M⊙, corresponding to the bulk of the white dwarf remnants, namely

those with C/O cores. There is also a sharp, smaller component at ∼ 0.4 M⊙, as well as a

weak, broad contribution of white dwarfs with masses > 0.8 M⊙. These sub-distributions

correspond to the He core and O/Ne core white dwarfs respectively. Note that the sample
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Figure 1.7: Histogram of masses of a
spectroscopic sample from the Palomar
Green Survey consisting of 298 white
dwarfs with effective temperatures
Teff > 13000 K and with hydrogen-rich
atmospheres (Liebert et al., 2005).

used to create this distribution is magnitude-limited, thereby creating a bias in favour of

finding low-mass white dwarfs due to their larger radii and larger surface area. A mass

distribution corrected for the volume searched should more accurately represent the true

distribution, and does indeed show a more prominent component at higher white dwarf

masses (see Liebert et al., 2005).

The results from this spectroscopic approach agree with the mean mass determined us-

ing the last of the four methods that can be used to measure white dwarf masses: through

gravitational redshift measurements. This method relies on accurately measuring the wave-

length of absorption lines in spectroscopic data of white dwarfs, most often those of the

Balmer line series. The lines will be redshifted because the photons have had to emerge

from the deep gravitational potential well of the white dwarf star itself. The measured shift

in wavelength due to the gravitational redshift vg therefore depends on the white dwarf’s

mass and radius, where

vg =
GM

Rc
. (1.7)

However, spectral features will also be redshifted or blueshifted if the white dwarf has a

radial velocity with respect to the observer at Earth. Therefore this technique can only

be applied to those white dwarfs for which the radial velocity is known: those in common-

proper motion systems or in open clusters (Koester, 1987; Silvestri et al., 2005; Reid, 1996;

Casewell et al., 2009). However, using a large sample of white dwarfs from the thin disk

of our Galaxy, it can be assumed that the radial velocities cancel out on average, so that

this statistical analysis results in a mean gravitational redshift and mean white dwarf mass

(Falcon et al., 2010).

Note that both the spectroscopic and the gravitational redshift approach require the use

of a theoretical mass – radius relation in order to determine both mass and radius for a given

white dwarf. Therefore these do not provide independent tests of such relations. This has

so far only been achieved through detailed studies of white dwarfs in close binary systems.

However, if both the gravitational redshift and the surface gravity can be measured for a



Chapter 1. Introduction 14

Figure 1.8: Left: initial – final mass measurements and theoretical relations from open clusters.
Figure from Dobbie et al. (2009). Right: initial – final measurements from common proper motion
pairs, and theoretical relations for different metallicities Z. Figure from Catalán et al. (2008b).

given white dwarf, the star’s mass and radius can be determined independently (Holberg

et al., 2012).

Knowing the mass of a white dwarf can reveal more information about stellar evolution

and the star formation history, but only if the white dwarf’s final mass can be linked to

the star’s initial mass on the main-sequence (Dobbie et al., 2009; Tremblay et al., 2014).

With the help of an initial – final mass relation, a population of white dwarfs can reveal

the history of their progenitor stars, and, for example, provide valuable insights into the

amount of mass returned to the interstellar medium (see for example Kalirai et al., 2009).

The large number of different processes that a star may experience during its lifetime, such

as when thermal pulses occur, the opacity of different stellar layers at different times, mass-

loss laws, stellar rotation, magnetic fields, etcetera, complicates theoretical evolutionary

calculations (Weidemann, 2000). By using open star clusters with white dwarf members

such as the Hyades cluster, and the turn-off mass of their main-sequence stars, the initial –

final mass relation can be calibrated (Richer et al., 1997; Weidemann, 1977). Besides open

clusters, also common proper motion pairs with one white dwarf and one non-degenerate

star can be used. The total age and the initial metallicity of the binary may be determined

from the non-degenerate companion, and can then be used to determine the main-sequence

lifetime of the white dwarf progenitor, in combination with the white dwarf mass and

derived cooling time (Catalán et al., 2008b). The measured relation between final white

dwarf mass and inferred initial ZAMS mass follows the general theoretical calculations

(Fig. 1.8). The ever-decreasing uncertainties and scatter present in the measured white

dwarf masses will facilitate more detailed conclusions regarding the more subtle differences

in the various theoretical calculations (Dobbie et al., 2009). For more information on how

stellar metallicity influences the initial – final mass relation, see Meng et al. (2008).
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Figure 1.9: Cross-section showing the relative fractions X of oxygen (O), carbon (C), helium (He)
and hydrogen (H) in a DA (top panel) and DB (bottom panel) white dwarf with a carbon/oxygen
core of mass M⋆ and temperature Teff as given in the legends (Althaus et al., 2010). The horizontal
axes indicate the mass fraction (in the form of -log(1-Mr/M⋆)) contained in the star beyond radius
r. The centre of the white dwarf is at the left and the outer atmosphere is off the figures towards the
right. The part of the atmosphere directly available to observations typically has a mass fraction
< 10−15, which corresponds to -log(1-Mr/M⋆) > 15.

1.3.3 Chemical composition

The only method of truly probing a white dwarf’s interior and determine its composition

is through seismic analysis (see for example Aerts et al., 2010; Kawaler & Bradley, 1994;

Costa et al., 2008; Córsico et al., 2012). However, since most white dwarfs do not pulsate,

general assumptions about their composition have to be made. Depending on the mass,

and hence the surface gravity, of the white dwarf, the core composition is either assumed

to be He, a C/O mixture, or an O/Ne mixture for low-mass, canonical and high-mass

white dwarfs respectively. The latter two are surrounded by both a helium and hydrogen

layer, whereas the helium white dwarf’s atmosphere is composed of a hydrogen layer only.

Typical masses for these layers are 10−2 MWD for the He layer, and 10−4 MWD for the H

layer (Althaus et al., 2013; Wood, 1995), although very low-mass white dwarfs can have

substantially thicker hydrogen envelopes of ∼ 10−2 M⊙ (Istrate et al., 2014b).

The high surface gravities typical of white dwarfs cause the chemical constituents in the

stars to settle according to their elemental weights. This process occurs on time scales that

are much shorter than the star’s evolutionary time scales (Paquette et al., 1986; Koester,

2009). All heavy elements sink below the white dwarf’s photosphere, while light elements

such as helium and hydrogen form the upper layers of the atmosphere. Chemical profiles

for canonical white dwarfs with a hydrogen-rich or helium-rich atmosphere are shown in

Fig. 1.9. Note that the x-axes indicate the negative of the logarithmic mass-fraction, from
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Figure 1.10: Spectrum of a DA (bottom) and DB (top) white dwarf, from the HST calibration
database. Vertical lines indicate the positions of hydrogen (solid) and helium (dashed) spectral
lines. Figure from Koester (2013).

the core of the white dwarf at 0 out to the outer envelope at 3 and above. Observationally,

one can only see the photons emitted in a star’s photosphere, which typically contains

a mass fraction ≤ 10−15. This means that only the outermost layer of a white dwarf’s

atmosphere can be directly observed, and therefore it is these layers on which spectral

sub-classification of white dwarfs is based.

In roughly 70% of all white dwarfs some amount of hydrogen is present and, barring

any external supply of heavier elements, the photosphere will then be composed purely of

hydrogen. In this case, the spectrum will show only hydrogen absorption lines and the

star will be classified as a DA white dwarf. If all hydrogen has been lost during pre-white

dwarf evolutionary phases, helium will make up the outer atmosphere, in which case the

spectrum will show helium absorption lines and the star will be classified as a DB white

dwarf. Spectra of a DA and DB white dwarf are shown in Fig 1.10.

With increasing amounts of spectroscopic data on white dwarfs, more categories are

being discovered. A basic classification is listed in Table 1.1, and includes several subclasses

besides the DA and DB white dwarfs. Among them are DC white dwarfs which show no

deep absorption lines at all, DO white dwarfs that show strong Heii lines and weak Hei

or H lines, DZ white dwarfs which show metal lines but no hydrogen or helium lines, and

DQ white dwarfs which show carbon features. A combination of different spectral classes

is also possible. For example, when a white dwarf has a hydrogen envelope enriched with

metals, it will be classified as either a DAZ or DZA white dwarf, depending on whether the

hydrogen spectral features are stronger than the metal features or vice versa. For pulsating

white dwarfs a V is often added to the classification to indicate variability, although most

spectral classes have additional names for the pulsating members based on their prototype,

as mentioned before. Lastly, some white dwarfs contain a strong magnetic field, which can

be seen through Zeeman splitting of the absorption lines. In these cases, the letter m or

H can be added to the spectral classification. A few more less-populated classes exist, see
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Table 1.1: White dwarf spectral classes.

classification spectroscopic signature

DA hydrogen lines, no Hei or metals present

DB Hei lines, no hydrogen or metals present

DC no lines deeper than 5% present

DO strong Heii lines, some Hei or H may be present

DZ metal lines only, no hydrogen or helium lines

DQ carbon features present

PG 1159 hot white dwarfs: Teff ∼ 140000 K

V photometric variability

m or H magnetic

for example the review by Koester (2013) for more details.

1.4 Compact white dwarf binaries

Roughly two out of every three stars are part of a binary system, so that they will go

through life with a nearby companion. If the binary separation is very large, the stars will

never influence each other’s evolution, not even when they evolve into giants or supergiant

stars. For smaller separations however, the evolution of both stars is strongly dependent

upon that separation because it determines the sphere of influence of the stars. In this

thesis, it is the close white dwarf binaries that are of interest and so the focus lies on

evolutionary paths towards and of these types of binaries.

Most binaries start their lives as two ZAMS stars. The more massive star (primary

star with mass M1) will burn through its fuel more quickly and will evolve off the MS first.

Depending on its mass, and on the size it will reach, the star may fill its Roche lobe. The

Roche geometry defines the gravitational potential in a frame that is corotating with the

binary, as illustrated in Fig 1.11. The Roche lobe is the largest closed equipotential surface

around an object. The Roche lobes of the two stars meet at Lagrange point L1 where matter

can transfer from being gravitationally bound to one star to being gravitationally bound

to the other star. The equivalent radius RL of a Roche lobe is defined by setting the Roche

lobe’s volume equal to a sphere occupying the same volume, and is given approximately by

RL

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(1.8)

(Eggleton 1983, who updated the analytical approximation of Paczyński 1971), where a is

the binary’s semi-major axis and q = M2/M1 is the mass ratio.

To obtain this Roche potential several assumptions are made (see Paczyński, 1971, and

references therein), with three of the most important ones following here. First, that the

two objects are point masses. This is a reasonable assumption because even when they

fill their Roche lobes, stars are very centrally concentrated. Second, that the binary orbit

is circular. And third, that the stellar rotation is synchronised with the binary’s orbital
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Figure 1.11: Representation of the Roche potential in a binary with a mass ratio q = 2 in three
dimensions (top) and projected onto two dimensions (bottom). L1, L2 and L3 are Lagrange points
in which the gravitational forces of the two stars cancel each other. The thick solid black line that
crosses L1 shows the droplet shaped Roche lobes. Courtesy of Marc van der Sluys.

motion, so that the stars are tidally locked to each other and the binary orbit. These last

two assumptions are not generally valid, but when stars are close to filling their Roche

lobes, tidal interactions become strong enough to circularise and synchronise the orbit

faster than the stars expand. Therefore, when a star reaches full Roche lobe size all three

assumptions are usually satisfied.

In general, the evolution of the orbital separation of a close binary is governed by the

following equation
ȧ

a
= 2

J̇

J
− 2

Ṁ1

M1
− 2

Ṁ2

M2
+

Ṁ

M
, (1.9)

with J the angular momentum, M1 and M2 the primary and secondary masses, M =

M1 +M2 the total mass and the dots representing time derivatives. Angular momentum

can be lost from the binary through one of two processes: the emission of gravitational

waves, or the loss of matter that takes angular momentum with it. These processes play

important roles in close binary evolution, as will become clear in more detail in Sect 1.5.

Mass-loss of either star can occur when that star fills its Roche lobe, after which the

subsequent mass transfer through the L1 point to the secondary can either be stable or

not. The stability depends strongly on the mass ratio q and on the reaction of the donor

(primary) to the mass-loss as well as the reaction of the accretor (secondary) to mass-

gain. In particular, the subsequent evolution of the binary depends on whether the donor

expands faster or slower than its Roche lobe, thereby determining whether mass-transfer

continues, and if so, whether it is stable on a dynamical time scale. Assuming the star fills

its Roche lobe, the mass and radius of the donor then determine the amount by which the

star exceeds its Roche lobe and hence the mass loss rate Ṁ1.

If mass transfer is stable, this phase can last for ∼ 109 years, during which the secondary

accretes (a fraction of) the transferred matter. For large Ṁ1 the Eddington limit is crossed,
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and the secondary cannot accrete all the mass that is being transferred towards it, therefore

resulting in a common envelope phase in which case the expanding envelope of the giant

donor engulfs the secondary star completely. The classical common envelope prescription

is based on conservation of energy, so that the envelope is expelled once a fraction α of

the difference in orbital energy between the initial and final configuration of the binary

equals the envelope’s binding energy (Webbink, 1984; Tutukov & Yungelson, 1979; van den

Heuvel, 1976; Paczyński, 1976):

Ebind = α∆Eorb . (1.10)

This can result in a large decrease of the binary’s orbital separation, in order to gather

the required energy to expel the envelope. Given the short orbital periods of the white

dwarf + M-dwarf binaries discussed in this thesis, it is likely the case that most of them

went through such a common envelope event. However, the existence of equal-mass double

white dwarf binaries seems to challenge this mechanism: if the first common envelope

phase, which followed the evolution of the primary into a giant, indeed caused the orbit

to shrink significantly, there would not be enough space for the secondary star to evolve

long enough as a giant in order to produce a core as massive as the primary white dwarf.

Evolutionary models for these binaries introduced an alternative prescription for the first

common envelope phase in such a binary. This alternative is based on conservation of

angular momentum, in which the amount of decrease of the binary’s orbital separation

depends upon the fractional mass of the envelope menv (Nelemans et al., 2000; Nelemans

& Tout, 2005):
∆J

J
= γ

menv

M1 +M2
. (1.11)

The drawback of this model is that it has no solid physical interpretation, but is an em-

pirically justified mathematical concept.

Exactly what happens during a common envelope event, and how and when common

envelopes occur, is still somewhat unclear at the moment. This is partly due to a common

envelope’s short duration of only 100 – 1000 years, which makes it difficult to directly

observe binaries in such a phase, assuming they are recognisable as such. A recent review

on the subject of common envelope evolution can be found in Ivanova et al. (2013) and of

the more comprehensive topic of close binary evolution in Postnov & Yungelson (2014).

1.4.1 Detached white dwarf + M-dwarf binaries

Many of the observational targets discussed in this thesis are close, detached white dwarfs

+ M-dwarf binaries. In order to form such a binary, the initially more massive star (the

primary) must evolve into a white dwarf. While shedding its envelope, it is thought that

the binary experiences an α common envelope event as described before, causing the orbit

to shrink significantly and resulting in a close white dwarf binary. Because phases after

the main-sequence last a relatively short amount of time, the secondary star is still on the

main-sequence and will not have evolved significantly during the primary star’s evolution.

Even a small difference in ZAMS masses can therefore give rise to a white dwarf + main-
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Figure 1.12: Number of known eclipsing detached and semi-detached white dwarf + main-sequence
star binaries and eclipsing double white dwarf binaries (WD+MS, CV and WD+WD respectively).
Data from Ritter & Kolb catalogue, edition 7.22, June 2014 (Ritter & Kolb, 2003).

sequence star (WD+MS) binary.

In particular, this thesis focuses on eclipsing white dwarf binaries, the numbers of

which have increased dramatically in recent years, mainly due to large surveys such as the

Sloan Digital Sky Survey (SDSS; York et al., 2000) and the Catalina Sky Survey (CSS;

Drake et al., 2009). Fig. 1.12 shows the cumulative number of three subsets of known

eclipsing white dwarf binaries from the Ritter & Kolb catalogue (Ritter & Kolb, 2003).

In most binaries found so far in this eclipsing subset, the secondary star is a low-mass M-

dwarf (dM) and typical orbital periods are between 2 hours and 2 days, with the majority

closer to the lower boundary. The dominance of M-dwarf secondary stars, as well as the

prevalence of short-period binaries, are partly due to observational selection effects. Stars

with significantly earlier spectral types such as A, G and K stars are much brighter, and

therefore more likely to outshine a white dwarf companion, making it more difficult to find

such binaries, although some are known (Vennes et al., 1998; Burleigh & Barstow, 1999,

2000).

Although not the largest group, the detached binaries have the advantage of being

simple systems because there are no varying elements in these binaries. Let us consider

the light curves produced by an eclipsing WD+dM binary as seen from Earth. In these

binaries, the orbital inclination i is close to 90◦, so that the binary is viewed almost exactly

edge-on. Orbital phase φ = 0 is defined at time T0, as the moment at which the line of

sight from Earth aligns with the line connecting the stellar centres while the white dwarf

is farthest away from the observer and the M-dwarf is closest. Half an orbital period Porb

later the white dwarf is closest to the observer, and the orbital phase is equal to φ = 0.5,

etc.

In the simplest case, the white dwarf dominates the flux, and the M-dwarf is hardly

visible. The resulting light curve will be flat at all orbital phases except for those during
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which the white dwarf moves behind the M-dwarf and is being eclipsed. This is illustrated

in the top panel of Fig. 1.13, where such a light curve is generated from a simple model.

When the M-dwarf is close to filling its Roche lobe, the star itself becomes distorted

because it follows the gravitational equipotential surfaces (see 1.11). It takes on a droplet

shape and therefore the star’s projected surface area is larger when viewed from the side

than when viewed from the front or back. As the binary stars orbit their common centre of

mass, the variable fraction of surface area visible produces a modulation in the light curve

with a period equal to half the orbital period. This so-called ellipsoidal modulation is

illustrated in the middle panel of Fig. 1.13. Modelling a light curve of a binary that shows

such a modulation of the M-dwarf can help determine the orbital period Porb of the binary,

as well as the radius of the M-dwarf relative to the semi-major axis of the binary: RdM/a.

However, if the binary is not eclipsing, one should be careful not to confuse ellipsoidal

modulation with the so-called reflection effect.

The reflection effect occurs when the white dwarf is sufficiently hot and the orbital

distance between the stars is small enough for the side of the M-dwarf facing the white

dwarf to be strongly irradiated. The atmosphere of the M-dwarf reprocesses the photons

and emits them at slightly redder wavelengths. This produces the reflection effect in the

light curve, but note that technically speaking it is not reflection but reprocessing of the

light that causes the observed effect. When the irradiated face of the M-dwarf is visible to

the observer, the flux increases and when the cool back of the M-dwarf turns towards the

observer the flux decreases, as is illustrated in the bottom panel of Fig. 1.13. This type of

modulation occurs on the orbital period.

A given binary may exhibit either ellipsoidal modulation or the reflection effect, or

both. Both the ellipsoidal modulation and the reflection effect are more pronounced in

binaries with high orbital inclinations i, and may therefore be used to find such eclipsing

binaries (Parsons et al., 2013b, 2015).

1.4.2 Semi-detached white dwarf + M-dwarf binaries

When the M-dwarf in detached WD+dM binaries starts evolving into a giant, or when

the orbital period has decreased significantly due to the loss of angular momentum, the

M-dwarf will start to fill its Roche lobe. At this point, the M-dwarf will lose matter

through the L1 Lagrange point, after which the matter becomes gravitationally bound to

the white dwarf. However, because of the angular momentum it carries, the matter cannot

directly accrete onto the white dwarf. Instead, assuming the white dwarf does not have

a significant magnetic field, the material will pass the white dwarf by, will then fall back

towards it again, and will hit material of the accretion stream at an earlier point. In this

way an eccentric ring is formed around the white dwarf, which will become a circular ring

and then spread into a disc, as illustrated in Fig. 1.14.

Such semi-detached white dwarf + low-mass main sequence star binaries are called

cataclysmic variables (CVs; Warner, 2003; Hellier, 2001). This name is inspired by the

often dramatic and significant changes in brightness that accompany the variable accretion
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Figure 1.13: Model light curves of detached eclipsing WD+dM binaries with an inclination i =
90◦. Top: simple detached binary. Middle: light curve showing ellipsoidal modulation, caused
by Roche lobe distortion of the secondary star. Bottom: light curve showing the reflection effect,
present in binaries with a hot white dwarf. Because the stars are locked in synchronous rotation,
one side of the M-dwarf will be strongly irradiated, and will therefore emit additional reprocessed
radiation.

Figure 1.14: Schematic illustration of the four stages in the formation of an accretion disc in a
cataclysmic variable. A Roche lobe filling companion (droplet shaped, shaded) loses matter through
the inner Lagrangian point L1 to a non-magnetic, degenerate object (black dot). The fifth figure
shows a side view of the binary with a fully formed disc. Based on a figure from Verbunt (1982).

rates in these systems and the subsequent build-up and release processes controlling the

accretion disc. The light curves of CVs are generally dominated by the bright accretion

disc, and/or the hot spot where the accretion stream hits the disc.

The evolution of CVs is driven by angular momentum exchange between the two stars

and angular momentum loss from the binary (see Eq. 1.9). The standard model includes

as the dominant mechanism for angular momentum loss of long-period CVs (Porb & 3 hr)

a process called magnetic braking, while the evolution of those at short orbital periods

(Porb . 2 hr) is dominated by gravitational wave radiation (see Rappaport et al., 1983;

Howell et al., 2001; Knigge, 2006; Knigge et al., 2011, for more details). Both mechanisms

will be discussed in more detail in the next section. Suffice it to say here that this model

was developed to explain the famous period gap of cataclysmic variables. This period

gap corresponds to a significant dearth of CVs in the period range 2 hr . Porb . 3 hr

compared to the number of systems at either side of this gap (Gänsicke et al., 2009; Ritter

& Kolb, 2003). It is a key characteristic of the population of known cataclysmic variables,
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Figure 1.15: Schematic view of a polar, a cataclysmic variable with a strongly magnetic white
dwarf, showing the donor star (left, marked secondary, generally a low-mass MS star), the accretion
stream, and the accretor (right, magnetic white dwarf) (from Cropper, 1990).

and is believed to be related to the M-dwarf’s (in)ability to produce a magnetic field and

(dis)continue efficient angular momentum loss through a stellar wind.

Cataclysmic variables in which the white dwarf has a noticeable magnetic field also

exist. These are divided into two categories, depending on the strength of this magnetic

field. Those with field strengths above & 10 MG are called polars or AM Her type systems,

after the class prototype (see Cropper 1990 for a review, and Warner 2003, Chapter 6). In

polars, the accreting material does not get the chance to form an accretion disc because

the magnetic field lines will guide the material away from the orbital plane and towards the

white dwarf’s magnetic pole, as illustrated in Fig. 1.15. In most polars the strong magnetic

field causes the white dwarf to rotate synchronously with the orbit (Cropper, 1988), so

that the same side is always turned towards the M-dwarf and the accretion stream. As

in standard CVs, the accretion rate is variable, and so polars can be in high states or

low states. During high accretion rates (∼ 10−9 M⊙/yr), the accreting pole or poles will

dominate the light curve. On the other hand, during low accretion rates (∼ 10−11 M⊙/yr),

the accreting pole(s) may hardly be visible at all. The difference between low and high

states can be as large as several magnitudes (Bours et al., 2014b; Gänsicke et al., 1995).

Those CVs in which the white dwarf is magnetic, but not strongly enough to force

synchronisation of the white dwarf to the binary orbit, fall into the category of intermediate

polars (see Warner 2003, Chapter 7). Field strengths are typically in the range of ∼ 0.1 –

10 MG, and determine the type of accretion. The weaker fields are not able to force the flow

of the accretion stream after it leaves the inner Lagrangian point, and therefore a disk is

formed, as is the case in non-magnetic CVs, although the inner part of this disk is generally

destroyed by the magnetic field. On the contrary, there are also intermediate polars in

which the accretion stream is in fact magnetically confined, and accretion occurs on the

white dwarf’s magnetic pole, as in polars. The class of cataclysmic variables containing

the intermediate polars therefore includes a wide variety of systems, and numerous types

of accretion flows (Norton et al., 2008).

As for the detached binaries, the numbers of known CVs and magnetic CVs have also

increased significantly with the arrival of large, all-sky surveys, see Fig. 1.12, and Breedt
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et al. (2014); Drake et al. (2014a); Gänsicke et al. (2009); Szkody et al. (2002, part I-VII)

for more details.

1.4.3 Detached double white dwarf binaries

The third and last type of binary of particular interest for this thesis includes the dou-

ble white dwarfs, which are quite common as end products of binary evolution (Marsh

et al., 1995; Toonen et al., 2014). Those with separations small enough to have experi-

enced one or two common envelope phases are particularly interesting, as they are thought

to be progenitors of supernovae Type Ia (Iben & Tutukov, 1984; Webbink, 1984), Type

.Ia (Bildsten et al., 2007), R CrB stars (Webbink, 1984) and AMCVn systems (Breedt

et al., 2012; Kilic et al., 2014b). In addition, mergers of Galactic double white dwarfs

occur relatively frequently (Badenes & Maoz, 2012), and constitute the main source of

the background gravitational wave signal at frequencies detectable from space (Nelemans

et al., 2001; Hermes et al., 2012b).

In order to avoid an early merger before both white dwarfs have had a chance to form

it may be necessary to avoid substantial shrinkage of the orbit during the evolution of

the primary, more massive star into a white dwarf. This is where the γ prescription of

the common-envelope phase becomes important. As mentioned before, in order to avoid

the production of only unequal-mass double white dwarf binaries, the orbit of the binary

after evolution of the primary star needs to be wide enough to allow the secondary star to

evolve substantially as well. It needs to have enough space to expand while evolving and

growing its core mass. Therefore the first mass-transfer phase cannot be described by a

classical α common envelope, because this is generally paired with substantial shrinkage of

the binary’s orbit. A schematic diagram of the binary evolution in which the first common-

envelope proceeds via the γ prescription is shown in Fig. 1.16. The specific binary in the

figure evolves into a roughly equal-mass double white dwarf binary.

Currently there are five known double white dwarf binaries that are also eclipsing:

NLTT11748 (Steinfadt et al., 2010), CSS 41177 (Parsons et al., 2011a; Bours et al., 2014a),

GALEXJ171708.5+675712 (Vennes et al., 2011), SDSSJ065133.33+284423.37 (Brown et al.,

2011) and SDSSJ075141.18-014120.9 (Kilic et al., 2014b). For these systems, masses can

be determined from orbital velocities and radii from light curve analysis. Due to their

eclipsing nature, the inclination of the system is strongly constrained, allowing for direct

mass determinations as opposed to lower limits. In particular, CSS41177 is the only one

of the five binaries that is also a double-lined spectroscopic binary, allowing direct mea-

surement of the stars’ orbital velocities (Parsons et al., 2011a; Bours et al., 2014a) and

therefore their masses without needing to assume a mass – radius relation. A detailed

analysis of this system is presented in Chapter 3, based on Bours et al. (2014a) and Bours

et al. (2015a).
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Figure 1.16: Schematic drawing of the binary evolution that resulted in the close double white
dwarf binary WD0136+768 (Maxted et al., 2002; van der Sluys et al., 2006). Starting with two
ZAMS stars (top), the binary experiences a γ common-envelope phase as the primary star evolves
and an α common-envelope as the secondary evolves. The final binary is a close double white dwarf
binary with an orbital period of 1.41 days (bottom). Courtesy of Marc van der Sluys.

1.5 Orbital period variations: real & apparent

A substantial number of eclipsing white dwarf binaries that have been monitored for vari-

ations in their eclipse times do indeed show such changes. There are several processes that

can lead to eclipse timing variations in close binaries. Eclipsing white dwarf binaries are

particularly useful for studying this phenomenon, because the short and sharp features of

a white dwarf eclipse are uniquely suited for precise timing. As seen earlier, the evolution

of close white dwarf binaries is determined by the binary’s angular momentum and the

stellar masses, and by how these parameters change with time (see Eq. 1.9). The stel-

lar masses can change through mass-transfer between the stars, or by mass-loss through

a stellar wind, although the latter is usually very small compared to the star’s mass. A

binary’s angular momentum can decrease through a mechanism called magnetic braking

(Verbunt & Zwaan, 1981; Mestel, 1968; Huang, 1966), or through emission of gravitational

wave radiation (Paczyński, 1967; Faulkner, 1971).

In addition, other processes may be at work that make it appear as if the binary is

losing angular momentum, while this is in fact not the case. The two most popular theories

include one now often referred to as Applegate’s mechanism (Applegate 1992; Applegate

& Patterson 1987, see also Lanza et al. 1998), and the presence of circumbinary planet-like

or brown dwarf-like bodies of mass (see for example Marsh et al., 2014; Beuermann et al.,

2013a; Beavers et al., 1986).

All four processes just mentioned are described in more detail below. Any of them

may be measured in observational data of a binary if it is possible to measure a regular,

unrelated phenomenon in that binary. This could be the eclipse of a white dwarf or neutron

star (Wood & Forbes, 1963; Parsons et al., 2010b; Hermes et al., 2012b), the very regular
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pulses that a magnetic neutron star emits (Wolszczan & Frail, 1992; Wolszczan, 1994),

or pulsations of stars themselves (Mullally et al., 2008; Hermes et al., 2013b). Such a

precise clock allows the observer to measure changes in the orbital or spin periods in the

system. Generally, observational data would also allow one to distinguish between certain

mechanisms through the time scale on which the phenomena occur. Both magnetic braking

and gravitational wave emission are secular processes, evolving slowly and steadily and

typically taking 108 - 109 years. Orbital period changes caused by Applegate’s mechanism

or apparent variations caused by circumbinary objects on the other hand typically take

place on 10 - 100 year time scales.

1.5.1 Magnetic braking

A short-period WD+MS binary can lose angular momentum through a process called mag-

netic braking (Verbunt & Zwaan, 1981; Mestel, 1968; Huang, 1966). This occurs because

the main-sequence star emits a stellar wind that flows away from the star along the mag-

netic field lines. Assuming a simple dipolar magnetic field, the wind is mainly emitted

from the poles, as the field lines near the rotational equator are closed. Because the wind

consists of ionised particles, it is forced by the magnetic field to corotate with the star out

to the Alvén radius. When the matter decouples from the magnetic field, it takes some an-

gular momentum with it, thereby decreasing the spin angular momentum of the star. This

phenomenon has been measured indirectly by its effect on the rotation rate of single stars

(Kraft, 1967; Schatzman, 1962). In close binaries the star rotates synchronously with the

orbital motion, so that the star’s spin period equals the binary’s orbital period. Therefore

the angular momentum that is carried away by the stellar wind is effectively removed from

the binary’s orbital angular momentum, causing the binary’s orbit to decrease over time.

Magnetic braking is especially important in cataclysmic variable stars and their pro-

genitors. These binaries have separations that are small enough for magnetic braking to

drive the binaries closer together and thereby drive evolution of the ongoing mass-transfer

and the binary itself (Knigge et al., 2011; Rappaport et al., 1983). Note that the effi-

ciency of magnetic braking depends on the presence and strength of a magnetic field in the

low-mass main-sequence star (Schreiber et al., 2010). Magnetic fields are thought to be

generated by the presence of a tachocline, which marks the transition from a radiative core

to a convective envelope, through the combination of the turbulent convective motion and

differential rotation. Since main-sequence stars with spectral types later than about M3

are fully convective, cataclysmic variables with such M-dwarfs experience little magnetic

braking (Rebassa-Mansergas et al., 2013). This transition from being partially to being

fully convective, which occurs naturally when the M-dwarf has lost enough mass, causes

the star to contract slightly so that it loses contact with its Roche lobe and the mass-

transfer process is interrupted. In addition, the star is out of thermal equilibrium, because

its thermal time scale exceeds the time scale of the mass-tranfer processes, causing the star

to be larger than usual for its mass. Once mass transfer stops, the star is able to regain

thermal equilibrium by shrinking. This is the cause of the orbital period gap at 2 – 3 hrs al-
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ready described in Sect. 1.4.2. The subsequent evolution of cataclysmic variables is mainly

driven by gravitational wave emission, which also ensures that mass-transfer restarts once

the secondary fills its Roche lobe again at shorter orbital periods.

1.5.2 Gravitational wave emission

When binaries have sufficiently short orbital periods, angular momentum loss through

gravitational wave emission becomes efficient (Paczyński, 1967; Faulkner, 1971). As a

result, the binary’s period will continue to decrease until the two stars merge. The time

scale on which a merger occurs can be calculated through

τm = 107
(M1 +M2)

1/3

M1M2
P 8/3yr , (1.12)

where the orbital period Porb is in hours and the masses M1 and M2 are in Solar masses

(Landau & Lifshitz, 1975; Marsh et al., 1995, Sect. 4.3). The merger occurs on shorter time

scales for binaries with shorter orbital periods as well as for binaries with more massive

stars.

The need for short periods and massive stars implies that gravitational wave emission

is only important for short-period binaries that contain one or two compact objects. This

includes cataclysmic variables at moments when magnetic braking is inefficient (Knigge

et al., 2011), double white dwarf binaries which likely generate most of the low-frequency

background gravitational wave emission (Nelemans et al., 2001), and of course neutron

star and black hole binaries. The latter two categories may emit stronger gravitational

wave signals, but are also much less numerous than binaries containing white dwarfs (see

Nelemans et al., 2001, and references therein).

On account of ongoing accretion, gravitational wave emission in short-period CVs does

not necessarily result in a merger of the white dwarf and main-sequence star. The mass-

loss experienced by the main-sequence star will eventually reduce its mass so far that

the core stops fusing hydrogen. At this point, close to 0.08 M⊙, the M-dwarf essentially

becomes a degenerate brown dwarf. As is the case with white dwarfs, the brown dwarf’s

radius increases in response to mass-loss, the feedback of which results in an increase of the

binary’s orbital period. This behaviour explains another key characteristic of the period-

distribution of cataclysmic variable stars, namely the period-minimum near 80 minutes

(Gänsicke et al., 2009; Knigge et al., 2011).

1.5.3 Applegate’s mechanism

A third way of changing a binary’s orbital period is through coupling with variations in

the magnetic field of the main-sequence star. Applegate & Patterson (1987) proposed that

a star in a close binary may experience magnetic cycles, and that a change in the global

topology of the magnetic field can result in a variable gravitational quadrupole moment.

The accompanying changes in the shape of that star affect the gravitational attraction

between the pair of stars, and therefore introduces variations in the orbital period of
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Figure 1.17: Schematic representation of Applegate’s mechanism.

the binary. However, Marsh & Pringle (1990) showed that although a star would have

sufficient amounts of energy available to produce such an effect, it still falls short by one or

two orders of magnitude considering the short time scale on which orbital period variations

have been observed in close binaries. Applegate (1992) then updated his earlier theoretical

explanation and suggested that angular momentum can be redistributed between the core

and the outer layers of a star by the turbulent motion in the convective region and the

torques produced by the differential rotation. This also causes the star to deform and

become oblate, as illustrated in Fig. 1.17, therefore changing its gravitational quadrupole

moment. In turn, this couples to the binary’s orbit, which subsequently changes the orbital

period on the same quasi-periodic time scales as the magnetic activity cycles that drive

the mechanism.

Note that no angular momentum is lost from the binary during this process, it is simply

redistributed within the main-sequence star. Nonetheless, this requires energy. Since the

orbital period variations are driven by the main-sequence star in the binary, the maximum

amplitude of the variations is determined by the maximum amount of energy available

in this star, which is equal to the total luminosity of the star. Generally, in close white

dwarf binaries, the main-sequence companions are M- or K-dwarfs. The luminosity of these

stars can be considered as their maximum energy budget available to drive the magnetic

cycles, their physical distortions, and therefore the binary’s orbital period variations. For

certain binaries in which large variations of this kind have been observed, the energy

budget is seemingly insufficient (Bours et al., 2014b; Brinkworth et al., 2006; Marsh &

Pringle, 1990), and other explanations for the observed orbital period variations need to

be considered. However, note that a modified version of Applegate’s mechanism predicts

that orbital period variations can be induced while only requiring a fraction of the energy

of the original mechanism of Applegate (1992), see Lanza et al. (1998) and Lanza (2006).

This may therefore still be a plausible explanation for the extreme orbital period variations

observed in some binaries, and indeed may be the correct explanation for any kind of

variation in the orbital periods of close binaries.

1.5.4 Circumbinary planets or brown dwarfs

A last possibility that could explain variations in observed ‘clocks’ such as white dwarf

eclipse times is the presence of planet-like or brown dwarf-like bodies of mass in wide,

circumbinary orbits around the close binary. These will be referred to as circumbinary

planets or circumbinary brown dwarfs hereafter. The effect of such an additional unseen

object is illustrated in Fig. 1.18. It is often quoted as the light travel time effect, because

the third body causes the binary to periodically change its distance to a given observer,



Chapter 1. Introduction 29

unseen object
at a different time

to Earth

unseen object

Figure 1.18: Schematic representation (not to scale) of an unseen, third body in a wide, circumbi-
nary orbit around a close white dwarf + M-dwarf binary. The additional object’s presence effects
the observed times of eclipse of the white dwarf by its main-sequence companion as it forces the
binary to move around the centre of mass between the binary and the unseen object. This causes
the eclipses of the white dwarf to be observed slightly earlier or later by an observer at Earth,
depending on the configuration and exact position of the binary at different times in this orbit.

thereby causing eclipses to be observed slightly advanced or delayed with respect to the

expected eclipse time in a sinusoidal manner (Irwin, 1959).

No such circumbinary planet or brown dwarf has been directly observed as yet, but for

one white dwarf + M-dwarf binary there is good indirect evidence of two such companions

being present. This binary is NNSer (Marsh et al., 2014; Beuermann et al., 2013a), for

which the model predicts the presence of two planets with masses several times that of

Jupiter and orbits of 8 and 15 years around the central binary. More observational data in

the coming decade is necessary to conclusively confirm whether the current model correctly

predicts future white dwarf eclipse times.

An additional complication of the hypothesis that circumbinary planets are present

around white dwarf binaries lies in the dynamically stability of such systems if multiple

planets are inferred. Multiple planets introduce multiple sinusoidal variations in the eclipse

arrival times as observed at Earth. However, because any given signal can be fitted with

a model that includes a sufficiently large number of sinusoids, any model that relies on

several planets (& 3) being present immediately introduces doubt about the validity of

that model. One important clue in this regard is the dynamical stability of the proposed

planetary system (see for example Hinse et al., 2012; Horner et al., 2012a; Wittenmyer

et al., 2013), with the assumption that true planetary systems are stable on time scales of

hundreds of megayears, if not on gigayear time scales.

1.6 Time scales used for timing periodic phenomena

Due to the Earth’s motion around the Sun and the finite speed of light, measuring times

from observations concerning stars, binaries, or other targets outside our Solar system has

to be approached with caution. The exact time that a certain event is observed depends

on the changing position of the observer in the Solar system, as well as the particular

clock used to express the time. To be able to compare observations from different epochs

nonetheless, the observed time can be converted to a number of time stamps (Eastman

et al., 2010).
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Rather then using the civil Gregorian calendar, times in astronomy are quoted with

respect to the Julian calendar. Julian dates are expressed in decimal numbers, with the

zeropoint at JD = 0 coinciding with noon Greenwich Mean Time on November 24, 4714

BC in the Gregorian calendar. By now, Julian date number have become quite long, and

a more recent zeropoint is often used. The Modified Julian Date (MJD) starts counting at

midnight November 17, 1858, so that MJD = JD - 2400000.5. To adjust to the reference

frame of the Sun, rather than using the variable reference of Earth, one can also use

Heliocentric Julian Date (HJD). To be even more precise, one can correct for the motion

of the Sun around the barycentre of the Solar system, and use Barycentric Julian Dates

(BJD). Both of these latter two can be expressed with respect to the more recent zeropoint,

to obtain HMJD and BMJD.

The second important aspect regarding time stamping is the time standard used, which

refers to the way a particular clock ticks (Eastman et al., 2010). As a time standard,

Coordinated Universal Time (UTC) is most commonly used. However, this time system

includes leap-seconds, which accumulate over the years, lead to jumps in the time scale, and

can therefore make time comparisons tricky. When heliocentric and barycentric reference

frames are used, a higher precision is often required. There are several alternatives to UTC,

including, in order of increasing accuracy, International Atomic Time (TAI, from Temps

Atomique International), Terrestrial Time (TT) and Barycentric Dynamical Time (TDB).

TAI runs at nearly the same rate as UTC, but does not include leap seconds, and currently

TAI = UTC + N , where N = 35 s until June 2015, when the next leap second will be

introduced. TT includes an offset from TAI, which was introduced to retain continuity

with its predecessor Ephemeris Time, so that TT = TAI + 32.184 s. TDB is a relativistic

time standard in the reference frame of the Solar system barycentre, and is equal to TT

corrected for time dilation and gravitational redshift caused by bodies in the solar system.

TDB differs from TT by at most 3.4 ms. Therefore

TDB = UTC+N + 32.184 + (TDB− TT) . (1.13)

To obtain the highest precision in this thesis, times are quoted in BMJD(TDB).

1.7 Conclusions

In this chapter I have introduced white dwarfs stars as the remnants of stellar evolution,

and discussed their defining properties, including effective temperatures, surface gravities

and the characteristic mass – radius relationship of these degenerate stars. I have also

presented an overview of the main types of close binary stars in which white dwarfs can

be found, and the key processes that drive the evolution and appearance of these systems.

Finally, I have considered different reference frames and time standards, and justified the

use of the BMJD(TDB) time stamp throughout this thesis.

⋆ ⋆ ⋆



Chapter 2

Observational, data reduction &

statistical analysis techniques

2.1 Introduction

This chapter discusses a range of techniques on which the work presented throughout

this thesis is based. First it focuses on the different instruments used for obtaining the

observations discussed in later chapters. These instruments vary from ground-based optical

photometers and spectrographs to satellite-based far-ultraviolet instruments. Although raw

data from the different instruments are reduced using different pipelines, there are general

concepts such as debiasing and flatfielding that apply to all data sets. These will also

be explained and discussed in this chapter. The last part centres on statistical analysis

techniques, in which both Monte Carlo and Markov-chain Monte Carlo techniques are

discussed, which will later be used to statistically determine the values of model parameters.

But first I begin with a description and discussion of charge-coupled devices, which form

the basis of most astronomical instruments currently in use.

2.2 Charge-Coupled Devices

Charge-Coupled Devices (CCDs; Howell, 2006) have been in wide use in astronomy since

shortly after their development in the early 1970s. One of the main attractions at the

time was that CCDs were easier to use than the previously-used photographic plates and

image photon counting systems (Jenkins, 1987). They are also more efficient in converting

incoming photons into electronically readable charge (quantum efficiency). Since then,

CCDs have improved significantly, which explains why they are currently the standard in

astronomy throughout the wavelength range in which they are light-sensitive. Hampered

by absorption in the Earth’s atmosphere, from the ground CCDs are mostly used at the

restricted wavelength range of λ ∼ 3000 – 11000 Å. On board satellites however, they are

also used at, for example, ultraviolet and X-ray wavelengths.

Briefly, CCDs work as follows. The main component is a photoactive layer, usually

a silicon layer that can be p- or n-doped with boron or phosphorus. When incoming

photons hit this layer, an electron-hole pair is created there. The voltage on the layer

ensures that these pairs are separated and the electrons move towards the surface where

they accumulate in potential wells, one for each pixel of the CCD. To minimise detection

31
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Figure 2.1: Schematic drawing of charge transfer in a CCD operating in a three-phase mode. The
voltages are shown at three stages during the clocking cycle. After one full cycle, the charge in a
pixel has been transferred to a neighbouring pixel. Based on a figure from Howell (2006).

of electrons that are thermally generated (called dark current), CCDs are usually cooled

and operated at temperatures well below room temperature. After the full exposure time

has elapsed, well-orchestrated voltage changes force the charges to move from well to well,

thereby transferring the charges to the point where they can be read out. This moving

of charge packages is referred to by the term ‘clocking’ and is schematically illustrated in

Fig. 2.1. For example, if the readout point is situated in the lower left corner of the CCD,

the bottom row of pixels can be clocked horizontally until it is entirely read out, after which

the remaining image is clocked vertically by one row to prepare for reading out the next

row of pixels. During readout, the numbers of electrons are digitised and stored. Reading

out a full-frame 1024×1024 pixel2 CCD generally takes about ten seconds. This readout

time sets the so-called dead time between exposures, the time in which the CCD cannot

be used for collecting data.

If shorter exposures are required, it is possible to use a CCD with 2 – 4 readout points,

up to one at each corner, which reduces the readout time by 2 – 4. In addition, it is

sometimes possible to use a faster mode to digitise the data, although this comes with the

disadvantage of a higher readout noise level. For CCDs, the readout noise is introduced by

the conversions from analogue signals to digital number, and by the electronics themselves,

and is therefore present in every pixel separately.

One of the main advantages of CCDs is that they are linear in their output, meaning

that they generate the same number of electrons per incoming photon up to several tens

of thousands of photons per pixel. CCDs also have high quantum efficiencies, which can

be well over 90% at certain wavelength ranges. In addition, they are geometrically stable

and can nowadays have large formats of up to ∼ 104 × 104 pixel2.

Frame-transfer CCDs are similar to conventional CCDs, except that they have twice as

many pixels in one direction (say vertically) than in the other. The top half of the CCD is

the image area and is exposed as normal, while the bottom half is covered by an opaque

layer and is known as the storage area. At the end of each exposure, all the charges are
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quickly clocked to the storage area, from where they are read out one-by-one while the

image area can be exposed again. By this method, the dead time between exposures is

reduced to the time it takes to clock the entire image to the storage area. For example, the

frame-transfer CCDs used in ULTRACAM take just under 24 ms to clock the full image

to storage (Dhillon et al., 2007).

Electron-Multiplying CCDs (EMCCDs) are another subset of CCDs, which have the

option to read out data in avalanche mode. Rather than immediately digitising the elec-

trons in a given potential well when reading out the CCD, the charges are fed through a

gain register. In this register the electrons fall through a number of high-voltage potential

drops, in which an avalanche of electrons is created. The avalanche gain is typically ∼ 1000,

leaving any readout noise negligibly small in comparison. For this last reason, the CCD

can be read out in its fastest possible mode, thereby decreasing the dead time between

exposures.

Although EMCCDs are superior to normal CCDs when it comes to readout time and

readout noise, they are limited by the fact that the gain factor is determined in a stochas-

tic way. Effectively the gain factor is drawn from a distribution around a certain mean

value, so that there is a high probability of drawing a number that differs slightly from

the mean. This uncertainty in the gain factor is statistically equivalent to halving the

quantum efficiency of the detector (Tulloch & Dhillon, 2011), so that one effectively loses

half of the signal. In addition, EMCCDs are only really useful for a limited range of both

astronomical targets and observational weather conditions. In particular, the avalanche

mode is useful in situations in which the quality of the data is limited by the readout noise

when using normal readout. This restriction limits its usefulness for example during bright

time (nights when the moon is close to full), since the EMCCD’s avalanche mode amplifies

the rather bright sky background as well. The same argument holds for observations with

exposure times longer than roughly 1 second, during which photons accumulate in the sky

background regions. The highest gain from using avalanche rather than normal readout

mode is typically found when observing faint targets (magnitude > 20), at the highest

frame rates (> 100 Hz) during dark time (nights when the moon is close to new) (Dhillon

et al., 2014).

2.3 Photometric observations

2.3.1 ULTRACAM

ULTRACAM is a high-speed photometric camera commissioned in 2002, with three frame-

transfer E2V CCDs that operate simultaneously and a field of view of 5′×5′ (Dhillon et al.,

2007). All incoming light travels through four optical elements, after which two dichroics

split it into three beams, one for each CCD detector, each Peltier cooled to 233 K. Fig 2.2

illustrates how the light rays travel to the blue, green and red arms of the instrument,

which receive light at wavelengths of λ < 3870 Å, 3870 Å < λ < 5580 Å, and λ >

5580 Å respectively, where the cutoffs are determined by the dichroic mirrors. In front of
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Figure 2.2: Paths of light traced through the ULTRACAM optics (to scale). Figure from Dhillon
et al. (2007).

each detector a filter can be placed to further specify the wavelength of the light that is

detected on the CCDs.

Each of the three detectors are frame-transfer CCDs, the detailed function of which is

illustrated in Fig 2.3. The top half of the CCD is a 1024×1024 pixel2 imaging area, which

is exposed when observing a target. Once the exposure is finished, the data are transferred

to the bottom half of the CCD, the storage area. This vertical clocking takes 23.3 µs per

row, and therefore it takes 23.8 ms to clock the entire image to the storage area. These

24 ms set the minimum dead time between exposures. Once in the storage area, the data

will be read out through two channels, one for each half of the CCD. Once a row is clocked

horizontally through the readout channels, the entire image is clocked down vertically by

one row, and the next row is read out. The horizontal clocking takes 0.48 µs per pixel.

Thanks to GPS time stamping, the ULTRACAM data has absolute timestamps better

than 0.001 seconds.

The readout itself can be performed in three modes: slow, fast and turbo, for which

the full frame readout time is ∼ 6 s, ∼ 3 s and ∼ 2 s respectively. Longer exposures can be

obtained by setting a delay time in addition to these minimum readout times. Although

faster readout may seem desirable, one has to remember it suffers from higher readout

noise levels. It is also possible to bin the pixels on the CCD, which is particularly useful

when weather conditions are not ideal, and which will increase the signal-to-noise ratio in

favour of spatial resolution.

If exposure times shorter than the full frame readout time are required, it is possible

to set up windows on the CCDs, an example of which is shown in Fig. 2.3. Due to the

vertically symmetric readout of the CCD, the window sizes need to be identical on the left

and right halves of the CCDs. They can therefore be specified in pairs of two only, with

a maximum of six individual windows. Only the pixels inside the specified windows will

be read out, which can significantly decrease the readout time and therefore the minimum
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Figure 2.3: Illustration of
an ULTRACAM frame-transfer
CCD, illustrating the image and
storage areas, the readout chan-
nels, and the option to read out
six windows on the CCD, to be
specified by the user. Every-
thing on the left half of the CCD
is read out through channel 1,
while that on the right half is
read out through channel 2. It
is also possible to read out two
or four windows, or the entire
CCD. Figure from Dhillon et al.
(2007).

exposure time.

If exposure times shorter than 0.1 s are required, it is possible to use the so-called

drift mode, which makes it possible to reach frame rates of 500 Hz. In this mode, only

two windows can be used, each with an area of only a few dozen pixels, and the vertical

clocking operates slightly differently in order to reach even shorter exposure times (see

Dhillon et al., 2007, for details).

Ideally, for any given observation, the exposure time is longer than the time needed to

read out the full frame or windowed image from the storage area, so that only ∼ 24 ms

(or fewer in drift mode) are lost between exposures. By windowing the CCD and carefully

choosing the readout mode, one can reach the time-resolution required, while keeping a

duty cycle close to 100%. The duty cycle is defined as the exposure time divided by the

sum of the exposure and dead times.

The ULTRACAM combination of high-speed photometry with multi-channel obser-

vations covering a wide wavelength range is very powerful. It enables observations of

astrophysical processes that occur on timescales shorter than a few seconds. Examples in-

clude, but are not limited to, eclipsing detached white dwarf binaries (Parsons et al., 2012a;

Marsh et al., 2014; Bours et al., 2014a), cataclysmic variables (Littlefair et al., 2006, 2014;

Savoury et al., 2011; Bours et al., 2014b), X-ray binaries (Shahbaz et al., 2010; Durant

et al., 2011), asteroseismology (Dhillon et al., 2011; Maxted et al., 2013; Pyrzas et al.,

2015), planetary transits (Copperwheat et al., 2013; Bento et al., 2014) and occultations

of Kuiper Belt Objects (Roques et al., 2006; Doressoundiram et al., 2013).
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Figure 2.4: Left: ULTRACAM on the Cassegrain focus of the William Herschel Telescope. Right:
ULTRASPEC on the Nasmyth focus of the Thai National Telescope.

For the observations discussed in this thesis, ULTRACAM has been mounted on several

telescopes. Most often, it was on the 4.2 m William Herschel Telescope (WHT), which is

part of the Isaac Newton Group of Telescopes situated at the Roque de los Muchachos

Observatory on La Palma, one of the Canary Islands of Spain. The instrument was also

mounted on the 3.5 m New Technology Telescope (NTT) at the La Silla Observatory and

on one of the 8.0 m Unit Telescopes of the Very Large Telescope (VLT) at the Paranal

Observatory, both part of the European Southern Observatory (ESO) in Chile.

A range of filters is available for observations. The ULTRACAM u′g′r′i′z′ filterset

is identical to the SDSS ugriz filters. See Dhillon et al. (2007), where also the dichroic

cutoffs, the quantum efficiency and the transmission profiles of the ULTRACAM lenses are

shown. Clear filters are available to maximise throughput, and in addition, there is a range

of narrow-band filters available, see Dhillon et al. (2007) for details. Note that the filters

can only be used in certain combinations, as a given filter is only useful in one of the three

arms due to the dichroic cutoffs. A picture of the instrument itself is shown in Fig. 2.4.

2.3.2 ULTRASPEC on the Thai National Telescope

ULTRASPEC was originally designed to be the spectroscopic counterpart of the high-speed

photometer ULTRACAM described in the previous section (Ives et al., 2008). Due to the

inherent nature of a spectrograph, through which the light is spread over many pixels,

the design included a frame-transfer EMCCD rather than a standard CCD, to maximise

the signal-to-noise ratio (Tulloch & Dhillon, 2011). This detector was set in a cryostat to

operate at a temperature of 160 K. The instrument did not include optical elements, as it

was possible to mount it on a number of existing spectrographs with external focii. UL-

TRASPEC was mounted behind the ESO Faint Object Spectrograph and Camera Version
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Figure 2.5: A to scale ray trace through the ULTRASPEC optics, with the telescope focal plane
on the left and the EMCCD in its cryostat on the right. Figure from Dhillon et al. (2014).

2 on the ESO 3.6 m telescope and the NTT at La Silla, Chile, during one commissioning

run and two ∼ 20 night science runs which took place in 2006 – 2009. After that, the

purpose of the instrument changed with the goal to find a permanent home on a telescope,

rather than having to rely on requests and schedules as a visiting instrument.

In November 2013 ULTRASPEC was recommissioned on the 2.4 m Thai National

Telescope (TNT) on Doi Inthanon, Thailand, in its new guise as a high-speed photometer

(Dhillon et al., 2014, see Fig. 2.4 for a picture of the instrument). The core of ULTRASPEC

is still the EMCCD in its cryostat, which is now accompanied by a mechanical chassis and

optical elements. The new design is schematically illustrated in Fig. 2.5. In its current

form, ULTRASPEC operates as a single-arm version of ULTRACAM. The wheel holding

the filters has six positions, and can easily be operated during the night to observe targets

at a range of wavelengths. The available filters that are most used include those from the

ULTRACAM SDSS filter set u′g′r′i′z′ and a Schott KG5 filter (λc = 5075 Å, FWHM =

3605 Å). See Fig. 2.6 for transmission profiles of these filters. For details of other available

filters, as well as for the quantum efficiency curve and the transmission of the ULTRASPEC

lenses, see Dhillon et al. (2014).

2.3.3 RISE on the Liverpool Telescope

RISE (Steele et al., 2008) is a high-speed photometer on the 2.0 m Liverpool Telescope

(LT; Steele et al., 2004), with a frame-transfer E2V CCD and a single ‘V+R’ filter (see

Fig. 2.6). The field of view is 9.2′×9.2′, with an 11′ unvignetted circle. It was designed to

be an instrument for exoplanet transit timing, and in terms of time resolution it is equally

well suited to observe eclipses of white dwarfs in binary systems (Parsons et al., 2011a;

Bours et al., 2014b). A somewhat bluer filter would be better for observing white dwarf +

M-dwarf binaries, since the red M-dwarfs start dominating at longer wavelengths. However,

this downside is outweighed by the upside of the robotic nature of the telescope, which

schedules observations at the start of each night, taking into account a target’s visibility,

priority, and the required weather conditions. This robotic type of scheduling allows for

flexible observations and for eclipse observations on a monthly basis.
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Figure 2.6: Transmission curves of the u′g′r′i′z′ filters used in ULTRACAM and ULTRASPEC,
the ULTRASPEC Schott KG5 filter and the RISE V+R filter. For details, see Fukugita et al.
(1996); Dhillon et al. (2007, 2014); Steele et al. (2008).

2.3.4 The Wide Field Camera on the Isaac Newton Telescope

The Wide Field Camera (WFC) is mounted on the prime focus of the 2.5 m Isaac Newton

Telescope (INT) situated on La Palma, Spain, since 19971. The instrument is a mosaic

consisting of four thinned EEV 2k×4k CCDs. It is cooled by liquid nitrogen, to operate

at 153 K. The field of view of the four CCDs is 34′×34′, neglecting the spacing of ∼ 1′

between the chips. The readout time for the entire mosaic is close to 48 s in slow readout

mode, which sets the minimum dead time between exposures if one wants to read out all

four CCDs. However, it is possible to read out in fast mode, to read out only CCD 4, or to

window CCD 4, all of which significantly decrease the readout time and therefore improve

the duty cycle, especially when exposure times below 1 minute are required. A wide range

of filters is available, with wavelengths ranging from 4200 Å to 8200 Å, see the website for

details.

2.3.5 Photometric data reduction with the ULTRACAM pipeline

The ULTRACAM pipeline was used to reduce the photometric data taken with the instru-

ments described in the previous sections, except for the LT+RISE data which is reduced

by the LT’s automatic pipeline. The first step in reducing raw data is subtracting a bias

frame. Every recorded CCD image includes the so-called bias level, which is equivalent

to the number of electrons detected in a given pixel during an exposure of zero seconds.

This background level can be easily accounted for by taking some zero-second exposures,

and subtracting a mean bias frame from the science data. Because the exposure time is

non-existent, the filter used for the observations is not important. However, one should

pay careful attention to the readout speed and the binning. These influence the bias levels

and should therefore be the same in both the bias and the science data.

1See http://www.ing.iac.es/astronomy/ instruments/wfc/ for more information.
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Figure 2.7: ULTRACAM image of the red CCD from an observation of CSS 41177 on 21 Jan
2012. For this particular observation two windows were set on the CCD, using the full x-range,
but only 350 pixels in the y-range. This allowed exposure times of 2 seconds, while still keeping
the readout noise low by using the slow readout speed. Two apertures for data reduction are set
around the target (labelled 1, near pixel position 570,120) and a brighter comparison star (labelled
2, near pixel position 100,70).

The second step involves normalising for the different sensitivity of individual pixels.

This is done with flatfield frames, which are uniform, blank images, and can be taken either

of the twilight sky or of the lamp-illuminated inside of a telescope dome. Generally, one

aims for a large number of photon counts, while ensuring that the signal stays well within

the linear range of the CCD. Because the CCD is illuminated uniformly, the number of

counts in the pixels of flatfield frames accurately represent the sensitivity of the pixels.

Ideally, one combines a large number of mean-normalised flatfield frames by taking the

median, thereby rejecting possible cosmic ray hits. Note that a corresponding bias should

first be subtracted from the flatfield frames, before creating the final master flatfield. The

science data can then be divided by the flatfield to normalise the response of the pixels.

With these two steps of the data reduction process the science data is prepared for

extraction of the fluxes of the science targets. Throughout this thesis the photometric

data are reduced using relative aperture photometry, in which the target’s flux is divided

by the flux of a comparison star to remove flux variations caused by variable atmospheric

conditions. To further eliminate signal variations due to changing atmospheric conditions

I use variable apertures, where the radius of the aperture is scaled according to the full

width at half maximum of the stellar profile. Each profile is fit with a Moffat distribution

(Moffat, 1969). An example of an ULTRACAM image with specified apertures is shown

in Fig. 2.7.

2.4 Spectroscopic observations and data reduction

2.4.1 X-shooter on the Very Large Telescope

X-shooter (Vernet et al., 2011) is the first of the 2nd generation instruments at the Very

Large Telescope array of the European Southern Observatory. The instrument covers a

wide wavelength range of 3000 to 25000 Å with three echelle spectrographs: the ultraviolet-

blue (UVB), visible (VIS) and near-infrared (NIR), see Fig. 2.8. Each has an intermediate
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Figure 2.8: Examples of 2D spectra of a
ThAr calibration exposure in the UVB (top
left), VIS (top right) and NIR (left) arm
of X-shooter, illustrating the echelle nature
of the three spectrographs (Vernet et al.,
2011).

resolution of R = λ/∆λ = 5000 – 9000. The detectors are CCDs, cooled with liquid

nitrogen to temperatures of 153 K, 135 K and 105 K respectively, to minimise dark current.

The good resolution and the fact that the instrument is mounted on an 8.0 m VLT

telescope, make it possible to obtain phase-resolved spectroscopy of short-period white

dwarf binaries, because exposure times as short as ∼ 5 minutes can be reached while

keeping a good signal-to-noise level (Bours et al., 2014a, chapter 3). The wide wavelength

coverage in particular makes it an ideal instrument for studying radial velocity variations

in white dwarf + M-dwarf binaries, because the two stars dominate the flux in different

parts of the spectrum (Copperwheat et al., 2012; Parsons et al., 2012a,b).

X-Shooter data reduction with ESO Reflex

To reduce X-Shooter data I use the X-Shooter pipeline in the ESO Reflex workflow man-

agement tool2. The reduction includes several steps. In the first step the master calibration

files are created, which includes the master bias, the master dark frame and the master

flatfield, from individual bias, dark and flatfield frames. Note that in the standard reduc-

tion the UVB and VIS arm data are debiased using the overscan regions, rather than the

master bias frame, although the user can specify this according to his/her preferences. In

the second step an initial guess is made at the wavelength calibration and the position of

the echelle orders on the CCD. This is done by using a physical model of the instrument

combined with information on the atmospheric pressure and temperature, and the corre-

sponding instrument settings as saved in a data fits file of a calibration arc frame. Then a

flat field frame is used to determine the central positions of the individual orders. During

the third step a detailed wavelength calibration is performed and spatial distortions are

determined to update the rough model made in the previous step. If standard star observa-

tions have been taken within ± 3 days of the science observations, the instrument response

curve will be determined in a fourth step. This curve will later be used to flux-calibrate

2See ftp://ftp.eso.org/pub/dfs/pipelines/xshooter/xsh-reflex-tutorial-2.2.pdf for more information.
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the science data. In the last step the science data are extracted, the orders are connected

and the sky level is subtracted, after which one has obtained the 1D science spectra.

2.4.2 STIS on the Hubble Space Telescope

The Space Telescope Imaging Spectrograph (STIS; Woodgate et al., 1998) is a 2nd gener-

ation instrument and a general purpose spectrograph aboard the Hubble Space Telescope

(HST) since February 1997. It has an imaging and a spectroscopic mode, both with sev-

eral options to set the resolution and wavelength range. The total wavelength range covers

four bands in the far-ultraviolet (FUV), the near-ultraviolet (NUV), the visible and near-

infrared and ranges from 1150 Å to 10000 Å.

The visible / near-infrared detector is a conventional CCD, cooled to 190 K, while the

FUV and NUV detectors are multi-anode multichannel array (MAMA) detectors. These

are photon-counting photocathodes, which can operate uncooled and reject visible photons

to avoid contamination from this regime where sources are often brighter than in the

ultraviolet. The MAMAs were preferred over CCDs because the latter’s quantum efficiency

tends to degrade quickly at ultraviolet wavelengths and because even before degradation

the combined quantum efficiency of a CCD and the throughput of available filters3 is lower

than that of the MAMA.

All STIS data are automatically reduced by a pipeline at the Space Telescope Science

Institute (STScI) where the HST headquarters are located.

2.4.3 COS on the Hubble Space Telescope

The Cosmic Origins Spectrograph (COS; Green et al., 2012) is a 4th generation instrument

that has been on board the HST since May 2009. The instrument was developed to com-

plement STIS and to operate simultaneously with STIS, thereby increasing the wavelength

range of observations. COS has a far-ultraviolet (1150 – 2000 Å) and near-ultraviolet

(1700 – 3200 Å) optical channel, with a microchannel plate detector in the FUV arm to

maximise quantum efficiency (see Vallerga et al., 2001, for details), and a redundant STIS

MAMA detector in the NUV arm. Both arms have a minimum of optical elements to

decrease losses through inefficient reflectivity, which can be significant at ultraviolet wave-

lengths. Various gratings with different spectral resolution and central wavelengths can be

chosen, to optimise the observation according to the science goal. The instrument also has

an imaging mode, which is primarily used for target acquisition.

COS was originally designed to operate for 3 years, but it has spectacularly outper-

formed these expectations. However, the FUV detector sensitivity has been degrading since

the start, and has become significant in the last few years. This complicates the relative

flux- and wavelength-calibrations of the detector (private communication J. Debes). This

is a general problem of UV-astronomy, and from cycle 21 in 2014 onwards this prompted an

HST UV-initiative in which proposals relying on UV observations were favoured in order to

make full use of HST’s UV capabilities before the relevant instruments become unusable.

3See http://www.stsci.edu/hst/stis/design/filters/.
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All COS data are reduced by the automatic pipeline at the STScI.

2.5 Statistical techniques

This section describes some important aspects of two statistical approaches used through-

out this thesis. This includes the Monte Carlo method and the numerical Markov chain

Monte Carlo method. Both are very powerful in estimating the statistical significance of

model fits to data, as well as determining the values and statistical uncertainties of model

parameters. Depending on the data and model one wants to fit to the data, as well as on

their complexity, one can choose which method provides the best approach to the problem.

2.5.1 Monte Carlo method

The Monte Carlo method is a relatively simple approach useful for evaluating the expec-

tation value of a function or model parameter, by randomly drawing many samples from

a distribution that can be used to approximate the expectation value. For example, with

this approach it is possible to estimate statistical uncertainties of model parameters by

repeatedly fitting the model to the data while slightly perturbing that data based on the

uncertainties of the individual data points. Therefore, Monte Carlo analysis is based on

repetition in order to explore a certain distribution. Note also that during Monte Carlo

analysis, the original data may be altered in order to arrive at useful results for the model.

For purposes of illustration, consider the ingress and egress features of white dwarf

eclipses in light curves of cataclysmic variables. In Chapters 5 and 6 a Monte Carlo

approach is used to determine the statistical uncertainties of the parameters in a simple

model used to fit these features. The best fit of the model to the data can simply be found

by χ2 minimisation. Determining uncertainties on the model parameters can be done by

repeating this fit numerous times, say 1000 times. In every fit each individual data point

is perturbed by a normal distribution with a mean and standard deviation equal to the

value and uncertainty of the data point itself. In addition, another 1000 fits are performed

in which the start and end points of the data included in the fit are varied by a few. The

resulting (generally Gaussian) distributions for each model parameter not only describe the

value of the parameters more accurately then a straight fit to the data, they also describe

the uncertainties in these parameters better. This is a particularly good approach for

fitting white dwarf eclipses of cataclysmic variables because the inherent flickering present

in these systems shows itself as random jitter in the data points.

2.5.2 Markov chain Monte Carlo simulation

TheMarkov chain Monte Carlo method (MCMC; see for example Gilks et al., 1996; Mackay,

2003; Gelman et al., 2014) is a numerical method that often relies on Bayesian inference.

One uses information known to be true and derives logical conclusions from them using

Bayes’ theorem. The known information D generally consists of observed data, while the

information being sought M generally includes a number of model parameters, or some
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missing data. Bayes’ theorem describes the probability distribution of M given that D is

true, denoted as P (M |D), as follows:

P (M |D) =
P (D|M)P (M)

P (D)
. (2.1)

Here P (M |D) is the posterior distribution of the model M assuming that the data D is

true, P (M) and P (D) are the a priori distributions of the model and data, and P (D|M) is

the probability of observing the data given that the model is true. Determining these prob-

ability distributions analytically quickly becomes difficult, especially in high dimensions.

In such cases, a robust alternative approach is the numerical method MCMC.

The Monte Carlo and Markov chain Monte Carlo techniques share (parts of) their name

because both are based on drawing many samples from certain parameter distributions.

This is done to evaluate, for example, a statistical distribution or a target distribution

such as the posterior probability of a model’s parameters given some data (maximising

P (M |D) is approximately equivalent to minimising χ2). A significant difference between

the two approaches is that during MCMC the data itself is never altered, while this may be

a justified approach in the Monte Carlo method. MCMC is especially useful for problems

with many dimensions, even thousands or more, where the random exploration of Monte

Carlo techniques could take longer than the age of the Universe.

In contrast to the Monte Carlo approach described before, in MCMC simulations the

samples are not drawn randomly, but through the use of a Markov chain. In such chains,

each next sample xi+1 is drawn based only on the current sample xi and a proposal density

distribution at this position for all parameters. One has to choose an initial sample to start

the chain from, but after a warm-up phase, also called the burn-in phase, the new samples

do not depend on the original starting position. This is illustrated in Fig. 2.9, which shows

the value of three parameters throughout a chain. After the warm-up phase, the chain

has converged to a stationary distribution in all dimensions, which is also called the target

or posterior distribution. These posterior distributions can be used to estimate means,

variances, expectation values, correlation between parameters, etcetera for the relevant

individual parameters that were used in the model. Besides removing the warm-up phase,

one can choose to discard all but every nth draw, thereby reducing correlations between

subsequent samples in the chain and possible effects this may have on the final distributions.

The Markov chain itself can be constructed by the general Metropolis-Hastings algo-

rithm or by a specialised version thereof. In this class of algorithms each proposed step,

from draw xi to draw xi+1, is accepted with a certain probability. If the step is accepted,

the newest addition to the chain is xi+1. If the step is not accepted, xi is added to the

chain again. Next a new draw xi+2 is made and evaluated for acceptance, and so on.

Where used in this thesis, MCMC has been implemented using the python package

emcee (Foreman-Mackey et al., 2013), which is based on ensemble Markov chains (Good-

man & Weare, 2010). In this case, there is not one sample x that is evolved throughout

the chain, but an ensemble of samples, or so-called ‘walkers’, each starting at a slightly
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Figure 2.9: Normalised parameter values as a function of the number of draws in a Markov chain
Monte Carlo simulation to illustrate convergence of the chain and the warm-up phase (to the left
of the vertical dashed line).

different position. The number of walkers in the ensemble should always be at least twice

the number of free parameters in the model used to fit the data. Generally, a Markov chain

explores the parameter space more effectively with 100 – 200 walkers. One cycle of draws

through all walkers constitutes one step for the ensemble and one step in the Markov chain.

In the implementation used throughout this thesis, the proposed draw for a given walker

is determined by stretching or compressing along the straight line between the walker and

the position of a random other walker in the set. The so-called stretch factor is now an

additional parameter that has to be set. It should always be larger than unity, to ensure

that the walkers move around and fully explore the parameter space, with my default value

equal to 2. The acceptance probability for the individual walkers is still determined by the

Metropolis-Hastings algorithm. The ensemble of walkers as a whole contains information

about the multi-dimensional target distribution, and is especially useful when exploring

highly-skewed parameter distributions.

When fitting a model to a set of data using an MCMC approach, it may be the case

that the data do not constrain all model parameters equally well. In this case one can

choose to constrain a given parameter by adding a prior to the evaluation criteria used

to determine whether a step is accepted or not. This prior can be Gaussian, flat, with or

without a hard cutoff, etcetera, where the choice is motivated by additional information

that is available about this particular parameter. For example, if one is fitting a model
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that includes a temperature as a free parameter, one can safely constrain this temperature

to be always positive on a Kelvin scale.

One important issue that comes up when using MCMC methods is the so-called ac-

ceptance fraction, which is the number of accepted steps divided by the total number of

steps in the chain. Remember that if a certain draw is not accepted, the previous draw is

repeated in the chain before a new draw is attempted. If the acceptance fraction of a chain

is too low, the chain has not been able to explore the full parameter space effectively, as

it moved around slowly and may even have been stuck for a long time in a certain place.

On the other hand, if the acceptance fraction is too high, practically every proposed step

has been accepted and the chain cannot converge to the posterior distribution. Typically,

in MCMC simulations that explore five or more dimensions the acceptance fraction should

be ∼ 0.25 (Gelman et al., 2014). In ensemble MCMC, one can manipulate the acceptance

fraction of a chain by varying the stretch factor.

Another essential aspect of running an MCMC simulation lies in deciding when a chain

has fully converged and represents the posterior distribution correctly. The choice is some-

what subjective, and may be limited by the available time and computational power.

However, there are several ways to check convergence. One can run multiple chains, each

with a different initial starting point. After the respective warm-up phases, the chains

should all converge on the same distribution. One extremely long chain will also be able

to fully explore the available parameter space and converge on the target distribution, but

this approach may not be feasible for practical reasons such as those mentioned.

2.6 Conclusions

I have discussed the various techniques used throughout this thesis to obtain, reduce and

analyse data. This covered the current-day standard of CCDs as the basis of most astro-

nomical instrumentation, and somewhat more technical details of a number of instruments

that were used to obtain photometric or spectroscopic observations presented in this thesis.

In later chapters, some data may be used that was obtained with instruments not discussed

in this chapter, and, if necessary, these will be briefly discussed in place, accompanied by

appropriate references. In this chapter I have also introduced two statistical techniques

that are useful in performing fits of models to data sets, as will become clear in the following

chapters.

⋆ ⋆ ⋆



Chapter 3

CSS41177: an eclipsing double white

dwarf binary

3.1 Introduction

Despite the abundance and importance of white dwarfs, it has proved difficult to measure

fundamental parameters such as mass and radius directly, without the use of theoretical

mass – radius relations, as we saw in Chapter 1. For single white dwarfs, spectral fitting can

be used to obtain the temperature and surface gravity, after which both mass and radius

can be inferred, but only when combined with a mass – radius relation (see for example

Provencal et al., 2002). White dwarfs in visual binaries, common proper motion pairs, or in

open clusters allow one to determine parameters without the use of this relation, therefore

providing a direct test of it. These methods rely on accurate parallax measurements,

spectral fitting and/or radial velocity measurements (Holberg et al., 2012; Provencal et al.,

2002; Casewell et al., 2009). The number of stars to which these methods can be applied

is limited, and with the exception of Sirius B (Barstow et al., 2005), they cluster around

a mass of MWD ∼ 0.6 M⊙, making it difficult to test the full range of the mass – radius

relation.

Observing white dwarfs in eclipsing binaries enables high precision in determining

masses and radii and these types of binaries also include white dwarfs across a wide range of

masses (Pyrzas et al., 2012; O’Brien et al., 2001; Parsons et al., 2012c; Bours et al., 2014a).

For these systems, masses can be determined from orbital velocities and radii from light

curve analysis (Parsons et al., 2012b,a). Eclipsing double white dwarf binaries are especially

ideal for this kind of analysis, as they allow for precise and independent mass and radius

measurements for two white dwarfs through one analysis. Currently, there are five known

eclipsing double white dwarf binaries: NLTT11748 (Steinfadt et al., 2010), CSS 41177 (Par-

sons et al., 2011a; Bours et al., 2014a, 2015a), GALEXJ171708.5+675712 (Vennes et al.,

2011), SDSSJ065133.33+284423.37 (Brown et al., 2011) and SDSSJ075141.18-014120.9

(Kilic et al., 2014b). The double white dwarf binary that is the subject of this chapter,

CSS 41177 (SDSS J100559.10+224932.2), is the only one of the five that is also a double-

lined spectroscopic binary, allowing direct measurement of the stars’ orbital velocities and

therefore their masses (Parsons et al., 2011a).

CSS 41177 was initially discovered to be an eclipsing binary by Drake et al. (2010), who

constrained it to be a white dwarf with a small M-dwarf companion, although they noted

46
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Table 3.1: Log of the X-shooter observations. On all three nights the conditions were clear, with
the seeing between 0.5′′ and 1.0′′.

Date UT No. of exposures

start end UVB VIS NIR

25 March 2012 00:13 04:31 44 40 48

26 March 2012 00:09 04:10 39 35 42

27 March 2012 23:51 04:36 46 42 50

that a small faint object could produce a signal similar to what they observed. Parsons

et al. (2011a) obtained LT + RISE fast photometry and Gemini + GMOS (Gemini Multi-

Object Spectrograph) spectroscopy, which allowed them to determine that there were in

fact two white dwarfs and to carry out an initial parameter study. In this chapter I present

higher signal-to-noise data in order to determine the system parameters more precisely as

well as recently obtained HST spectroscopy to measure accurate temperatures and surface

gravities.

3.2 Spectroscopic data

3.2.1 Very Large Telescope + X-shooter

Spectra were acquired with the X-shooter spectrograph on the VLT Unit Telescope 2

(Kueyen) on the nights of the 25th, 26th and 27th of March 2012, obtaining a total of 117

spectra across 1.5, 1.4 and 1.7 orbital cycles in the three nights. A log of the observations

is given in Table 3.1.

The X-shooter spectrograph consists of three independent arms (UVB, VIS and NIR),

giving a simultaneous wavelength coverage from 3000 – 25000 Å. A series of spectra 310,

334 and 300 seconds in length were obtained for the UVB, VIS and NIR arms respectively.

Spectra were obtained consecutively with occasional short breaks of a few minutes in order

to check the position of the target on the slit. The data were binned by a factor of two

both spatially and in the dispersion direction for the UVB and VIS arms, and obtained

using slit widths of 0.8′′, 0.9′′ and 0.9′′ for the UVB, VIS and NIR arms respectively. The

NIR arm slit includes a K-band blocking filter which reduces the thermal background in

the J- and H-bands.

The data were reduced using version 1.5.0 of the X-shooter pipeline and the Reflex

workflow management tool. The standard recipes were used to optimally extract and

wavelength calibrate each spectrum. To remove the instrumental response observations of

the spectrophotometric standard star LTT4364 (GJ-440) were used. All data were obtained

and reduced in ‘stare’ mode. For optimum sky subtraction in the infrared arm, ‘nod’ mode

would be preferable, but the priority was to maximise the temporal resolution for the

spectral features of interest in the other two arms.
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Figure 3.1: HST+COS light curve of CSS 41177, displayed in 5 second bins, showing the eclipse
of the hotter white dwarf (primary eclipse) and the model used to determine the mid-eclipse time
(see Section 3.2.2). The data between the dotted lines was excluded from the spectroscopic fits
described later in this chapter.

3.2.2 Hubble Space Telescope + Cosmic Origins Spectrograph

Far-UV HST+COS (Green et al., 2012) data of CSS 41177 were obtained as part of Cycle

21, program ID 13421. CSS 41177 was observed during two consecutive HST orbits on

the 28th of May, 2014. Each orbit was split in two exposures to retain a good signal-

to-noise ratio while minimising the effects of fixed pattern noise using all four FP+POS

settings. The exposures obtained were 19, 20 and 2x24 minutes long and each used the

G140L grating at a central wavelength of 1105 Å. During the third exposure a primary

eclipse occurred (cycle 7491, using the ephemeris from Bours et al. 2014a), with a mid-

eclipse time tMJD(UTC) = 56805.41665(34), equivalent to the barycentrically-corrected time

tBMJD(TDB) = 56805.41628(34), see Fig. 3.1.

The part of the exposure in which the eclipse occurred was removed for the following

analysis using calcos to filter out the data at 900 – 1100 s. I also removed the geocoronal

Lyman-α and Oi (1304 Å) emission from the spectra, as well as interstellar absorption lines

(see Section 3.5.3). The lower limit for the data is set at 1150 Å, to exclude artificial features

near the edge of the observable wavelength range. The upper limit is fixed at 1700 Å,

motivated by the decreasing sensitivity of COS and the therefore increasing difficulty of

relative flux calibration at longer wavelengths (J. Debes, private communication).

3.3 Photometric data

3.3.1 ULTRACAM

Most of the photometric data on CSS41177 were taken with ULTRACAM (Dhillon et al.,

2007), mounted on the 4.2 mWilliam Herschel Telescope (WHT) on the island of La Palma,

Spain and on the 3.5 m New Technology Telescope (NTT) at the La Silla Observatory,

Chile. The u′, g′ and r′ filters were used and the CCDs were windowed to allow exposure

times as short as 1.5 seconds. Eleven primary eclipses of CSS41177 and nine secondary
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eclipses were observed in January 2012, including one observation spanning a complete

orbit (1.1 cycles). In addition, there is one observed primary eclipse from May 2011.

The ULTRACAM pipeline was used to debias and flatfield the data, as described in

Section 2.3.5. The source flux was determined with relative aperture photometry, using a

nearby star as a comparison. I used a variable aperture, where the radius of the aperture

was scaled according to the full width at half maximum of the stellar profile, which was fit

with a Moffat distribution (Moffat, 1969).

The ULTRACAM data has absolute timestamps better than 0.001 seconds. All times

were converted onto a TDB time scale, and corrected to the Solar System barycentre to

obtain times in the BMJD(TDB) frame. A code based on SLALIB was used for these

corrections, which has been found to be accurate at a level of 50 microseconds compared

to TEMPO2 (a pulsar timing package, see Hobbs et al., 2006). Compared to the statistical

uncertainties of the observations, this is insignificant.

3.3.2 Liverpool Telescope + RISE

In order to monitor any long-term orbital period variations, primary eclipses of CSS 41177

have also been regularly observed with the fully-robotic 2.0 m Liverpool Telescope (LT;

Steele et al., 2004) and RISE camera. A total of 9 primary eclipses were obtained between

February 2011 and December 2014.

The data were flatfielded and debiased in the automatic pipeline, in which a scaled

dark-frame is removed as well. The data were analysed using the ULTRACAM pipeline in

the same manner as outlined above. Again, the resulting mid-eclipse times were converted

to the TDB timescale. LT+RISE has absolute timestamps better than 0.1 second (D. Pol-

lacco, private communication). Although significantly larger than the accuracy reached

with ULTRACAM, the observing schedule of LT+RISE is much more flexible and allows

observations of the double white dwarf regularly throughout the year.

3.3.3 ULTRASPEC

Since ULTRASPEC became available for science observations after its commissioning in

November 2013, I have also regularly observed CSS41177 with this instrument in order to

monitor the eclipse times. In particular, I observed a total of 10 primary eclipses of the

double white dwarf during observing runs from November 2013 to February 2015, using

either the g′ or Schott KG5 filter. The data were reduced using the ULTRACAM pipeline,

as described before.
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Figure 3.2: X-shooter spectroscopy of CSS 41177. Top left: spectra of the Hα absorption line at
6562.76 Å, folded with the orbital period. The scale is such that black equals 20% of the continuum
and white 100%. Top right: phase-folded spectra after removal of the primary white dwarf’s Hα
absorption line, showing the contribution of the secondary white dwarf, which is offset from the
primary white dwarf by half an orbital phase. Here black equals 80% of the continuum and white
100%. Bottom left: model trail of the Hα absorption line. Bottom right: residuals after subtracting
the model from the data, where black equals 99% of the continuum and white 100%.

3.4 Data analysis & results

3.4.1 Radial velocity amplitudes

I analysed the reduced X-shooter data using the MOLLY software1, and used observations

of the standard star to normalise the continuum and reduce telluric absorption features

present in the CSS 41177 science spectra as far as possible.

To measure the radial velocity amplitudes K1 and K2 I folded all spectra on the orbital

period as calculated from the photometric mid-eclipse times. The phase-folded trail of

the Hα absorption line is shown in the top left panel of Fig. 3.2. I then proceeded to fit

the Hα line with multiple Gaussian profiles combined with a straight line fit to the local

continuum using Marquardt’s method of minimisation. The radial velocity vr for each star

was calculated using

vr = γ +K1,2 sin(2πφ), (3.1)

where γ accounts for a systemic radial velocity, K1 andK2 are the radial velocity amplitudes

of the two white dwarfs and φ is the orbital phase. My best fit gave K1 = −176.1 ± 1.1

1MOLLY was written by T. R. Marsh and is available from
http://www.warwick.ac.uk/go/trmarsh/software.
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km s−1 and K2 = 210.4 ± 6.1 km s−1 for the primary and secondary white dwarfs, and

γ = 130.5 ± 0.7 km s−1 for the offset. From this best model I set the Gaussian profiles

corresponding to the secondary star’s line to zero, leaving a model of only the primary star’s

line. I then subtracted this model from the original spectra to bring out the secondary’s

contribution, shown in the top right panel of Fig. 3.2. The systemic radial velocity is

clearly visible in both of these figures as the offset from zero. The bottom two panels show

the model of both the primary and secondary absorption line on the left, and the residuals

after subtraction of the model from the data on the right.

Both radial velocity amplitudes are in agreement with the measurements in Parsons

et al. (2011a), but have uncertainties reduced by a factor of 3 and 2 respectively.

3.4.2 Light curve analysis with ULTRACAM and X-shooter data

I initially modelled both white dwarfs using regular grids covering their surfaces. While

computing the models I found them to be sensitive to the density of the chosen grid. To

avoid the resulting ‘edge effects’ I had to significantly increase the number of grid points,

which became computationally very expensive. Therefore I developed a different model

which also allowed incorporation of several important physical processes. In this model,

the visible face of each white dwarf is represented as a circle, subdivided into 200 limb-

darkened concentric annuli. After obtaining an initial model that represents the shape of

the eclipses, I determined the mid-eclipse times for all primary eclipses by varying only the

mid-eclipse time t, the temperature of the eclipsing white dwarf T2 and an overall scaling

factor to minimise χ2. Because the depth of the eclipse is strongly dependent on the white

dwarf temperatures, which are strongly correlated in the model, only t and T2 are needed to

accurately model the shape of the light curve and eclipse, and to determine the mid-eclipse

times, once the radii are relatively well known. All the primary mid-eclipse times are listed

in Table 3.2.

To obtain the binary and white dwarf parameters I then proceeded to fit all light

curves simultaneously. Each annulus on the face of the white dwarf contributes an amount

to the total stellar flux which depends upon the limb darkening. More details on how

limb darkening was included are given below. Doppler beaming from the white dwarfs was

accounted for by following Bloemen et al. (2011), and modifying the flux by a factor

1−B
vr
c
, (3.2)

with B the spectrum-dependent beaming factor and vr the radial velocity of the star, and

with vr positive when the star is moving away from the observer. To calculate the beaming

factors, I used white dwarf model spectra with log(g) = 7.25 for both white dwarfs, and

T = 24000K and T = 12000K for the primary and secondary respectively. With these

models, and following Bloemen et al. (2011), the bandpass-integrated beaming factors for

the (u′, g′, r′) filters are (1.9, 2.2, 1.3) for the primary white dwarf and (3.4, 3.5, 1.8) for

the secondary white dwarf. Gravitational lensing is not included in the models. Due to the

similarity of the white dwarfs’ masses and radii, and their relatively small separation, the
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Table 3.2: Mid-eclipse times for the primary eclipses of CSS 41177. All ULTRACAM times shown
are the weighted averages of the u′, g′ and r′ mid-eclipse times.

cycle mid-eclipse time texp telescope+instrument observing conditions

number BMJD(TDB) (seconds) (cloud coverage, seeing)

-2907 55599.087790(13) 13 LT+RISE clear, seeing 1.8′′

-2736 55618.926465(15) 12 LT+RISE clear, seeing 2.5′′

-2434 55653.963110(18) 12 LT+RISE clear, seeing 3′′

-2020 55701.9935029(77) 2 - 8.2 NTT+ULTRACAM thin clouds, seeing 1 - 2′′

-199 55913.257605(22) 10 LT+RISE clear, seeing 1.5′′

66 55944.0016959(49) 3 - 6 WHT+ULTRACAM thin clouds, seeing 1 - 3′′

67 55944.1177028(65) 3 - 6 WHT+ULTRACAM thin clouds, seeing 1.5 - 3.5′′

68 55944.233727(10) 3 - 6 WHT+ULTRACAM clouds, seeing 3 - 10′′

76 55945.1618417(55) 1.5 - 3 WHT+ULTRACAM clear, seeing 2′′

77 55945.2778585(53) 1.5 - 3 WHT+ULTRACAM some small clouds, seeing 2 - 7′′

94 55947.2501251(62) 1.5 - 3 WHT+ULTRACAM thin clouds, seeing 2 - 4′′

102 55948.1782455(38) 2 - 4 WHT+ULTRACAM clear, seeing 1 - 2′′

103 55948.2942481(58) 2 - 4 WHT+ULTRACAM cloud during egress, seeing 1-5′′

109 55948.9903480(47) 2 - 4 WHT+ULTRACAM clear, seeing 1.2′′

110 55949.1063669(37) 2 - 4 WHT+ULTRACAM clear, seeing 1′′

111 55949.2223834(39) 2 - 4 WHT+ULTRACAM clear, seeing 1′′

3187 56306.085857(15) 10 LT+RISE clear, seeing 2′′

3369 56327.200698(16) 10 LT+RISE clear, seeing 2′′

3678 56363.049447(13) 10 LT+RISE thin clouds, seeing 2′′

5737 56601.9252468(69) 5 TNT+ULTRASPEC clear, seeing 1.5′′

6434 56682.7879973(62) 5 TNT+ULTRASPEC clear, seeing 2′′

6452 56684.8762755(54) 3 TNT+ULTRASPEC clear, seeing 1.5′′

6485 56688.7047726(69) 3 TNT+ULTRASPEC thin haze, seeing 2′′

6488 56689.052833(12) 10 LT+RISE thin haze, seeing 2′′

9072 56988.8367219(72) 4 TNT+ULTRASPEC clear, seeing 1 - 2′′

9238 57008.095265(23) 10 LT+RISE thin clouds, seeing 3′′

Table 3.3: Coordinates and magnitudes CSS 41177, taken from SDSS III DR9. The magnitudes
are the photometric PSF magnitudes, with the corresponding uncertainties in the parentheses.

R.A. Dec mu mg mr mi mz

10:05:59.1 +22:49:32.26 17.32(2) 17.29(2) 17.62(2) 17.89(1) 18.15(3)

lensing amplification factor near both primary and secondary eclipses is ∼ 1.00003, making

this effect negligible (for the relevant equations, see Marsh, 2001).

I normalised each observed light curve individually to reduce any night-to-night vari-

ations and used the SDSS magnitudes for CSS 41177 (see Table 3.3) to determine the

binary’s overall out-of-eclipse flux level, allowing for a spread due to the uncertainties in

the magnitudes. I allowed for an additional shift δ, of the secondary eclipse, on top of the

0.5 phase difference with respect to the primary eclipse, by adjusting the phase φ according

to

φ′ = φ+
δ

2P
(cos(2πφ) − 1) , (3.3)

where P is the orbital period. This shift near the secondary eclipse allows for possible
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Rømer delays2 (Kaplan, 2010) and/or a small eccentricity of the orbit.

The program uses a Markov chain Monte Carlo (MCMC) method to explore the ten-

dimensional parameter space, favouring regions with small χ2 values of the model with

respect to the data. The free parameters in the model were the two radii scaled by the

binary separation, R1/a and R2/a, the white dwarf temperatures, T1 and T2, the radial

velocity amplitudes, K1 and K2, the inclination of the binary i, the time delay δ, the

orbital period P and the zero point of the ephemeris, T0, which was chosen to minimise

the correlation between the zero point and the orbital period.

Because I have accurate measurements for the radial velocity amplitudes from the

analysis of the X-shooter data I used a Gaussian prior to constrain them while modelling

the ULTRACAM data. Given the ten free parameters and combining them with

K1 +K2 =
2πa

P
sin(i) , (3.4)

and Kepler’s equation given by

G(M1 +M2)

a3
=

4π2

P 2
, (3.5)

the binary’s orbital separation a and the white dwarf masses M1 and M2 could also be

calculated. Note that q = K1/K2 = M2/M1 and that the surface gravities follow from

g1,2 = GM1,2/R
2
1,2.

The best model, using the ULTRACAM light curve data and the priors on the radial

velocities from the X-shooter spectra, has a reduced chi-squared of χ2
ν = 1.03 (43351

data points, 10 fit parameters, 43341 degrees of freedom). The MCMC parameters are

summarised in Table 3.4 (columns 2 and 3), which lists both the mean and root mean

square for each parameter.

With this approach I effectively measured the white dwarf temperatures from the depths

of the eclipses in the different bands and the temperature-dependent specific intensities

from Gianninas et al. (2013). The temperatures determined are independent of both the

SDSS spectrum and model spectra, which formed the basis of the temperatures derived by

Parsons et al. (2011a). In contrast to their results, I obtain somewhat higher values for

both white dwarf temperatures. This is, at least in part, due to the fact that they did not

include the effects of reddening. To assess how this influences the values for the masses

and radii I ran an additional MCMC analysis in which the temperature of the hotter white

dwarf was fixed to T1 = 21100 K, the value found in Parsons et al. (2011a). The results are

shown in the last column of Table 3.4. As expected, the temperature of the cooler white

dwarf is also reduced, but the effect on other parameters is well within the uncertainties.

2Named after the Danish astronomer O. Rømer, who was the first to realise that the speed of light is
finite by observing deviations from strict periodicity for eclipses of Io, a satellite of Jupiter (Sterken, 2005).
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Table 3.4: Parameters of the binary and both white dwarfs, from MCMC analyses of the ULTRA-
CAM light curves with additional constraints from the X-shooter data. Numbers in parentheses
indicate the uncertainty in the last digit(s). The second and third column list the results from the
analysis of the spectroscopic and photometric data. The last two columns shows the results from
two more MCMC analyses, where the limb darkening coefficients (ldc) have been multiplied by 1.05
(fourth column) and where T1 has been fixed (fifth column).

parameter spectroscopy MCMC analysis MCMC with ldc*1.05 MCMC with fixed T1

T0 (BMJD(TDB)) - 55936.3446719(6) 55936.3446719(6) 55936.3446720(6)

Porb (days) - 0.1160154352(15) 0.1160154352(15) 0.1160154351(15)

a (R⊙) - 0.886(14) 0.886(14) 0.888(14)

i (deg) - 88.97(2) 88.96(2) 88.95(2)

δ (seconds) - -0.79(24) -0.80(25) -0.78(25)

M1 (M⊙) - 0.378(23) 0.378(23) 0.381(23)

M2 (M⊙) - 0.316(11) 0.316(11) 0.317(11)

R1 (R⊙) - 0.02224(41) 0.02227(41) 0.02220(41)

R2 (R⊙) - 0.02066(42) 0.02066(42) 0.02087(42)

T1 (K) - 24407(654) 24362(652) 21100

T2 (K) - 11678(313) 11664(311) 10436(21)

log g1 - 7.321(15) 7.319(15) 7.325(15)

log g2 - 7.307(11) 7.307(11) 7.300(11)

K1 (km s−1) -176.1(1.1) - - -

K2 (km s−1) 210.4(6.1) - - -

γ (km s−1) 130.5(0.7) - - -

minimum χ2 - 44457 44457 44482

Limb darkening

To account for limb darkening of the white dwarfs I used the limb darkening law as first

described by Claret (2000), in which the specific intensity across the stellar disc can be

calculated using

I(µ)

I(1)
= 1− c1(1− µ1/2)− c2(1− µ)− c3(1− µ3/2)− c4(1 − µ2) , (3.6)

where c1 – c4 are the limb darkening coefficients, and µ is the cosine of the angle between

the line of sight and the surface normal of the white dwarf, so that I(1) is the specific

intensity at the centre of the white dwarf’s disc.

White dwarf limb darkening coefficients were calculated by Gianninas et al. (2013) for a

wide range of white dwarf temperatures and surface gravities, for both the Johnson-Kron-

Cousins UBVRI system and the ugrizy filters to be used by the LSST. The filter profiles

of the ULTRACAM u′, g′ and r′ filters are similar to those of the LSST and therefore I

used the coefficients calculated for these LSST filters. I also obtained the central specific

intensities for these three filters (A. Gianninas, private communication).

For a given temperature and surface gravity I used a bilinear interpolation between

the closest values to calculate all four coefficients and the central specific intensity. These

then allowed determination of the total specific intensity of the white dwarfs, depending

on where they are in their orbit and on the fraction of each annulus is visible. The total
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specific intensity3 is related to the binary’s flux4 by a constant, α, which I calculated during

the MCMC by minimising the difference between the flux defined by the SDSS magnitudes

for CSS 41177 and the product of the total specific intensity with α. The constant is related

to the solid angle the binary subtends in the sky as

α = a2/d2 , (3.7)

where a is the binary’s orbital separation and d is the distance to the binary, allowing me

to effectively measure the distance from the light curves. For the three filters the resulting

distances are du = 481± 37 pc, dg = 473± 35 pc, and dr = 464± 34 pc, giving a weighted

average value of d = 472 ± 35 pc. These values are significantly higher than the distance

quoted in Parsons et al. (2011a), a natural result due to the fact that I also obtained higher

temperatures for both white dwarfs.

The calculations for the limb darkening coefficients in Gianninas et al. (2013) are based

on 1D white dwarf models. Tremblay et al. (2013a) have shown that the standard 1D

mixing-length theory overpredicts surface gravities and, to a lesser extent, temperatures,

especially near the values I found for the cooler white dwarf. To assess the effect of using 1D

models a comparison was made between a 1D and an averaged 3D intensity profile, using

a temperature and surface gravity representative of the cooler white dwarf. Full 3D and

averaged 3D spectral synthesis produce very similar results at all wavelengths (Tremblay

et al., 2011b), and so the averaged 3D approximation, where the average is performed over

constant Rosseland optical depth, is likely to be appropriate for the present study. The

difference between the two profiles was found to be a factor of 1.05 in the limb darkening

coefficients. Running a separate MCMC analysis in which I multiplied each limb darkening

coefficient by 1.05, showed that the effect on the values for the parameters is much less

than the statistical uncertainty in the parameters (Table 3.4, column 4).

3.4.3 Addition of HST+COS data to the light curve analysis

One of the largest uncertainties remaining after the analysis described above is the temper-

ature of the primary, hot white dwarf in CSS 41177 (and through their correlation also the

temperature of the secondary, cooler white dwarf). The HST+COS spectra taken in May

2014 go a long way to resolve this uncertainty, because they precisely measure the flux at

far-ultraviolet wavelengths. At these wavelengths, the primary white dwarf dominates the

flux, with the secondary only contributing a small amount.

To determine the white dwarf temperatures, I fit the HST+COS data with model

spectra (Koester, 2010), which employ a mixing length of ML2/α = 0.8. However, simply

fitting the HST+COS data with a single white dwarf model spectrum over predicts the

flux from the hot white dwarf at optical wavelengths. Because the secondary white dwarf

starts contributing to the total flux at λ > 1400 Å, the slope of the HST+COS spectrum is

shallower than would be the case if only the primary white dwarf is visible in this regime.

3In units of erg/s/cm2/Hz/sr.
4In units of erg/s/cm2/Hz.
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Table 3.5: White dwarf parameter results from the MCMC analyses performed on the HST+COS
and ULTRACAM data, the HST+COS and SDSS data with two different cut-offs for the HST+COS
data and, for comparison, the results based on the ULTRACAM light curves alone (see Section 3.4.2
as well as Bours et al., 2014a, E(B − V ) was fixed to the mean value from Schlegel et al. 1998).
Numbers in parentheses indicate uncertainties in the last digit(s).

data included HST+ULTRACAM HST+SDSS HST+SDSS ULTRACAM

restrictions λ < 1700 Å λ < 1700 Å λ < 2000 Å

E(B − V ) < 0.0308 E(B − V ) = 0.0339

T1 (K) 22439(59) 22390(58) 22443(79) 24407(654)

T2 (K) 10876(32) 11421(88) 9481(600) 11678(313)

E(B − V ) (mag) 0.0292(9) 0.0192(19) 0.0296(21) 0.0339 (fixed)

log(g1) 7.322(15) 7.322(14) 7.335(18) 7.321(15)

log(g2) 7.305(11) 7.288(10) 7.286(11) 7.307(11)

R1/a 0.02508(22) 0.02471(21) 0.02467(21) 0.02510(22)

R2/a 0.02340(28) 0.02385(27) 0.02389(27) 0.02332(28)

minimum χ2 44465 23215 30603 44457

degrees of freedom 37745 23667 37745 43351

As a result, the temperature I would find for the primary white dwarf is too low. Therefore

I used an iterative process which, after the first step, includes the secondary white dwarf’s

contribution to the far-UV flux in order to find a more accurate temperature for the primary

white dwarf.

In the first step I fit the HST+COS spectra with a single white dwarf model spectrum

using MCMC. This fit includes as free parameters the primary white dwarf’s temperature

(T1) and surface gravity (log g1), the reddening towards CSS 41177 (E(B−V )), and a scale

factor to allow for the unknown distance to the binary. In order to include reddening as a

free parameter I assume a visual extinction to reddening ratio R = AV /E(B − V ) = 3.1

(Schlafly & Finkbeiner, 2011) and interstellar extinction laws at UV wavelengths following

Seaton (1979) and at optical wavelengths following Howarth (1983). The surface gravity is

constrained by a Gaussian prior at log g1 = 7.32 ± 0.02 (based on the results presented in

the previous section, see also Bours et al., 2014a) and the reddening by a Gaussian prior

at E(B − V ) = 0.0292 ± 0.0009 (Schlafly & Finkbeiner, 2011).

I then fitted the ULTRACAM light curve data as presented and discussed before, but

now with a prior on the temperature of the primary white dwarf T1 based on the results

from the MCMC analysis of the HST+COS data described above. As before the free

parameters are T1 & T2, R1/a & R2/a, K1 & K2, P , T0, i and δ, but this time I also

include the reddening E(B − V ) as a free parameter. The tight prior on T1 given by the

HST+COS data leads to a much more precise temperature for the secondary white dwarf

T2 as well.

This, in turn, allowed me to refit of the HST+COS data while accounting for ‘contam-

ination’ to the UV-flux by the secondary white dwarf by subtracting a reddened model

spectrum from the data, with values T2 and log g2 fixed at the mean values from the

ULTRACAM light curve fit. The new value found for T1 then becomes a more accurate

prior in the light curve fits. By including the contribution of the secondary white dwarf,
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Figure 3.3: ULTRACAM u′ (left), g′ (centre) and r′ (right) data, folded with the binary’s orbital
period, normalised and binned by a factor of six. The black lines show the best model. The total
time span shown here covers 5 minutes. Top: a total of twelve observed eclipses of the primary,
hot white dwarf. Bottom: a total of nine observed eclipses of the secondary, cool white dwarf.

the primary white dwarf’s temperature increases by ∼ 150 K after the first iteration, and

∼ 10 K after the second iteration. The latter is well within the statistical uncertainty and

eliminates the need for further iterations.

The converged results are listed in Table 3.5, excluding those parameters that did not

change by more than 1σ. I have experimented with placing the long wavelength cut on

the HST+COS spectra at 1500 Å, which decreases the primary white dwarf’s temperature

by ∼ 150 K, roughly illustrating the magnitude of the systematic uncertainties. The

uncertainties in Table 3.5 should be considered as statistical uncertainties only.

The final best fit to the light curves is shown in Fig. 3.3, which also shows the binned

u′g′r′ observations, folded on the orbital period. The difference in eclipse depth, that

constrains the relative temperatures of the two white dwarfs, can clearly be seen in this

figure. The HST+COS data and the best synthetic model for the double white dwarf are

shown in Fig. 3.4. My final best ephemeris for CSS 41177 is given by

BMJD(TDB) = 55936.3446719(6) + 0.1160154352(15)E, (3.8)

with E the cycle number.

3.4.4 Fitting the HST+COS and SDSS spectral energy distribution

I have also tried to constrain the effective temperatures for both white dwarfs by fitting

the HST+COS data together with the ugriz flux measurements from SDSS, in the first
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Figure 3.4: HST+COS spectrum of CSS 41177 (grey dots, 1 Å bins; crosses denote data excluded
from the fits). The solid black line is the sum of the primary and secondary white dwarf model spec-
tra corresponding to the best fit from the HST+ULTRACAM analysis described in Section 3.4.3.
Also shown is the GALEX far-UV flux (filled circle, errorbar too small to be seen) and the position
of interstellar absorption lines (vertical grey dotted lines).

instance using COS data out to λ = 2000 Å. To obtain the SDSS fluxes I start from the

photometric PSF magnitudes given in Data Release 9. These I convert to AB magnitudes

using offsets of (-0.04, 0, 0, 0, 0.02) for the ugriz measurements respectively5, and then

transform these into fluxes with unit erg/cm2/s/Å. None of the SDSS observations were

made during or near a primary or secondary eclipse.

I fit the data using an MCMC analysis that includes eight free parameters: the primary

and secondary white dwarf temperatures (T1, T2), the reddening in the column towards

CSS 41177 (E(B − V )), the two surface gravities (log g1, log g2), the white dwarf radii

scaled to the binary’s semi-major axis (R1/a,R2/a)) and an overall scale factor to allow

for the unknown distance. I placed Gaussian priors on both the surface gravities and radii

based on results of fits to the phase-resolved X-shooter spectroscopy and the ULTRACAM

multi-colour eclipse observations (Section 3.4.2 in this chapter and Bours et al., 2014a), in

which I include the correlations between these four parameters.

I soon realised there is a significant degeneracy between the secondary white dwarf’s

temperature T2 and the reddening E(B − V ). This is illustrated in the left hand panel in

Fig. 3.5, where the landscape of χ2 is plotted for a range of values of T2 and E(B − V ).

Note that for each of the grid points, all other free parameters were optimised, to find the

best fit to the HST+SDSS data. The reddening is negatively correlated with the secondary

white dwarf’s temperature. In the χ2 landscape this creates a valley, stretching from low

reddening and high temperatures, to high reddening and low temperatures (Fig 3.5), with

minima at both ends. In this parameter space, all other free parameters only vary mildly,

and stay well within their 1σ uncertainties.

5https://www.sdss3.org/dr9/algorithms/fluxcal.php#SDSStoAB
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Figure 3.5: χ2 parameter space from the HST+SDSS analysis, as a function of the secondary white
dwarf’s temperature T2 and the reddening E(B − V ), with contours for three different χ2 values.
The shaded region where the secondary mid-eclipse depth is 11.3% ± 0.5%. The vertical dash-
dotted line shows the maximum value of the reddening towards CSS 41177 at E(B − V ) = 0.0308
(Schlafly & Finkbeiner, 2011). Left: including HST+COS data at wavelengths up to 2000 Å, with
the star indicating minimum χ2 = 30595 (37745 dof). The results from this MCMC are also listed
in column 4 of Table 3.5. Right: including HST+COS data at wavelengths up to 1700 Å, with the
star indicating minimum χ2 = 23214 (23667 dof). The results from this MCMC are also listed in
column 3 of Table 3.5.

The best fit is found for E(B − V ) = 0.0354 mags and T2 = 9010 K, with χ2 = 30595

and 37745 degrees of freedom (black star in left hand panel of Fig. 3.5). However, in the

direction of CSS 41177, the reddening E(B − V ) does not exceed 0.0308 mags (Schlafly &

Finkbeiner, 2011). In addition, a model light curve shows that with such a low temperature,

the maximum depth of the g′-band secondary eclipse is only 6.6%. Yet, from the ULTRA-

CAM data it is known that this mid-eclipse depth is ∼ 11.3%. Given that the eclipse depth

at a certain wavelength is almost independent of the reddening E(B − V ), the measured

ULTRACAM mid-eclipse depth of 11.3% indicates a temperature for the secondary white

dwarf that is significantly higher than 9010 K. Given restrictions of E(B−V ) < 0.0308 mags

and secondary mid-eclipse depth 11.3% ± 0.5%, the best fit is found with E(B − V ) =

0.0232 mags and T2 = 11181 K, with χ2 = 30610, only 15 points worse than the best fit.

Using an older generation of white dwarf model spectra I have performed the same

analysis. The results also showed the χ2 valley in the T2 – E(B − V ) parameter space.

However, it extended to higher temperatures and the best fit was found at the other end

of the valley, near T2 ∼ 12000 K. Therefore the difference in χ2 between the best fit in

Fig. 3.5 and the best fit when the cut of E(B−V ) < 0.0308 mags is applied, which is only

15 points, is likely smaller than any systematic uncertainties present in the white dwarf

model atmospheres. The cut in reddening therefore only excludes non-realistic solutions.

The results of an MCMC analysis with a maximum on the reddening at E(B − V ) =

0.0308 mags are listed in Table 3.4. The large uncertainty on T2 reflects what is also seen

on the left hand side in Fig. 3.5: just below the cut-off on E(B − V ) there is a wide range

of temperatures at fairly constant χ2. Note that because of the applied cut-off, the mean
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Figure 3.6: Top panel: best model spectra from the HST+ULTRACAM and HST+SDSS anal-
yses: for the double white dwarf binary CSS 41177 (solid and dashed black lines respectively) and
individual white dwarfs (dotted and dashed grey lines respectively). The HST+COS and SDSS data
are shown in dark grey. Filled circles indicate the GALEX far-UV, GALEX near-UV and SDSS
ugriz fluxes (errorbars too small to be seen). Bottom panel: residuals of the model CSS 41177
spectra folded through the SDSS filter curves with respect to the measured SDSS fluxes, for the
HST+ULTRACAM (white dots) and HST+SDSS analysis (black circles).

and uncertainty for the parameters in Table 3.4, in particular E(B − V ), should not be

considered as corresponding to a Gaussian distribution.

Following my analysis of the HST+COS and ULTRACAM data, I also analysed the

HST+SDSS data while using only the COS data out to a wavelength of λ = 1700 Å. The

results from this analysis are shown in the right hand panel of Fig. 3.5, and in Table 3.4.

The area where the best solution for HST(<2000 Å)+SDSS was found is still favoured

somewhat over the neighbouring areas, but the best solution is now found at lower values for

the reddening, and higher values for the secondary’s temperature. This is more consistent

with the expectations from the eclipse depth, and adds to the previous suspicion that the

HST+COS data at λ > 1700 Å may suffer from miscalibration.

Fig. 3.6 shows the best synthetic models for both the double white dwarf binary as well

as the individual white dwarfs from the far-UV through to the near-IR. The CSS41177

models are the sum of two white dwarf model spectra, accounting for the difference in

their surface areas, where the parameters (Teff , log g) for the two white dwarfs’ model

spectra are those from the best fits to the data. Again, I include the results from both the

HST+ULTRACAM and HST+SDSS analyses. The parameters (Teff , log g) for the primary

white dwarf’s model spectrum of the HST+ULTRACAM analysis are those from the best

fit in the last iteration to the HST+COS data, and the parameters for the secondary white

dwarf are taken from the corresponding model to the ULTRACAM light curves.

Both CSS41177 model spectra are in good agreement with the HST+COS data and the

SDSS data at wavelengths λ > 5000 Å, while at shorter wavelengths the models slightly
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under/over predict the flux. In the u′ band the difference is 1 – 2.5σ or, equivalently,

a few %. Because the SDSS uncertainties do not include systematic uncertainties, this

difference is likely not significant.

3.5 Discussion

3.5.1 Details of the binary orbit

For an eclipsing binary on a circular orbit it is often assumed that the primary and sec-

ondary eclipses occur exactly half an orbital phase apart. However, this is not the case

if the two binary components are of unequal mass. The changing distance to the stars at

times of eclipses and the finite speed of light cause a shift in the phase of the secondary

eclipse. While modelling the light curve I allowed for such a time shift, and found an

indication of a small displacement of δ = -0.78 ± 0.24 seconds. For CSS 41177 the Rømer

delay is theoretically expected to be δR = P (K2 −K1)/πc = 0.36 ± 0.08 seconds (Kaplan,

2010), so that the secondary eclipse should occur slightly after phase 0.5. The fact that I

measure a delay with the opposite sign, and that my measurement is 4.6σ away from the

theoretical prediction indicates that there may be another process at work.

The measured time delay could be the result of a small eccentricity of the binary’s orbit,

in which case the measured time delay can be used to constrain the eccentricity. With

δe = 2Pe cos(ω)/π (Kaplan, 2010; Winn, 2010), where ω is the argument of pericenter, I

obtain e cos(ω) = (1.24± 0.38)× 10−4, which is a lower limit on the eccentricity. Although

not extremely significant, it is certainly possible that the binary did not emerge from the

last common envelope phase on a completely circular orbit, or that small perturbations are

induced into the binary’s orbit by a third body.

I tried to confirm the measurement of a small eccentricity by fitting the primary white

dwarf’s radial velocity curve. This was obtained by subtracting the secondary white dwarf’s

contribution, fixing all the parameters defining the Gaussians that represent the primary’s

absorption line, and fitting each individual spectrum with only the parameters of the

straight line and a single velocity as free parameters. The result is consistent with an

eccentricity of zero, with a 3σ limit at 0.034, so is some way short of testing the photometric

result.

The only other precise eccentricity measurement in an eclipsing double white dwarf

binary (NLTT11748) is consistent with a circular orbit, and the measured Rømer delay

for this system agrees with the expected value (Kaplan et al., 2014).

If the CSS 41177 binary orbit is indeed eccentric, apsidal precession will occur. Tidal

deformation and rotational distortions of both stars and relativistic processes all contribute

to the apsidal precession (Sterne, 1939; Valsecchi et al., 2012). The relativistic apsidal

precession amounts to 5.6 deg/yr, compared to which the precession rates due to tides and

rotation are negligible.
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Figure 3.7: The 68 and 95 percentile contours for the masses and radii of the hot white dwarf
(black) and cool white dwarf (grey) in CSS 41177 from the HST+ULTRACAM analysis described
in Section 3.4.3. The lines indicate mass – radius relations for hydrogen envelopes of MH/M∗ =
10−4 (solid) MH/M∗ = 10−8 (dashed), for temperatures of TWD = 22500 K (black) and TWD =
11000 K (grey), and all with a metallicity of Z = 0.001 (Benvenuto & Althaus, 1998).

3.5.2 Masses, radii, and hydrogen envelopes

Typical white dwarf surface gravities are high enough to force elements heavier than hy-

drogen and helium to settle out of the photosphere on time scales much shorter than

evolutionary time scales (Paquette et al., 1986). As a result, all heavy elements sink below

the white dwarf’s photosphere, leaving the light elements to form the outer layers. The

two low-mass helium white dwarfs in CSS 41177 have hydrogen envelopes, and are therefore

classified as DA white dwarfs.

Fig. 3.7 shows the results from the HST+ULTRACAM MCMC analysis for the masses

and radii of both white dwarfs, as 68 and 95 percentile joint confidence regions. Also shown

in Fig. 3.7 are mass – radius relations for hydrogen envelope masses of 10−4 (solid lines) and

10−8 (dashed lines) of the stellar mass, M∗, for both white dwarf temperatures (Benvenuto

& Althaus, 1998). My results are in good agreement with both relations. Observational

studies of pulsating white dwarfs suggest that the hydrogen content can be several orders of

magnitude smaller than the standard prediction of stellar evolution of 10−4 M∗, see Bradley

(2001, Table 1). However, note that their listed white dwarfs are all of significantly higher

mass than the two CSS41177 white dwarfs. Mass determinations of hydrogen layers on

top of extremely low-mass white dwarfs (MWD < 0.2 M⊙) have shown that these tend to

have more massive atmospheres of up to 10−2 M∗ (Kaplan et al., 2012).

The current state of affairs is displayed in Fig. 3.8, which shows all highly accurate

white dwarf masses and radii, determined independently of mass – radius relations. The

two CSS41177 white dwarfs (numbered 1 and 2) fall in an area of the mass – radius

diagram that has been unexplored so far, and supply new tests for the theoretical mass –

radius relations at low white dwarf masses. The measurements agree well with the models.

Note that the solid and dashed grey mass – radius relations are for temperatures of Teff =
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Figure 3.8: Mass – radius diagram showing all white dwarfs with model-independent mass and
radius determinations. The hot and cool white dwarf in CSS 41177 are indicated with a 1 and 2
respectively. Other model-independent measurements from eclipsing white dwarf binaries are shown
as black symbols (O’Brien et al., 2001; Parsons et al., 2010b, 2012a,c; Pyrzas et al., 2012). The
grey symbols are for white dwarfs based on parallax measurements (Provencal et al., 1998, 2002;
Casewell et al., 2009). The dotted line shows the zero-temperature mass – radius relations from
Verbunt & Rappaport (1988). The solid grey lines are mass – radius relations for helium core white
dwarfs with a hydrogen envelope mass of MH/M∗ = 10−4, metallicity of Z = 0.001, and with T =
22500K (upper curve) and T = 11000K (lower curve) (Benvenuto & Althaus, 1998). The dashed
grey lines are for carbon/oxygen core white dwarfs, again with MH/M∗ = 10−4 and T = 22500K
(upper curve) and T = 11000K (lower curve) (Wood, 1995).

22500 K and 11000 K (upper and lower curves), and that the two notable outliers are both

white dwarfs that are significantly hotter (CSS 03170: Parsons et al. 2012c and NNSer:

Parsons et al. 2010a).

Using the same models by Benvenuto & Althaus (1998), I determined the cooling age

for the hot white dwarf to be ∼ 50 Myr. The cool white dwarf is substantially older with

∼ 330 Myr.

In general, there is good agreement that double white dwarf binaries like CSS 41177

go through two phases of mass transfer during their evolution, the second of which is

thought to result in a common envelope phase. The nature of the first is less certain,

but was most likely a common envelope or stable Algol-like mass transfer (Iben et al.,

1997). Different binary population synthesis codes agree that both of these evolutionary

paths could produce the final CSS41177 parameters (Toonen et al., 2014, Fig. A.22 and

A.24). Under conservative mass transfer, Algol evolution may lead to too small a final

orbital separation. Therefore stable non-conservative mass transfer (Woods et al., 2012),

or a common envelope following the γ-prescription (Nelemans et al., 2000) could be a more

accurate description of the first phase of mass transfer.
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Figure 3.9: ZZ Ceti diagram, with the filled, black star showing the position of the secondary white
dwarf in CSS 41177 at the overestimated values that would have been recovered if the parameters
were found by fitting the secondary white dwarf’s spectra with 1D model atmospheres (Tremblay
et al., 2013b). The open star indicates the direct values found from the fit to the HST+COS and
ULTRACAM data. The black and grey dots indicate confirmed pulsating and non-pulsating white
dwarfs respectively, and the dotted lines are empirical boundaries for the instability strip (Gianninas
et al., 2014a).

3.5.3 Metal lines in the HST+COS spectra

The HST+COS spectra reveal a handful of absorption lines. The positions of these lines

coincide with known interstellar absorption features: Siii 1260 Å; Oi 1302,1304 Å; Cii

1334/5 Å. Given that the lines also do not shift position between the four individual

exposures I conclude that they are indeed of interstellar origin. The Siii 1265 Å excited

state is not detected, further corroborating the interstellar nature of the metal lines.

3.5.4 A pulsating second white dwarf?

Depending on their atmospheric composition, white dwarfs experience non-radial gravity-

mode pulsations at different epochs in their cooling curves. Based on extrapolating obser-

vations of white dwarfs with lower and higher surface gravities, this instability should occur

close to TWD = 11000 K for white dwarfs with a mass of MWD ∼ 0.3 M⊙ and hydrogen-rich

atmospheres (DA) (see e.g. Bergeron et al., 1995; Gianninas et al., 2014a). In the log g –

Teff plane, this region is called the ZZ Ceti instability strip.

The values of the secondary white dwarf’s temperature and surface gravity are shown

in Fig. 3.9, where known pulsators (Gianninas et al., 2011; Hermes et al., 2012a, 2013a,c,

2014b; Pyrzas et al., 2015) and non-pulsators at 10 mmag (Gianninas et al., 2011; Steinfadt

et al., 2012; Hermes et al., 2012a, 2013c,d) are also indicated. The values used for low-mass

white dwarfs are the updated atmospheric parameters from Gianninas et al. (2014a), who

used the latest model spectra, with a 1-dimensional mixing length theory to approximate

convection, to fit the white dwarf Balmer lines. It has been known for some time that

fitting Balmer lines with 1D models overpredicts surface gravities and temperatures in

the regime where white dwarf atmospheres become convective (Teff < 13000 K; Tremblay
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et al., 2010, 2011b).

The method presented in this chapter does not rely on fitting Balmer lines, but rather

uses the continuum of the spectral energy distribution and the ULTRACAM light curves

to find the temperature and surface gravity of the secondary white dwarf in CSS41177.

These results are likely close to the true atmospheric parameters, and therefore presumably

similar to results that would be obtained if it was possible to fit the secondary’s Balmer

lines directly with the latest 3D model spectra. For this reason, I correct my results in

Fig. 3.9 using the 3D to 1D correction given by Tremblay et al. (2013b), to facilitate direct

comparison with other data points in this figure. The filled star indicates the position in

the ZZ Ceti strip that would have been recovered if fits to the secondary star’s Balmer

lines were performed with 1D model atmospheres. The open star shows the atmospheric

parameters found with my method, also listed in Table 3.4. Note that the average of the 3D

models is performed over constant Rosseland optical depth, which produces very similar

results to full 3D spectral synthesis at all wavelengths for these temperatures and surface

gravities (Tremblay et al., 2011b).

The results place the secondary white dwarf inside the empirical instability strip, just

under 350 K from the blue edge, which prompted a search for pulsations in the light

curves. I inspected the January 2012 ULTRACAM data, excluding the single primary

eclipse observation from May 2011 to avoid artificial low-frequency signals. Looking at

the out-of-eclipse data, no pulsations with an amplitude exceeding 3.0, 1.0 and 1.1 mmag

in the u′, g′ and r′ band were found. However, the secondary white dwarf’s contribution

to the flux is strongly diluted by the presence of the primary white dwarf and the flux

ratios differ in the three bands. For the u′, g′ and r′ band the primary to secondary flux

ratios are 7.7, 4.3 and 3.5 respectively. Correcting for the flux dilution this translates to a

non-detection of pulsations with an amplitude exceeding 26.1, 5.3 and 5.0 mmag in the u′,

g′ and r′ band.

The contribution of the secondary to the total amount of flux is highest in the r′ band,

but white dwarf pulsation amplitudes for non-radial modes increase towards bluer wave-

lengths. For the l = 1 and l = 2 non-radial modes the amplitude in the g′ band is ∼

1.4 times higher than the amplitude in the r′ band (Robinson et al., 1995). Therefore my

strongest constraint comes from the g′ band.

Note that the available data are not ideally suited to search for pulsations, because the

observations targeted the eclipses, and mostly covered only brief stretches (5 – 10 minutes)

of out-of-eclipse data. Typically, pulsation periods are between ∼ 7 – 70 minutes (Her-

mes et al., 2012a, 2013c), and increase with decreasing surface gravity and temperature.

Therefore it is likely that the ULTRACAM observations are too short for detecting pulsa-

tions. Furthermore, pulsating white dwarfs can have amplitudes < 0.5% (Mukadam et al.,

2006). These combined effects might explain why no pulsations have been detected. New,

dedicated observations are required to reveal whether pulsations are indeed present or not.

Note that I have assumed a prior for the reddening at E(B − V ) = 0.0292 ± 0.0009

in the final MCMC analyses, which is the total estimated reddening in the direction of
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Figure 3.10: Observed minus calculated (O-C) diagram for the primary eclipses of CSS 41177,
including the ULTRACAM, ULTRASPEC and LT+RISE data as well as five eclipse observations
from Backhaus et al. (2012, plotted in grey). The ULTRACAM eclipses were observed in three
filters simultaneously, and the times shown here are the weighted averages of these. The eclipse
times are listed in Table 3.2.

CSS41177. Since the reddening affects the flux at shorter wavelengths more than the flux

at longer wavelengths, a smaller E(B − V ) results in a shallower slope of the HST+COS

spectra. This translates to a lower temperature for the primary white dwarf, and, through

the ULTRACAM light curves, also in a lower temperature of the secondary white dwarf.

Therefore any decrease in the reddening will push the secondary white dwarf further into

the instability strip.

3.5.5 Orbital period variations

Fig. 3.10 shows the mid-eclipse times of the primary eclipses in an observed minus calculated

(O-C) diagram, where the calculation is based on the linear ephemeris of Eq. 3.8. All

ULTRACAM, ULTRASPEC and LT+RISE data are included. For the ULTRACAM data

I show the weighted mean of the u′, g′ and r′ data. All eclipse times are listed in Table 3.2.

There is as yet no indication of any variation in the binary’s orbital period. This may

be expected as the white dwarfs cannot induce orbital period variations through magnetic

cycles (the Applegate mechanism as discussed in Chapter 1, see Applegate, 1992). This

mechanism has regularly been called upon to explain observed orbital period variations in

white dwarf + M-dwarf binaries, where the M-dwarf can indeed undergo such magnetic

cycles and the resulting changing gravitational quadrupole moment can cause orbital pe-

riod variations. However, a number of these binaries show variations too large to be the

result of this mechanism (Brinkworth et al., 2006), and a popular alternative explanation

has been the presence of circumbinary planetary-like companions. See for example the

proposed planetary systems for NN Serpentis (Beuermann et al., 2010; Marsh et al., 2014)
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or UZ Fornacis (Potter et al., 2011), both eclipsing white dwarf + M-dwarf binaries with

large orbital period variations. However, it should be noted that several of these invoked

planetary systems do not show any long-term (∼ Myr) dynamical stability (Hinse et al.,

2012; Wittenmyer et al., 2012), although the case for NN Serpentis becomes more and

more convincing (Marsh et al., 2014; Beuermann et al., 2014).

Should any orbital period variations be seen in a double white dwarf, this would be

a strong indication that circumbinary planets around evolved binaries indeed do exist. A

situation that raises interesting questions regarding the formation and evolution of plan-

etary systems. The possible planets could be first-generation planets that survived the

common-envelope phase of the binary, or be second-generation planets that formed from

the large amount of mass expelled after the common-envelope phase. Only data spanning

several years, or even decades, can shed light on the answers, and so it is key to keep

observing binaries like CSS 41177 regularly. So far CSS 41177 shows no deviation from a

linear ephemeris and may indeed prove to be useful as an optical timing standard.

3.6 Conclusions

I have presented high signal-to-noise ULTRACAM, X-shooter and HST+COS observations

of CSS 41177 and the combined analysis of these data sets. The high spectral and temporal

resolution of the X-shooter data and the ULTRACAM observations in three wavelength

bands allowed me to accurately model the binary and both white dwarfs, without needing

to use theoretical mass – radius relations.

The results place these two white dwarfs in a region of the mass – radius diagram

that is as yet unexplored; they are the lowest mass white dwarfs with model-independent

parameters. The results agree with white dwarf models for the corresponding temperatures

and with standard hydrogen atmospheres.

The HST+COS spectra allowed me to precisely measure the primary white dwarf’s

temperature: T1 = 22439 ± 59 ± 150 K. Combined with the ULTRACAM eclipse data

this puts a very tight constraint on the secondary temperature as well: T2 = 10876 ± 32 ±

150 K. In this analysis I chose to use the HST+COS data up to λ = 1700 Å, motivated by

the decreasing sensitivity of COS and the therefore increasing difficulties with the relative

flux calibration at longer wavelengths.

I also found an indication that the secondary eclipse does not occur exactly half an

orbital period after the primary eclipse. Although the Rømer delay predicts such an offset,

it also predicts that the secondary eclipse will occur late, whereas I measured it to occur

early. Therefore the orbit of the two white dwarfs may be slightly eccentric. To measure

this effect with higher accuracy more secondary eclipses observations are needed.

I also performed an analysis of the HST+COS data combined with SDSS ugriz fluxes.

Because the latter extends into the infrared, the combined data has to be fit with two

white dwarf model spectra simultaneously to account for the contribution of both white

dwarfs to the total flux. When using the HST+COS data out to λ = 2000 Å, this caused a

degeneracy between the reddening E(B−V ) and the secondary white dwarf’s temperature
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T2, which I was only able to break using the measured eclipse depth from the ULTRA-

CAM data. Performing the same fit with different generations of white dwarf models as

well as using a cut-off at λ = 1700 Å for the far-UV HST+COS data showed that the

systematic uncertainties in this method are large. Using the same data and models as

used for the HST+ULTRACAM method, I found a solution in which the primary white

dwarf’s temperature agrees with that found from the HST+ULTRACAM data, but the

secondary temperature is significantly higher at T2 = 11421 ± 88 K. This 6σ difference is

compensated for by a 5σ difference in the reddening. This solution fits the spectroscopic

data, and agrees with optical eclipse observations, but given the larger uncertainties (both

statistical and systematic) I favour the results from the HST+ULTRACAM analysis.

Besides the white dwarf temperatures, I can constrain the surface gravities from the

ULTRACAM light curves, combined with constraints from the X-shooter time-series spec-

troscopy. For the secondary white dwarf I found log g2 = 7.305 ± 0.011, which places it

inside the pulsational instability strip for white dwarfs with hydrogen-rich atmospheres,

and in particular in the gap between the canonical log g ≃ 8 white dwarfs and the ex-

tremely low mass white dwarfs at log g ≃ 6.5. The ULTRACAM data include only short

stretches of out-of-eclipse data, in which I was unable to detect pulsations. Given the

results presented here, dedicated high-speed photometric observations resulting in higher

signal-to-noise ratio data may still reveal the presence of pulsations. This white dwarf

is particularly interesting because it is positioned in an as-yet-unexplored part of the ZZ

Ceti diagram, as well as being close to the edge of the instability strip. Determining if it

pulsates or not will help determine where the border of the instability strip is and whether

the strip is continuous from high mass to extremely low mass white dwarfs.

⋆ ⋆ ⋆



Chapter 4

The paradox of

SDSS J125733.63+542850.5

4.1 Introduction

As we saw before, double white dwarf binaries are common end products of binary evolution

(Marsh et al., 1995; Toonen et al., 2014), and those with separations small enough to have

experienced one or two common envelope phases are possible progenitors of supernovae

Type Ia (Iben & Tutukov, 1984; Webbink, 1984), Type .Ia (Bildsten et al., 2007), R CrB

stars (Webbink, 1984) and AM CVn systems (Breedt et al., 2012; Kilic et al., 2014b). In

addition, mergers of Galactic double white dwarfs occur relatively frequently (Badenes &

Maoz, 2012), and constitute the main source of the background gravitational wave signal

at frequencies detectable from space (Nelemans et al., 2001; Hermes et al., 2012b).

The initial-final mass relation (Weidemann, 2000), predicts that extremely low-mass

(ELM) white dwarfs, typically with masses MWD . 0.3 M⊙, cannot yet form as a natural

product of stellar evolution because the main-sequence lifetime of their low-mass progen-

itors is longer than the present age of our Galaxy. However, ELM white dwarfs can be

formed in binary systems in which the separation is close enough for the two stars to inter-

act significantly before the ELM white dwarf’s progenitor has evolved off the main-sequence

(mass transfer via Case A or early Case B Roche-lobe overflow). The binary companion

causes the evolution of the ELM white dwarf’s progenitor to be truncated before ignition

of helium, and after ejection of the envelope the helium core is exposed as the ELM white

dwarf. Typically, these white dwarfs have surface gravities log g < 7, as well as relatively

massive hydrogen envelopes (∼ 10−3 – 10−2 M⊙; Istrate et al., 2014b). New dedicated

searches such as the ELM Survey have significantly increased the known population in re-

cent years (Brown et al., 2010, 2012, 2013; Kilic et al., 2011, 2012). The majority of ELM

white dwarfs are companions to other white dwarfs (Kaplan et al., 2014, this chapter) or

millisecond pulsars (see for example van Kerkwijk et al., 1996; Bassa et al., 2006; Anto-

niadis et al., 2013) and a few have been found in hierarchical triple systems (Ransom et al.,

2014; Kilic et al., 2014a, 2015) or orbiting A- or F-type main-sequence stars (Maxted et al.,

2014; Breton et al., 2012). The subject of this chapter, SDSSJ1257+5428, is a binary that

likely belongs to the first of these classes, but, as we shall see, how it evolved into the

system we see today is a mystery.

69
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4.1.1 Introduction to SDSS J1257+5428

The double white dwarf binary SDSSJ1257+5428 (full name: SDSSJ125733.63+542850.5)

was first discovered when the available SDSS (Eisenstein et al., 2006; York et al., 2000)

subspectra were examined for radial velocity variations as part of the Sloan White dwArf

Radial velocity Mining Survey (SWARMS; Badenes et al., 2009). Follow-up spectroscopy

revealed radial velocity variations with a semi-amplitude of 323 km s−1, which were inter-

preted to come from a 0.9 M⊙ white dwarf. Combined with the orbital period of 4.6 h and

the absence of additional spectral features, this suggested that the most likely companion

would be a neutron star or a black hole (Badenes et al., 2009).

Follow-up B and R band spectroscopy revealed two distinct components in the spectra,

although the Balmer absorption lines only showed a single sharp core (Marsh et al., 2011;

Kulkarni & van Kerkwijk, 2010). These deep, radial-velocity variable Balmer lines in fact

originate in a cool ELM white dwarf, which I hereafter refer to as the primary (because it

dominates the flux at visual wavelengths, and following Kulkarni & van Kerkwijk 2010 and

Marsh et al. 2011). The secondary is another white dwarf, which is hotter and significantly

more massive, causing it to have very broad absorption lines. In addition, it is likely

rotating fast, causing its line cores to be smeared out. Due to the shallow nature of these

lines, and the absence of sharp cores, it was not possible to detect a radial velocity variation

of the massive white dwarf.

The combination of these two white dwarfs in the same binary system is very inter-

esting. The primary component is of much lower mass, and therefore has a much larger

surface area than the secondary component. This causes the cooler primary to dominate

the flux at wavelengths λ & 4000 Å. At shorter wavelengths the secondary white dwarf

starts dominating due to its higher temperature. Note that the fact that the higher mass

white dwarf is hotter is contrary to expectation since it presumably formed much earlier

than the low-mass white dwarf. At the time of the studies by Kulkarni & van Kerkwijk

(2010) and Marsh et al. (2011) there were only a limited number of low-mass white dwarf

models available, leaving it unclear whether or not the cool, low-mass white dwarf could

have overtaken the secondary white dwarf on the cooling track. To securely measure the

secondary’s temperature, Hubble Space Telescope far-ultraviolet spectra have been ob-

tained. These new measurements of the hot white dwarf are presented in this chapter

(see also Bours et al., 2015b) and combined with recent binary models for ELM helium

white dwarfs (Istrate et al., 2014b; Althaus et al., 2013) to study this binary’s evolutionary

history further.

4.2 Observational data

4.2.1 The Hubble Space Telescope data

SDSSJ1257+5428 was observed with the Hubble Space Telescope (HST) in Cycle 18, with

program ID 12207. Part of the observations were done with the Cosmic Origins Spectro-

graph (COS) on 2011 May 9, with the G140L grating and a central wavelength of λcen =
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1280 Å. The total exposure time of these data is 146 minutes. The double white dwarf

was also observed with the Space Telescope Imaging Spectrograph (STIS), on 2011 Oct 22.

For these observations, totalling 95 minutes, the G230L grating was used at λcen = 2376

Å. The raw data were processed by the standard pipeline at the Space Telescope Science

Institute.

In the following analysis I exclude parts of the HST spectra that are contaminated by

geocoronal Oi (1304 Å) emission. In addition, for the COS and STIS data, I have excluded

data at wavelengths λ > 1700 Å, and λ < 1650 Å respectively, where the signal-to-noise

ratio is very low. The measured flux is consistent with the Swift Ultra-Violet / Optical

Telescope data presented in Marsh et al. (2011).

4.2.2 Parallax observations

The 2.4 m Hiltner telescope at the MDM Observatory on Kitt Peak was used for 19

observing runs between January 2010 and June 2014. The astrometric solution includes

128 exposures, all taken in the I-band. Observations, reductions, and analysis followed

procedures similar to those described in Thorstensen (2003) and Thorstensen et al. (2008).

The parallax of SDSS1257+5428 relative to the reference stars was 8.3 mas, with a formal

fitting error of only 0.8 mas, although the external error is judged to be 1.3 mas from the

scatter of the reference stars. The colours and magnitudes of the reference stars yield a

1.6 mas correction due to the finite distance of the stars forming the reference frame, so

the absolute parallax estimate is 9.9 ± 1.3 mas, which on face value gives a distance to

SDSSJ1257+5428 of ∼ 101 ± 15 pc. The proper motion relative to the reference frame is

modest, [µX , µY ] = [−45,+9] mas yr−1; the PPMXL catalogue (Roeser et al., 2010) gives

[−41.0,+11.8] mas yr−1, in very good agreement. Thorstensen (2003) describes a Bayesian

procedure for estimating a distance by combining parallax information with proper motion

(interpreted using an assumed space-velocity distribution) and with photometric distances.

For the present case, only the proper-motion constraint is used to avoid tautology. The

small proper motion combines with the Lutz-Kelker correction to give an estimated distance

of 112+20
−15 pc, which is consistent with the inverse of the parallax. Assuming a thick-disk

velocity distribution increases this by another ∼ 5 pc.

4.2.3 ULTRASPEC photometry

On the nights of March 2 and March 3, 2015, SDSSJ1257+5428 was observed with the

high-speed photometric camera ULTRASPEC (Dhillon et al., 2014), on the Thai National

Telescope located on Doi Inthanon, Thailand. In total, 240 minutes of g′ band data were

obtained. The data were reduced using the ULTRACAM pipeline (Dhillon et al., 2007),

with which I debiased and flatfielded the data and performed relative aperture photometry

using a nearby bright star to minimise the effects of atmospheric variations in the light

curves.
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Table 4.1: White dwarf parameter results from the MCMC analysis performed on the HST+COS,
HST+STIS and SDSS data. The reddening is constrained to 0 < E(B−V ) < 0.0173 by a uniform
prior. Numbers in parentheses indicate statistical uncertainties in the last digit(s). The distance is
calculated from the scale factor s (see Section 4.3 for details). The cooling ages τ2 in each column
are based on carbon/oxygen and oxygen/neon white dwarf models, with an estimated uncertainty
of 0.1 Gyr. The last three columns correspond to MCMC runs where the value of log g1 was fixed.
The motivation for this is explained in Sect. 4.4.2.

parameters MCMC results best model MCMC MCMC MCMC

(see Fig. 4.2) (fixed log g1) (fixed log g1) (fixed log g1)

T2 (K) 13030(70) 13033 13050(59) 12965(82) 12811(94)

T1 (K) 6400(37) 6399 6402(38) 6395(29) 6460(24)

E(B − V ) (mag) 0.0089(34) 0.0101 0.0109(23) 0.0038(21) 0.0008(8)

log(g2) 8.73(5) 8.72 8.73(5) 8.70(7) 8.61(9)

log(g1) 5.26(36) 5.10 5.0 6.0 7.0

R1/R2 4.27(9) 4.27 4.29(9) 4.21(10) 3.89(9)

d (pc) 102(9) 103 102(9) 105(8) 109(8)

M2 (M⊙) 1.06(5) 1.05 1.06(5) 1.04(5) 1.00(5)

τ2 (Gyr) 1.0 / 1.2 1.0 / 1.2 1.0 / 1.2 1.0 / 1.2 0.9 /1.2

Details of the various fits

minimum χ2 5771(4) 5764 5771(4) 5774(4) 5817(4)

degrees of freedom 11071 11071 11072 11072 11072

4.3 Fitting spectra: a Markov-chain Monte Carlo approach

I fit both the HST COS and STIS spectra as well as the SDSS ugriz fluxes using a Markov

Chain Monte Carlo (MCMC) analysis, through the affine-invariant ensemble sampler in

the python package emcee (Foreman-Mackey et al., 2013). To obtain the SDSS fluxes,

I use the PSF magnitudes, which are corrected for the offset between the SDSS and AB

magnitude systems using (-0.04, 0, 0, 0, 0.02) for the ugriz measurements respectively1.

I fit the data with a sum of two white dwarf model spectra from Koester (2010), which

employ a 1D mixing length theory, with ML2/α = 0.8, to approximate convection, and

which list the Eddington flux density at the surface of the white dwarf. The relative

contribution of the two model spectra is determined by the radius ratio of the two white

dwarfs. The MCMC method maximises the posterior probability, equivalent to minimising

χ2, to find the best fit. Each data point is weighted by its uncertainty, with no additional

weight in favour of either the HST or SDSS data.

The free parameters in the model are the temperatures T1 and T2, the surface gravities

log g1, log g2, the radius ratio R1/R2, a scale factor s = 4πR2
1/d

2 to account for the distance

d to SDSSJ1257+5428, and the maximum reddening along the line of sight E(B−V ), which

is incorporated using the expressions presented in Seaton (1979) and Howarth (1983). I

included a uniform prior on the reddening, constraining it to 0 < E(B−V )/mag < 0.0173,

where the maximum is given by the dust map of Schlafly & Finkbeiner (2011) and I assume

a minimum of zero. All other parameters are left unconstrained. I chose not to include a

prior on the distance based on the parallax measurements, to allow a self-consistency check

afterwards.

1http://www.sdss.org/dr12/algorithms/fluxcal/#SDSStoAB
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Figure 4.1: Converged MCMC chain projected onto 2-dimensional parameter spaces and showing
histograms for the individual free parameters in the fits. The contours are at the 1σ, 2σ and 3σ
levels, and include 68%, 95% and 99.7% of the data respectively. The grey squares and vertical
lines indicate the best fitting model with χ2 = 5764, as listed in Table 4.1.

The results presented here are based on converged chains, from which the burn-in phase

is removed. I have also thinned the chains, by only storing every 20th model, in order to

reduce correlations between successive models in the unthinned chain.

4.4 Results

For each of the free parameters, the mean value and 1σ uncertainty of the converged

MCMC chain are listed in Table 4.1, column 2. Note that the quoted uncertainties are

purely statistical. They do not include any systematic uncertainties that may be present,

and are therefore underestimates of the true uncertainties. For the best model, the reduced

χ2 = χ2
ν ≃ 0.5. However, scaling the errorbars on the data such that χ2

ν ≃ 1, a common
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Figure 4.2: Top panel: best fit model spectra for the double white dwarf binary SDSS J1257+5428
(solid black line) and the individual white dwarfs (dotted grey lines). The HST+COS and STIS
spectra are shown at 1200 < λ/Å < 1700 and 1650 < λ/Å < 3200 respectively and are binned to
2 Å. Solid black dots indicate the SDSS ugriz fluxes (errorbars too small to be seen). The inset
shows a closer view of the far-UV where the flux is almost entirely dominated by the hot white
dwarf. The grey crosses indicate geocoronal oxygen emission (λ ∼ 1300 Å), and are excluded from
my fits. Bottom panel: residuals of the model SDSS J1257+5428 spectrum folded through the SDSS
filter curves with respect to the measured SDSS fluxes.

practice, would only decrease the statistical uncertainties further, and I refrain from doing

so. The results from the MCMC run are shown in Fig. 4.1, projected on the various 2-

dimensional parameter planes, as well as in 1-dimensional histograms. The best model,

together with the HST and SDSS data, is shown in Fig. 4.2, and fits the data well at

all wavelengths. The underpredictions of the model with respect to the u and g SDSS

fluxes (shown in the bottom panel) are less than 3σ of the SDSS flux. Given that SDSS

uncertainties do not include systematic uncertainties, this difference is likely not significant.

4.4.1 The hot, massive white dwarf and possible pulsations

With an effective temperature of T2 = 13030 ± 70 K and a surface gravity of log g2 =

8.73 ± 0.05, detailed evolutionary models show that the secondary star has a mass of

M2 = 1.06 ± 0.05 M⊙. The corresponding cooling age is τ2 = 1.0 Gyr or τ2 = 1.2 Gyr,

with an estimated uncertainty of 0.1 Gyr, for carbon/oxygen and oxygen/neon white

dwarf models respectively (Tremblay et al., 2011a; Kowalski & Saumon, 2006; Althaus

et al., 2007)2. The values for the mass and surface gravity translate into a radius of

R2 = 0.0074 ± 0.0006 R⊙. These results are in agreement with those of Kulkarni & van

Kerkwijk (2010), and the results of the fits to the phase resolved and ultraviolet-optical

spectral energy distribution presented in Marsh et al. (2011).

At different composition-dependent epochs during a white dwarf’s cooling process, the

2See http://www.astro.umontreal.ca/∼bergeron/CoolingModels.
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star experiences non-radial gravity-mode pulsations. The atmospheric parameters of the

secondary white dwarf place it inside the empirical and theoretical instability strip for

white dwarfs with hydrogen-rich atmospheres (Gianninas et al., 2014a; Van Grootel et al.,

2013). At this high surface gravity, there are only two confirmed white dwarf pulsators

(Gianninas et al., 2011; Hermes et al., 2013a). I reiterate here that this empirical instability

strip is based on atmospheric parameters determined from Balmer line fits, in which the

models used include a 1D mixing-length theory to approximate convective motion. The

most recent models are based on 3D simulations instead, and give slightly different results

for both white dwarf temperatures and surface gravities (Tremblay et al., 2013b). Because

our atmospheric parameters were not obtained through Balmer line fits, these do not suffer

from inaccuracies in the 1D models. To be able to make a direct comparison to the empirical

instability strip, I therefore followed what I did in Chapter 3 and decided to ‘correct’ my

results using the offsets from 3D to 1D parameters (Tremblay et al., 2013b, ∆T ≃ 250 K;

∆log g ≃ 0.01), rather than correcting every other source from 1D to 3D.

Although the secondary is placed ∼ 600 K from the blue edge inside the instability

strip, I did not detect any pulsations in the time-tagged HST COS data down to an am-

plitude of 1.7%, equivalent to 18 mmag at the 3σ limit. To obtain an even better limit,

SDSSJ1257+5428 was observed with ULTRASPEC. However, these data also do not show

any pulsations with an amplitude exceeding 0.5%. In the g′ band light curve the contribu-

tion of the secondary white dwarf is diluted by that of the primary, as the latter contributes

1.6 times as much flux at these wavelengths. This puts the 3σ pulsation amplitude limit

at 14 mmag. Note that the HST limit is from data at far-ultraviolet wavelengths, where

pulsation amplitudes are generally much larger than at optical wavelengths (Robinson

et al., 1995), and may therefore still be the stronger limit even though the absolute value

is somewhat higher than that from the ULTRASPEC data. Pulsation amplitudes tend to

decline for white dwarfs with effective temperatures exceeding 11500 K (Mukadam et al.,

2006), and so it is possible that they are still present, but with amplitudes below the limits

presented here.

4.4.2 The cool low-mass white dwarf

The secondary white dwarf mass determined above combined with the radial velocity vari-

ation of K1 = 330 km s−1 measured by Marsh et al. (2011) put an upper limit on the mass

of the primary white dwarf at M1 ≤ 0.24 M⊙ (see their Fig. 6). This is consistent with

the system not being a supernova Type Ia progenitor, as well as with the favoured solution

found in Marsh et al. (2011).

One interesting result from the analysis presented here is that the data strongly suggest

that the surface gravity of the primary, cooler white dwarf is close to log g = 5.3 (see

Fig. 4.1). However, given the radius ratio of R1/R2 = 4.27 and a maximum possible mass

ratio of M2/M1 ≃ 10, generously assuming a minimum white dwarf mass of 0.1 M⊙ (Istrate

et al., 2014a; Althaus et al., 2013), the surface gravities can differ by log g2 – log g1 ≃ 2.3

at most. Given that the surface gravity of the hot white dwarf is well-constrained by the
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Figure 4.3: Top panel: best fit model spectra for the double white dwarf binary SDSS J1257+5428
(solid lines) and the individual white dwarfs (dashed and dot-dashed lines) from MCMC fits with
log g1 fixed at 5.0, 6.0 and 7.0 (black, dark grey and light grey respectively). The HST+COS and
STIS spectra (binned to 2 Å in the main panel, and 4 Å in the inset) and the SDSS spectrum are
shown as well. Solid black dots indicate the SDSS ugriz fluxes (errorbars too small to be seen). The
inset highlights the part of the spectrum where the models differ most. Bottom panel: residuals
of the model SDSS J1257+5428 spectra folded through the SDSS filter curves with respect to the
measured SDSS fluxes, offset by -100 Å, 0, +100 Å for log g1 fixed at 7.0, 6.0 and 5.0, respectively.

features in the HST+COS data it is therefore likely that the surface gravity of the cool

white dwarf should be closer to log g1 ∼ 6.5. In addition, there is no indication of any

absorption lines besides the Balmer lines, even though at the very least the Ca H/K lines

are often present in white dwarfs with log g . 6 (Hermes et al., 2014a; Brown et al., 2013;

Gianninas et al., 2014b; Kaplan et al., 2013). This therefore also points towards a surface

gravity larger than 5.3 for the low-mass white dwarf in SDSSJ1257+5428. I do not know

why the data imply the low surface gravity as found in an unconstrained fit. Considering

the entire range of possible white dwarf surface gravities, a log g1 ∼ 6.5 is still at the low

end, and the combination with the low effective temperature is unprecedented, making it

difficult to draw robust conclusions.

For these reasons, I reanalysed the data while keeping log g1 fixed, choosing values of

5.0, 6.0 and 7.0. The results are listed in the last three columns of Table 4.1. The large

changes in log g1 have relatively little effect on the χ2 values of the fits. The main difference

between these results and those from the initial MCMC run is in the values of the reddening

and the radius ratio. The reddening decreases significantly, becoming consistent with zero

when the primary white dwarf’s surface gravity is fixed at higher values. This behaviour

is likely caused by the near-ultraviolet feature in the interstellar extinction curve, which

is adjusted to compensate for the change in the cool white dwarf’s spectrum, which starts

contributing to the total flux in this same wavelength range. The variation in the other

parameters illustrates the extent of the systematic uncertainties, which are ∼ 150 K for

T2, ∼ 50 K for T1, and ∼ 0.05 for log g2. Note that these uncertainties are too small to
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Figure 4.4: Cooling tracks for ELM white dwarfs, together with the radius and effective temper-
ature of the cool low-mass white dwarf (square). The lines are evolutionary models from Istrate
et al. (2014b, see text for more details) for white dwarfs of different mass (in M⊙, see legend). The
various lines are dotted up to a cooling age of 1.0 Gyr (first set of stars), and solid after. Triangles
and diamonds are placed at cooling ages of 2.5 and 5 Gyr for each track. At Teff = 6400 K, the white
dwarf cooling ages are roughly 13, 13, 10.5, 7.2 and 6.7 Gyr, with increasing mass, respectively.

move the secondary out of the instability strip. The best fits from the three MCMC runs

with fixed, different values of log g1 are shown in Fig. 4.3. Comparison of these models

with the Balmer lines in the WHT+ISIS spectra presented in Marsh et al. (2011) shows

that the model with log g1 = 6.0 matches the depths of those lines best, consistent with

my reasoning above. From now on I therefore assume that log g1 ≃ 6.0 – 6.5, which agrees

with the results from the unconstrained MCMC analysis at the ∼ 3σ level (see Fig. 4.1).

Given that the surface gravity of the cool white dwarf is poorly constrained by the

spectra I do not rely on it hereafter, and instead use the radius derived for the hot,

secondary white dwarf in section 4.4.1, and the radius ratio from the MCMC analysis.

The latter is constrained by the relative flux contributions of the two white dwarfs across

the spectral energy distribution, and together they provide a radius for the primary of

R1 = 0.032 ± 0.003 R⊙. In Fig. 4.4 I show this value and the effective temperature for

the cool white dwarf, together with evolutionary models for white dwarfs of different mass

from Istrate et al. (2014b). These models were obtained for ELM white dwarfs in close

binaries with neutron stars, but the white dwarf’s formation via Roche lobe overflow and

detachment likely proceeds similarly independent of the nature of the companion, apart

from possible issues of mass-transfer instability. To avoid cluttering the figure, I only se-

lected a few of the many models with various values of the initial mass of the donor star

(the progenitor of the helium white dwarf), the index of magnetic braking, and the mass

of the neutron star companion (see Istrate et al. 2014a for further discussion). My results

indicate that the cool white dwarf has a low mass, close to 0.2 M⊙, consistent with a low

surface gravity. However, the models also show that such low-mass white dwarfs take ≥ 5

Gyrs to cool to a temperature of 6400 K, much longer than the cooling age derived for

the hot white dwarf, which is close to 1 Gyr. These values suggest, surprisingly, that the



Chapter 4. The paradox of SDSSJ125733.63+542850.5 78

40006000800010000120001400016000

Teff (K)

10−1

100

R
W

D
(R

⊙
)

I (F) MWD = 0.241

I MWD = 0.192

A (F) MWD = 0.203

A MWD = 0.176

Figure 4.5: Cooling tracks for ELM white dwarfs, together with the radius and effective tem-
perature of the cool low-mass white dwarf (square). The solid and dotted lines are evolutionary
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dwarf masses are in M⊙ as in the legend. The stars, triangles and diamonds indicate cooling ages
of 1, 2.5 and 5 Gyr, respectively. The horizontal dashed line indicates the size of the ELM white
dwarf’s Roche lobe in the current binary configuration.

low-mass white dwarf formed first.

Fig. 4.5 shows a larger area of the same parameter space as shown in Fig. 4.4, now also

including ELM white dwarf cooling models from Althaus et al. (2013). It is clear from

this figure that the ELM white dwarf in SDSSJ1257+5428 has settled on the cooling track

and is not currently in a CNO flash cycle. Only ELM white dwarfs that exceed a certain

mass experience CNO flashes, during which the thick hydrogen layer is quickly consumed,

thereby speeding up the entire cooling process. The upper limit of 0.24 M⊙ found for

the ELM white dwarf in SDSSJ1257+5428 is just above the minimum mass of 0.18 M⊙

(Althaus et al., 2013) – 0.20 M⊙ (Istrate et al., 2014b) necessary for cooling with CNO

flashes.

As demonstrated in Figs. 4.4 and 4.5, the age of the primary white dwarf estimated from

current cooling models is very sensitive to both its mass and the degree of element diffusion.

The shortest possible cooling age for the ELM white dwarf is given by a model from Althaus

et al. (2013), in which the white dwarf is formed with a mass of 0.203 M⊙, experiences

CNO flashes, and takes 1.6 Gyr to reach a temperature of 6400 K. The difference in

cooling ages between the Istrate et al. (2014b) and Althaus et al. (2013) models are most

likely related to the amount of element diffusion (for example, via gravitational settling

and radiative levitation, Althaus et al. 2001). The former models are calculated with

gravitational settling, whereas the latter models do not include this effect. In addition, the

treatment of convection may play a role. Finally, long-term helium white dwarf cooling

(beyond the proto-white dwarf stage) could also be affected by rotation of the white dwarf,

which might lead to significant mixing and thus prevention of strong element diffusion.

New models investigating these issues are currently in progress (Istrate et al., in prep).
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The shorter cooling age of Althaus et al. (2013) is still too long to resolve the paradox

of the formation of this binary. The 1.6 Gyr is compounded by the time the ELM white

dwarf took to form, since its progenitor most likely had a mass < 1.6 M⊙ (Istrate et al.,

2014a), and thus had a main-sequence lifetime of order 1.5 Gyr (Hurley et al., 2000), which

needs to be added to the white dwarf cooling age to estimate its total age. Therefore it

appears impossible to avoid the conclusion that the ELM white dwarf is older than its

massive white dwarf companion.

4.4.3 Distance to SDSS J1257+5428

Using the results for the scale factor, the radius ratio and the secondary radius from

my MCMC analysis, the distance can be calculated via d = R1

√

4π/s and becomes

d = 105 ± 8 pc. This is consistent with the distance derived using the parallax mea-

surements, where d = 112+20
−15 pc, as presented in Sect. 4.2.2, indicating that the analysis

presented in this chapter is sensible. At this point I could redo my analysis and include

a prior on the distance, based on the parallax observations. However, given that the un-

certainty on my current result is smaller than that from the parallax measurements, the

prior would have little effect. Given furthermore that the scale factor s does not correlate

significantly with any of the other free parameters, the values of these free parameters

would change little and so I refrain from reanalysing the data.

4.5 Discussion

The combined results of the HST data and evolutionary models for low-mass white dwarfs

present an intriguing puzzle. The secondary white dwarf has a mass just over 1 M⊙,

which is near the threshold separating white dwarfs with a chemical core-composition of

carbon/oxygen from those with oxygen/neon dominated cores (Lazarus et al., 2014). If it

was an isolated star, I could use an initial-final mass relation to obtain an initial zero-age

main sequence mass of 5 – 6 M⊙ (Catalán et al., 2008a), for which main-sequence lifetimes

are close to 100 Myr (Hurley et al., 2000). In close binaries the initial masses are often

greater than those predicted from initial-final mass relations due to interactions between

the stars, and so these numbers have to be considered cautiously. Nonetheless, together

with the cooling age of 1.0 Gyr, it allows an estimate to be made for the total age of the

hot, massive white dwarf as 1.1 ± 0.1 Gyr. The low temperature of the primary, low-mass

white dwarf combined with evolutionary models shows that the age of the primary white

dwarf is at least ∼ 1.6 – 5 Gyr. Given the 1.6 M⊙ maximum progenitor mass, its total age

is & 3 Gyr.

I considered whether the cooling age of the massive white dwarf could have been reset

by accretion heating during the formation of the ELM white dwarf companion. However,

this would imply that its cooling age would now be the same or longer (if only partially

reset) than that of the ELM white dwarf, which does not explain the observations. There

should be accretion after the birth of the ELM white dwarf during the CNO flashes as the
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white dwarf fills its Roche lobe (see Fig. 4.5). However, these events are very short lived

(∼ 100 yr) and cannot significantly alter the thermal structure of the massive white dwarf,

which takes ∼ 106 yr to change (Bildsten et al., 2006).

A more exotic possibility is that the massive white dwarf formed out of a merger of

two white dwarfs roughly 1 Gyr ago, and 4 Gyr after the formation of the ELM white

dwarf. The pair had to form well before the ELM white dwarf and therefore survive at

least 4 Gyr before merging. Considerations of dynamical stability (Eggleton et al., 1989)

show that if the outer period of this hypothetical triple matched today’s 4.6 h period the

inner period would have had to have been < 1 h. This would result in a merger timescale

well short of the 4 Gyr minimum. Therefore the triple scenario also requires shrinkage

of the outermost orbit, which implies that the merger was a common-envelope event that

shrunk both the inner binary and the outer binary / ELM white dwarf orbit. I cannot

say whether this is impossible, but it seems unlikely; simulations of white dwarf mergers

seem to show that the merged object does not expand significantly (Shen et al., 2012; Dan

et al., 2011). If anything, one might expect that angular momentum from the merged

pair would be transferred to the outermost orbit, resulting in a period increase, not the

necessary decrease. Even if the proposed scenario is possible, it is hard to see how an initial

configuration of a tight inner binary containing at least one carbon/oxygen white dwarf in

a close triple with an ELM white dwarf could have formed.

Finally, it is possible that SDSSJ1257+5428 is not a close double white dwarf, contrary

to my assumption throughout the analysis presented in this chapter. As it has not been

ruled out that the broad Balmer lines from the secondary massive white dwarf are station-

ary (Marsh et al., 2011; Kulkarni & van Kerkwijk, 2010), the system could be a triple or

the massive white dwarf could be aligned per chance with the ELM WD binary. Perhaps

the low-mass white dwarf is in a close binary with an unseen massive companion such

as a neutron star, while the hotter, massive white dwarf is a wide companion. Recently,

Ransom et al. (2014) discovered a triple system in the Galactic disk consisting of a neutron

star and two white dwarfs, of which one is very low mass, and hence nature is apparently

producing such triple compact star systems (Tauris & van den Heuvel, 2014). However, in

this scenario the problem with the incompatible cooling ages and masses remains, unless

the hot white dwarf was captured as the third component later on and did not form at

the same time as the close binary. Such an unusual scenario is only likely within a dense

stellar cluster environment. Inspection of the HST+STIS acquisition image reveals that

the point-spread function from the source is consistent with being a point source, and so

the stars would have to be extremely well aligned if it was a chance alignment. This is also

an argument against the system being a wide triple, although a close multiple system with

a separation . 10 AU at the time of the observations cannot be ruled out.

Irrespective of the above possibilities, any binary or triple system, in which both of

the observed white dwarfs discussed in this chapter were formed, is difficult to reconcile

with binary stellar evolution. This is mainly due to the fact that the progenitor star of the

low-mass helium white dwarf most likely had a mass of 1 – 2 M⊙ (Istrate et al., 2014a),
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and thus a much longer nuclear burning timescale than that of the 5 – 6 M⊙ progenitor of

the ∼ 1 M⊙ secondary massive white dwarf.

Future observations to clarify the nature of SDSS J1257+5428 could include radio ob-

servations to search for a neutron star component, as well as phase-resolved spectroscopy

to measure (or put an upper limit on) the radial velocity of the massive white dwarf. If

such observations confirm the common binary nature of the two white dwarfs investigated

here, it might be possible to use their measured masses, radii and temperatures to constrain

binary evolution and white dwarf cooling models further.

4.6 Conclusions

I have analysed the spectral energy distribution of the double white dwarf SDSSJ1257+5428,

consisting of HST COS and STIS data and ugriz flux measurements from SDSS. The ef-

fective temperature and surface gravity of the hot white dwarf are found to be T2 = 13030

± 70 ± 150 K and log g2 = 8.73 ± 0.05 ± 0.05. Evolutionary models show that this

white dwarf has a mass of M2 = 1.06 M⊙ and a cooling age of τ2 ≃ 1.0 Gyr. The atmo-

spheric parameters place the star inside the ZZ Ceti instability strip, but no pulsations

were found with amplitudes exceeding 18 mmag at far-ultraviolet wavelengths or 14 mmag

in the optical g′ band.

The temperature for the cool white dwarf is T1 = 6400 ± 37 ± 50 K, while its surface

gravity is constrained to log g1 ∼ 6.0 – 6.5 by the radius ratio, in turn constrained by

the relative flux contributions of the two white dwarfs. This yields a best mass estimate

of ≤ 0.24 M⊙, in agreement with Marsh et al. (2011). Using evolutionary models I find

that the age must be > 3 Gyrs, significantly longer than the 1.1 Gyr age of the hot white

dwarf. The odd combination of both a higher temperature and a higher mass for the

secondary white dwarf thus cannot be explained by substantial accretion during the time

the primary white dwarf’s progenitor evolved. The difference in cooling ages also rules

out recent accretion-induced heating as the cause of the significant temperature difference

between these two white dwarfs. Therefore the data surprisingly suggest that the low-

mass progenitor of the primary white dwarf evolved before the high-mass progenitor of the

secondary white dwarf, thus posing an interesting puzzle regarding their formation scenario.

⋆ ⋆ ⋆



Chapter 5

Eclipse timing of white dwarf binaries

5.1 Introduction

It has been known for quite some time now that certain binaries show apparent variations in

their orbital periods (Green et al., 1978; Beavers et al., 1986; Horne et al., 1991; O’Donoghue

et al., 2003; Schwope et al., 2001). For now, these are called apparent because the observed

variations can not only reflect actual changes in the orbital periods, but also a varying

distance to these binaries which may otherwise be fixed systems. It is as yet unclear

what may cause these variations, although Applegate’s mechanism and the presence of

circumbinary planets are currently the main contending theories. The former is an example

of a mechanism able to change the orbital period of a binary (through redistribution of

angular momentum), while the latter causes a reflex motion of the binary around the

common centre of mass of the system consisting of both the binary and the circumbinary

planets (Irwin, 1959).

In the last few years the first circumbinary planets have been discovered around double

main-sequence star binaries through transits in the light curves (Doyle et al., 2011; Welsh

et al., 2012; Orosz et al., 2012a,b), leaving no doubt about the existence of planets in so-

called P-type orbits (Dvorak, 1986). However, in close white dwarf binaries the primary star

has evolved off the main-sequence, and the binary has gone through a common-envelope

phase. This may have destroyed any planetary system present (Veras & Tout, 2012; Mustill

et al., 2013), leaving it far from certain that planetary systems exist around white dwarf

+ main-sequence star binaries. On the other hand, circumbinary planets may be able to

form again in a second phase of planet formation, triggered in the ejecta of the binary’s

common-envelope phase (Schleicher & Dreizler, 2014; Bear & Soker, 2014), and so it is not

completely unlikely that some indeed exist.

Close monitoring of the eclipse times of individual binaries such as NNSer (Marsh et al.,

2014; Beuermann et al., 2014) and HUAqr (Goździewski et al., 2012, 2015; Bours et al.,

2014b, and see Chapter 6), to name two of the most popular systems, enables detailed

studies of their eclipse timing variations. For some binaries it is possible to fit the eclipse

times with models based on the assumption that circumbinary planets are present, but

for most binaries such models have been refuted again by additional data (Parsons et al.,

2010b; Bours et al., 2014b) or by detailed dynamical stability analyses (Hinse et al., 2012;

Horner et al., 2012a; Wittenmyer et al., 2013). Applegate’s mechanism, on the contrary,

is somewhat more difficult to rule out, although arguments on energetic grounds can be
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called upon (Brinkworth et al., 2006).

To complement the ongoing discussion, this chapter focuses on measuring eclipse times

of a large number of close white dwarf binaries. Through regular observations, I hope

to create a picture that shows which binaries display orbital period variations and how

prominently these are present in certain categories of binaries. By expanding the empirical

knowledge it may be possible to find such trends and clues, which can eventually reveal

the underlying cause of the observed behaviour. Large surveys such as the Sloan Digital

Sky Survey (SDSS, York et al., 2000) and the Catalina Sky Survey (CSS, Drake et al.,

2009) have increased the number of known eclipsing white dwarf binaries significantly in

recent years (Parsons et al., 2013b, 2015, see also Fig. 1.12). With this increase in sample

size, it is now possible to perform long-term monitoring of an entire population of evolved

binaries. Previous studies using smaller samples of binaries have already shown that almost

all binaries that have been monitored for more than ∼ 5 years show apparent orbital period

variations (Zorotovic & Schreiber, 2013). The new, larger sample presented here is the first

step towards revealing the extent and amplitude of eclipse timing variations throughout

the class of white dwarf binaries. In addition, it will enable the systematic search for

correlations between the amount of eclipse timing variability and characteristics of the

systems such as orbital period, stellar spectral types and the Roche-lobe filling factor of

the companion to the white dwarf.

In this chapter I will first introduce the binaries included in my eclipse timing pro-

gramme, and then detail how I measure accurate eclipse times. The eclipse times and O-C

diagrams for each individual binary are presented in Appendices A and B. The rest of this

chapter is dedicated to finding trends in the behaviour of the eclipse timing variability for

the group of binaries as a whole.

5.2 Targets & observations

5.2.1 Detached white dwarf binaries

This group consists of 60 targets in total, including 56 white dwarf + main-sequence star

binaries, 1 white dwarf + brown dwarf binary and 3 double white dwarf binaries, all

detached. The coordinates, best linear ephemerides and secondary star spectral types for

these binaries are listed in Table 5.1.

5.2.2 Cataclysmic variables

This group of semi-detached white dwarf binaries includes 11 cataclysmic variable systems,

of which 3 are polars in which the white dwarf is strongly magnetic and of which 1 has a

brown dwarf donor star. See Table 5.2 for details of these binaries.

Although the erratic features in the light curves caused by the variable accretion rate

in these systems complicate the determination of accurate eclipse times, their tendency to

experience outbursts also means that some of these cataclysmic variables have first been

discovered decades ago. Their eclipse observations therefore tend to span a much longer
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baseline than those of the more-recently discovered detached binaries. This may be useful

for revealing periodic variability of the eclipse times on decade time scales.

5.2.3 Observations

The eclipse observations presented in this thesis were taken over the last several years,

using a number of telescopes and instruments. Mostly they were done with ULTRACAM

on the William Herschel Telescope and the New Technology Telescope, ULTRASPEC on

the Thai National Telescope and RISE on the Liverpool Telescope. For each binary in

the timing programme, the number of new eclipse times are listed in Tables 5.1 and 5.2.

The eclipse times themselves are listed in Appendix A for each binary. The tables in the

appendix also include eclipse times from the literature, where available, for the purpose of

completeness.

In total, the sample includes 605 new, previously unpublished eclipse times, ranging

from 1 for some of the newer or very long-period white dwarf binaries up to 20 – 30 for those

binaries that were starting to show O-C variability and therefore justified close monitoring.

5.3 The O-C method

The method of timing a specific feature in the light curve of a star or binary and comparing

this observed time to a predicted time based on model calculations is a validated approach

that has been in use for decades. The residuals in the form of observed minus calculated

(O-C) times can be used to investigate the evolution of the star or binary in which the

feature that is being timed originates. This technique is a powerful tool for revealing

behaviour that deviates from the assumed model, as such deviations will show up as non-

zero residuals, although the accuracy depends on the accuracy with which the feature itself

can be timed. This feature is generally a steady periodic phenomenon, such as the pulses

emitted by a rapidly-rotating neutron star (Wolszczan & Frail, 1992; Wolszczan, 1994),

eclipses in binary stars (Wood & Forbes, 1963; Parsons et al., 2010b; Hermes et al., 2012b;

Lohr et al., 2014), or stellar pulsations (Silvotti et al., 2007; Mullally et al., 2008; Hermes

et al., 2013b). Modelling these residuals can reveal the underlying process that causes them.

Here, one can think of the presence of circumstellar or circumbinary planets, a change in

orbital period due to angular momentum loss or redistribution through magnetic braking,

gravitational wave emission or Applegate’s mechanism, but also long-term evolutionary

processes such as white dwarf cooling which affects pulsation periods and amplitudes.

In the rest of this chapter, I will use O-C diagrams of white dwarf eclipse times to

search for deviations from a constant orbital period, by assuming a linear ephemeris that

takes the form of

T = T0 + Porb E , (5.1)

for each binary. Here Porb is the orbital period of the white dwarf binary, T0 is the time

at which the cycle number E = 0, and T is the time of a given orbital cycle E. The best
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Table 5.1: List of all detached eclipsing white dwarf binaries included in the monitoring programme described in this chapter, sorted by RA. The SIMBAD
identifier, frequently used alternative name and spectral type of the companion star to the white dwarf are given where available. The numbers in the
parentheses of the zero-point and orbital period of the best linear ephemeris indicate the uncertainty in the last digits. Also listed are the number of new
eclipse times presented in this chapter and a reference to the corresponding table in Appendix A and the O-C diagram in Appendix B.

White Dwarf binary SpT2 RA Dec best linear ephemeris eclipse times O-C

SIMBAD identifier alternative name (hours) (degrees) T0 (BMJDTDB) Porb (days) new Table diagram

- SDSS J0024+1745 - 00:24:12.87 +17:45:31.4 53328.1893(10) 0.200038530(61) 2 A.2 -

SDSS J010623.01-001456.2 - M8 01:06:22.99 −00:14:56.2 55059.0561216(13) 0.08501532934(13) 25 A.3 Fig B.1

SDSS J011009.09+132616.3 - M4 01:10:09.09 +13:26:16.1 53993.9490871(11) 0.33268675465(23) 9 A.4 Fig B.2

SDSS J013851.49-001621.6 - M5 01:38:51.54 −00:16:21.6 55867.0074052(68) 0.0727649563(51) 1 A.5 Fig B.3

PTF1 J015256.60+384413.4 - M3 01:52:56.60 +38:44:13.4 56195.168443(21) 0.386120343(17) 6 A.6 Fig B.4

SDSS J025953.32-004400.2 - M3 02:59:53.30 −00:44:00.2 51819.4150(10) 0.1441834(1) 1 A.7 -

SDSS J030308.35+005444.1 - M4.5 03:03:08.35 +00:54:44.1 53991.1173057(16) 0.13443766659(12) 11 A.8 Fig B.5

SDSS J030856.55-005450.6 - M4.5 03:08:56.55 −00:54:50.7 56181.143559(10) 0.185959421(15) 4 A.9 Fig B.6

WD 0312+019 - K5-M5 03:14:52.11 +02:06:07.1 56195.20635076(86) 0.3052967628(20) 11 A.10 Fig B.7

NLTT 11748 - WD 03:45:16.80 +17:48:09.1 55772.0413869(56) 0.2350604821(19) 13 A.11 Fig B.8

V471 Tau - K2 03:50:24.97 +17:14:47.4 54027.9530258(13) 0.521183431173(79) 1 A.12 Fig B.9

RR Cae - M4 04:21:05.53 −48:39:08.3 51522.54845119(51) 0.303703680025(46) 14 A.13 Fig B.10

SDSS J082145.27+455923.3 - M2 08:21:45.27 +45:59:23.4 55989.038805(14) 0.509092031(11) 4 A.14 Fig B.11

SDSS J083845.86+191416.5 CSS 40190 M7 08:38:45.86 +19:14:16.5 53469.2201028(71) 0.13011231382(37) 13 A.15 Fig B.12

- SDSS J0857+3318 - 08:57:13.26 +33:18:43.0 55957.1219144(22) 0.1060272754(20) 6 A.16 Fig B.13

SDSS J085746.18+034255.3 CSS 03170 M8 08:57:46.18 +03:42:55.3 55552.71276437(71) 0.06509653815(13) 14 A.17 Fig B.14

SDSS J090812.03+060421.2 CSS 080502 M4 09:08:12.04 +06:04:21.2 53466.3345100(31) 0.14943803757(20) 25 A.18 Fig B.15

SDSS J092741.73+332959.1 - M3 09:27:41.73 +33:29:59.1 56074.906120(19) 2.308225594(62) 5 A.19 Fig B.16

- SDSS J0935+2700 - 09:35:08.00 +27:00:49.2 56602.8394862(74) 0.201033495(12) 2 A.20 Fig B.17

SDSS J093947.95+325807.3 CSS 38094 M5 09:39:47.95 +32:58:07.3 55587.3088195(63) 0.3309896668(27) 5 A.21 Fig B.18

SDSS J094634.49+203003.3 - M5 09:46:34.49 +20:30:03.4 56032.945627(20) 0.2528614510(81) 7 A.22 Fig B.19

SDSS J095719.24+234240.7 CSS 41631 M2 09:57:19.24 +23:42:40.7 55548.3570616(19) 0.15087078942(25) 11 A.23 Fig B.20

SDSS J095737.59+300136.5 - M3 09:57:37.59 +30:01:36.5 56014.975114(32) 1.9261248(12) 1 A.24 -

SDSS J100559.10+224932.2 CSS 41177 WD 10:05:59.11 +22:49:32.3 55936.34467175(60) 0.11601543726(33) 12 A.25 Fig B.21

Table 5.1: Continues on next page.
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Table 5.1: Continued from previous page.

White Dwarf binary SpT2 RA Dec best linear ephemeris eclipse times O-C

SIMBAD identifier alternative name (hours) (degrees) T0 (BMJDTDB) Porb (days) new Table diagram

- SDSS J1013+2724 M4 10:13:56.32 +27:24:10.6 53831.125497(15) 0.12904038118(69) 7 A.26 Fig B.22

SDSS J102102.25+174439.9 - M4 10:21:02.25 +17:44:39.9 56093.904987(48) 0.1403587476(72) 10 A.27 Fig B.23

SDSS J102857.78+093129.8 - M3 10:28:57.78 +09:31:29.8 56001.0942705(63) 0.2350253014(17) 11 A.28 Fig B.24

SDSS J105756.93+130703.5 - M5 10:57:56.93 +13:07:03.5 56010.062658(11) 0.1251621296(18) 7 A.29 Fig B.25

SDSS J112308.39-115559.2 - M5 11:23:08.40 −11:55:59.3 56364.2935(5) 0.7691358(14) 1 A.30 -

SDSS J121010.13+334722.9 - M5 12:10:10.13 +33:47:22.9 54923.0336021(27) 0.12448978061(22) 15 A.31 Fig B.26

SDSS J121258.25-012310.1 - M4 12:12:58.25 −01:23:10.2 54104.2094389(67) 0.33587087803(97) 10 A.32 Fig B.27

SDSS J122339.61-005631.2 - M6 12:23:39.61 −00:56:31.1 55707.0169889(53) 0.09007803092(72) 9 A.33 Fig B.28

SDSS J124432.25+101710.8 CSS 25601 M5 12:44:32.25 +10:17:10.8 53466.360374(99) 0.2278563704(67) 5 A.34 Fig B.29

SDSS J130733.49+215636.7 - M4 13:07:33.49 +21:56:36.7 56007.221295(11) 0.2163223188(25) 8 A.35 Fig B.30

SDSS J132518.18+233808.0 CSS 21616 - 13:25:18.18 +23:38:07.9 55653.4541786(84) 0.1949589909(18) 3 A.36 Fig B.31

DE CVn - M3 13:26:53.26 +45:32:46.7 52784.0542113(16) 0.36413925967(29) 13 A.37 Fig B.32

SDSS J132925.21+123025.4 - M8 13:29:25.21 +12:30:25.4 55271.05483050(64) 0.080966242504(71) 31 A.38 Fig B.33

WD 1333+005 - M5 13:36:16.05 +00:17:31.9 55611.4766902(17) 0.12195875935(21) 21 A.39 Fig B.34

SDSS J134841.61+183410.5 CSS 21357 M4 13:48:41.61 +18:34:10.5 56000.1619200(46) 0.2484317827(15) 9 A.40 Fig B.35

QS Vir - M3 13:49:51.95 −13:13:37.5 48689.14216568(89) 0.150757467717(23) 19 A.41 Fig B.36

SDSS J140847.13+295045.0 - M5 14:08:47.14 +29:50:44.9 53506.2885(5) 0.19179048(4) 1 A.42 -

SDSS J141057.73-020236.7 CSS 07125 M4 14:10:57.73 −02:02:36.7 53464.48883(11) 0.363497084(12) 7 A.43 Fig B.37

SDSS J141126.20+200911.1 CSS 21055 L7 14:11:26.20 +20:09:11.1 55991.3887187(16) 0.08453274990(21) 8 A.44 Fig B.38

SDSS J141134.70+102839.7 - M3 14:11:34.70 +10:28:39.7 56031.172782(48) 0.167509605(33) 1 A.45 -

- SDSS J1411+2117 M3 14:11:50.74 +21:17:50.0 55659.247710(43) 0.321636597(13) 4 A.46 Fig B.39

GK Vir - M4.5 14:15:36.41 +01:17:18.2 42543.3377168(24) 0.344330838779(72) 11 A.47 Fig B.40

SDSS J142355.06+240924.3 CSS 080408 M5 14:23:55.06 +24:09:24.3 55648.2061155(77) 0.3820042958(32) 7 A.48 Fig B.41

- SDSS J1424+1124 - 14:24:27.69 +11:24:57.9 54264.282469(15) 0.2392935570(16) 5 A.49 Fig B.42

SDSS J143547.87+373338.5 - M5 14:35:47.87 +37:33:38.5 54148.2051974(28) 0.12563096872(14) 20 A.50 Fig B.43

SDSS J145634.29+161137.7 CSS 09797 M5 14:56:34.30 +16:11:37.7 51665.78883(16) 0.2291202218(70) 2 A.51 -

- SDSS J1540+3705 M4 15:40:57.27 +37:05:43.4 54913.41389(13) 0.261435560(19) 3 A.52 Fig B.44

SDSS J154846.00+405728.7 - M6 15:48:46.00 +40:57:28.8 54592.073028(11) 0.1855152817(11) 4 A.53 Fig B.45

Table 5.1: Continues on next page.
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Table 5.1: Continued from previous page.

White Dwarf binary SpT2 RA Dec best linear ephemeris eclipse times O-C

SIMBAD identifier alternative name (hours) (degrees) T0 (BMJDTDB) Porb (days) new Table diagram

NN Ser - M4 15:52:56.20 +12:54:47.2 47344.02526241(48) 0.1300801255927(85) 9 A.54 Fig B.46

- SDSS J1642-0634 - 16:42:35.97 −06:34:39.7 54921.4933(5) 0.28688689(8) 1 A.55 -

GALEX J171708.5+675712 - WD 17:17:08.50 +67:57:12.0 55641.431591(45) 0.246135443(15) 1 A.56 Fig B.47

RX J2130.6+4710 - M3.5 21:30:18.60 +47:10:08.0 52785.18265363(96) 0.52103620576(19) 12 A.57 Fig B.48

- SDSS J2205-0622 M2 22:05:04.51 −06:22:48.4 54453.078152(41) 0.1323869056(30) 8 A.58 Fig B.49

SDSS J220823.66-011534.2 CSS 09704 M4 22:08:23.66 −01:15:34.1 56175.8795317(18) 0.1565056979(11) 8 A.59 Fig B.50

SDSS J223530.61+142855.0 - M4 22:35:30.61 +14:28:55.1 55469.0654236(54) 0.1444567649(11) 6 A.60 Fig B.51

- SDSS J2306-0555 - 23:06:27.54 −00:55:53.3 55509.1090(7) 0.20008319(6) 1 A.61 -



C
h
ap

ter
5.

E
clip

se
tim

in
g
of

w
h
ite

d
w
arf

b
in
aries

88

Table 5.2: List of all semi-detached eclipsing white dwarf binaries (cataclysmic variables) included in the monitoring programme described in this chapter,
sorted by RA. The SIMBAD identifier, frequently used alternative name and spectral type of the companion star to the white dwarf are given where available,
with a star (*) indicating polars in which the white dwarf is strongly magnetic. The numbers in the parentheses of the zero-point and orbital period of the
best linear ephemeris indicate the uncertainty in the last digits. Also listed are the number of new eclipse times presented in this chapter and a reference to
the corresponding table in Appendix A and the O-C diagram in Appendix B.

White Dwarf binary SpT2 RA Dec best linear ephemeris eclipse times O-C

SIMBAD identifier alternative name (hours) (degrees) T0 (BMJDTDB) Porb (days) new Table diagram

HT Cas - M5.4 01:10:13.13 +60:04:35.4 43727.4406673(64) 0.073647179179(39) 17 A.62 Fig B.52

*FL Cet - M5.5 01:55:43.43 +00:28:07.5 52968.8229202(26) 0.060516322636(47) 8 A.63 Fig B.53

GY Cnc - M3 09:09:50.55 +18:49:47.5 51581.331857(51) 0.1754424342(20) 17 A.64 Fig B.54

SDSS J103533.02+055158.3 - BD 10:35:33.03 +05:51:58.4 55353.9524405(17) 0.057006671891(87) 7 A.65 Fig B.55

NZ Boo - - 15:02:40.98 +33:34:23.9 53799.1406162(12) 0.058909481462(40) 5 A.66 Fig B.56

SDSS J170213.24+322954.1 - M0 17:02:13.25 +32:29:54.1 53647.7369887(17) 0.10008221504(10) 13 A.67 Fig B.57

*V2301 Oph - M5.5 18:00:35.53 +08:10:13.9 48070.525362(29) 0.07844998073(30) 16 A.68 Fig B.58

EP Dra - - 19:07:06.16 +69:08:44.0 47681.22690(13) 0.0726563174(11) 10 A.69 Fig B.59

V713 Cep - - 20:46:38.70 +60:38:02.8 54337.8766084(68) 0.08541851134(31) 9 A.70 Fig B.60

*HU Aqr - M4.3 21:07:58.19 −05:17:40.5 49102.42059625(52) 0.0868203938170(75) 2 A.71 Fig B.61

SDSS J214140.43+050730.0 - - 21:41:40.43 +05:07:29.9 56214.9541055(15) 0.054691827(58) 3 A.72 Fig B.62
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Figure 5.1: Visualisation of the white dwarf and M-dwarf in SDSS J1435+3733 as used in lcurve.
See Fig. 5.2 for the eclipse light curve. Left: at orbital phase φ = 0.988, when the white dwarf
is partially eclipsed by the M-dwarf. Right: half an orbital phase later, at φ = 1.488, when the
M-dwarf is partially eclipsed by the white dwarf.

linear ephemerides for the targets in my timing programme are listed in Tables 5.1 and 5.2,

and were calculated using a linear least-squares approach to minimise the residuals.

5.4 Measuring eclipse times

5.4.1 Detached binaries – lcurve

For the detached binaries I use the program lcurve1 to measure mid-eclipse times. Here

follows a brief description of lcurve, and details can also be found in Pyrzas et al. (2009)

and Copperwheat et al. (2010). lcurve is designed to model short-period white dwarf

+ main-sequence star binaries, in which the latter can be deformed because it is close

to its maximum size, its Roche lobe. The program computes the model light curve by

linearly adding the flux from the visible faces of the limb-darkened stars, both of which

are subdivided into grid segments, as illustrated in Fig. 5.1. The density of the grid can

easily be set by parameters in a model file, and can be larger for certain orbital phases and

smaller for the remainder of the orbit. This is particularly useful for modelling eclipses,

because one can use a fine grid to calculate the model light curve near an eclipse and a

coarser grid at other orbital phases to avoid unnecessarily slow model calculations. The

limb-darkening can be specified by the use of a polynomial of up to fourth order, or by the

four-parameter law from Claret (2000). Coefficients for the white dwarfs are taken from

Gianninas et al. (2013), and those for late main-sequence stars from Claret & Bloemen

(2011).

lcurve can account for eclipses and reprocessed light from the white dwarf by the

1The lcurve package was written by T. R. Marsh; for more information see
http://www.warwick.ac.uk/go/trmarsh/software.
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Figure 5.2: ULTRACAM g′-band eclipse and lcurve model of SDSS 1435+3733, as well as the
residuals. The vertical grey dotted line is drawn at orbital phase 0.988; see the left-hand side of
Fig. 5.1 for a visualisation of the binary at this phase.

M-dwarf (reflection effect, see Fig. 1.13). The latter is included using the approximation

σT ′4
MS = σT 4

MS +AFirr , (5.2)

with σ the Stefan-Boltzmann constant, TMS the effective temperature of the unirradiated

main-sequence star and T ′

MS the modified temperature due to the fraction A of the irra-

diating flux Firr from the white dwarf, accounting for the distance between the two stars

and the angle of incidence.

In addition it is possible to include gravitational lensing (Marsh, 2001) and the effect

of gravity darkening for each star. The latter becomes important for significantly Roche-

distorted stars and for those stars that are rapidly rotating, and is generally fixed at the

representative value of 0.6 for ease of use, although it does vary with stellar temperature,

surface gravity and wavelength (Claret & Bloemen, 2011). Doppler beaming can be in-

cluded as well, for which lcurve calculates the observed flux in a given passband Fλ by

modifying the emitted flux Fλ,0 by

Fλ = Fλ,0

(

1−B
vr
c

)

, (5.3)

with the spectrum-dependent beaming factor B = 5 + d(ln Fλ)/d(ln λ) (Loeb & Gaudi,

2003) equivalent to the factor (3 - α) in the standard beaming formula, and vr the radial

velocity of the star, which is defined to be positive when the star moves away from the

observer. The bandpass-integrated beaming factors to be included in the lcurve model

file can be calculated separately with the use of model spectra through

〈B〉 =

∫

SλλFλBdλ
∫

SλλFλdλ
, (5.4)

where Sλ is the response function of the filter, instrument and telescope used to obtain the
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observations.

The centre of the primary, white dwarf eclipse is defined as orbital phase φ = 0. A

slight offset δ of the secondary eclipse from orbital phase φ = 0.5 can be included as well,

to account for an eccentricity or Rømer delay in the binary orbit (Kaplan, 2010), so that

φ′ = φ+
δ

2Porb
(cos(2πφ) − 1) . (5.5)

Finally, an overall linear, quadratic and/or cubic trend can be added, to account for long-

term effects caused by, for example, varying airmass during the observations.

When modelling light curves of semi-detached binaries, it is possible to include an

accretion disc around the white dwarf and a bright spot on that disc, as well as a hot or

cold spot on the surface of either star. These options will not be used for the analyses

presented here since I am only considering detached white dwarf binaries at the moment,

but I will use a model including a hot spot on the surface of a white dwarf in Chapter 6.

lcurve includes two optimisation algorithms, simplex and levmarq. The simplex

method is a robust routine that always moves downhill in χ2-space, searching for the min-

imum value. The Levenberg-Marquardt minimisation method is somewhat more complex,

but has the advantage of returning reliable uncertainty estimates of the free model pa-

rameters once the model has converged. Both methods are susceptible to issues caused by

degeneracies in the model and may as a result thereof become stuck in a local χ2 mini-

mum, rather than find the global minimum. A great help in determining whether a model

returned by simplex or levmarq fits the data well is looking at the resulting light curve

model with respect to the data, as shown in Fig. 5.2.

The most important parameters in the lcurve models are summarised in Table 5.3.

For an example of a detailed study of an eclipsing binary that includes a reflection effect,

ellipsoidal modulation, gravitational lensing and Doppler beaming, see Bloemen et al.

(2011).

Once a good model is found, subsequent fits of new eclipse data only require as free

parameters the mid-eclipse time tmid and the secondary star’s temperature T2 to obtain

a good fit. By not optimising every parameter for every individual data set one avoids

ending up with highly degenerate models and overly large uncertainty estimates.

5.4.2 Semi-detached binaries

Measuring eclipse times for semi-detached binaries is complicated by the inherent flickering

in the light curves of these systems, which is caused by the varying accretion rate. On top

of this, there are additional features near a white dwarf eclipse caused by the eclipse of the

accretion disc and bright spot in non-magnetic systems and intermediate polars, and of the

hot spot on the white dwarf’s surface in polars. Therefore I chose a different approach to

measure mid-ingress and/or mid-egress times of the white dwarf eclipses in these systems.

The ingress and egress of the white dwarf eclipse are fit by a least-squares approach
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Table 5.3: Parameters in lcurve models used to model light curves of detached white dwarf
binaries. Additionally, four parameters that can be used to model a hot spot on the surface of the
white dwarf are included, because I will use this option in Chapter 6.

parameter details

i orbital inclination

q mass ratio: M2/M1

r1,2 R1,2/a, stellar radius relative to the semi-major axis a along the line
of centres of the two stars

T1,2 unirradiated stellar effective temperature

vs sum of the unprojected orbital speeds, so that vs sin i = K1 + K2

l1,2,i up to four coefficients for polynomial or Claret limb-darkening

tmid mid-eclipse time of primary eclipse

Porb orbital period

b1,2 beaming factors

g1,2 gravity-darkening coefficients

A fraction of the irradiated flux from star 1 by star 2

nc
1,2 number of coarse grid points

nf
1,2 number of fine grid points, used at orbital phases near eclipse

w wavelength at which the model light curve has to be computed

limb1,2 set to ‘Claret’ or ‘Poly’ to set the limb-darkening law used

Slong longitude of a spot on the star’s surface

Slat latitude of a spot on the star’s surface

SFWHM full-width at half-maximum of the spot, as seen from the star’s centre

ST central temperature of the spot

using a function that is composed of a sigmoid and a straight line,

y =
k1

1 + e−k2(x−k3)
+ k4 + k5(x− k3) , (5.6)

where x and y are the time and flux measurements of the light curve, and k1 to k5 are

coefficients of the fit.

The straight line part allows fitting the overall trend outside and during ingress and

egress. This includes the ingress and egress of the white dwarf itself, which can have a

significant contribution, especially when the entire system is in a low state. The sigmoid

part of the function fits any sharp features that may be created by the accretion stream

or spot. To determine uncertainties, these fits are performed in a Monte Carlo manner

in which the values of the data points are perturbed based on their uncertainties and the

number of included data points are varied by a few at each edge, thereby reducing any

strong effects in the results caused by single data points. An example of good fits to a

white dwarf ingress and egress feature used to calculate a mid-eclipse time is shown in

Fig. 5.3.
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Figure 5.3: ULTRACAM g′-band eclipse light curve of the polar EPDra, with sigmoid+linear fits
to the ingress and egress of the white dwarf (grey lines). Immediately after the white dwarf ingress
is the ingress of the accretion stream, and at the far right the start of the egress of the accretion
stream can be seen. The vertical dotted line indicates mid-eclipse. The residuals of the fits are
shown at the bottom, vertically offset by -0.005.

5.5 Trends in eclipse time variations

While it can be difficult to confidently determine the cause of eclipse time variations in a

given binary, I may be able to say something about the principal mechanism at work in

these binaries by searching for trends in a large set of binaries. First of all, I explore whether

a correlation exists between the amount of observed O-C variations and the baseline of the

eclipse observations. Such a correlation would indicate that my data set is still too limited

to draw robust conclusions.

If this is not the case, and for those binaries that have longer baselines, I may be able to

find a hint of the underlying cause of the eclipse timing variations. A correlation between

the amount of O-C variability and either the secondary star’s spectral type or the secondary

star’s Roche lobe filling factor could indicate that a form of Applegate’s mechanism is at

work. In particular, with increasing spectral type, from M0 to M8 and into the brown

dwarf regime, Applegate’s mechanism is expected to become less effective. Therefore the

O-C variations should become less pronounced, if not completely disappear. For double

white dwarf binaries I expect to see no orbital period variations, because white dwarfs are

not thought to experience magnetic cyclic behaviour, and therefore cannot drive orbital

period variations of the kind in the Applegate and Lanza mechanisms (Applegate, 1992;

Lanza et al., 1998; Lanza, 2006).

In the event that the observed behaviour is caused by the presence of circumbinary

planets, it is likely that there is no particular correlation present. This is because cir-

cumbinary planets can, in principle, form around a wide variety of binaries, and so there is
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Figure 5.4: Measure of the extent of eclipse timing variations with respect to a linear ephemeris
(RMS in seconds) as a function of the baseline of the observations. Binaries with at least three eclipse
time measurements have been included. The triangle, circle and star symbols represent detached
double white dwarf binaries, other detached binaries and cataclysmic variables respectively.

no reason for them to be present preferentially around certain types of binaries. However,

if circumbinary planets are indeed present, one has to be able to fit the O-C residuals with

models of circumbinary planetary systems, which, in addition, have to be dynamically sta-

ble (Marsh et al., 2014). For a number of close white dwarf binaries it is already known

that such a planetary system cannot explain the observed O-C variability (Hinse et al.,

2012; Horner et al., 2012a; Wittenmyer et al., 2013).

5.5.1 Baseline of observations

An attempt to quantify the amount of eclipse timing variations as a function of the baseline

of the observations for the various binaries is shown in Fig. 5.4. Here, the root mean square

(RMS) of the residuals is calculated using the standard formula,

RMS =
1

N

∑

i

(yi − y(xi)

σi

)2
, (5.7)

in which xi, yi and σi are the cycle number, eclipse time and uncertainty in the eclipse time

and y is the best linear fit to these N data points. Fig. 5.4 shows the RMS values for each

binary as a function of the total baseline that the eclipse observations for the given binary

span. It appears that the RMS saturates at a value near 100, although the log-scale of the

plot enhances this feature beyond what the data show. Nevertheless, the figure indicates

that any binary with eclipse observations spanning at least 10 years is extremely likely to

show significant residuals in the O-C eclipse times.

This idea is reinforced by Fig. 5.5, which, in addition to the points in Fig. 5.4, also

shows the RMS values of intermediate sets of eclipse times in grey. These intermediate RMS
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Figure 5.5: Measure of the extent of eclipse timing variations with respect to a linear ephemeris
(RMS in seconds) as a function of the baseline of the observations, starting with the first three eclipse
times and subsequently increasing the number of data points included by one for the next RMS
calculation. See the text for more details. The triangle, circle and star symbols represent detached
double white dwarf binaries, other detached binaries and cataclysmic variables respectively.

values are calculated using an integer number of eclipse times, starting with the first three,

increasing by one with each step, and calculating the best linear ephemeris and matching

RMS for these sets of eclipse times. The one clear exception to the general trend is GKVir,

which continues at an RMS close to 1, until the baseline of the observations reaches ∼ 27

years. However, this behaviour is caused by the extremely large gap of nearly the same

duration in the eclipse observations, as can also be clearly seen in the corresponding O-C

diagram in Fig. B.40, rather than by an actual feature of the data.

It appears that the baseline of the eclipse observations is indeed quite an important

factor in determining whether or not O-C variations are present. Although not unexpected,

the long minimum baseline of ∼ 10 years required means that a lot of data needs to be

acquired before robust general conclusions can be drawn. This is particularly important

because mixing short and long baselines may work to obscure trends in the data.

5.5.2 Companion’s spectral type & Roche lobe filling factor

There are two good indicators that can point towards it being Applegate’s mechanism, or

a variation thereof, that is causing the orbital period variations observed in many close

binary systems. The first is the spectral type of the companion star to the white dwarf.

Because Applegate’s mechanism is driven by magnetic cycles in this companion, and be-

cause magnetic activity decreases towards later spectral types, a correlation between the

spectral type and amount of O-C variations is to be expected. In addition, the spectral

type of a star strongly correlates with its mass, and because the star’s luminosity depends

strongly on the mass, as L ∝ M5. Therefore we expect a strong correlation between the

secondary star’s spectral type and the amount of O-C variations.
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Figure 5.6: Measure of the extent of eclipse timing variations with respect to the best linear
ephemeris (RMS in seconds) as a function of the secondary star’s spectral type. The grey scale
corresponds to the baseline of the eclipse observations, with white for 0 yrs and black for 10 yrs
as indicated in the legend. All binaries with a baseline exceeding 10 yrs are plotted in black to
avoid excessive stretching of the grey scale. The triangle, circle and star symbols represent detached
double white dwarf binaries, other detached binaries and cataclysmic variables respectively.

To search for such a correlation, Fig. 5.6 shows the RMS of the eclipse time residuals

with respect to the best linear ephemeris as a function of the secondary star’s spectral

type. In addition, the grey scale indicates the length of the baseline of the eclipse time

observations, which continues to be an important factor.

It appears that there is indeed some correlation present. Binaries with secondaries of

spectral type M6 – M8, brown dwarfs or white dwarfs evidently have smaller RMS values,

indicating that they show less O-C variability. However, only one of these binaries has

a baseline exceeding ∼ 5 years. This is SDSSJ1035+0551, a cataclysmic variable with a

brown dwarf donor, see also Fig. B.55 and Littlefair et al. (2006).

The second indicator for which I expect to see a correlation with the O-C variability

if Applegate’s mechanism is at work, is the Roche lobe filling factor of the secondary

star. This is mainly due to the fact that tidal forces are more effective for stars that are

large relative to the binary’s orbit, or, equivalently, the star’s own Roche lobe. Therefore

any change in gravitational quadrupole moment of these stars couples more easily to the

binary’s orbit in binaries in which the secondary stars have larger Roche lobe filling factors.

The Roche lobe filling factor is defined as the radius of the secondary star divided

by the radius of the secondary star’s Roche lobe: RMS/RL. To calculate the latter, I

use Eq. 1.8, for which the mass-ratio q is required. Those detached white dwarf binaries

that have accurate measurements of the stellar radial velocity amplitudes, and therefore

of q = KWD/KMS, are listed in Table 5.4. Note that RL is the radius of a sphere with

approximately the same volume as the star’s Roche lobe. Therefore, where possible, I used

the volume-averaged radius for the secondary star as well to calculate the Roche lobe filling
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Figure 5.7: Measure of the extent of eclipse timing variations with respect to the best linear
ephemeris (RMS in seconds) as a function of the secondary star’s Roche lobe filling factor. For
cataclysmic variables this value is set to 100%, since the secondaries completely fill their Roche
lobes in these binaries. See Table 5.4 for details on the Roche lobe filling factors for the detached
binaries. The grey scale corresponds to the baseline of the eclipse observations, with white for 0 yrs
and black for ≥ 10 yrs. The triangle, circle and star symbols represent detached double white dwarf
binaries, other detached binaries and cataclysmic variables respectively.

factor.

Fig. 5.7 shows the RMS values of the eclipse time residuals with respect to the best

linear ephemeris as a function of the Roche lobe filling factor, expressed in %. The figure

includes the binaries listed in Table 5.4, as well as all cataclysmic variables, for which I have

set RMS/RL = 100%, since the secondaries in these binaries fill their Roche lobes. As be-

fore, the grey scale indicates the length of the baseline of the eclipse observations. Besides

the obvious influence of the observational baseline on the RMS values, there is apparently

no correlation between the Roche lobe filling factor and those RMS values. Perhaps with

an increased sample size and with a baseline closer to ∼ 10 yrs for each binary, such a

correlation will become discernible.

An alternative way of looking at the effects just described is shown in Figs. 5.8 and 5.9,

where small thumbnails of O-C diagrams are ordered by baseline of the eclipse observations

and secondary star’s spectral type respectively. These figures reinforce what was seen

before, namely that I am limited by the baseline of the observations.
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Table 5.4: Roche lobe filling factors for those detached white dwarf binaries in the eclipse timing programme that have secure measurements of the radial
velocity amplitudes and/or mass ratio, and the secondary star’s radius. Note that because RL is the radius of a sphere with the same volume as the star’s
Roche lobe, we have adopted the volume averaged radius for Rms where possible. References and/or important notes are given in the footnotes. The first
column is a simple ID number and the second indicates the eclipse timing coverage in years. See also Fig. 5.7.

ID yr white dwarf binary Kwd (km/s) Kms (km/s) q = Kwd/Kms RL/a Rms/a Rms/RL SpTms

1 4 SDSS J010623.01-001456.2 92 ± 3 1 328 ± 3 1 0.280 ± 0.009 0.28 ± 0.04 0.23 ± 0.01 7,a 0.82 ± 0.12 M6 ± 1 1

2 6 SDSS J011009.09+132616.3 73 ± 1 1 191 ± 1 1 0.382 ± 0.005 0.300 ± 0.009 0.127 ± 0.002 7,a 0.42 ± 0.01 M4.5 ± 0.5 1

3 1 SDSS J013851.49-001621.6 86.5 ± 1.0 2 346.7 ± 2.3 2 0.249 ± 0.003 0.27 ± 0.02 0.258 ± 0.002 2,a 0.96 ± 0.07 M5 ± 1 2

4 7 SDSS J030308.35+005444.1 - 339.9 ± 0.3 3 0.23 ± 0.01 3 0.26 ± 0.07 0.219 ± 0.003 3,a 0.84 ± 0.23 M4.5 - M5 3

5 42 V471 Tau 164 ± 4 4 148.5 ± 0.6 5 1.10 ± 0.03 0.387 ± 0.001 0.29 ± 0.01 4 0.75 ± 0.03 K2 4

6 20 RR Cae 73.2 ± 0.4 1 194.8 ± 0.1 1 0.376 ± 0.002 0.298 ± 0.004 0.1298 ± 0.0009 7,a 0.44 ± 0.01 M4 ± 1 1

7 4 CSS 40190 81 ± 5 1 275.9 ± 0.9 1 0.29 ± 0.02 0.28 ± 0.07 0.198 ± 0.003 7,a 0.71 ± 0.18 M5.0 ± 0.5 1

8 4 SDSS J085746.18+034255.3 64 ± 6 6 364 - 398 6 0.17 ± 0.02 0.24 ± 0.33 0.191 ± 0.009 6 0.80 ± 1.09 M8 ± 1 6

9 5 CSS 080502 154 ± 1 1 215.3 ± 0.4 1 0.715 ± 0.004 0.350 ± 0.001 0.311 ± 0.004 7,a 0.89 ± 0.01 M3.5 ± 0.5 1

10 3 SDSS J102857.78+093129.8 167 ± 1 1 164.7 ± 0.5 1 1.014 ± 0.007 0.3801 ± 0.0004 0.282 ± 0.004 7,a 0.74 ± 0.01 M2.5 ± 0.5 1

11 0 SDSS J112308.39-115559.2 72 ± 1 1 151.2 ± 0.2 1 0.476 ± 0.007 0.317 ± 0.006 0.093 ± 0.003 7,a 0.29 ± 0.01 M3.5 ± 0.5 1

12 6 SDSS J121010.13+334722.9 95.3 ± 2.1 7 251.7 ± 2.0 7 0.379 ± 0.009 0.30 ± 0.02 0.230 ± 0.004 1,a 0.77 ± 0.05 M5 7

13 5 SDSS J121258.25-012310.1 104.4 ± 0.5 8 168.3 ± 0.3 8 0.620 ± 0.003 0.338 ± 0.001 0.167 ± 0.004 5,a 0.49 ± 0.01 M4 8

14 9 DE CVn - 166 ± 4 9 0.8 ± 0.1 9 0.36 ± 0.01 0.18 ± 0.03 9 0.50 ± 0.08 M3 9

15 3 CSS 21357 101 ± 3 1 230.3 ± 0.5 1 0.44 ± 0.01 0.31 ± 0.01 0.179 ± 0.006 7,a 0.48 ± 0.03 M3.0 ± 0.5 1

16 23 QS Vir b 133 ± 10 10 258 ± 6 10 0.52 ± 0.04 0.32 ± 0.03 0.330 10
∼ 0.96 1 M3.5 - M4 10

17 40 GK Vir 38.6 ± 0.8 8 221.6 ± 2.0 8 0.174 ± 0.004 0.24 ± 0.06 0.085 ± 0.002 5,a 0.35 ± 0.09 M4.5 ± 0.5 8

18 26 NN Ser 62.3 ± 1.9 11 301 ± 3 11 0.207 ± 0.007 0.25 ± 0.07 0.160 ± 0.003 6,a 0.64 ± 0.18 M4 ± 0.5 11

19 12 RX J2130.6+4710 137 ± 4 12 136.4 ± 0.8 12 1.00 ± 0.03 0.379 ± 0.002 0.19 ± 0.02 12 0.50 ± 0.05 M3.5 12

References: 1 Parsons et al. (in prep) – 2 Parsons et al. (2012b) – 3 Parsons et al. (2013a) – 4 O’Brien et al. (2001) – 5 Bois et al. (1988) – 6 Parsons et al. (2012c) –
7 Pyrzas et al. (2012) – 12 Maxted et al. (2004) – 9 van den Besselaar et al. (2007) – 8 Parsons et al. (2012a) – 10 O’Donoghue et al. (2006) – 11 Parsons et al. (2010a)

Notes: a Using the volume averaged secondary star radius. – b Radial velocity amplitudes and the secondary star’s relative radius are for an orbital inclination of
i = 75.5◦, see O’Donoghue et al. (2006).
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Figure 5.8: Thumbnails of O-C diagram of binaries in the timing programme, ordered by the
baseline of observations with the shortest at the top left and the longest at the bottom right. Each
O-C diagram includes the name of the binary in the top left corner and the baseline of observations
in the bottom left corner. Detailed individual O-C diagrams can be found in Appendix B.
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Figure 5.9: Thumbnails of O-C diagram of binaries in the timing programme, ordered by the
spectral type of the companion star to the white dwarf. Double white dwarfs are located at the top
left, and brown dwarf, M-dwarf and K-dwarf companions with increasingly early spectral subtypes
are located towards the bottom right. Each O-C diagram includes the name of the binary in the
top left corner and the spectral type and baseline of the observations in the bottom left corner.
Detailed individual O-C diagrams can be found in Appendix B.
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Figure 5.10: O-C diagram of RX J2130+4710. The best-fit sinusoidal ephemeris (grey line)
corresponds to a single brown dwarf orbiting RXJ2130.6+4710. The brown dwarf in this model
has a mass of MBD = 0.06 M⊙ and is on an orbit with a period of almost 35.5 years.

5.6 A look at a few selected binaries

This section includes a more detailed look at a few selected binaries, which are either

interesting in their own right, or show behaviour representative of a group of targets in the

timing programme.

5.6.1 RXJ2130.6+4710

RXJ2130.6+4710 is a detached white dwarf + M-dwarf binary, on an orbital period of

12.5 hours. A study of the system parameters based on phase-resolved spectroscopy and

ULTRACAM photometry of this binary was published by Maxted et al. (2004), who also

published the first mid-eclipse times. Unluckily, RXJ2130.6+4710 lies only 12′′ away from a

bright G0 star (HD204906), which complicates the extraction of the light curve, especially

if the data was taken under variable observing conditions. In addition, the M3.5 – M4

main-sequence star (Maxted et al., 2004) frequently experiences flares.

Table A.57 lists the mid-eclipse times from Maxted et al. (2004), as well as the sub-

sequent times obtained with ULTRACAM, ULTRASPEC and RISE. These additional

times immediately revealed a large shift in the mid-eclipse times with respect to a linear

ephemeris, see also Fig. B.48. The overall shape of the O-C times appears to be parabolic-

like, and could correspond to a part of a sinusoidal variation. Such a sinusoidal variability

could indeed be the result of the reflex motion of the binary caused by a third companion.

Fig. 5.10 shows the O-C times together with the best sinusoidal fit, corresponding to a

single brown dwarf of MBD = 0.06 M⊙ orbiting RXJ2130.6+4710 every 35.5 years. Note

that these numbers are only very loosely constrained, given that the data only covers a
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Figure 5.11: O-C diagram of QSVir, with respect to the linear ephemeris in Table 5.1. Times
with uncertainties larger than 3 seconds are shown in grey. This figure is a duplicate of Fig. B.36.

small part of the proposed orbit. With only the one companion, such a system would

automatically be dynamically stable. To verify the presence of the brown dwarf, it may be

possible to observe it directly, as was tried for V471Tau (Hardy et al., 2015). In addition,

regular eclipse observations over the next years will also be able to prove or disprove the

presence of the proposed circumbinary brown dwarf.

5.6.2 QSVir

QSVir is a white dwarf + M-dwarf binary, also known as EC13471-1258, discovered in

the Edinburgh-Cape blue object survey (Stobie et al., 1997). The red dwarf has a spectral

type of M3, and almost completely fills its Roche lobe (O’Donoghue et al., 2003), and

the binary is has therefore been classified as a hibernating cataclysmic variable by those

authors. However, analysis of the white dwarf rotation showed that the system could also

be pre-cataclysmic variable (Parsons et al., 2011b), although the hibernation theory is not

fully excluded (Drake et al., 2014b). Besides the white dwarf eclipse, the binary’s light

curve shows a small reflection effect at blue wavelengths, and ellipsoidal modulation at

redder wavelengths (Parsons et al., 2010b).

There are 86 published mid-eclipse times as well as 19 unpublished as part of the eclipse

timing programme presented here. For a complete list of these times and for the appropriate

references, see Table A.41. As can be seen in Fig. 5.11, QSVir shows eclipse time variations

with large amplitudes and with occasional extreme changes. The new eclipse observations

indicate that the O-C times have reached a second maximum, and perhaps the binary

will experience a second abrupt shift such as the one seen near cycle number 30000 in the

upcoming years.

There have been several attempts to explain the cause of these large and erratic O-C
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Figure 5.12: O-C diagram of CSS 080502, also known as SDSS J090812.03+060421.2, with respect
to the linear ephemeris in Table 5.1. Times with uncertainties larger than 3 seconds are shown in
grey. This figure is a duplicate of Fig. B.15.

variations. Qian et al. (2010), following Brinkworth et al. (2006), calculated the energy

available in the secondary star, and showed that this was insufficient to cause the observed

large-amplitude O-C variations through Applegate’s mechanism. Instead, they proposed a

combination of a large continuous decrease in the binary’s orbital period and the presence

of a circumbinary planet of ∼ 7 MJup. New eclipse data quickly showed that this hypothesis

was wrong (Parsons et al., 2010b). Almeida & Jablonski (2011) then presented a new fit to

the data, which included two circumbinary planets. However, the extreme shift near cycle

number 30000 forces at least one planet into a highly eccentric orbit, causing the entire

planetary system to dynamically unstable (Horner et al., 2013).

Clearly, the eclipse time variations in this binary are complex, and what causes them

remains to be discovered. As can be seen in Appendix B, there are a few other binaries

in the timing programme that show similarly large O-C variations, such as V471Tau and

HUAqr (see also Chapter 6). Close monitoring of the white dwarf eclipses in these binaries

is necessary in order to reveal the origin of these variations.

5.6.3 CSS 080502

The binaries mentioned above have eclipse observations spanning over at least a decade.

CSS 080502 is a detached white dwarf + M-dwarf binary that has a baseline of only about

five years, but has already started to show some O-C variations, see Fig 5.12. It was dis-

covered as an eclipsing white dwarf binary in CSS data (Drake et al., 2009), and has also

been observed as part of SDSS as SDSSJ090812.03+060421.2. Pyrzas et al. (2009) deter-

mined approximate parameters for the white dwarf and M-dwarf through decomposing and

fitting the available SDSS spectra. The M-dwarf has a spectral type of M4, as determined
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Figure 5.13: O-C diagram of CSS 38094, also known as SDSS J093947.95+325807.3, with respect
to the linear ephemeris in Table 5.1. Times with uncertainties larger than 3 seconds are shown in
grey. This figure is a duplicate of Fig. B.18.

by Rebassa-Mansergas et al. (2012), in good agreement with the previous determinations

of Drake et al. (2010) and Silvestri et al. (2006).

CSS 080502 is a representative example of a number of targets in the timing programme,

all of which have eclipse observations covering a few years and have started to show small-

scale O-C variations on the order of ± 5 – 10 seconds. See for example the O-C diagrams

of SDSSJ1210+3347, SDSS J1212-0123 and others in Appendix B. More data is needed

before conclusions can be drawn about the extent of the O-C variations in these binaries.

5.6.4 CSS 38094

Finally, there are a few binaries which have so far shown no variability in their eclipse arrival

times. One example of this class is CSS 38094, also known as SDSSJ093947.95+325807.3.

CSS 38094 was discovered in CSS data as a white dwarf + red dwarf binary, with the latter

having a spectral type of M5. The more recent determination of spectral type from SDSS

data agrees with this (Rebassa-Mansergas et al., 2012). The first white dwarf eclipse times

were published by Backhaus et al. (2012), and we obtained five more as part of the timing

programme, see Table A.21.

The O-C diagram is shown in Fig. 5.13, and is so far consistent with a linear ephemeris.

Binaries with similarly flat O-C diagrams are SDSSJ0314+0206, CSS 080408 and CSS03170,

see Appendix B. However, for all of these binaries the eclipse observations span only a few

years, and it is therefore too early to say whether these binaries indeed show no variations

in the eclipse arrival times.
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5.7 Complementary and alternative observations

Clearly, it is quite difficult to determine the cause of the O-C variations observed in so

many white dwarf binaries. Although I focused here on the timing of eclipses, there are

several other observational features that can be used for O-C timing. For example, if the

white dwarf in a close, eclipsing binary is also pulsating, these pulsations can be monitored

and timed as well (Mullally et al., 2008). Several people are keenly searching for such

a binary, to independently confirm the presence or absence of O-C residuals measured

through eclipse timing.

Besides confirming the measured O-C variability, it may be possible to directly confirm

or rule out the theory proposed to explain the variability. For example, to confirm the

presence of a suspected circumbinary companion, one can try to directly detect this com-

panion through high-contrast adaptive-optics assisted imaging. This approach was taken

by Hardy et al. (2015) for the suspected brown dwarf around the close detached white dwarf

+ main-sequence star binary V471Tau, which shows large and approximately sinusoidal

O-C variations (see Fig. B.9). These O-C residuals can be modelled by the presence of a

0.04 M⊙ brown dwarf. In this particular case, the relatively wide orbit places the brown

dwarf at a projected separation of up to 0.3′′ on the sky at certain times. In addition,

because V471Tau is part of the Hyades cluster, the cooling time since the brown dwarf’s

formation is less than 625 Myr (O’Brien et al., 2001), so that the suspected brown dwarf is

still relatively bright (Burrows et al., 1997). Best contrast is reached at red wavelengths, in

the H- and K-bands, but even here the presence of the circumbinary brown dwarf around

V471Tau was ruled out. Although the O-C residuals have large peak-to-peak amplitudes

of ∼ 400 s, the main-sequence star in this binary has quite an early spectral type of K2,

and therefore may still be able to drive such large orbital period variations through a form

of Applegate’s mechanism. The periodicity would then be an indicator of the K-dwarf’s

magnetic cycles.

Besides direct imaging, a circumbinary companion may also be revealed through direct

detection of the reflex motion of the host binary, either through precision astrometry or

through very accurate measurements of the binaries systemic velocity with respect to Earth.

For example, calculations assuming a planetary system around HUAqr reveals that the

reflex motion would only be as large as 0.17 mas on the sky (Goździewski et al., 2015).

Such observations would have to be obtained over time scales comparable to the orbital

period of the most massive circumbinary object present, as the binary needs to complete

a decent chunk of an orbit around the system’s barycentre. The required accuracy may be

obtained with Gaia (de Bruijne et al., 2015), although the projected lifetime of this mission

is only 5 years.

To confirm suspicions that Applegate’s mechanism, or a variation thereof, is at work

instead, the M-dwarfs in close, eclipsing binaries that show O-C variability could be moni-

tored at X-ray wavelengths. The M-dwarf’s magnetic activity visible at these wavelengths

should then correlate with the amplitude of the O-C residuals. For example, it may be

possible to obtain a measure of the number of starspots on the M-dwarf, which is expected
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to vary over the same magnetic cycle that drives the orbital period variations through

Applegate’s mechanism.

5.8 Conclusions

In this chapter, and in Appendices A and B, I have presented my extensive set of 605

eclipse observations of 71 close white dwarf binaries. I have analysed the amount of O-C

variability as a function of the baseline of the eclipse observations, the secondary star’s

spectral type and the secondary star’s Roche lobe filling factor. All close binaries with

baselines exceeding ∼ 10 years show large O-C residuals, while those with shorter baselines

show varying degrees of O-C variability. Although there is some indication that the spectral

type of the secondary star is correlated with the RMS of the O-C residuals with respect to

the best linear ephemeris, the effect of the different observational baselines is strong and

prevents definitive conclusions from being drawn. Currently, there is no correlation between

the O-C RMS and the Roche lobe filling factor of the secondary star, but a larger sample

of binaries, as well as more homogeneous baselines across the sample may be required for

revealing such a correlation.

This leaves me with the conclusion that the data of the timing programme as presented

in this thesis are as yet insufficient to reveal the underlying cause of the apparent orbital

period variations observed in so many eclipsing close white dwarf binaries. However, I

am hopeful that with more data the effect of the baseline of the eclipse observations will

become less prominent, so that correlations with real characteristics will become visible.

⋆ ⋆ ⋆



Chapter 6

Testing the planetary models of HUAqr

6.1 Introduction

HUAqr was discovered independently by Schwope et al. (1993) and Hakala et al. (1993)

as an eclipsing binary of the AM Her type, also known as polars. Systems from this

class of CVs contain Roche-lobe filling M-dwarf secondary stars and strongly magnetic

(∼ 10 MG) white dwarf primary stars. From its discovery onwards, HUAqr has been

studied extensively and over a wide range of wavelengths (e.g. Glenn et al., 1994; Schwope

et al., 1997, 2001; Heerlein et al., 1999; Howell et al., 2002; Harrop-Allin et al., 2001, 1999;

Vrielmann & Schwope, 2001; Bridge et al., 2002; Watson et al., 2003; Schwarz et al., 2009).

The general picture is as follows: the M-dwarf loses matter at the inner Lagrange point,

which then follows a ballistic trajectory until the ram pressure equals the white dwarf’s

magnetic pressure and the stream couples to the magnetic field lines. At that point the

stream leaves the orbital plane and is guided along the field lines until it accretes onto the

white dwarf’s magnetic pole, creating a luminous accretion spot.

The accretion rate in this system is highly variable, and the binary has changed from a

high to a low state and back several times over the last decades. The variability causes both

flickering typical of CVs on time scales of minutes, and significant changes in the overall

shape of the observed light curves on time scales as short as one orbital cycle (Harrop-Allin

et al., 2001).

One constant in the light curves is the eclipse of the white dwarf by the secondary

star, the ingress and egress of which last for ∼ 30 seconds. In a high state the eclipse

is dominated by contributions from the accretion spot and stream, while the ingress and

egress of the white dwarf itself are hardly visible. Due to the geometry of the system the

accretion spot and accretion stream are well separated during egress, giving this part of the

light curve a fairly constant shape. During ingress the distinction between the accretion

spot and stream features is less clear. From X-ray data there is also evidence of enhanced

absorption by an accretion curtain along the ballistic stream at this phase (Schwope et al.,

2001). To accurately determine the eclipse times the timing has therefore been based on

the egress of the accretion spot. Comparison of observed mid-egress times to expected

mid-egress times, which are calculated assuming a constant orbital period, have revealed

considerable variations (Schwope & Thinius, 2014; Goździewski et al., 2012; Schwarz et al.,

2009; Schwope et al., 2001).

Several explanations for these eclipse time variations have been offered in the literature,
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including Applegate’s mechanism (Applegate, 1992). However, for HUAqr, the energy

available in the M-dwarf is insufficient to explain the large variations observed (Schwarz

et al., 2009). A second explanation for the eclipse time variations is that they are caused

by the presence of planet-like or brown dwarf-like bodies in wide orbits around the binary,

and models with 1, 2 and even 3 planets have been proposed for HUAqr (Goździewski

et al., 2012; Qian et al., 2011). All have since been disproved on grounds of dynamical

instability (Wittenmyer et al., 2012; Horner et al., 2011) or by new data (this chapter,

Schwope & Thinius, 2014; Goździewski et al., 2012, 2015).

In this chapter, which is based on Bours et al. (2014b), I present 24 new eclipse times

from data taken between June 2010 and October 2014.

6.2 Observations

In this section the technical details of the observations are described. The light curves

themselves are discussed in Sect. 6.3. All mid-egress times are listed in Table 6.1, which

also summarises the technical details and contains notes on the observing conditions. Mid-

egress times are described as discussed in Sect. 5.4.2 and some additional details can be

found in Sect. 6.4.

6.2.1 RISE on the Liverpool Telescope

A total of 14 eclipse observations were obtained of HUAqr between 2 Aug 2011 and 14 Oct

2014 with the Liverpool Telescope (LT; Steele et al., 2004) and the RISE camera (Steele

et al., 2008) which was used with the 2x2 binned mode. The data were flatfielded and

debiased in the automatic pipeline, in which a scaled dark-frame was removed as well.

Aperture photometry was then performed using the ULTRACAM pipeline (Dhillon et al.,

2007), and care was taken to use the same comparison star for all data reductions. This

comparison is a non-variable star located 93” South and 88” West of HUAqr. I chose

this star rather than comparison ‘C’ as in Schwope et al. (1993, their Fig. 1) because of

their relative brightnesses in RISE’s V+R filter. I did use comparison ‘C’ to calculate

magnitudes for HUAqr, as will be explained in Sect. 6.3. All stellar profiles were fitted

with a Moffat profile (Moffat, 1969), the target aperture diameters scaled with the seeing

and the comparison star was used to account for variations in the transmission. The light

curves are shown in Fig. 6.1.

6.2.2 ULTRACAM observations

Between June 2010 and October 2012 I obtained six eclipses of HUAqr with ULTRACAM

(Dhillon et al., 2007). ULTRACAM was mounted on the New Technology Telescope (NTT)

in Chile during the first three observations and on the William Herschel Telescope (WHT)

on La Palma, Spain, for the last three observations. The light curves are shown in Fig. 6.2.

For the data reduction and the relative aperture photometry I used the ULTRACAM

pipeline. Due to different fields of view and windowed setups during the observations I
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Figure 6.1: LT+RISE light curves of HUAqr, taken between 2 Aug 2011 (bottom left) and 14
Oct 2014 (top right), with each eclipse vertically offset from the previous one by 0.2. The vertical
axis shows the flux relative to the comparison star, which is the same star for all LT+RISE and
TNT+ULTRASPEC data. To calculate the orbital phase I used the ephemeris in equation 6.2.

could not use the same comparison star as for the LT+RISE and TNT+ULTRASPEC

data.

6.2.3 ULTRASPEC on the Thai National Telescope

In November 2013 I observed two HUAqr eclipses with the Thai National Telescope (TNT),

located on Doi Inthanon in northern Thailand. I used the ULTRASPEC camera (Dhillon

et al., 2014), and an SDSS g′ filter on November 10, and a Schott KG5 filter on November
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Figure 6.2: ULTRACAM+NTT (bottom three) and ULTRACAM+WHT (upper three) light
curves of HUAqr, taken between 6 Jun 2010 and 13 Oct 2012. From left to right are shown the
blue (u′), green (g′), and red (r′ or i′) data. The blue and red light curves are scaled to the green
light curves to facilitate easy comparison. Each light curve is vertically offset from the previous one
by 0.6. To calculate the orbital phase I used the ephemeris from equation 6.2.

13. The Schott KG5 filter is a broad filter with its central wavelength at 5075 Å and a

FWHM of 3605 Å, see Fig 2.6.

The data were reduced using the ULTRACAM pipeline, with which I debiased and

flatfielded the data and performed aperture photometry. I used the same comparison star

as for the reduction of the LT+RISE data. Both ULTRASPEC light curves are shown in

Fig. 6.3. During the observations on November 10, the telescope briefly stopped tracking,

causing the gap seen during ingress in the light curve in Fig. 6.3.



Chapter 6. Testing the planetary models of HUAqr 111

0.8 0.9 1.0 1.1

orbital phase

0.0

0.2

0.4
re

la
tiv

e
fl

ux

10 Nov 2013

13 Nov 2013 Figure 6.3: TNT+ULTRASPEC light
curves of HUAqr, taken in November
2013, displayed with a vertical offset of
0.2. To calculate the orbital phase I
used the ephemeris from equation 6.2.

0.8 0.9 1.0 1.1

orbital phase

0.0

0.2

0.4

0.6

0.8

re
la

tiv
e

fl
ux

18Jun 2014

19Jun 2014
Figure 6.4: INT+WFC light curves of
HUAqr, taken in June 2014, displayed
with a vertical offset of 0.4. To calculate
the orbital phase I used the ephemeris
from equation 6.2.

6.2.4 Wide Field Camera on the Isaac Newton Telescope

In June 2014 two more eclipses were obtained of HUAqr using the Wide Field Camera

(WFC) mounted on the Isaac Newton Telescope (INT) on La Palma, Spain. The read-out

time of the WFC is ∼ 2 seconds, and a Sloan-Gunn g filter was used, which is very similar

to the ULTRACAM g′ filter.

The data were reduced using the ULTRACAM pipeline, with which I debiased and

flatfielded the data and performed aperture photometry. As a comparison star I used star

‘C’ as in Schwope et al. (1993). Both light curves are shown in Fig 6.4.
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Table 6.1: Mid-egress times for the observed eclipses of HUAqr. For the ULTRACAM data the exposure times are listed for each of the arms separately
and the mid-egress times are the weighted averages of the three times from the individual arms. The magnitudes are calculated as detailed in Section 6.3 and
correspond to the given filter of each observation and the g′-filter for the ULTRACAM data. The dead-time between exposures is 8 ms (LT+RISE), 25 ms
(ULTRACAM), 15 ms (ULTRASPEC) and 2 s (INT+WFC).

date cycle mid-egress time texp telescope + filter(s) approximate observing conditions

number BMJD(TDB) (sec) instrument magnitude

06 Jun 2010 72009 55354.2706040(4) 4, 2, 2 NTT+UCAM u′g′r′ 15.8 clear, seeing 1.5′′

06 Jun 2010 72010 55354.3574451(5) 4, 2, 2 NTT+UCAM u′g′r′ 15.7 clear, seeing 1-2′′

23 May 2011 76053 55705.3721585(9) 8, 4, 4 NTT+UCAM u′g′r′ 15.5 clear, seeing 1.5′′

02 Aug 2011 76868 55776.1307426(20) 3 LT+RISE V+R 15.9 clear, seeing 2′′

04 Sep 2011 77247 55809.0356564(25) 2 LT+RISE V+R 15.8 clear, seeing 2.5′′

31 Oct 2011 77902 55865.9029864(22) 2 LT+RISE V+R 15.7 clear, seeing 1.6-2.5′′

28 May 2012 80324 56076.1818394(22) 2 LT+RISE V+R 15.9 clear, seeing 1.8-2.4′′

11 Jun 2012 80485 56090.1598976(19) 2 LT+RISE V+R 17.3 thin clouds, seeing 2-4′′

06 Sep 2012 81486 56177.0670248(8) 7, 4, 4 WHT+UCAM u′g′r′ 16.1 clear, seeing 1-2′′

10 Sep 2012 81531 56180.9739470(22) 2 LT+RISE V+R 16.4 thin clouds, seeing 2.2′′

10 Sep 2012 81532 56191.0607721(6) 7, 4, 4 WHT+UCAM u′g′i′ 16.6 thin clouds, seeing 2′′

13 Oct 2012 81910 56213.8788462(2) 6, 2, 2 WHT+UCAM u′g′r′ 17.8 thin clouds, seeing 2-4′′

09 Dec 2012 82566 56270.8329602(53) 2 LT+RISE V+R 17.2 clear, seeing 2′′

06 May 2013 84275 56419.208883(11) 2 LT+RISE V+R 17.3 thick clouds, seeing 2-3′′

10 Jun 2013 84678 56454.1974374(17) 2 LT+RISE V+R 16.2 clear, seeing 2′′

30 Sep 2013 85965 56565.9351702(10) 2 LT+RISE V+R 14.8 clear, seeing 1.8′′

06 Nov 2013 86391 56602.9205819(16) 2 LT+RISE V+R 15.3 thin clouds, seeing 1.8-2.5′′

10 Nov 2013 86433 56606.5670216(45) 3 TNT+USPEC g′ 15.1 cloudy, seeing 1.5-2′′

13 Nov 2013 86467 56609.5189097(21) 2 TNT+USPEC Schott KG5 15.2 thin clouds, seeing 1.5′′

18 Jun 2014 88973 56827.0904134(16) 5 INT+WFC g 15.7 clear, seeing 1.5′′

19 Jun 2014 88985 56828.1322517(37) 5 INT+WFC g 15.7 clear, seeing 2-3′′

26 Jun 2014 89066 56835.1647131(24) 2 LT+RISE V+R 16.1 clear, seeing 2′′

16 Sep 2014 90009 56917.0361809(34) 2 LT+RISE V+R 16.2 clear, seeing 2-2.5′′

14 Oct 2014 90330 56944.9054808(23) 2 LT+RISE V+R 16.1 thin clouds, seeing 2′′
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6.3 Ever-changing light curves

HUAqr is known for its variable accretion rate, which significantly influences the brightness

of the system and the morphology of its light curves, as is immediately clear from Figs. 6.1,

6.2, 6.3 and 6.4. HUAqr was in a high state until mid 2012, then went into a low state, and

returned to a high state in the second half of 2013, after which it dropped to a lower state

again. I calculated the magnitude of HUAqr for each data set, using the out-of-eclipse data,

and excluding obvious flares from the M-dwarf and dips due to the accretion stream. Using

simultaneous g′ and r′ ULTRACAM data, I determined a magnitude offset for comparison

‘C’ (Schwope et al., 1993, their Fig. 1) for each filter type with respect to its V-band

magnitude of mV = 14.65 (mean of various measurements). I then calculated magnitudes

for HUAqr as normal, using the relative flux and corrected magnitude for comparison ‘C’.

These approximate magnitudes are listed in Table 6.1. Typical magnitudes were mg′ ≃

15.1 - 15.5 during the high states, and mg′ ≃ 17.8 during the low state.

The out-of-eclipse data shows the characteristic flickering of a CV, caused by the irreg-

ular, blobby nature of the accretion. In the high state light curves the eclipse is dominated

by both the accretion spot on the white dwarf and the accretion stream. The eclipse of the

spot is characterised by the abrupt ingress when the spot goes behind the M-dwarf, and

the egress when it re-emerges, each typically lasting ∼ 8 seconds.

Due to the small physical size of the accretion region on the white dwarf, this spot

can reach very high temperatures and contributes significantly to the total light from the

system when accretion rates are high. The data shows no signs of a varying width or height

of the ingress or egress feature, over time nor with changing accretion rate. Assuming for

the masses MWD = 0.81 M⊙ and M2 = 0.18 M⊙, an inclination i = 87◦ (see Sect. 6.3.2 and

Schwope et al., 2011) and the orbital period from equation 6.2, I arrive at an orbital velocity

of the M-dwarf of 479 km s−1 and a maximum spot diameter of Dspot ≃ 3829 km. Using the

mass-radius relation of Verbunt & Rappaport (1988) for the white dwarf, this corresponds

to a fractional area on the white dwarf of 0.018 and an opening angle of the accretion spot

of ∼ 30◦. This is significantly larger than the value of 3◦ found by Schwope et al. (2001)

using ROSAT-PSPC soft X-ray data although some difference is to be expected, as only

the hottest parts of the spot will radiate at X-ray wavelengths.

In the high state the ingress of the accretion stream, caused by irradiation of the stream

by the hot accretion spot, is visible as an additional, shallower slope after the sharp ingress

of the accretion spot. Depending on the exact geometry of the stream and its relative

position to the spot, the duration and height of the stream ingress vary considerably.

Some of the light curves taken during a high state also show a narrow dip near orbital

phase 0.8 – 0.9. This has been seen in many of the other studies on HUAqr, and is also

observed in other polars (Watson, 1995). It is caused by the obscuration of the accretion

spot by part of the stream if the inclination of the system is such that the hemisphere with

both the spot and stream is towards the observer (Bridge et al., 2002). The depth and width

of this dip carry information about the temperature difference between the white dwarf and

the spot and about the physical extent of the magnetically coupled stream respectively.
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Figure 6.5: Archival g′-band ULTRACAM+VLT light curve of HUAqr, taken on the night of 21
Jun 2007 when HUAqr was in a low state. Exposure times for this observation were 0.3 seconds.
The subplots to the left and right of the full eclipse span 0.005 orbital phases around the ingress
and egress, equivalent to 38 seconds. To calculate the orbital phase I used the ephemeris from
equation 6.2.

The dip moves further away from the spot ingress during high accretion states, which

agrees with the expectation that the ballistic stream penetrates further before coupling to

the magnetic field lines in the high state. I also notice some interesting colour differences

in the dip as well as in some of the other variable features in the high state ULTRACAM

light curves (Fig. 6.2). At blue wavelengths the dip is wider than observed in the other

two bands, and it possibly consists of two components. This indicates a fluffy and blobby

nature of the stream, and a strongly wavelength-dependent opacity within the stream.

During a low state, the stream ingress disappears completely, flickering is less pro-

nounced and the system is noticeably fainter.

6.3.1 Archival ULTRACAM observations of HUAqr in a low state

HUAqr has been observed with ULTRACAM before (Schwarz et al., 2009), in May 2002

and May 2003 when the instrument was mounted on the WHT, and in May 2005 and June

2007 when mounted on the Very Large Telescope (VLT). During the last two of these runs

HUAqr was in a deep low state. The 2005 data was briefly discussed in Schwarz et al.

(2009), as it was taken simultaneously with some of their X-ray data.

Fig. 6.5 shows the white dwarf in one of the light curves from June 2007. The variability

present in the out-of-eclipse data reveals that some accretion is still ongoing. The eclipse

ingress and egress are now dominated by the eclipse of the white dwarf, lasting∼ 25 seconds.

However, it appears that there is still a small area, hotter than the white dwarf itself, that

is also being eclipsed. This is evident from the steep 0.5 – 1 second features visible near

the middle of white dwarfs ingress and egress. These parts of the light curve are shown in

more detail in the two side panels in Fig. 6.5. The sharp, brief features are visible in all

eclipses observed with ULTRACAM in May 2005 and June 2007, demonstrating it is not

a short-lived transient phenomenon. When looking up close, a short, faster ingress/egress



Chapter 6. Testing the planetary models of HUAqr 115

Table 6.2: Masses for the white dwarf and Roche lobe filling companion star in HUAqr for a given
inclination i. The last column lists the χ2 values for the fits corresponding to the parameters as in
the other columns.

i (degrees) MWD (M⊙) M2 (M⊙) χ2

90 0.802 0.161 1.15

89 0.800 0.162 0.99

88 0.794 0.166 0.87

87 0.805 0.177 0.86

86 0.811 0.189 0.89

85 0.824 0.207 0.92

part also seems visible in the WHT+ULTRACAM observation of 13 Oct 2012 (presented

in Fig. 6.2), although the time resolution of that light curve is rather long (2 seconds)

compared to the duration of the feature. The LT+RISE observations taken when HUAqr

was in a low state have similar time resolution and lower signal-to-noise, making it even

more difficult to judge whether this feature is present or not.

It is likely that these features are caused by the eclipse of the remaining base of the

accretion column near where the main accretion spot used to be.

6.3.2 Characterising the white dwarf

Since the eclipses in the ULTRACAM data taken when HUAqr was in a deep low state

are dominated by the eclipse of the white dwarf, they allow determination of the system’s

inclination and the white dwarf’s radius. The variation in eclipse arrival times and the

remaining flickering still present in the data complicate normalisation and folding of the

light curves on the orbital period. I therefore focus on a single light curve, and have chosen

the g′-band eclipse observed on 21 Jun 2007, as shown in Fig. 6.5. The width of the eclipse

determines the mass ratio (q) for a given inclination (i), while the duration of the ingress

and egress features fix the radii of the stars relative to the orbital separation (RWD/a and

R2/a). Using a mass – radius relation for the white dwarf (Wood, 1995), I can then find

the masses of both stars.

To model the white dwarf eclipse I used the code lcurve, as described in Chapter 5. For

the white dwarf I assume a temperature of TWD = 15000 K, and quadratic limb darkening

with coefficients lWD,1 = 0.115 and lWD,2 = 0.348 (Gianninas et al., 2013, for log g = 8.25).

I now included a hot spot on the white dwarf, with a longitude, latitude, full-width at

half-maximum and central temperature as its parameters, as already detailed in Table 5.3.

This allows me to model the fast and sharp features seen during ingress and egress of the

white dwarf. I force the M-dwarf companion to fill its Roche lobe, and assume quadratic

limb darkening with coefficients ldM,1 = 0.996 and ldM,2 = 0.015 (Claret et al., 2012, for

reasonable values of T2 = 3000 K and log g = 5.0). The orbital period was fixed to the

value in equation 6.2. For a range of inclinations the resulting stellar masses are given in

Table 6.2.

The model that best fits the light curve (shown in Fig. 6.6) assumes an inclination
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Figure 6.6: Data as in Fig. 6.5, with
my best lcurve model over-plotted
(light grey lines), corresponding to an
inclination i = 87◦. The residuals are
shown as well (vertically offset by -0.01).

i = 87◦ , and results in a mass ratio q = 0.22. These values agree well with the latest

published values (Schwope et al., 2011), as do the corresponding masses. The duration of

the spot ingress and egress is only ∼ 0.6 s in this low-state light curve. Using the same

procedure as before, the spot size during these observations had an opening angle of ∼ 2.5◦,

which is very comparable to the 3◦ size of the X-ray spot (Schwope et al., 2001).

The ingress and egress of the remaining spot are much shorter in these extreme low-

state light curves (Fig. 6.5) than observed in my other data (Figs. 6.1, 6.2, 6.3 and 6.4). It

is probable that in this low accretion state only the very core of the accretion spot remains

hot enough to contribute a significant amount of light, while the surrounding area has

cooled to a temperature more closely resembling that of the white dwarf itself. Such a

correlation between spot size and accretion state has not been observed in, for example,

the polar AMHer, which has been studied extensively during high as well as low states

(Gänsicke et al., 2006).

6.4 Egress times

As has been done for previously published times of HUAqr, I measured mid-egress times

as opposed to mid-eclipse times. This because the egress feature is relatively stable, even

with the variable accretion rate, whereas the shape of the ingress feature varies significantly

with the changing accretion rate and even differs from cycle to cycle. For all my new data

I determined the time of mid-egress by a least-squares fit of a function composed of a

sigmoid and a straight line,

y =
k1

1 + e−k2(x−k3)
+ k4 + k5(x− k3) , (6.1)

where x and y are the time and flux measurements of the light curve, and k1 to k5 are

coefficients of the fit. An example of one of the fits is shown in Fig. 6.7.
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Figure 6.7: Egress of the LT+RISE
eclipse light curve of HUAqr, taken
on 31 Oct 2011, with 2 second ex-
posures. The solid black line shows
the sigmoid+linear function that is fit-
ted to the data. The vertical dotted
line indicates the mid-egress time at
MJD(UTC) = 55865.9012656(22).

The straight line part allows me to fit the overall trend outside and during egress. This

includes the egress of the white dwarf itself, which can have a significant contribution,

especially when the system is in a lower state. The sigmoid part of the function fits the

sharp egress feature created by the egress of the accretion spot. To determine uncertainties,

I have performed these fits in a Monte Carlo manner in which I perturb the value of the

data points based on their uncertainties and vary the number of included data points by a

few at each edge, reducing any strong effects in the results caused by single data points.

I converted all mid-egress times to barycentric dynamical time (TDB) in the form

of modified Julian days and corrected to the barycentre of the Solar System, giving

BMJD(TDB). The times are listed in Table 6.1 and I used the ephemeris of Schwarz

et al. (2009) to calculate the corresponding cycle number E. Including the new times the

best linear ephemeris is given by:

BMJD(TDB) = 49102.42039316(1) + 0.0868203980(4)E , (6.2)

with E the orbital cycle number.

For the ULTRACAM data I find that the times from the three individual arms agree

well with each other, see Fig. 6.8, although the times from the blue arm are comparatively

poor due to its lower time resolution (necessary to compensate for the lower flux in this

band). The ULTRACAM times listed in Table 6.1 are the error-weighted averages of the

three individual times.

The agreement of the individual times and the absence of a particular ordering of the

u′, g′, and r′ or i′ times around the weighted mean indicate that there is no significant

correlation between the observed egress time and the wavelength at which the data were

taken.

6.5 Orbital period variations

The O-C diagram in Fig. 6.9 shows the observed eclipse times minus times calculated as-

suming a constant orbital period. A mechanism that could explain observed O-C variations

in white dwarf + M-dwarf binaries was proposed by Applegate (1992). He suggested that

magnetic cycles in the secondary star cause quasi-periodic variations in its gravitational
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Figure 6.8: Eclipse times relative to the weighted mean, with 1σ errorbars, determined for data
from the three ULTRACAM arms.

quadrupole moment, which couple to the binary’s orbit and cause semi-periodic variations

in the orbital period. However, as orbital period variations were monitored more exten-

sively and over longer periods of time, it became clear that, in HUAqr and other binaries,

the variations can be larger than energetically possible with Applegate’s mechanism. For

the pre-CV NN Ser, Brinkworth et al. (2006) showed that the energy required for the ob-

served variations was at least an order of magnitude larger than the energy available from

the M-dwarf. Given that HUAqr has a similarly low-mass M-dwarf star, and the O-C

variations are even more extreme, a similar discrepancy exists for this system (Schwarz

et al., 2009).

6.5.1 Planetary companions to HUAqr

For eclipsing white dwarf binaries that show O-C variations too large to be explained by

Applegate’s mechanism a number of models invoking circumbinary planets around close

binaries have been suggested. These planets are generally in orbits with periods of years

to decades, and would introduce periodic variations in the O-C eclipse times much like the

ones observed. A comprehensive overview of the relevant binaries and models can be found

in Zorotovic & Schreiber (2013). Due to the long periods of the suspected circumbinary

planets, and the often relatively short coverage of eclipse times, published models for

planetary systems are only weakly constrained and are often proved incorrect when new

eclipse times become available (Fig 6.9; Bours et al., 2014b; Goździewski et al., 2012;

Beuermann et al., 2012; Parsons et al., 2010b). Besides creating a model that fits the data,

analysing the dynamical stability of the resulting system is a crucial step in determining

the probability that circumbinary planets are present. Several published systems for which

multiple planetary companions were proposed have turned out to be unstable on time scales

as short as a few centuries (Horner et al., 2013; Wittenmyer et al., 2013; Hinse et al., 2012),

which makes their existence unlikely. Systems for which models invoke a single planetary

companion are of course dynamically stable, but not necessarily more likely to exist. Only
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Figure 6.9: O-C diagram for the mid-egress times of HUAqr with respect to the ephemeris in
equation 6.2, including the new times presented in this chapter (black dots) and literature times from
optical (grey dots, excluding those from Qian et al. (2011)) and non-optical data (black squares).
The dotted line is the 1-planet model by Goździewski et al. (2012).

for the post-common envelope binary NN Ser have planetary models (which include two

planets) correctly predicted future eclipse times and shown long-term dynamical stability

(Marsh et al., 2014; Beuermann et al., 2013a; Horner et al., 2012b), while at the same time

both Applegate’s mechanism (Brinkworth et al., 2006) and apsidal motion (Parsons et al.,

2014) have been ruled out as the main cause of the eclipse timing variations. Despite the

difficulties encountered, determining parameters of current-day planetary systems around

evolved binary stars could provide a unique way to constrain uncertainties in close binary

evolution, such as the common envelope phase (Portegies Zwart, 2013), as well as answer

questions related to planet formation and evolution.

HUAqr has been the topic of much discussion and speculation concerning possible

planetary companions. A few years after the first egress times were published by Schwope

et al. (2001) and Schwarz et al. (2009), Qian et al. (2011) published a model with two

circumbinary planets, and a possible third planet on a much larger orbit. This model

was proven to be dynamically unstable on very short time scales (103 - 104 years) by

Horner et al. (2011), after which both Wittenmyer et al. (2012) and Hinse et al. (2012)

reanalysed the data and found models with different parameters, which were nonetheless

still dynamically unstable. Goździewski et al. (2012) then suggested that there may be a

significant correlation between eclipse times and the wavelength at which the relevant data

is obtained, and proposed a single-planet model to explain the observed O-C variations

seen in data taken in white light or V-band only, thereby excluding data that was taken

at X-rays (ROSAT, XMM) and UV wavelengths (EUVE, XMM OM-UVM2, HST/FOS)

and all polarimetric data. They also excluded the outliers from Qian et al. (2011), which

do not agree well with other data taken at similar times.
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The O-C diagram as shown in Fig. 6.9 includes all previously published eclipse egress

times, except those from Qian et al. (2011) which I exclude for the same reason as

Goździewski et al. (2012). Also plotted is the 1-planet model that was proposed by

Goździewski et al. (2012). My new times and the recent time from Schwope & Thinius

(2014) depart dramatically from this model, and I therefore conclude that the proposed

orbit is incorrect. The deviation of the new data also suggests that the times derived from

satellite data (which Goździewski et al. (2012) argued were unreliable) should be consid-

ered alongside optical data. This is also supported by the agreement between the optical

and satellite times when taken at similar epochs. As mentioned before, from the separate

u′, g′ and r′/i′ data there was no evidence that mid-egress times are wavelength dependent.

For completeness I fitted the O-C times with three different planetary models, con-

taining one, two and three eccentric planets respectively. I did not include a quadratic

term, since such long-term behaviour can be mimicked by a distant planet, and chose to

investigate a possible secular change of the orbital period separately in Sect. 6.5.2. Unsur-

prisingly, all planets in these models are forced into highly eccentric orbits in order to fit

the recent steep decline in the O-C times, leading to the belief that these system would be

dynamically unstable. In addition, the models leave significant residuals. I conclude that

the observed variability in eclipse egress times is not caused purely by the presence of a

reasonable number of circumbinary planets. However, see the recent paper by Goździewski

et al. (2015) for a comprehensive analysis of the eclipse timing variations and the possibility

that they are caused by circumbinary planets.

6.5.2 A secular change of the orbital period?

It seems that the current set of O-C times cannot be explained simply by a model that

introduces one or multiple planets, but given the recent steep decline in the O-C times, I

now consider whether it is the long-term evolution of the binary’s orbital period that is

visible. Using a quadratic model, shown in Fig. 6.10, I measure the rate of orbital period

change as -5.2 × 10−12 s/s (= -4.5 × 10−13 days/cycle).

With an orbital period of only 125 minutes, HUAqr is located just below the CV period

gap (Knigge, 2006), so that gravitational wave emission is expected to be the main cause

of angular momentum loss. Using MWD = 0.81 M⊙, M2 = 0.18 M⊙ for the masses of the

two stars (Table 6.2), and the orbital period from equation 6.2, I calculated the period

change due to gravitational wave emission to be ṖGW = -1.9 × 10−13 s s−1, 27 times

smaller than the result from my best fit to the O-C times. If the measured quadratic term

in the O-C times represents an actual change in the binary’s orbital period, this is not

caused by gravitational wave emission alone. For binaries that lie below the period gap it

is likely that some magnetic braking is still ongoing (Knigge et al., 2011). If this occurs in

short bursts of strong magnetic braking, rather than long-term steady magnetic braking,

it might be possible to create large changes in the binary’s orbital period on short time

scales.
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Figure 6.10: O-C diagram of the mid-egress times of HUAqr including the best quadratic fit as
the dashed grey line (top panel), and the residuals relative to that fit (bottom panel). O-C times
with uncertainties exceeding 3 seconds have been greyed out for clarity, but all data were used to
obtain the fit.

6.5.3 Magnetic alignment of the accretion spot

A last possibility I consider is that the accretion spot, the egress of which is the feature

being timed, moves with respect to the line of centres between the two stars. This could

happen either because of asynchronous rotation of the white dwarf (Cropper, 1988), or

because the spot itself migrates on the surface of the white dwarf (Cropper et al., 1989).

From Fig. 6.5 it is clear that the ingress and egress of the white dwarf last for ∼ 30

seconds. Therefore the maximum libration of the spot on the surface of the white dwarf

can generate O-C deviations with an amplitude of 15 seconds. For geometrical reasons, this

would have to be accompanied by shifts in the time of maximum light from the accretion

spot of ∼ 0.25 orbital phases, an effect that has not been observed. Additionally, even with

a large quadratic term removed from the original O-C times, an amplitude of 15 seconds

is not large enough to explain the residuals, which still fluctuate by more than 20 seconds

(Fig. 6.10). Furthermore, I find no correlation between the accretion state of the binary

and the magnitude of the O-C deviations, in the original O-C diagram, nor in the residuals

after removal of the best quadratic fit.

6.6 Conclusions

I have presented new eclipse observations across the optical spectrum of the eclipsing polar

HUAqr while in high as well as low accretion states. Using archival VLT+ULTRACAM

observations of HUAqr in an extreme low state, I measured the inclination of the binary

to be i = 87◦, giving a mass ratio of q = 0.22 and the stellar masses of MWD = 0.81 M⊙

and M2 = 0.18 M⊙.

From the egress feature of the accretion spot on the white dwarf I have determined the
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mid-egress times. The ULTRACAM data shows that times from data taken using different

SDSS filters agree well with each other. The new O-C times indicate that the eclipses

are still occurring increasingly earlier than expected when using a linear ephemeris and a

constant orbital period. They also confirm the result found by Schwope & Thinius (2014)

that the circumbinary planet proposed by Goździewski et al. (2012) does not exist, nor can

the entire set of egress times be well fitted by a model introducing one or multiple planets.

Given the large amplitude of the observed O-C times, Applegate’s mechanism can likely

be excluded, and also asynchronous rotation of the white dwarf or movement of the accre-

tion spot seem unlikely. Also a long-term orbital period change induced by gravitational

wave emission or constant magnetic braking is not large enough to explain the observed

O-C variations. Currently, my best guess is that more than one of these mechanisms act at

the same time, working together to produce the dramatic eclipse time variations observed

in this binary.

⋆ ⋆ ⋆



Chapter 7

Concluding summary

In this thesis I have presented a detailed study of the eclipsing double white dwarf binary

CSS41177. The data consisted of high-speed ULTRACAM photometry of the primary

and secondary eclipses, phase-resolved X-shooter spectroscopy and far-ultraviolet spectra

obtained with COS on the Hubble Space Telescope. Using Markov chain Monte Carlo

analyses I have determined the white dwarf masses and radii, thereby exploring a new

part of the mass – radius parameter space, and providing empirical data at the low-mass

end to test theoretical relations against. I have also measured the white dwarf effective

temperatures and surface gravities, and showed that the cooler of the two white dwarfs

is a prime candidate for showing non-radial g-mode pulsations. Although none have been

found so far, further searches may reveal low-amplitude pulsations, and will in either case

further constrain the boundaries of the empirical ZZCeti instability strip, as well as shed

light on whether the strip is pure or not.

I also presented an analysis of the (non-eclipsing) double white dwarf binary SDSSJ1257

+5428, for which far-ultraviolet HST spectra and SDSS magnitude measurements at op-

tical wavelengths showed that the massive ∼ 1 M⊙ white dwarf is much younger than its

extremely low-mass ∼ 0.2 M⊙ white dwarf companion. This is in direct contradiction to

the general expectation that more massive stars evolve faster, and their remnants should

therefore be older than remnants of lower mass stars. Despite several suggestion to explain

this apparent paradox, including the possibility that SDSSJ1257+5428 is actually a triple

system or consist of a chance alignment, I was unable to solve the puzzle presented by this

system. Future observations to further determine the system parameters could include

radio observations to search for a possible neutron star component, as well as high signal-

to-noise phase-resolved spectroscopy to ascertain whether lines originating in the massive

white dwarf show radial velocity variations consistent with the star being indeed part of

the binary. More detailed determination of the mass and cooling age of the extremely

low-mass white dwarf could also help clarify which physical processes need to be included

in detailed white dwarf evolutionary models.

Next, I introduced a large eclipse timing programme, that currently includes 71 bi-

naries with regular monitoring of their eclipses to search for apparent and/or real orbital

period variations. Currently, there are two contending theories to explain these ubiquitous

variations. The first explains them as a results of redistribution of angular momentum

in the low-mass main sequence star companions to the white dwarfs, caused by Solar-like

123
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magnetic cycles in these stars, and which couple to the binary’s orbital period. The second

suggests that planet-like or brown dwarf-like bodies of mass are present on wide orbits

around the close binary. These cause a reflex motion of the binary around the system’s

barycentre, which results in the observed variations in the eclipse arrival times. The results

from my programme show that all binaries with long observational baseline show substan-

tial O-C variations, and that for many of the more extreme examples neither theoretical

explanation is satisfactory. Besides regular eclipse observations of all the binaries in the

programme, there are several approaches that can be taken to clarify the underlying cause

of the O-C variations. These include searches for second, independant clocks to confirm

the O-C variations, such as white dwarf pulsations, direct adaptive-optics assisted imag-

ing to search for suspected brown dwarf circumbinary companions, direct high-precision

astrometric observations, and X-ray observations to measure starspots and pin down the

magnetic variability in the M-dwarfs, to name a few.

Finally, I included a detailed look at the cataclysmic variable and polar HUAqr. This

binary is part of the timing pogramme, and shows some of the largest O-C variations. All

planetary companions previously proposed to accompany this binary have been disproved

by new data and by dynamical stability analyses. However, the apparent variability seems

also too large to be caused by Applegate’s mechanism, although perhaps a variation of that

mechanism may still be able to explain the observations. Model fits to archival ULTRA-

CAM light curves taken when HUAqr was in a low-state revealed a small remnant spot

on the surface of the white dwarf, and allowed me to determine the system’s inclination

and stellar masses. With it’s extreme variability caused by the semi-detached nature of the

binary, and with the seemingly inexplicable eclipse timing variability, this system is likely

to be a favourite target for observers around the world in years to come.

⋆ ⋆ ⋆



Appendix A

Eclipse times of white dwarf binaries in

the timing program

This appendix lists all eclipse times obtained for the white dwarf binaries in the timing

program as described in Chapter 5 and Tables 5.1 and 5.2. A few details of the telescopes

and instruments used for these observations, and a reminder of their abbreviations, can be

found in Table A.1. The rest of this appendix consists of tables, one for each individual

binary, with for each eclipse observation the relevant cycle number, eclipse time, and the

reference if this time is published and the telescope and instrument used to obtain the

observations if not published. The eclipse times are either mid-eclipse or mid-egress times,

as specified in the table captions. O-C diagrams for each binary that include both the

eclipse times listed in this appendix as well as any that may be available in the literature

can be found in Appendix B.

Table A.1: Telescopes and instruments used for eclipse observations, listed in aphabetical order.

telescope or details and/or explanation of acronym

instrument

ACAM Imager mounted on the WHT.

DFOSC Danish Faint Object Spectrograph and Camera, mounted on the DT.

DT 1.5 m Danish Telescope situated at La Silla, Chile.

HAWK-I High-Acuity Wide-field K-band Imager on the VLT.

INT 2.5 m Isaac Newton Telescope, situated on La Palma, Spain.

LT 2.0 m robotic Liverpool Telescope, situated on La Palma, Spain.

NTT 3.6 m New Technology Telescope situated at La Silla, Chile.

pt5m 0.5 m Sheffield telescope, situated on La Palma, Spain.

RISE High-speed photometer on the LT, see Sect. 2.3.3.

SOAR 4.1 m Southern Astrophysical Research telescope, situated at Cerro Pachón, Chile.

SOI SOAR Optical Imager.

SOFI Son of Isaac, infrared spectrograph and imaging camera on the NTT.

TNT 2.4 m Thai National Telescope, situated on Doi Inthanon, Thailand.

TRAPPIST 0.6 m robotic telescope at La Silla, Chile, equiped with TRAPPISTCAM photometer.

ULTRACAM Three-channel high-speed photometer, see Sect. 2.3.1.

ULTRASPEC High-speed photometer, see Sect. 2.3.2.

VLT 8.0 m Unit Telescope of the Very Large Telescope, situated on Paranal, Chile.

WFC Wide-Field Camera on the INT, see Sect. 2.3.4.

WHT 4.2 m William Herschel Telescope, situated on La Palma, Spain.
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Table A.2: 0 published and 2 unpublished mid-eclipse times for SDSS J0024+1745, a detached
white dwarf + M-dwarf of unknown spectral type. Numbers in parenthesis indicate the uncertainty
in the last digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

15767 56482.195608(89) 56482.196806(89) no LT+RISE

17976 56924.075625(102) 56924.081918(102) no LT+RISE

Table A.3: 0 published and 25 unpublished mid-eclipse times for SDSS J0106-0014, a detached
white dwarf + M-dwarf of spectral type M8. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.1 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 55059.051789(16) 55059.056118(16) no LT+RISE

12 55060.071890(15) 55060.076296(15) no LT+RISE

24 55061.092000(17) 55061.096482(17) no LT+RISE

36 55062.112095(13) 55062.116652(13) no LT+RISE

37 55062.197102(21) 55062.201665(21) no LT+RISE

47 55063.047217(21) 55063.051841(21) no LT+RISE

61 55064.237361(20) 55064.242071(20) no LT+RISE

107 55068.147757(13) 55068.152733(13) no LT+RISE

319 55086.170040(8) 55086.175990(8) no WHT+ACAM

471 55099.091971(4) 55099.098325(4) no WHT+ACAM

5317 55511.077129(2) 55511.082625(2) no NTT+ULTRACAM

5458 55523.065056(5) 55523.069785(5) no NTT+ULTRACAM

5493 55526.040814(1) 55526.045324(1) no NTT+ULTRACAM

5495 55526.210854(5) 55526.215351(5) no NTT+ULTRACAM

5505 55527.061073(1) 55527.065506(1) no NTT+ULTRACAM

5740 55547.041403(5) 55547.044112(5) no NTT+ULTRACAM

5741 55547.126414(11) 55547.129116(11) no NTT+ULTRACAM

9502 55866.865847(2) 55866.871804(2) no WHT+ULTRACAM

9514 55867.886073(3) 55867.891987(3) no WHT+ULTRACAM

13150 56177.001963(2) 56177.007702(2) no WHT+ULTRACAM

13151 56177.086976(2) 56177.092719(2) no WHT+ULTRACAM

13549 56210.922336(1) 56210.928820(1) no WHT+ULTRACAM

17856 56577.083313(10) 56577.089804(10) no LT+RISE

19108 56683.530225(5) 56683.528974(5) no TNT+ULTRASPEC

19132 56685.570797(7) 56685.569356(7) no TNT+ULTRASPEC

Table A.4: 5 published and 9 unpublished mid-eclipse times for SDSS J0110+1326, a detached
white dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.2 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 53993.948697(200) yes Pyrzas et al. 2009

Table A.4: Continues on next page.
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Table A.4: Times for SDSS J0110+1326; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

3 - 53994.946534(200) yes Pyrzas et al. 2009

6 - 53995.944916(200) yes Pyrzas et al. 2009

1170 - 54383.192816(200) yes Pyrzas et al. 2009

1203 - 54394.171253(1) yes Parsons et al. 2010b

5435 55802.096813(5) 55802.101590(5) no LT+RISE

5711 55893.918364(4) 55893.923129(4) no LT+RISE

5786 55918.871981(5) 55918.874640(5) no LT+RISE

6352 56107.175967(8) 56107.175339(8) no LT+RISE

6604 56191.006352(4) 56191.012426(4) no LT+RISE

6661 56209.969071(1) 56209.975558(1) no WHT+ULTRACAM

7561 - 56509.393675(11) no VLT+HAWK-I

7581 56516.043888(5) 56516.047398(5) no LT+RISE

7853 56606.532343(6) 56606.538199(6) no TNT+ULTRASPEC

Table A.5: 6 published and 1 unpublished mid-eclipse times for SDSS J0138-0016, a detached
white dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.3 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 55867.001238(10) 55867.007406(10) yes Parsons et al. 2012b

1 55867.074018(10) 55867.080184(10) yes Parsons et al. 2012b

397 55895.890328(37) 55895.895017(37) yes Parsons et al. 2012b

411 55896.909180(52) 55896.913796(52) yes Parsons et al. 2012b

426 55898.000697(91) 55898.005233(91) yes Parsons et al. 2012b

1070 55944.865636(17) 55944.865875(17) yes Parsons et al. 2012b

4290 56179.163688(21) 56179.169083(21) no WHT+ULTRACAM

Table A.6: 0 published and 6 unpublished mid-eclipse times for PTFEB28.235, a detached white
dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in the
last digit(s). See Fig. B.4 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-705 55922.949864(45) 55922.953548(45) no LT+RISE

0 56195.163625(34) 56195.168502(34) no LT+RISE

243 56288.992035(95) 56288.995675(95) no LT+RISE

992 56578.194149(32) 56578.199794(32) no LT+RISE

1283 56690.560327(25) 56690.560841(25) no TNT+ULTRASPEC

1906 56931.108651(32) 56931.113825(32) no LT+RISE
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Table A.7: 0 published and 1 unpublished mid-eclipse times for SDSS J0259-0044, a detached
white dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in
the last digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

30459 56211.096093(11) 56211.101880(11) no WHT+ULTRACAM

Table A.8: 13 published and 11 unpublished mid-eclipse times for SDSS J0303+0054, a detached
white dwarf + M-dwarf of spectral type M4.5. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.5 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

2968 54390.122320(2) 54390.128292(2) yes Parsons et al. 2010b

2976 54391.197780(2) 54391.203787(2) yes Parsons et al. 2010b

3058 54402.221411(18) 54402.227653(18) yes Parsons et al. 2010b

11300 55510.256732(2) 55510.262978(2) no NTT+ULTRACAM

11307 55511.197801(3) 55511.204039(3) no NTT+ULTRACAM

11411 55525.179624(4) 55525.185565(4) no NTT+ULTRACAM

13443 - 55798.362876(13) yes Backhaus et al. 2012

13510 - 55807.370189(14) yes Backhaus et al. 2012

13533 - 55810.462273(12) yes Backhaus et al. 2012

13874 - 55856.305526(11) yes Backhaus et al. 2012

13897 - 55859.397585(11) yes Backhaus et al. 2012

13926 - 55863.296278(10) yes Backhaus et al. 2012

13948 - 55866.253894(13) yes Backhaus et al. 2012

16283 56180.161925(2) 56180.165824(2) yes Parsons et al. 2013a

16505 56210.005261(2) 56210.010984(2) yes Parsons et al. 2013a

16535 56214.038239(2) 56214.044118(2) yes Parsons et al. 2013a

17011 56278.031604(17) 56278.036452(17) no LT+RISE

18671 56501.203048(30) 56501.202982(30) no LT+RISE

18701 56505.235763(5) 56505.236075(5) no WHT+ULTRACAM

19191 56571.105019(13) 56571.110566(13) no LT+RISE

19800 56652.978910(13) 56652.983082(13) no LT+RISE

20035 56684.574551(5) 56684.575920(5) no TNT+ULTRASPEC

21386 56866.201304(12) 56866.201227(12) no LT+RISE

22296 56988.533625(9) 56988.539519(9) no TNT+ULTRASPEC

Table A.9: 0 published and 4 unpublished mid-eclipse times for SDSS J0308-0054, a detached
white dwarf + M-dwarf of spectral type M4.5. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.6 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56181.139717(27) 56181.143583(27) no WHT+ULTRACAM

156 56210.147584(12) 56210.153218(12) no WHT+ULTRACAM

182 56214.982363(18) 56214.988184(18) no WHT+ULTRACAM

Table A.9: Continues on next page.
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Table A.9: Times for SDSS J0308-0054; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

2707 56684.534261(37) 56684.535713(37) no TNT+ULTRASPEC

Table A.10: 0 published and 11 unpublished mid-eclipse times for SDSS J0314+0206, a detached
white dwarf + K-dwarf of spectral type K5-M5. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.7 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56195.201610(7) 56195.206355(7) no LT+RISE

62 56214.128990(1) 56214.134750(1) no WHT+ULTRACAM

278 56280.073917(10) 56280.078845(10) no LT+RISE

464 56336.864053(11) 56336.864026(11) no LT+RISE

1035 56511.187938(11) 56511.188489(11) no LT+RISE

1225 56569.189593(10) 56569.194874(10) no LT+RISE

1519 56658.948160(8) 56658.952121(8) no LT+RISE

2283 56892.196827(9) 56892.198868(9) no LT+RISE

2414 56932.187569(8) 56932.192735(8) no LT+RISE

2717 57024.693727(25) 57024.697662(25) no TNT+ULTRASPEC

2913 57084.537436(13) 57084.535843(13) no TNT+ULTRASPEC

Table A.11: 14 published and 13 unpublished mid-eclipse times for NLTT 11748, a detached
double white dwarf binary. Numbers in parenthesis indicate the uncertainty in the last digit(s).
See Fig. B.8 for the O-C diagram of all eclipse times with respect to the best linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-1093 - 55515.120443(21) yes Kaplan et al. 2014

-1050 - 55525.228090(18) yes Kaplan et al. 2014

-1046 - 55526.168300(13) yes Kaplan et al. 2014

-1042 - 55527.108548(12) yes Kaplan et al. 2014

-1042 55527.101943(10) 55527.108361(10) no NTT+ULTRACAM

-965 - 55545.208237(16) yes Kaplan et al. 2014

-961 - 55546.148475(18) yes Kaplan et al. 2014

-957 - 55547.088715(23) yes Kaplan et al. 2014

731 - 55943.870809(9) yes Kaplan et al. 2014

736 - 55945.046118(28) yes Kaplan et al. 2014

748 - 55947.866825(9) yes Kaplan et al. 2014

748 55947.863289(8) 55947.866623(8) no WHT+ULTRACAM

753 - 55949.042137(10) yes Kaplan et al. 2014

1698 - 56171.174286(11) yes Kaplan et al. 2014

1711 - 56174.230072(11) yes Kaplan et al. 2014

1736 - 56180.106572(12) yes Kaplan et al. 2014

1736 56180.103694(9) 56180.106395(9) no WHT+ULTRACAM

3530 56601.798585(42) 56601.804886(42) no TNT+ULTRASPEC

3551 56606.734723(29) 56606.741123(29) no TNT+ULTRASPEC

Table A.11: Continues on next page.
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Table A.11: Times for NLTT 11748; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

3891 56686.659143(21) 56686.661731(21) no TNT+ULTRASPEC

3908 56690.655596(24) 56690.657800(24) no TNT+ULTRASPEC

4710 - 56879.176259(13) no WHT+ULTRACAM

5176 56988.708002(19) 56988.714435(19) no TNT+ULTRASPEC

5180 56989.648255(19) 56989.654675(19) no TNT+ULTRASPEC

5189 56991.763850(24) 56991.770234(24) no TNT+ULTRASPEC

5193 56992.704057(26) 56992.710423(26) no TNT+ULTRASPEC

5571 57081.563667(67) 57081.563330(67) no TNT+ULTRASPEC

Table A.12: 209 published and 1 unpublished mid-eclipse times for V471 Tau, a detached white
dwarf + K-dwarf of spectral type K2. Numbers in parenthesis indicate the uncertainty in the
last digit(s). See Fig. B.9 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MHJD(TT) HMJD(TDB) BMJD(TDB) pub? source

-25741 40612.171250(12) - - yes İbanoǧlu et al. 2005

-25739 40613.213590(12) - - yes İbanoǧlu et al. 2005

-25716 40625.200840(12) - - yes İbanoǧlu et al. 2005

-25695 40636.145780(12) - - yes İbanoǧlu et al. 2005

-25213 40887.356070(12) - - yes İbanoǧlu et al. 2005

-25196 40896.216160(12) - - yes İbanoǧlu et al. 2005

-25192 40898.300840(12) - - yes İbanoǧlu et al. 2005

-25192 40898.300870(12) - - yes İbanoǧlu et al. 2005

-25192 40898.300900(93) - - yes İbanoǧlu et al. 2005

-25190 40899.343150(12) - - yes İbanoǧlu et al. 2005

-25190 40899.343320(12) - - yes İbanoǧlu et al. 2005

-25175 40907.161020(12) - - yes İbanoǧlu et al. 2005

-25167 40911.330420(12) - - yes İbanoǧlu et al. 2005

-25052 40971.266660(12) - - yes İbanoǧlu et al. 2005

-24968 41015.046020(12) - - yes İbanoǧlu et al. 2005

-24943 41028.075710(12) - - yes İbanoǧlu et al. 2005

-24597 41208.405310(12) - - yes İbanoǧlu et al. 2005

-24578 41218.307720(12) - - yes İbanoǧlu et al. 2005

-24551 41232.379670(12) - - yes İbanoǧlu et al. 2005

-24507 41255.311690(12) - - yes İbanoǧlu et al. 2005

-24486 41266.256650(12) - - yes İbanoǧlu et al. 2005

-24469 41275.116730(12) - - yes İbanoǧlu et al. 2005

-24457 41281.370990(12) - - yes İbanoǧlu et al. 2005

-24455 41282.413310(12) - - yes İbanoǧlu et al. 2005

-24444 41288.145960(12) - - yes İbanoǧlu et al. 2005

-24427 41297.006280(12) - - yes İbanoǧlu et al. 2005

-24423 41299.091240(12) - - yes İbanoǧlu et al. 2005

-24379 41322.023290(12) - - yes İbanoǧlu et al. 2005

-24373 41325.150390(12) - - yes İbanoǧlu et al. 2005

Table A.12: Continues on next page.
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Table A.12: Times for V471 Tau; continued from previous page.

cycle MHJD(TT) HMJD(TDB) BMJD(TDB) pub? source

-24371 41326.192840(12) - - yes İbanoǧlu et al. 2005

-24308 41359.027340(12) - - yes İbanoǧlu et al. 2005

-24302 41362.154500(93) - - yes İbanoǧlu et al. 2005

-24279 41374.141650(12) - - yes İbanoǧlu et al. 2005

-23725 41662.877330(12) - - yes İbanoǧlu et al. 2005

-23721 41664.962020(12) - - yes İbanoǧlu et al. 2005

-23636 41709.262600(93) - - yes İbanoǧlu et al. 2005

-23631 41711.868490(12) - - yes İbanoǧlu et al. 2005

-23114 41981.320200(93) - - yes İbanoǧlu et al. 2005

-23112 41982.362670(12) - - yes İbanoǧlu et al. 2005

-23108 41984.447430(12) - - yes İbanoǧlu et al. 2005

-23067 42005.815910(12) - - yes İbanoǧlu et al. 2005

-23065 42006.858290(12) - - yes İbanoǧlu et al. 2005

-23063 42007.900680(12) - - yes İbanoǧlu et al. 2005

-23049 42015.197210(12) - - yes İbanoǧlu et al. 2005

-23047 42016.239570(12) - - yes İbanoǧlu et al. 2005

-23047 42016.239580(12) - - yes İbanoǧlu et al. 2005

-23045 42017.281950(12) - - yes İbanoǧlu et al. 2005

-23030 42025.099710(12) - - yes İbanoǧlu et al. 2005

-23017 42031.875140(12) - - yes İbanoǧlu et al. 2005

-22990 42045.946940(12) - - yes İbanoǧlu et al. 2005

-22959 42062.103690(12) - - yes İbanoǧlu et al. 2005

-22946 42068.879020(12) - - yes İbanoǧlu et al. 2005

-22904 42090.768880(12) - - yes İbanoǧlu et al. 2005

-22423 42341.457870(12) - - yes İbanoǧlu et al. 2005

-22421 42342.500320(12) - - yes İbanoǧlu et al. 2005

-22414 42346.148460(12) - - yes İbanoǧlu et al. 2005

-22385 42361.262850(12) - - yes İbanoǧlu et al. 2005

-22383 42362.305180(12) - - yes İbanoǧlu et al. 2005

-22336 42386.800820(12) - - yes İbanoǧlu et al. 2005

-21604 42768.306750(12) - - yes İbanoǧlu et al. 2005

-21566 42788.111660(12) - - yes İbanoǧlu et al. 2005

-21495 42825.115630(12) - - yes İbanoǧlu et al. 2005

-21449 42849.090030(12) - - yes İbanoǧlu et al. 2005

-21011 43077.368340(12) - - yes İbanoǧlu et al. 2005

-21009 43078.410540(12) - - yes İbanoǧlu et al. 2005

-21007 43079.452840(12) - - yes İbanoǧlu et al. 2005

-21005 43080.495340(12) - - yes İbanoǧlu et al. 2005

-20277 43459.916550(12) - - yes İbanoǧlu et al. 2005

-20273 43462.001350(12) - - yes İbanoǧlu et al. 2005

-20271 43463.043750(12) - - yes İbanoǧlu et al. 2005

-20238 43480.242580(12) - - yes İbanoǧlu et al. 2005

-20236 43481.284940(12) - - yes İbanoǧlu et al. 2005

Table A.12: Continues on next page.



Appendix A. Eclipse times of white dwarf binaries in the timing program 132

Table A.12: Times for V471 Tau; continued from previous page.

cycle MHJD(TT) HMJD(TDB) BMJD(TDB) pub? source

-20177 43512.034750(12) - - yes İbanoǧlu et al. 2005

-20173 43514.119520(12) - - yes İbanoǧlu et al. 2005

-20164 43518.810310(12) - - yes İbanoǧlu et al. 2005

-19645 43789.304160(12) - - yes İbanoǧlu et al. 2005

-19643 43790.346460(12) - - yes İbanoǧlu et al. 2005

-19603 43811.193840(12) - - yes İbanoǧlu et al. 2005

-19599 43813.278540(12) - - yes İbanoǧlu et al. 2005

-19594 43815.884580(12) - - yes İbanoǧlu et al. 2005

-19592 43816.926740(12) - - yes İbanoǧlu et al. 2005

-19588 43819.011620(12) - - yes İbanoǧlu et al. 2005

-19563 43832.041070(12) - - yes İbanoǧlu et al. 2005

-19508 43860.706310(12) - - yes İbanoǧlu et al. 2005

-19502 43863.833390(12) - - yes İbanoǧlu et al. 2005

-18884 44185.924380(12) - - yes İbanoǧlu et al. 2005

-18880 44188.009100(93) - - yes İbanoǧlu et al. 2005

-18824 44217.195400(93) - - yes İbanoǧlu et al. 2005

-18709 44277.131460(12) - - yes İbanoǧlu et al. 2005

-18702 44280.779790(12) - - yes İbanoǧlu et al. 2005

-18285 44498.112950(12) - - yes İbanoǧlu et al. 2005

-18250 44516.354500(93) - - yes İbanoǧlu et al. 2005

-18248 44517.397090(12) - - yes İbanoǧlu et al. 2005

-18247 44517.918020(12) - - yes İbanoǧlu et al. 2005

-18227 44528.341700(93) - - yes İbanoǧlu et al. 2005

-18221 44531.468700(93) - - yes İbanoǧlu et al. 2005

-18198 44543.456010(12) - - yes İbanoǧlu et al. 2005

-18187 44549.189080(12) - - yes İbanoǧlu et al. 2005

-18137 44575.248430(12) - - yes İbanoǧlu et al. 2005

-18133 44577.332970(12) - - yes İbanoǧlu et al. 2005

-18120 44584.108360(12) - - yes İbanoǧlu et al. 2005

-18112 44588.277460(12) - - yes İbanoǧlu et al. 2005

-18111 44588.799090(12) - - yes İbanoǧlu et al. 2005

-18017 44637.790460(12) - - yes İbanoǧlu et al. 2005

-17560 44875.970780(12) - - yes İbanoǧlu et al. 2005

-17493 44910.890140(12) - - yes İbanoǧlu et al. 2005

-16777 45284.057160(12) - - yes İbanoǧlu et al. 2005

-16759 45293.438610(12) - - yes İbanoǧlu et al. 2005

-16700 45324.188210(12) - - yes İbanoǧlu et al. 2005

-16677 45336.175570(12) - - yes İbanoǧlu et al. 2005

-16539 45408.098640(12) - - yes İbanoǧlu et al. 2005

-16537 45409.141010(12) - - yes İbanoǧlu et al. 2005

-16148 45611.881260(12) - - yes İbanoǧlu et al. 2005

-16144 45613.966070(12) - - yes İbanoǧlu et al. 2005

-15989 45694.749500(93) - - yes İbanoǧlu et al. 2005

Table A.12: Continues on next page.
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Table A.12: Times for V471 Tau; continued from previous page.

cycle MHJD(TT) HMJD(TDB) BMJD(TDB) pub? source

-15528 45935.014790(12) - - yes İbanoǧlu et al. 2005

-15526 45936.057380(12) - - yes İbanoǧlu et al. 2005

-15367 46018.925410(12) - - yes İbanoǧlu et al. 2005

-15353 46026.222120(12) - - yes İbanoǧlu et al. 2005

-15346 46029.870200(93) - - yes İbanoǧlu et al. 2005

-15330 46038.209470(12) - - yes İbanoǧlu et al. 2005

-15292 46058.013940(12) - - yes İbanoǧlu et al. 2005

-15288 46060.098960(12) - - yes İbanoǧlu et al. 2005

-15280 46064.268250(12) - - yes İbanoǧlu et al. 2005

-15261 46074.170850(12) - - yes İbanoǧlu et al. 2005

-14730 46350.919110(12) - - yes İbanoǧlu et al. 2005

-14728 46351.961560(12) - - yes İbanoǧlu et al. 2005

-14656 46389.486730(12) - - yes İbanoǧlu et al. 2005

-14654 46390.529120(12) - - yes İbanoǧlu et al. 2005

-13362 47063.897800(93) - - yes İbanoǧlu et al. 2005

-13360 47064.940250(12) - - yes İbanoǧlu et al. 2005

-13358 47065.982400(93) - - yes İbanoǧlu et al. 2005

-12625 47448.009350(12) - - yes İbanoǧlu et al. 2005

-12424 47552.767490(12) - - yes İbanoǧlu et al. 2005

-12422 47553.809800(93) - - yes İbanoǧlu et al. 2005

-12420 47554.852300(93) - - yes İbanoǧlu et al. 2005

-11879 47836.812300(93) - - yes İbanoǧlu et al. 2005

-11712 47923.850020(12) - - yes İbanoǧlu et al. 2005

-11645 47958.769200(93) - - yes İbanoǧlu et al. 2005

-11622 47970.756670(12) - - yes İbanoǧlu et al. 2005

-11215 48182.878200(93) - - yes İbanoǧlu et al. 2005

-11213 48183.920480(12) - - yes İbanoǧlu et al. 2005

-10480 48565.948410(12) - - yes İbanoǧlu et al. 2005

-10294 48662.888540(12) - - yes İbanoǧlu et al. 2005

-9887 48875.010460(12) - - yes İbanoǧlu et al. 2005

-9864 48886.997720(12) - - yes İbanoǧlu et al. 2005

-9860 48889.082430(12) - - yes İbanoǧlu et al. 2005

-9726 48958.921060(12) - - yes İbanoǧlu et al. 2005

-9686 48979.768370(12) - - yes İbanoǧlu et al. 2005

-9181 49242.966040(8) - - yes İbanoǧlu et al. 2005

-9179 49244.008350(8) - - yes İbanoǧlu et al. 2005

-8298 49703.171210(12) - - yes Guinan & Ribas 2001

-7809 49958.030100(15) - - yes İbanoǧlu et al. 2005

-7611 50061.224580(12) - - yes Guinan & Ribas 2001

-7596 50069.042460(14) - - yes İbanoǧlu et al. 2005

-6969 50395.824590(16) - - yes İbanoǧlu et al. 2005

-6967 50396.867200(12) - - yes İbanoǧlu et al. 2005

-6965 50397.909330(12) - - yes İbanoǧlu et al. 2005

Table A.12: Continues on next page.
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Table A.12: Times for V471 Tau; continued from previous page.

cycle MHJD(TT) HMJD(TDB) BMJD(TDB) pub? source

-6963 50398.951870(14) - - yes İbanoǧlu et al. 2005

-6391 50697.068730(16) - - yes İbanoǧlu et al. 2005

-6330 50728.860850(15) - - yes İbanoǧlu et al. 2005

-6328 50729.903280(16) - - yes İbanoǧlu et al. 2005

-6326 50730.945880(16) - - yes İbanoǧlu et al. 2005

-6324 50731.988120(15) - - yes İbanoǧlu et al. 2005

-5643 51086.914160(16) - - yes İbanoǧlu et al. 2005

-5641 51087.956210(15) - - yes İbanoǧlu et al. 2005

-5547 51136.947500(12) - - yes İbanoǧlu et al. 2005

-5370 51229.197480(12) - - yes Guinan & Ribas 2001

-4931 51457.996860(19) - - yes İbanoǧlu et al. 2005

-4908 51469.984040(17) - - yes İbanoǧlu et al. 2005

-4862 51493.958600(14) - - yes İbanoǧlu et al. 2005

-4796 51528.356930(12) - - yes Guinan & Ribas 2001

-4796 51528.356990(12) - - yes Guinan & Ribas 2001

-4777 51538.259560(12) - - yes Guinan & Ribas 2001

-4777 51538.259610(12) - - yes Guinan & Ribas 2001

-4689 51584.123790(12) - - yes Guinan & Ribas 2001

-4271 51801.978880(14) - - yes İbanoǧlu et al. 2005

-4269 51803.020600(17) - - yes İbanoǧlu et al. 2005

-4251 51812.402560(12) - - yes Guinan & Ribas 2001

-4244 51816.050520(15) - - yes İbanoǧlu et al. 2005

-4230 51823.347390(12) - - yes Guinan & Ribas 2001

-4137 51871.817260(16) - - yes İbanoǧlu et al. 2005

-4135 51872.859770(16) - - yes İbanoǧlu et al. 2005

-3519 52193.909220(15) - - yes İbanoǧlu et al. 2005

-3511 52198.078770(10) - - yes İbanoǧlu et al. 2005

-3511 52198.079020(16) - - yes İbanoǧlu et al. 2005

-3308 52303.879050(16) - - yes İbanoǧlu et al. 2005

-3291 52312.739330(7) - - yes İbanoǧlu et al. 2005

-2832 52551.962380(7) - - yes İbanoǧlu et al. 2005

-2809 52563.949630(7) - - yes İbanoǧlu et al. 2005

-2805 52566.034460(7) - - yes İbanoǧlu et al. 2005

-2788 52574.894440(8) - - yes İbanoǧlu et al. 2005

-2786 52575.936900(8) - - yes İbanoǧlu et al. 2005

-2147 52908.973410(9) - - yes İbanoǧlu et al. 2005

-1946 53013.730870(10) - - yes İbanoǧlu et al. 2005

-1395 53300.903260(10) - - yes İbanoǧlu et al. 2005

-1395 53300.903310(7) - - yes İbanoǧlu et al. 2005

-1307 53346.767340(6) - - yes İbanoǧlu et al. 2005

0 54027.954130(170) - - yes Kundra & Hric 2011

52 54055.055550(210) - - yes Kundra & Hric 2011

1500 54809.728950(190) - - yes Kundra & Hric 2011

Table A.12: Continues on next page.
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Table A.12: Times for V471 Tau; continued from previous page.

cycle MHJD(TT) HMJD(TDB) BMJD(TDB) pub? source

1642 54883.736990(180) - - yes Kundra & Hric 2011

1988 55064.066360(200) - - yes Kundra & Hric 2011

2009 55075.011400(230) - - yes Kundra & Hric 2011

2011 55076.053640(180) - - yes Kundra & Hric 2011

2848 - 55512.284058(2) - yes Hardy et al. 2015

2886 - 55532.088988(18) - yes Hardy et al. 2015

2911 - 55545.118594(19) - yes Hardy et al. 2015

2915 - 55547.203361(27) - yes Hardy et al. 2015

3617 - - 55913.073912(43) no pt5m

Table A.13: 21 published and 14 unpublished mid-eclipse times for RR Cae, a detached white
dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.10 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-5932 - 49720.978524(3) yes Maxted et al. 2007

-5929 - 49721.889675(3) yes Maxted et al. 2007

-5916 - 49725.837828(4) yes Maxted et al. 2007

-2708 - 50700.119201(4) yes Maxted et al. 2007

-2544 - 50749.926547(2) yes Maxted et al. 2007

-2534 - 50752.963587(2) yes Maxted et al. 2007

-2524 - 50756.000622(2) yes Maxted et al. 2007

-1572 - 51045.126463(2) yes Maxted et al. 2007

1 - 51522.852260(30) yes Maxted et al. 2007

5 - 51524.067070(30) yes Maxted et al. 2007

18 - 51528.015180(40) yes Maxted et al. 2007

31 - 51531.963350(30) yes Maxted et al. 2007

5616 - 53228.148145(2) yes Maxted et al. 2007

7173 - 53701.014824(1) yes Parsons et al. 2010b

7174 - 53701.318536(0) yes Parsons et al. 2010b

12999 - 55470.392581(24) no NTT+SOFI

13147 - 55515.340786(0) no NTT+ULTRACAM

13170 - 55522.325975(0) no NTT+ULTRACAM

13186 - 55527.185233(0) no NTT+ULTRACAM

13206 - 55533.259310(50) yes Qian et al. 2012

13219 - 55537.207490(50) yes Qian et al. 2012

13607 - 55655.044470(20) yes Qian et al. 2012

14378 - 55889.199910(20) yes Qian et al. 2012

14385 - 55891.325850(20) yes Qian et al. 2012

14388 - 55892.236950(20) yes Qian et al. 2012

15527 56238.152426(9) 56238.155336(9) no SOAR+SOI

15600 56260.323007(9) 56260.325711(9) no VLT+HAWKI

15603 56261.234117(7) 56261.236806(7) no VLT+HAWKI

Table A.13: Continues on next page.
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Table A.13: Times for RR Cae; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

15889 56348.096135(14) 56348.096035(14) no TRAPPIST

16443 56516.346760(17) 56516.347811(17) no TRAPPIST

16545 56547.323470(17) 56547.325558(17) no TRAPPIST

17242 56759.008165(18) 56759.006916(18) no TRAPPIST

17298 56776.015747(20) 56776.014355(20) no TRAPPIST

18306 - 57082.147575(3) no DT+DFOSC

18309 - 57083.058679(3) no DT+DFOSC

Table A.14: 1 published and 4 unpublished mid-eclipse times for SDSS J0821+4559, a detached
white dwarf + M-dwarf of spectral type M2. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.11 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 55989.034455(23) 55989.038796(23) yes Parsons et al. 2013b

562 56275.143526(12) 56275.148530(12) no LT+RISE

1318 56660.016368(10) 56660.022091(10) no LT+RISE

1432 56718.054178(11) 56718.058612(11) no LT+RISE

2152 57084.600487(22) 57084.604843(22) no TNT+ULTRASPEC

Table A.15: 5 published and 13 unpublished mid-eclipse times for CSS 40190, a detached white
dwarf + M-dwarf of spectral type M7. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.12 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

15941 55543.335763(2) 55543.340495(2) no NTT+ULTRACAM

16141 - 55569.362966(9) yes Backhaus et al. 2012

16516 - 55618.155072(11) yes Backhaus et al. 2012

18294 - 55849.494786(16) yes Backhaus et al. 2012

18355 - 55857.431650(13) yes Backhaus et al. 2012

18417 - 55865.498586(15) yes Backhaus et al. 2012

22196 56357.187831(12) 56357.193085(12) no VLT+HAWKI

22479 56394.012591(15) 56394.014858(15) no VLT+HAWKI

24470 56653.062854(10) 56653.068443(10) no LT+RISE

24976 56718.899818(16) 56718.905274(16) no LT+RISE

25135 56739.589110(7) 56739.593127(7) no TNT+ULTRASPEC

25150 56741.540965(18) 56741.544821(18) no TNT+ULTRASPEC

25158 56742.581934(13) 56742.585704(13) no TNT+ULTRASPEC

27059 56989.925640(6) 56989.929193(6) no TNT+ULTRASPEC

27092 56994.218961(11) 56994.222880(11) no LT+RISE

27475 57044.049463(20) 57044.055884(20) no LT+RISE

27725 57076.578141(9) 57076.583981(9) no TNT+ULTRASPEC

28067 57121.079776(20) 57121.082366(20) no VLT+HAWK-I
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Table A.16: 0 published and 6 unpublished mid-eclipse times for SDSS J0857+3318, a detached
white dwarf + M-dwarf of unknown spectral type. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.13 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 55957.115665(4) 55957.121911(4) no WHT+ULTRACAM

1 55957.221691(4) 55957.227937(4) no WHT+ULTRACAM

10 55958.175952(4) 55958.182192(4) no WHT+ULTRACAM

11 55958.281979(8) 55958.288219(8) no WHT+ULTRACAM

7427 56744.582975(17) 56744.586488(17) no TNT+ULTRASPEC

7437 56745.643336(27) 56745.646762(27) no TNT+ULTRASPEC

Table A.17: 16 published and 14 unpublished mid-eclipse times for CSS 03170, a detached white
dwarf + M-dwarf of spectral type M8. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.14 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-374 - 55528.366640(26) yes Backhaus et al. 2012

381 - 55577.514506(30) yes Backhaus et al. 2012

1467 - 55648.209375(11) yes Backhaus et al. 2012

1558 - 55654.133181(9) yes Backhaus et al. 2012

4513 - 55846.493443(26) yes Backhaus et al. 2012

4574 - 55850.464311(20) yes Backhaus et al. 2012

4804 - 55865.436535(19) yes Backhaus et al. 2012

-298 55533.310860(2) 55533.313997(2) yes Parsons et al. 2012c

-237 55537.281401(2) 55537.284884(2) yes Parsons et al. 2012c

-206 55539.299227(2) 55539.302881(2) yes Parsons et al. 2012c

-191 55540.275590(2) 55540.279325(2) yes Parsons et al. 2012c

-100 55546.198910(6) 55546.203119(6) yes Parsons et al. 2012c

-99 55546.263994(2) 55546.268208(2) yes Parsons et al. 2012c

240 55568.330320(2) 55568.335933(2) yes Parsons et al. 2012c

269 55570.218033(2) 55570.223734(2) yes Parsons et al. 2012c

299 55572.170844(2) 55572.176631(2) yes Parsons et al. 2012c

4832 55867.259088(2) 55867.259233(2) no WHT+ULTRACAM

5997 55943.090713(2) 55943.096703(2) no WHT+ULTRACAM

10116 56211.231176(3) 56211.229343(3) no WHT+ULTRACAM

12877 56390.957543(18) 56390.960849(18) no LT+RISE

16903 56653.034613(30) 56653.039583(30) no LT+RISE

17375 56683.758884(4) 56683.765118(4) no TNT+ULTRASPEC

17388 56684.605127(6) 56684.611375(6) no TNT+ULTRASPEC

17457 56689.096723(13) 56689.103021(13) no LT+RISE

18279 56742.608011(11) 56742.612395(11) no TNT+ULTRASPEC

22036 56987.177653(18) 56987.180115(18) no LT+RISE

22061 56988.804886(7) 56988.807499(7) no TNT+ULTRASPEC

22091 56990.757597(13) 56990.760389(13) no TNT+ULTRASPEC

Table A.17: Continues on next page.
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Table A.17: Times for CSS 03170; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

22927 57045.174939(26) 57045.181097(26) no LT+RISE

23441 57078.634737(8) 57078.640713(8) no TNT+ULTRASPEC

Table A.18: 11 published and 25 unpublished mid-eclipse times for CSS 080502, a detached white
dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.15 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

12324 55308.006361(3) 55308.008730(3) no NTT+ULTRACAM

13765 55523.347004(4) 55523.349066(4) no NTT+ULTRACAM

13785 55526.335496(3) 55526.337834(3) no NTT+ULTRACAM

13912 55545.312450(1) 55545.316482(1) no NTT+ULTRACAM

13919 55546.358434(2) 55546.362550(2) no NTT+ULTRACAM

13925 55547.254993(2) 55547.259180(2) no NTT+ULTRACAM

14073 - 55569.376004(10) yes Backhaus et al. 2012

14120 - 55576.399608(13) yes Backhaus et al. 2012

14167 - 55583.423204(16) yes Backhaus et al. 2012

14392 55617.040636(5) 55617.046767(5) no LT+RISE

14587 - 55646.187183(11) yes Backhaus et al. 2012

14594 - 55647.233251(5) yes Backhaus et al. 2012

14600 - 55648.129867(5) yes Backhaus et al. 2012

14626 55652.011079(5) 55652.015273(5) no LT+RISE

14634 - 55653.210777(12) yes Backhaus et al. 2012

14640 - 55654.107405(5) yes Backhaus et al. 2012

16041 - 55863.470136(6) yes Backhaus et al. 2012

16054 - 55865.412837(7) yes Backhaus et al. 2012

16066 55867.206127(1) 55867.206081(1) no WHT+ULTRACAM

16068 - 55867.504964(5) yes Backhaus et al. 2012

16246 55894.102366(8) 55894.104942(8) no LT+RISE

16373 55913.079367(13) 55913.083586(13) no LT+RISE

16567 55942.068589(7) 55942.074534(7) no LT+RISE

16681 55959.104139(9) 55959.110496(9) no LT+RISE

17028 56010.960837(6) 56010.965485(6) no LT+RISE

19137 56326.123900(9) 56326.130271(9) no LT+RISE

19344 - 56357.063936(10) no VLT+HAWK-I

19351 - 56358.110006(17) no VLT+HAWK-I

19377 56361.989868(6) 56361.995393(6) no LT+RISE

21365 56659.072877(6) 56659.078153(6) no LT+RISE

21523 56682.683122(3) 56682.689361(3) no TNT+ULTRASPEC

21536 56684.625778(3) 56684.632056(3) no TNT+ULTRASPEC

23561 56987.241764(9) 56987.244078(9) no LT+RISE

23805 57023.701708(8) 57023.706944(8) no TNT+ULTRASPEC

23955 57046.116443(7) 57046.122638(7) no LT+RISE

Table A.18: Continues on next page.
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Table A.18: Times for CSS 080502; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

24160 57076.751302(4) 57076.757449(4) no TNT+ULTRASPEC

Table A.19: 0 published and 5 unpublished mid-eclipse times for SDSS J0927+3329, a detached
white dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.16 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56074.907576(21) 56074.906137(21) no LT+RISE

254 56661.189969(18) 56661.195424(18) no LT+RISE

266 56688.887922(13) 56688.894109(13) no TNT+ULTRASPEC

412 57025.889653(16) 57025.895078(16) no TNT+ULTRASPEC

419 57042.046639(33) 57042.052657(33) no LT+RISE

Table A.20: 1 published and 2 unpublished mid-eclipse times for SDSS J0935+2700, a detached
white dwarf + M-dwarf of unknown spectral type. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.17 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 56602.839467(8) yes Parsons et al. 2015

675 56738.532354(11) 56738.537145(11) no TNT+ULTRASPEC

2387 57082.700405(33) 57082.706310(33) no TNT+ULTRASPEC

Table A.21: 5 published and 5 unpublished mid-eclipse times for CSS 38094, a detached white
dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.18 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 55587.308817(35) yes Backhaus et al. 2012

84 - 55615.111957(10) yes Backhaus et al. 2012

202 - 55654.168723(21) yes Backhaus et al. 2012

774 - 55843.494813(19) yes Backhaus et al. 2012

795 - 55850.445601(13) yes Backhaus et al. 2012

1027 55927.230062(9) 55927.235198(9) no LT+RISE

2256 56334.015339(12) 56334.021506(12) no LT+RISE

2422 56388.962369(10) 56388.965814(10) no LT+RISE

3416 56717.963821(8) 56717.969526(8) no LT+RISE

4311 57014.200680(12) 57014.205256(12) no LT+RISE
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Table A.22: 1 published and 7 unpublished mid-eclipse times for SDSS J0946+2030, a detached
white dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.19 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56032.942313(25) 56032.945590(25) yes Parsons et al. 2013b

970 56278.217369(34) 56278.221262(34) no LT+RISE

1282 - 56357.114044(32) no VLT+HAWK-I

2453 56653.210151(27) 56653.214795(27) no LT+RISE

2597 56689.620462(21) 56689.626801(21) no TNT+ULTRASPEC

2601 56690.631930(26) 56690.638286(26) no TNT+ULTRASPEC

3853 57007.217022(49) 57007.220773(49) no LT+RISE

3979 57039.075458(29) 57039.081311(29) no LT+RISE

Table A.23: 6 published and 11 unpublished mid-eclipse times for CSS 41631, a detached white
dwarf + M-dwarf of spectral type M2. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.20 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 55548.353265(2) 55548.357089(2) no NTT+ULTRACAM

212 55580.335805(7) 55580.341676(7) no NTT+ULTRACAM

371 - 55604.330127(29) yes Backhaus et al. 2012

443 - 55615.192822(8) yes Backhaus et al. 2012

696 - 55653.363107(9) yes Backhaus et al. 2012

741 - 55660.152293(15) yes Backhaus et al. 2012

2049 - 55857.491223(9) yes Backhaus et al. 2012

2062 - 55859.452549(10) yes Backhaus et al. 2012

7700 56710.055800(11) 56710.062097(11) no LT+RISE

7889 56738.571458(17) 56738.576655(17) no TNT+ULTRASPEC

7922 56743.550535(8) 56743.555418(8) no TNT+ULTRASPEC

8176 - 56781.876611(1) no WHT+ULTRACAM

9548 56988.869539(4) 56988.871475(4) no TNT+ULTRASPEC

9574 56992.791798(8) 56992.794109(8) no TNT+ULTRASPEC

9590 56995.205541(14) 56995.208080(14) no LT+RISE

9947 57049.062846(15) 57049.068964(15) no LT+RISE

10137 57077.728188(4) 57077.734439(4) no TNT+ULTRASPEC

Table A.24: 1 published and 0 unpublished mid-eclipse times for SDSS J0957+3001, a detached
white dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in
the last digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

0 56014.970605(32) 56014.975114(32) yes Parsons et al. 2013b
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Table A.25: 24 published and 12 unpublished mid-eclipse times for CSS 41177, a detached double
white dwarf binary. Numbers in parenthesis indicate the uncertainty in the last digit(s). See
Fig. B.21 for the O-C diagram of all eclipse times with respect to the best linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-2907 55599.081449(13) 55599.087788(13) yes Bours et al. 2014a

-2736 55618.920182(16) 55618.926463(16) yes Bours et al. 2014a

-2620 - 55632.384239(14) yes Backhaus et al. 2012

-2484 - 55648.162338(9) yes Backhaus et al. 2012

-2434 55653.958476(20) 55653.963116(20) yes Bours et al. 2014a

-2381 - 55660.111914(19) yes Backhaus et al. 2012

-2020 - 55701.993490(3) yes Bours et al. 2014a

-740 - 55850.493250(21) yes Backhaus et al. 2012

-611 - 55865.459247(10) yes Backhaus et al. 2012

-199 55913.254004(22) 55913.257605(22) yes Bours et al. 2014a

66 - 55944.001690(2) yes Bours et al. 2014a

67 - 55944.117706(2) yes Bours et al. 2014a

68 - 55944.233725(5) yes Bours et al. 2014a

76 - 55945.161846(2) yes Bours et al. 2014a

77 - 55945.277862(2) yes Bours et al. 2014a

94 - 55947.250123(3) yes Bours et al. 2014a

102 - 55948.178246(2) yes Bours et al. 2014a

103 - 55948.294256(3) yes Bours et al. 2014a

109 - 55948.990352(2) yes Bours et al. 2014a

110 - 55949.106370(2) yes Bours et al. 2014a

111 - 55949.222385(2) yes Bours et al. 2014a

3187 56306.080321(15) 56306.085857(15) yes Bours et al. 2014a

3369 56327.194410(16) 56327.200698(16) yes Bours et al. 2014a

3678 56363.043600(13) 56363.049447(13) yes Bours et al. 2014a

5737 56601.925648(7) 56601.925247(7) no TNT+ULTRASPEC

6434 56682.781974(6) 56682.787997(6) no TNT+ULTRASPEC

6452 56684.870184(5) 56684.876275(5) no TNT+ULTRASPEC

6485 56688.698575(7) 56688.704773(7) no TNT+ULTRASPEC

6488 56689.046626(12) 56689.052833(12) no LT+RISE

9072 56988.835002(7) 56988.836722(7) no TNT+ULTRASPEC

9238 57008.091759(23) 57008.095265(23) no LT+RISE

9365 57022.824562(20) 57022.829232(20) no TNT+ULTRASPEC

9373 57023.752632(11) 57023.757367(11) no TNT+ULTRASPEC

9399 57026.768838(17) 57026.773777(17) no TNT+ULTRASPEC

9864 57080.714702(9) 57080.720942(9) no TNT+ULTRASPEC

9872 57081.642859(20) 57081.649078(20) no TNT+ULTRASPEC
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Table A.26: 0 published and 7 unpublished mid-eclipse times for SDSS J1013+2724, a detached
white dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.22 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

18979 56280.179218(8) 56280.182901(8) no LT+RISE

19838 56391.024506(8) 56391.028583(8) no LT+RISE

19946 - 56404.964940(2) no WHT+ULTRACAM

22426 56724.979222(10) 56724.985090(10) no LT+RISE

24914 57046.031689(10) 57046.037535(10) no LT+RISE

25176 57079.839985(3) 57079.846137(3) no TNT+ULTRASPEC

25423 57111.714326(21) 57111.719088(21) no TNT+ULTRASPEC

Table A.27: 0 published and 10 unpublished mid-eclipse times for SDSS J1021+1744, a detached
white dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.23 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56093.907207(121) 56093.905576(121) no LT+RISE

4216 56685.651390(35) 56685.657384(35) no TNT+ULTRASPEC

4238 56688.739295(54) 56688.745400(54) no TNT+ULTRASPEC

4622 56742.637709(39) 56742.643154(39) no TNT+ULTRASPEC

4643 56745.585285(51) 56745.590561(51) no TNT+ULTRASPEC

4650 56746.567903(29) 56746.573120(29) no TNT+ULTRASPEC

6626 57023.917609(17) 57023.922019(17) no TNT+ULTRASPEC

6734 - 57039.080798(5) no WHT+ULTRACAM

7009 57077.673036(26) 57077.679449(26) no TNT+ULTRASPEC

7215 57106.587779(50) 57106.593292(50) no TNT+ULTRASPEC

Table A.28: 1 published and 11 unpublished mid-eclipse times for SDSS J1028+0931, a detached
white dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.24 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56001.087312(9) 56001.093511(9) yes Parsons et al. 2013b

1434 56338.114004(13) 56338.120416(13) no LT+RISE

1578 56371.958079(13) 56371.964074(13) no LT+RISE

2909 56684.777351(3) 56684.783145(3) no TNT+ULTRASPEC

3148 56740.948375(13) 56740.954197(13) no LT+RISE

4203 56988.904863(4) 56988.905617(4) no TNT+ULTRASPEC

4220 56992.899880(4) 56992.901036(4) no TNT+ULTRASPEC

4373 57028.855353(9) 57028.859806(9) no TNT+ULTRASPEC

4417 57039.195727(11) 57039.200909(11) no LT+RISE

4585 57078.678595(4) 57078.685072(4) no TNT+ULTRASPEC

Table A.28: Continues on next page.
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Table A.28: Times for SDSS J1028+0931; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

4611 57084.789270(17) 57084.795710(17) no TNT+ULTRASPEC

4642 57092.075140(12) 57092.081454(12) no LT+RISE

Table A.29: 0 published and 7 unpublished mid-eclipse times for SDSS J1057+1307, a detached
white dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.25 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56010.056163(14) 56010.062214(14) no LT+RISE

3027 56388.923137(14) 56388.928540(14) no LT+RISE

5375 56682.803856(8) 56682.809249(8) no TNT+ULTRASPEC

5430 56689.687407(8) 56689.693165(8) no TNT+ULTRASPEC

8047 57017.239142(23) 57017.242155(23) no LT+RISE

8215 57038.264652(17) 57038.269402(17) no LT+RISE

8522 57076.687694(9) 57076.694105(9) no TNT+ULTRASPEC

Table A.30: 0 published and 1 unpublished mid-eclipse times for SDSS J1123-1155, a detached
white dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in
the last digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

418 56685.785129(9) 56685.789599(9) no TNT+ULTRASPEC

Table A.31: 9 published and 15 unpublished mid-eclipse times for SDSS J1210+3347, a detached
white dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.26 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 54923.033674(6) yes Pyrzas et al. 2012

16 - 54925.025532(8) yes Pyrzas et al. 2012

25 - 54926.145928(7) yes Pyrzas et al. 2012

33 - 54927.141846(9) yes Pyrzas et al. 2012

5431 55599.132609(5) 55599.137618(5) yes Pyrzas et al. 2012

5623 55623.033970(5) 55623.039607(5) yes Pyrzas et al. 2012

5872 55654.032363(8) 55654.037585(8) yes Pyrzas et al. 2012

6161 55690.011905(7) 55690.015125(7) yes Pyrzas et al. 2012

6610 55745.912256(7) 55745.910993(7) yes Pyrzas et al. 2012

7954 55913.223746(8) 55913.225239(8) no LT+RISE

8476 55978.203434(7) 55978.208897(7) no LT+RISE

9510 56106.932261(18) 56106.931315(18) no LT+RISE

11279 56327.148844(7) 56327.153735(7) no LT+RISE

11656 56374.080867(9) 56374.086375(9) no LT+RISE

Table A.31: Continues on next page.
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Table A.31: Times for SDSS J1210+3347; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

14153 56684.932912(3) 56684.937413(3) no TNT+ULTRASPEC

14625 56743.691210(5) 56743.696604(5) no TNT+ULTRASPEC

14632 56744.562655(8) 56744.568025(8) no TNT+ULTRASPEC

14853 56772.076167(9) 56772.080287(9) no LT+RISE

16595 56988.941804(5) 56988.941568(5) no TNT+ULTRASPEC

16627 56992.925154(5) 56992.925255(5) no TNT+ULTRASPEC

16875 57023.796028(9) 57023.798723(9) no TNT+ULTRASPEC

17039 57044.210912(6) 57044.215057(6) no LT+RISE

17302 57076.950377(5) 57076.955888(5) no TNT+ULTRASPEC

17356 57083.672748(11) 57083.678357(11) no TNT+ULTRASPEC

Table A.32: 1 published and 10 unpublished mid-eclipse times for SDSS J1212-0123, a detached
white dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.27 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

3593 55310.987659(6) 55310.993427(6) yes Parsons et al. 2012a

4623 55656.934063(4) 55656.940503(4) no LT+RISE

5383 55912.202496(18) 55912.202411(18) no LT+RISE

5523 55959.219974(5) 55959.224345(5) no LT+RISE

6636 56333.043651(10) 56333.048654(10) no LT+RISE

6708 - 56357.231330(20) no VLT+HAWK-I

6803 56389.132673(7) 56389.139072(7) no LT+RISE

7698 56689.739114(3) 56689.743472(3) no TNT+ULTRASPEC

8765 57048.113861(11) 57048.117642(11) no LT+RISE

8871 57083.713893(6) 57083.719963(6) no TNT+ULTRASPEC

8991 57124.018191(5) 57124.024454(5) no LT+RISE

Table A.33: 0 published and 9 unpublished mid-eclipse times for SDSS J1223-0056, a detached
white dwarf + M-dwarf of spectral type M6. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.28 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-10 55706.112284(12) 55706.116204(12) no NTT+ULTRACAM

0 55707.013134(9) 55707.016980(9) no NTT+ULTRACAM

2 55707.193331(16) 55707.197162(16) no NTT+ULTRACAM

12 55708.094175(9) 55708.097931(9) no NTT+ULTRACAM

11236 56719.127759(32) 56719.133777(32) no LT+RISE

11488 56741.826915(24) 56741.833443(24) no TNT+ULTRASPEC

11613 56753.086682(26) 56753.093138(26) no LT+RISE

14822 57042.150521(63) 57042.153568(63) no LT+RISE

15241 57079.890447(11) 57079.896253(11) no TNT+ULTRASPEC
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Table A.34: 0 published and 5 unpublished mid-eclipse times for CSS 25601, a detached white
dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.29 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

12849 - 56394.086879(19) no VLT+HAWK-I

12862 - 56397.048995(35) no VLT+HAWK-I

14267 56717.181455(22) 56717.187228(22) no LT+RISE

15711 57046.208471(15) 57046.211786(15) no LT+RISE

16040 57121.170340(17) 57121.176578(17) no VLT+HAWK-I

Table A.35: 1 published and 8 unpublished mid-eclipse times for SDSS J1307+2156, a detached
white dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.30 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56007.215475(16) 56007.221371(16) yes Parsons et al. 2013b

1516 56335.161376(15) 56335.165889(15) no LT+RISE

1765 56389.024299(15) 56389.030153(15) no LT+RISE

3393 56741.196974(25) 56741.202885(25) no LT+RISE

3725 56813.019146(14) 56813.021896(14) no LT+RISE

4552 56991.922087(13) 56991.920469(13) no TNT+ULTRASPEC

4794 57044.267543(11) 57044.270480(11) no LT+RISE

4963 57080.823698(7) 57080.828984(7) no TNT+ULTRASPEC

4968 57081.905247(7) 57081.910579(7) no TNT+ULTRASPEC

Table A.36: 4 published and 3 unpublished mid-eclipse times for CSS 21616, a detached white
dwarf + M-dwarf of unknown spectral type. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.31 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 55653.454195(11) yes Backhaus et al. 2012

138 - 55680.358500(14) yes Backhaus et al. 2012

215 - 55695.370287(56) yes Backhaus et al. 2012

783 - 55806.107031(31) yes Backhaus et al. 2012

5592 56743.659117(13) 56743.664872(13) no TNT+ULTRASPEC

5603 56745.803639(6) 56745.809404(6) no TNT+ULTRASPEC

7159 57049.162565(24) 57049.165560(24) no LT+RISE
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Table A.37: 26 published and 13 unpublished mid-eclipse times for DE CVn, a detached white
dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.32 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-6134 50550.418000(1600) 50550.422100(1600) yes van den Besselaar et al. 2007

-6109 50559.521200(1600) 50559.525000(1600) yes van den Besselaar et al. 2007

-6107 50560.250000(2000) 50560.253800(2000) yes van den Besselaar et al. 2007

-6101 50562.434400(2200) 50562.438100(2200) yes van den Besselaar et al. 2007

-6079 50570.447100(1400) 50570.450400(1400) yes van den Besselaar et al. 2007

-6063 50576.272500(1400) 50576.275600(1400) yes van den Besselaar et al. 2007

-6057 50578.458400(600) 50578.461300(600) yes van den Besselaar et al. 2007

-4912 50995.401200(1800) 50995.401100(1800) yes van den Besselaar et al. 2007

-3196 51620.259100(1500) 51620.263600(1500) yes van den Besselaar et al. 2007

-2015 52050.310800(1600) 52050.313300(1600) yes van den Besselaar et al. 2007

-2001 52055.408900(700) 52055.411100(700) yes van den Besselaar et al. 2007

-1982 52062.328000(700) 52062.329700(700) yes van den Besselaar et al. 2007

-1342 52295.376100(400) 52295.378900(400) yes van den Besselaar et al. 2007

-1334 52298.289100(100) 52298.292100(100) yes van den Besselaar et al. 2007

-1019 52412.994000(400) 52412.996500(400) yes van den Besselaar et al. 2007

-988 52424.282800(600) 52424.284600(600) yes van den Besselaar et al. 2007

-900 52456.328800(400) 52456.328600(400) yes van den Besselaar et al. 2007

-304 52673.352120(140) 52673.355620(140) yes van den Besselaar et al. 2007

-217 52705.032200(300) 52705.036600(300) yes van den Besselaar et al. 2007

-157 52726.880000(400) 52726.884400(400) yes van den Besselaar et al. 2007

0 52784.051844(25) 52784.054040(25) yes van den Besselaar et al. 2007

69 52809.178900(100) 52809.179500(100) yes van den Besselaar et al. 2007

2801 53804.003809(2) 53804.008265(2) yes Parsons et al. 2010b

2807 53806.188634(2) 53806.193106(2) yes Parsons et al. 2010b

2809 53806.916904(3) 53806.921380(3) yes Parsons et al. 2010b

2873 53830.222000(400) 53830.226300(400) yes van den Besselaar et al. 2007

7769 55613.048083(14) 55613.052287(14) no LT+RISE

7865 55648.005196(8) 55648.009670(8) no LT+RISE

7942 55676.044648(8) 55676.048399(8) no LT+RISE

8186 55764.899763(7) 55764.898424(7) no LT+RISE

8659 55937.134044(16) 55937.136339(16) no LT+RISE

8722 55960.073615(10) 55960.077130(10) no LT+RISE

9021 56068.952400(8) 56068.954778(8) no LT+RISE

9744 56332.223638(15) 56332.227445(15) no LT+RISE

9851 56371.185807(10) 56371.190331(10) no LT+RISE

10869 56741.879381(4) 56741.883863(4) no TNT+ULTRASPEC

10990 56785.941589(11) 56785.944695(11) no LT+RISE

11724 57053.219327(10) 57053.222710(10) no LT+RISE

11800 57080.892947(3) 57080.897277(3) no TNT+ULTRASPEC
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Table A.38: 6 published and 31 unpublished mid-eclipse times for SDSS J1329+1230, a detached
white dwarf + M-dwarf of spectral type M8. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.33 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

447 55307.240695(1) 55307.246734(1) no NTT+ULTRACAM

470 55309.102967(2) 55309.108961(2) no NTT+ULTRACAM

471 55309.183934(1) 55309.189926(1) no NTT+ULTRACAM

472 55309.264900(1) 55309.270890(1) no NTT+ULTRACAM

496 55311.208145(3) 55311.214082(3) no NTT+ULTRACAM

532 55314.123018(9) 55314.128864(9) no NTT+ULTRACAM

4168 - 55608.522163(5) yes Backhaus et al. 2012

4205 - 55611.517920(9) yes Backhaus et al. 2012

4263 55616.209110(5) 55616.213963(5) no LT+RISE

4655 55647.946608(5) 55647.952735(5) no LT+RISE

5125 55686.001281(5) 55686.006880(5) no LT+RISE

5202 - 55692.241265(6) yes Backhaus et al. 2012

5227 - 55694.265440(7) yes Backhaus et al. 2012

5228 - 55694.346403(12) yes Backhaus et al. 2012

6559 - 55802.112475(10) yes Backhaus et al. 2012

8055 55923.238102(6) 55923.237982(6) no LT+RISE

9423 56033.993672(6) 56033.999786(6) no LT+RISE

10657 56133.912978(7) 56133.912123(7) no LT+RISE

12810 56308.230700(5) 56308.232443(5) no LT+RISE

13056 56328.146610(13) 56328.150114(13) no LT+RISE

13119 56333.247099(6) 56333.251009(6) no LT+RISE

13427 - 56358.188617(5) no VLT+HAWK-I

13586 56371.056261(8) 56371.062225(8) no LT+RISE

13871 - 56394.137607(4) no VLT+HAWK-I

13872 - 56394.218575(5) no VLT+HAWK-I

13910 - 56397.295287(6) no VLT+HAWK-I

17462 56684.884591(4) 56684.887358(4) no TNT+ULTRASPEC

17775 56710.225057(7) 56710.229786(7) no LT+RISE

18166 56741.881499(5) 56741.887580(5) no TNT+ULTRASPEC

18304 56753.054732(5) 56753.060925(5) no LT+RISE

21686 57026.888134(7) 57026.888734(7) no TNT+ULTRASPEC

21711 57028.912111(6) 57028.912903(6) no TNT+ULTRASPEC

21913 57045.265740(9) 57045.268059(9) no LT+RISE

22329 57078.945101(2) 57078.950035(2) no TNT+ULTRASPEC

22733 57111.654258(6) 57111.660397(6) no TNT+ULTRASPEC

22850 57121.127256(9) 57121.133435(9) no VLT+HAWK-I

22851 57121.208232(5) 57121.214410(5) no VLT+HAWK-I
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Table A.39: 3 published and 21 unpublished mid-eclipse times for WD 1333+005, a detached
white dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.34 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 55611.476665(10) yes Backhaus et al. 2012

300 55648.058023(5) 55648.064291(5) no LT+RISE

529 55675.986471(5) 55675.992859(5) no LT+RISE

679 - 55694.286674(10) yes Backhaus et al. 2012

816 55710.990234(5) 55710.995036(5) no LT+RISE

842 55714.161372(2) 55714.165950(2) no NTT+ULTRACAM

1563 - 55802.098220(13) yes Backhaus et al. 2012

2540 55921.252943(7) 55921.251977(7) no LT+RISE

2720 55943.203365(12) 55943.204554(12) no LT+RISE

3252 56008.080551(10) 56008.086651(10) no LT+RISE

3817 56076.988583(7) 56076.993330(7) no LT+RISE

5541 56287.251123(11) 56287.250231(11) no LT+RISE

5918 56333.225158(9) 56333.228696(9) no LT+RISE

6124 - 56358.352199(6) no VLT+HAWK-I

6163 56363.102931(7) 56363.108586(7) no LT+RISE

6941 56457.988972(6) 56457.992499(6) no LT+RISE

8850 56690.808889(3) 56690.811723(3) no TNT+ULTRASPEC

9279 56743.125808(9) 56743.132044(9) no LT+RISE

9310 56746.906395(9) 56746.912727(9) no TNT+ULTRASPEC

9729 56798.008124(5) 56798.013467(5) no LT+RISE

11781 57048.270734(11) 57048.272815(11) no LT+RISE

12015 57076.806602(3) 57076.811170(3) no TNT+ULTRASPEC

12065 57082.904105(3) 57082.909100(3) no TNT+ULTRASPEC

12301 57111.685061(7) 57111.691369(7) no TNT+ULTRASPEC

Table A.40: 0 published and 9 unpublished mid-eclipse times for CSS 21357, a detached white
dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.35 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 56000.156481(7) 56000.161910(7) no LT+RISE

1389 56345.229252(7) 56345.233665(7) no LT+RISE

1586 - 56394.174707(31) no VLT+HAWK-I

1598 56397.150033(7) 56397.155908(7) no LT+RISE

2756 56684.837432(2) 56684.839916(2) no TNT+ULTRASPEC

2979 56740.234469(9) 56740.240179(9) no LT+RISE

3240 56805.076720(6) 56805.080912(6) no LT+RISE

4354 57081.829146(5) 57081.833897(5) no TNT+ULTRASPEC

4358 57082.822817(5) 57082.827623(5) no TNT+ULTRASPEC
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Table A.41: 86 published and 19 unpublished mid-eclipse times for QS Vir, a detached white
dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.36 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

171 48714.914500(10) 48714.920680(10) yes O’Donoghue et al. 2003

172 48715.065270(10) 48715.071460(10) yes O’Donoghue et al. 2003

212 48721.095410(10) 48721.101740(10) yes O’Donoghue et al. 2003

225 48723.055200(10) 48723.061580(10) yes O’Donoghue et al. 2003

535 48769.791060(10) 48769.796410(10) yes O’Donoghue et al. 2003

542 48770.846460(10) 48770.851740(10) yes O’Donoghue et al. 2003

2347 49042.965190(10) 49042.969230(10) yes O’Donoghue et al. 2003

2354 49044.020420(10) 49044.024540(10) yes O’Donoghue et al. 2003

2367 49045.980110(10) 49045.984390(10) yes O’Donoghue et al. 2003

2705 49096.934000(10) 49096.940460(10) yes O’Donoghue et al. 2003

3122 49159.802810(10) 49159.806380(10) yes O’Donoghue et al. 2003

4497 49367.097880(10) 49367.098010(10) yes O’Donoghue et al. 2003

4855 49421.064200(10) 49421.069210(10) yes O’Donoghue et al. 2003

5471 49513.931370(10) 49513.935840(10) yes O’Donoghue et al. 2003

7230 49779.113740(10) 49779.118260(10) yes O’Donoghue et al. 2003

7249 49781.977940(10) 49781.982670(10) yes O’Donoghue et al. 2003

7778 49861.727780(10) 49861.733390(10) yes O’Donoghue et al. 2003

7826 49868.964570(10) 49868.969760(10) yes O’Donoghue et al. 2003

7831 49869.718400(10) 49869.723540(10) yes O’Donoghue et al. 2003

9425 50110.029590(10) 50110.031020(10) yes O’Donoghue et al. 2003

9591 50135.052980(10) 50135.056770(10) yes O’Donoghue et al. 2003

9611 50138.067880(10) 50138.071930(10) yes O’Donoghue et al. 2003

10551 50279.782590(10) 50279.784000(10) yes O’Donoghue et al. 2003

11966 50493.102730(10) 50493.105900(10) yes O’Donoghue et al. 2003

12508 50574.810160(10) 50574.816500(10) yes O’Donoghue et al. 2003

15625 51044.729600(10) 51044.727770(10) yes O’Donoghue et al. 2003

17014 51254.124380(10) 51254.129920(10) yes O’Donoghue et al. 2003

17391 51310.959330(10) 51310.965540(10) yes O’Donoghue et al. 2003

23919 52295.109580(10) 52295.110400(10) yes O’Donoghue et al. 2003

24507 52383.749160(10) 52383.755720(10) yes O’Donoghue et al. 2003

24520 52385.709020(10) 52385.715580(10) yes O’Donoghue et al. 2003

24715 52415.107464(1) 52415.113302(1) yes Parsons et al. 2010b

27135 52779.940440(1) 52779.946281(1) yes Parsons et al. 2010b

27149 52782.051144(2) 52782.056883(2) yes Parsons et al. 2010b

27162 52784.011094(1) 52784.016732(1) yes Parsons et al. 2010b

33948 53807.050065(1) 53807.055317(1) yes Parsons et al. 2010b

34742 53926.754380(17) 53926.756325(17) yes Parsons et al. 2010b

34749 53927.809767(17) 53927.811611(17) yes Parsons et al. 2010b

34762 53929.769906(17) 53929.771562(17) yes Parsons et al. 2010b

34795 53934.745279(29) 53934.746452(29) yes Parsons et al. 2010b

Table A.41: Continues on next page.
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Table A.41: Times for QS Vir; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

34802 53935.800740(34) 53935.801810(34) yes Parsons et al. 2010b

34808 53936.705273(94) 53936.706254(94) yes Parsons et al. 2010b

34868 53945.751723(20) 53945.751821(20) yes Parsons et al. 2010b

38560 54502.346790(8) 54502.349156(8) yes Parsons et al. 2010b

38566 54503.251262(24) 54503.253715(24) yes Parsons et al. 2010b

38573 54504.306406(27) 54504.308961(27) yes Parsons et al. 2010b

38580 54505.361651(11) 54505.364307(11) yes Parsons et al. 2010b

41270 54910.896377(40) 54910.902126(40) yes Qian et al. 2010

41296 54914.815887(40) 54914.821826(40) yes Qian et al. 2010

41296 54914.815978(40) 54914.821917(40) yes Qian et al. 2010

41302 54915.720447(40) 54915.726426(40) yes Qian et al. 2010

41495 54944.816001(40) 54944.822564(40) yes Qian et al. 2010

43342 55223.270376(22) 55223.271832(22) yes Parsons et al. 2010b

43349 55224.325543(25) 55224.327104(25) yes Parsons et al. 2010b

43362 55226.285138(33) 55226.286894(33) yes Parsons et al. 2010b

43369 55227.340393(28) 55227.342254(28) yes Parsons et al. 2010b

43415 55234.274562(30) 55234.277101(30) yes Parsons et al. 2010b

43422 55235.329786(14) 55235.332426(14) yes Parsons et al. 2010b

44063 - 55331.968000(15) yes Almeida & Jablonski 2011

44064 - 55332.118720(15) yes Almeida & Jablonski 2011

44096 - 55336.943000(15) yes Almeida & Jablonski 2011

44103 - 55337.998350(15) yes Almeida & Jablonski 2011

44104 - 55338.149090(15) yes Almeida & Jablonski 2011

44177 - 55349.154370(29) yes Almeida & Jablonski 2011

44189 - 55350.963470(23) yes Almeida & Jablonski 2011

44275 - 55363.928630(23) yes Almeida & Jablonski 2011

44276 - 55364.079370(23) yes Almeida & Jablonski 2011

44282 - 55364.983940(23) yes Almeida & Jablonski 2011

44283 - 55365.134700(23) yes Almeida & Jablonski 2011

44289 - 55366.039220(29) yes Almeida & Jablonski 2011

44295 - 55366.943770(23) yes Almeida & Jablonski 2011

44296 - 55367.094520(23) yes Almeida & Jablonski 2011

44302 - 55367.999090(35) yes Almeida & Jablonski 2011

44309 - 55369.054390(39) yes Almeida & Jablonski 2011

44408 - 55383.979400(23) yes Almeida & Jablonski 2011

44415 - 55385.034690(23) yes Almeida & Jablonski 2011

44421 - 55385.939240(23) yes Almeida & Jablonski 2011

44422 - 55386.089980(23) yes Almeida & Jablonski 2011

44434 - 55387.899080(23) yes Almeida & Jablonski 2011

44435 - 55388.049830(23) yes Almeida & Jablonski 2011

44441 - 55388.954390(23) yes Almeida & Jablonski 2011

44508 - 55399.055160(46) yes Almeida & Jablonski 2011

44567 - 55407.949840(23) yes Almeida & Jablonski 2011

Table A.41: Continues on next page.
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Table A.41: Times for QS Vir; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

44574 - 55409.005160(23) yes Almeida & Jablonski 2011

44693 - 55426.945310(23) yes Almeida & Jablonski 2011

44706 - 55428.905140(23) yes Almeida & Jablonski 2011

43906 55308.292493(1) 55308.299072(1) no NTT+ULTRACAM

45631 55568.356512(1) 55568.355954(1) no NTT+ULTRACAM

46572 55710.213408(2) 55710.218858(2) no NTT+ULTRACAM

45927 55612.976453(6) 55612.980210(6) no LT+RISE

46134 55644.181125(3) 55644.187030(3) no LT+RISE

46339 55675.085757(3) 55675.092339(3) no LT+RISE

48078 55937.259983(3) 55937.259787(3) no LT+RISE

48230 55960.172837(3) 55960.174936(3) no LT+RISE

48495 56000.120298(3) 56000.125700(3) no LT+RISE

48707 56032.079734(3) 56032.086290(3) no LT+RISE

50552 56310.233436(3) 56310.234018(3) no LT+RISE

50665 56327.267332(3) 56327.269615(3) no LT+RISE

50903 56363.144649(3) 56363.149917(3) no LT+RISE

53064 56688.934992(1) 56688.936910(1) no TNT+ULTRASPEC

53232 56714.259947(3) 56714.264176(3) no LT+RISE

53609 56771.093192(3) 56771.099762(3) no LT+RISE

55474 57052.260733(4) 57052.262447(4) no LT+RISE

55673 - 57082.263182(3) no DT+DFOSC

55677 57082.861736(1) 57082.866217(1) no TNT+ULTRASPEC

Table A.42: 1 published and 0 unpublished mid-eclipse times for SDSS J1408+2950, a detached
white dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in
the last digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

13591 56112.911809(184) 56112.912914(184) yes Parsons et al. 2013b

Table A.43: 0 published and 7 unpublished mid-eclipse times for CSS 07125, a detached white
dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.37 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

7961 - 56358.289088(22) no VLT+HAWK-I

8060 - 56394.275364(31) no VLT+HAWK-I

9168 56797.024187(33) 56797.030058(33) no LT+RISE

9179 56801.022899(21) 56801.028585(21) no LT+RISE

9859 57048.205306(47) 57048.206505(47) no LT+RISE

9991 57096.182925(44) 57096.188187(44) no LT+RISE

10060 57121.263177(17) 57121.269494(17) no VLT+HAWK-I
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Table A.44: 44 published and 8 unpublished mid-eclipse times for CSS 21055, a detached white
dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.38 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 55991.388711(6) yes Beuermann et al. 2013b

25 - 55993.502047(10) yes Beuermann et al. 2013b

119 - 56001.448114(18) yes Beuermann et al. 2013b

236 - 56011.338413(15) yes Beuermann et al. 2013b

237 - 56011.422991(20) yes Beuermann et al. 2013b

261 - 56013.451773(5) yes Beuermann et al. 2013b

273 - 56014.466150(8) yes Beuermann et al. 2013b

295 - 56016.325886(7) yes Beuermann et al. 2013b

296 - 56016.410403(5) yes Beuermann et al. 2013b

297 - 56016.494943(6) yes Beuermann et al. 2013b

307 - 56017.340267(7) yes Beuermann et al. 2013b

308 - 56017.424812(5) yes Beuermann et al. 2013b

344 - 56020.467987(11) yes Beuermann et al. 2013b

355 - 56021.397810(32) yes Beuermann et al. 2013b

356 - 56021.482376(10) yes Beuermann et al. 2013b

521 - 56035.430274(8) yes Beuermann et al. 2013b

650 - 56046.335001(6) yes Beuermann et al. 2013b

651 - 56046.419542(7) yes Beuermann et al. 2013b

1240 - 56096.209342(31) yes Beuermann et al. 2013b

1324 - 56103.310081(9) yes Beuermann et al. 2013b

1335 - 56104.239948(5) yes Beuermann et al. 2013b

1336 - 56104.324466(11) yes Beuermann et al. 2013b

2244 - 56181.080223(13) yes Beuermann et al. 2013b

4461 - 56368.489324(9) yes Beuermann et al. 2013b

4532 - 56374.491149(8) yes Beuermann et al. 2013b

5589 - 56463.842276(19) yes Beuermann et al. 2013b

8180 - 56682.866650(20) yes Littlefair et al. 2014

8181 - 56682.951160(10) yes Littlefair et al. 2014

8192 - 56683.881020(10) yes Littlefair et al. 2014

8203 - 56684.810850(20) yes Littlefair et al. 2014

8215 - 56685.825280(20) yes Littlefair et al. 2014

8228 - 56686.924210(20) yes Littlefair et al. 2014

8252 - 56688.953000(20) yes Littlefair et al. 2014

8262 - 56689.798350(20) yes Littlefair et al. 2014

8608 - 56719.046632(6) yes Littlefair et al. 2014

8776 - 56733.248125(7) yes Littlefair et al. 2014

8888 - 56742.715760(20) yes Littlefair et al. 2014

8900 - 56743.730210(20) yes Littlefair et al. 2014

8901 - 56743.814720(20) yes Littlefair et al. 2014

8902 - 56743.899230(20) yes Littlefair et al. 2014

Table A.44: Continues on next page.
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Table A.44: Times for CSS 21055; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

8913 - 56744.829120(10) yes Littlefair et al. 2014

8914 - 56744.913650(20) yes Littlefair et al. 2014

8937 - 56746.857910(10) yes Littlefair et al. 2014

8938 - 56746.942440(20) yes Littlefair et al. 2014

8263 56689.880392(3) 56689.882833(3) no TNT+ULTRASPEC

8609 - 56719.131161(1) no WHT+ULTRACAM

8749 - 56730.965744(4) no WHT+ULTRACAM

8750 - 56731.050291(6) no WHT+ULTRACAM

8865 56740.766121(4) 56740.771554(4) no TNT+ULTRASPEC

9908 56828.936438(9) 56828.939204(9) no LT+RISE

12900 57081.856850(5) 57081.861191(5) no TNT+ULTRASPEC

13046 57094.197966(18) 57094.202951(18) no LT+RISE

Table A.45: 1 published and 1 unpublished mid-eclipse times for SDSS J1411+1028, a detached
white dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in
the last digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

0 56031.166642(48) 56031.172782(48) yes Parsons et al. 2013b

1947 - 56357.313983(43) no VLT+HAWK-I

Table A.46: 0 published and 4 unpublished mid-eclipse times for SDSS J1411+2117, a detached
white dwarf + M-dwarf of spectral type M3. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.39 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

2291 56396.111418(24) 56396.117096(24) no LT+RISE

2378 56424.094461(27) 56424.099555(27) no LT+RISE

3401 56753.128208(19) 56753.133836(19) no LT+RISE

4432 57084.736592(19) 57084.741079(19) no TNT+ULTRASPEC

Table A.47: 17 published and 11 unpublished mid-eclipse times for GK Vir, a detached white
dwarf + M-dwarf of spectral type M4.5. Numbers in parenthesis indicate the uncertainty in the
last digit(s). See Fig. B.40 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-67 42520.261300(10) 42520.267470(10) yes Green et al. 1978

-32 42532.312920(20) 42532.319050(20) yes Green et al. 1978

-29 42533.345920(90) 42533.352040(90) yes Green et al. 1978

0 42543.331790(10) 42543.337690(10) yes Green et al. 1978

3 42544.364820(10) 42544.370680(10) yes Green et al. 1978

851 42836.359160(60) 42836.363140(60) yes Green et al. 1978

Table A.47: Continues on next page.
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Table A.47: Times for GK Vir; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

1966 43220.286790(120) 43220.292020(120) yes Green et al. 1978

2132 43277.445220(60) 43277.451010(60) yes Green et al. 1978

2896 43540.518060(120) 43540.519720(120) yes Green et al. 1978

28666 52413.919783(1) 52413.925572(1) yes Parsons et al. 2010b

29735 52782.009582(1) 52782.015227(1) yes Parsons et al. 2010b

29738 52783.042623(1) 52783.048219(1) yes Parsons et al. 2010b

30746 53130.127467(3) 53130.133688(3) yes Parsons et al. 2010b

32706 53805.017186(2) 53805.022115(2) yes Parsons et al. 2010b

32709 53806.050117(1) 53806.055113(1) yes Parsons et al. 2010b

34054 54269.176110(0) 54269.180087(0) yes Parsons et al. 2010b

37069 55307.331176(1) 55307.337585(1) yes Parsons et al. 2012a

38913 55942.283445(1) 55942.283670(1) no WHT+ULTRACAM

37963 55615.165589(9) 55615.169378(9) no LT+RISE

38076 55654.072650(7) 55654.078751(7) no LT+RISE

38250 55713.987170(4) 55713.992323(4) no LT+RISE

39023 55980.156295(5) 55980.160063(5) no LT+RISE

40121 - 56358.235346(4) no VLT+HAWK-I

40211 56389.218891(7) 56389.225126(7) no LT+RISE

40234 - 56397.144731(4) no VLT+HAWK-I

41084 56689.824079(3) 56689.825955(3) no TNT+ULTRASPEC

41404 56800.006161(9) 56800.011828(9) no LT+RISE

42214 57078.915832(2) 57078.919823(2) no TNT+ULTRASPEC

Table A.48: 0 published and 7 unpublished mid-eclipse times for CSS 080408, a detached white
dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.41 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-84 55616.113950(16) 55616.117762(16) no LT+RISE

0 55648.200876(9) 55648.206115(9) no LT+RISE

733 55928.215485(23) 55928.215235(23) no LT+RISE

1775 56326.261360(19) 56326.263749(19) no LT+RISE

2125 56459.962220(10) 56459.965249(10) no LT+RISE

2727 56689.929573(4) 56689.931829(4) no TNT+ULTRASPEC

2950 56775.113446(19) 56775.118790(19) no LT+RISE

Table A.49: 0 published and 5 unpublished mid-eclipse times for SDSS J1424+1124, a detached
white dwarf + M-dwarf of unknown spectral type. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.42 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

8888 56391.117637(8) 56391.123610(8) no LT+RISE

Table A.49: Continues on next page.
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Table A.49: Times for SDSS J1424+1124; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

8946 - 56405.002628(2) no WHT+ULTRACAM

10355 56742.161713(15) 56742.167268(15) no LT+RISE

10593 56799.113788(9) 56799.119126(9) no LT+RISE

11766 57079.806486(4) 57079.810458(4) no TNT+ULTRASPEC

Table A.50: 10 published and 20 unpublished mid-eclipse times for SDSS J1435+3733, a detached
white dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.43 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 54148.201120(200) 54148.204200(200) yes Pyrzas et al. 2009

8 54149.206260(200) 54149.209390(200) yes Pyrzas et al. 2009

15 54150.085590(200) 54150.088760(200) yes Pyrzas et al. 2009

16 54150.211530(200) 54150.214710(200) yes Pyrzas et al. 2009

722 54238.906160(200) 54238.909900(200) yes Pyrzas et al. 2009

730 54239.911190(200) 54239.914890(200) yes Pyrzas et al. 2009

732 54240.162580(200) 54240.166270(200) yes Pyrzas et al. 2009

804 54249.208480(16) 54249.211771(16) yes Pyrzas et al. 2009

820 54251.218682(4) 54251.221877(4) yes Pyrzas et al. 2009

829 54252.349395(5) 54252.352535(5) yes Pyrzas et al. 2009

11557 55600.120117(7) 55600.122736(7) no LT+RISE

11676 55615.069427(17) 55615.072833(17) no LT+RISE

11955 55650.119391(9) 55650.123876(9) no LT+RISE

12281 55691.075506(8) 55691.079592(8) no LT+RISE

12742 55748.994370(8) 55748.995471(8) no LT+RISE

14097 55919.225756(11) 55919.225430(11) no LT+RISE

14280 55942.214696(2) 55942.215869(2) no WHT+ULTRACAM

14661 55990.077430(11) 55990.081253(11) no LT+RISE

15003 56033.042499(6) 56033.047033(6) no LT+RISE

15305 56070.984039(12) 56070.987571(12) no LT+RISE

17623 56362.195888(9) 56362.199960(9) no LT+RISE

18115 56424.006325(10) 56424.010336(10) no LT+RISE

20200 56685.948718(3) 56685.950735(3) no TNT+ULTRASPEC

20457 56718.234168(8) 56718.237894(8) no LT+RISE

20645 56741.852082(7) 56741.856500(7) no TNT+ULTRASPEC

20926 - 56777.158766(1) no WHT+ULTRACAM

21100 56799.014901(8) 56799.018534(8) no LT+RISE

21370 56832.937052(8) 56832.938885(8) no LT+RISE

22890 57023.897607(4) 57023.897842(4) no TNT+ULTRASPEC

23327 57078.795033(5) 57078.798549(5) no TNT+ULTRASPEC
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Table A.51: 0 published and 2 unpublished mid-eclipse times for CSS 09797, a detached white
dwarf + M-dwarf of spectral type M5. Numbers in parenthesis indicate the uncertainty in the last
digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

22308 - 56777.002737(1) no WHT+ULTRACAM

23769 57111.742217(10) 57111.747382(10) no TNT+ULTRASPEC

Table A.52: 0 published and 3 unpublished mid-eclipse times for SDSS J1540+3705, a detached
white dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.44 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

5817 56434.180652(28) 56434.184571(28) no LT+RISE

6999 56743.197733(19) 56743.201342(19) no LT+RISE

8302 57083.849370(40) 57083.851964(40) no TNT+ULTRASPEC

Table A.53: 7 published and 4 unpublished mid-eclipse times for SDSS J1548+4057, a detached
white dwarf + M-dwarf of spectral type M6. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.45 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

328 54652.919974(30) 54652.921968(30) yes Pyrzas et al. 2009

5920 - 55690.323510(12) yes Backhaus et al. 2012

5942 - 55694.404830(10) yes Backhaus et al. 2012

5947 - 55695.332395(16) yes Backhaus et al. 2012

6507 - 55799.220977(23) yes Backhaus et al. 2012

6512 - 55800.148543(11) yes Backhaus et al. 2012

6523 - 55802.189237(15) yes Backhaus et al. 2012

11660 56755.177628(11) 56755.181231(11) no LT+RISE

11599 56743.861426(6) 56743.864768(6) no TNT+ULTRASPEC

11610 56745.902053(5) 56745.905450(5) no TNT+ULTRASPEC

11902 56800.072346(12) 56800.075914(12) no LT+RISE

Table A.54: 146 published and 9 unpublished mid-eclipse times for NN Ser, a detached white
dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.46 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 47344.025000(5000) yes Haefner et al. 2004

2760 - 47703.045744(2) yes Haefner et al. 2004

2761 - 47703.175833(6) yes Haefner et al. 2004

2769 - 47704.216460(3) yes Haefner et al. 2004

2776 - 47705.127023(3) yes Wood & Marsh 1991

Table A.54: Continues on next page.
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Table A.54: Times for NN Ser; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

2777 - 47705.257115(7) yes Wood & Marsh 1991

2831 - 47712.281580(150) yes Haefner et al. 2004

2839 - 47713.322230(150) yes Haefner et al. 2004

7360 - 48301.414200(150) yes Haefner et al. 2004

28152 - 51006.040500(200) yes Haefner et al. 2004

30721 - 51340.216540(2) yes Beuermann et al. 2010

33233 - 51666.978006(96) yes Beuermann et al. 2010

38960 - 52411.947057(1) yes Parsons et al. 2010a

38961 - 52412.077138(0) yes Parsons et al. 2010a

38968 - 52412.987698(1) yes Parsons et al. 2010a

38976 - 52414.028339(1) yes Parsons et al. 2010a

38984 - 52415.068980(1) yes Parsons et al. 2010a

41782 - 52779.033169(1) yes Parsons et al. 2010a

41798 - 52781.114452(1) yes Parsons et al. 2010a

41806 - 52782.155092(1) yes Parsons et al. 2010a

41820 - 52783.976215(1) yes Parsons et al. 2010a

44472 - 53128.948679(3) yes Parsons et al. 2010a

44473 - 53129.078759(2) yes Parsons et al. 2010a

44474 - 53129.208838(1) yes Parsons et al. 2010a

44480 - 53129.989321(2) yes Parsons et al. 2010a

49662 - 53804.064455(2) yes Parsons et al. 2010a

49663 - 53804.194535(1) yes Parsons et al. 2010a

49671 - 53805.235178(0) yes Parsons et al. 2010a

53230 - 54268.190311(1) yes Parsons et al. 2010a

53237 - 54269.100871(0) yes Parsons et al. 2010a

56442 - 54686.007628(1) yes Parsons et al. 2010a

58638 - 54971.663497(80) yes Beuermann et al. 2010

58645 - 54972.574055(100) yes Beuermann et al. 2010

58684 - 54977.647179(120) yes Beuermann et al. 2010

58745 - 54985.582079(120) yes Beuermann et al. 2010

58753 - 54986.622836(130) yes Beuermann et al. 2010

58796 - 54992.216192(2) yes Beuermann et al. 2010

60489 - 55212.441819(7) yes Beuermann et al. 2010

60505 - 55214.523097(7) yes Beuermann et al. 2010

60528 - 55217.514938(4) yes Beuermann et al. 2010

60735 - 55244.441526(3) yes Beuermann et al. 2010

60743 - 55245.482166(3) yes Beuermann et al. 2010

60751 - 55246.522807(3) yes Beuermann et al. 2010

60774 - 55249.514647(3) yes Beuermann et al. 2010

60927 - 55269.416905(1) yes Beuermann et al. 2010

60950 - 55272.408749(1) yes Beuermann et al. 2010

61426 - 55334.326883(2) yes Beuermann et al. 2010

61440 - 55336.148006(2) yes Beuermann et al. 2010

Table A.54: Continues on next page.
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Table A.54: Times for NN Ser; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

61441 - 55336.278089(2) yes Beuermann et al. 2010

61564 - 55352.277944(1) yes Beuermann et al. 2010

61219 - 55307.400302(1) yes Marsh et al. 2014

61579 55354.223835(1) 55354.229144(1) yes Marsh et al. 2014

62316 55450.099534(5) 55450.098191(5) yes Beuermann et al. 2013a

62339 55453.091601(7) 55453.090037(7) yes Beuermann et al. 2013a

62347 55454.132312(7) 55454.130673(7) yes Beuermann et al. 2013a

62462 55469.092530(5) 55469.089904(5) yes Beuermann et al. 2013a

62531 55478.068543(5) 55478.065427(5) yes Beuermann et al. 2013a

63403 55591.495568(3) 55591.495301(3) yes Beuermann et al. 2013a

63449 55597.478749(3) 55597.478985(3) yes Beuermann et al. 2013a

63457 55598.519309(3) 55598.519633(3) yes Beuermann et al. 2013a

63472 55600.470336(7) 55600.470825(7) yes Beuermann et al. 2013a

63601 55617.249272(4) 55617.251177(4) yes Marsh et al. 2014

63671 55626.354137(4) 55626.356779(4) yes Beuermann et al. 2013a

63672 55626.484207(4) 55626.486859(4) yes Beuermann et al. 2013a

63679 55627.394690(4) 55627.397413(4) yes Beuermann et al. 2013a

63740 55635.328983(4) 55635.332304(4) yes Beuermann et al. 2013a

63741 55635.459054(5) 55635.462385(5) yes Beuermann et al. 2013a

63756 55637.410112(4) 55637.413583(4) yes Beuermann et al. 2013a

63816 55645.214409(6) 55645.218408(6) yes Marsh et al. 2014

63833 55647.425618(3) 55647.429756(3) yes Beuermann et al. 2013a

63864 55651.457868(5) 55651.462247(5) yes Beuermann et al. 2013a

63879 55653.408954(3) 55653.413444(3) yes Beuermann et al. 2013a

63886 55654.319462(4) 55654.324002(4) yes Beuermann et al. 2013a

63925 55659.392328(4) 55659.397131(4) yes Beuermann et al. 2013a

63933 55660.432916(5) 55660.437769(5) yes Beuermann et al. 2013a

64032 - 55673.315710(2) yes Marsh et al. 2014

64054 55676.172032(5) 55676.177475(5) yes Marsh et al. 2014

64079 55679.423950(4) 55679.429475(4) yes Beuermann et al. 2013a

64086 55680.334490(4) 55680.340035(4) yes Beuermann et al. 2013a

64116 55684.236823(5) 55684.242442(5) yes Beuermann et al. 2013a

64132 55686.318070(4) 55686.323719(4) yes Beuermann et al. 2013a

64322 55711.033400(5) 55711.038946(5) yes Marsh et al. 2014

64330 55712.074070(1) 55712.079593(1) yes Marsh et al. 2014

64575 55743.945064(4) 55743.949229(4) yes Marsh et al. 2014

64784 55771.133740(4) 55771.135975(4) yes Beuermann et al. 2013a

64836 55777.898460(4) 55777.900151(4) yes Marsh et al. 2014

64869 55782.191448(7) 55782.192787(7) yes Beuermann et al. 2013a

64938 55791.167719(4) 55791.168316(4) yes Beuermann et al. 2013a

64961 55794.159820(4) 55794.160169(4) yes Beuermann et al. 2013a

64976 55796.111177(4) 55796.111366(4) yes Beuermann et al. 2013a

64992 55798.192628(4) 55798.192646(4) yes Beuermann et al. 2013a

Table A.54: Continues on next page.
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Table A.54: Times for NN Ser; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

65053 55806.128161(5) 55806.127538(5) yes Beuermann et al. 2013a

65081 55809.770697(4) 55809.769788(4) yes Beuermann et al. 2013a

65084 55810.160972(10) 55810.160032(10) yes Beuermann et al. 2013a

65099 55812.112315(3) 55812.111224(3) yes Beuermann et al. 2013a

65099 55812.112317(5) 55812.111227(5) yes Beuermann et al. 2013a

65360 55846.065389(4) 55846.062149(4) yes Beuermann et al. 2013a

65460 55859.073898(9) 55859.070161(9) yes Beuermann et al. 2013a

65963 55924.503127(8) 55924.500492(8) yes Beuermann et al. 2013a

65992 55928.275212(13) 55928.272811(13) yes Marsh et al. 2014

65994 55928.535349(5) 55928.532965(5) yes Beuermann et al. 2013a

66069 - 55938.288987(3) yes Marsh et al. 2014

66092 55941.282322(1) 55941.280829(1) yes Marsh et al. 2014

66209 55956.500492(4) 55956.500209(4) yes Beuermann et al. 2013a

66324 55971.458447(4) 55971.459427(4) yes Beuermann et al. 2013a

66332 55972.499005(6) 55972.500074(6) yes Beuermann et al. 2013a

66362 55976.401079(8) 55976.402478(8) yes Beuermann et al. 2013a

66370 55977.441625(4) 55977.443111(4) yes Beuermann et al. 2013a

66409 55982.514323(5) 55982.516234(5) yes Beuermann et al. 2013a

66416 55983.424814(4) 55983.426800(4) yes Beuermann et al. 2013a

66545 56000.203857(5) 56000.207154(5) yes Marsh et al. 2014

66615 56009.308828(4) 56009.312755(4) yes Beuermann et al. 2013a

66631 56011.389971(3) 56011.394032(3) yes Beuermann et al. 2013a

66669 56016.332724(3) 56016.337084(3) yes Beuermann et al. 2013a

66670 56016.462798(3) 56016.467166(3) yes Beuermann et al. 2013a

66677 56017.373310(3) 56017.377730(3) yes Beuermann et al. 2013a

66685 56018.413890(3) 56018.418369(3) yes Beuermann et al. 2013a

66815 56035.323535(6) 56035.328791(6) yes Beuermann et al. 2013a

66868 56042.217573(0) 56042.223041(0) yes Marsh et al. 2014

66893 56045.469491(6) 56045.475036(6) yes Beuermann et al. 2013a

66900 56046.380035(4) 56046.385599(4) yes Beuermann et al. 2013a

66905 56047.030435(1) 56047.036012(1) yes Marsh et al. 2014

66908 56047.420657(3) 56047.426242(3) yes Beuermann et al. 2013a

67284 56096.331533(3) 56096.336391(3) yes Beuermann et al. 2013a

67330 56102.315514(4) 56102.320073(4) yes Beuermann et al. 2013a

67337 56103.226126(3) 56103.230636(3) yes Beuermann et al. 2013a

67352 56105.177439(4) 56105.181840(4) yes Beuermann et al. 2013a

67581 56134.967853(5) 56134.970213(5) yes Marsh et al. 2014

67675 56147.196369(6) 56147.197742(6) yes Beuermann et al. 2013a

67698 56150.188452(4) 56150.189579(4) yes Beuermann et al. 2013a

67775 56160.205466(5) 56160.205763(5) yes Beuermann et al. 2013a

67903 56176.857064(0) 56176.856026(0) yes Marsh et al. 2014

67928 56180.109313(3) 56180.108027(3) yes Beuermann et al. 2013a

67934 56180.889854(1) 56180.888510(1) yes Marsh et al. 2014

Table A.54: Continues on next page.
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Table A.54: Times for NN Ser; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

67936 56181.150036(4) 56181.148673(4) yes Beuermann et al. 2013a

68028 56193.118240(5) 56193.116037(5) yes Beuermann et al. 2013a

69067 56328.269094(6) 56328.269367(6) yes Marsh et al. 2014

69168 56341.406072(3) 56341.407460(3) yes Beuermann et al. 2013a

69291 - 56357.407337(8) yes Marsh et al. 2014

69298 - 56358.317885(3) yes Marsh et al. 2014

69336 56363.257786(6) 56363.260930(6) yes Marsh et al. 2014

69575 56394.345081(2) 56394.350099(2) yes Beuermann et al. 2013a

69597 - 56397.211872(6) yes Marsh et al. 2014

69598 - 56397.341952(5) yes Marsh et al. 2014

70287 - 56486.967206(0) yes Marsh et al. 2014

70387 - 56499.975225(0) yes Marsh et al. 2014

70457 - 56509.080845(6) no VLT+HAWK-I

71801 56683.909180(2) 56683.908642(2) no TNT+ULTRASPEC

71809 56684.949735(1) 56684.949282(1) no TNT+ULTRASPEC

72247 56741.920362(2) 56741.924423(2) no TNT+ULTRASPEC

72671 56797.072742(4) 56797.078431(4) no LT+RISE

74838 57078.960322(4) 57078.962277(4) no TNT+ULTRASPEC

74864 - 57082.344356(6) no DT+DFOSC

74884 57084.943529(2) 57084.945970(2) no TNT+ULTRASPEC

75164 57121.363594(3) 57121.368433(3) no VLT+HAWK-I

Table A.55: 1 published and 0 unpublished mid-eclipse times for SDSS J1642-0634, a detached
white dwarf + M-dwarf of unknown spectral type. Numbers in parenthesis indicate the uncertainty
in the last digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

6444 56770.187193(36) 56770.192429(36) yes Parsons et al. 2015

Table A.56: 3 published and 1 unpublished mid-eclipse times for GALEX J1717+6757, a detached
double white dwarf binary. Numbers in parenthesis indicate the uncertainty in the last digit(s).
See Fig. B.47 for the O-C diagram of all eclipse times with respect to the best linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

620 55794.035279(41) 55794.035608(41) yes Hermes et al. 2014a

2184 56178.990983(42) 56178.991325(42) yes Hermes et al. 2014a

3508 56504.874339(29) 56504.874722(29) yes Hermes et al. 2014a

4487 56745.840248(62) 56745.841395(62) no TNT+ULTRASPEC
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Table A.57: 2 published and 12 unpublished mid-eclipse times for RX J2130.6+4710, a detached
white dwarf + M-dwarf of spectral type M3.5. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.48 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-716 - 52412.121116(3) yes Maxted et al. 2004

-2 - 52784.140552(3) yes Maxted et al. 2004

5585 55695.170119(8) 55695.169378(8) no LT+RISE

5681 55745.187036(8) 55745.188888(8) no LT+RISE

5744 55778.010933(11) 55778.014189(11) no LT+RISE

5840 55828.029825(7) 55828.033705(7) no LT+RISE

5951 55885.866842(8) 55885.868808(8) no LT+RISE

6510 56177.124270(1) 56177.128207(1) no WHT+ULTRACAM

6527 56185.981925(5) 56185.985871(5) no LT+RISE

7105 56487.142728(6) 56487.145155(6) no LT+RISE

7132 56501.210162(2) 56501.213181(2) no WHT+ULTRACAM

7340 56609.586547(3) 56609.588874(3) no TNT+ULTRASPEC

7771 56834.154375(6) 56834.155907(6) no LT+RISE

7957 56931.064987(9) 56931.068801(9) no LT+RISE

Table A.58: 0 published and 8 unpublished mid-eclipse times for SDSS J2205-0622, a detached
white dwarf + M-dwarf of spectral type M2. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.49 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

13030 56178.073117(28) 56178.079499(28) no LT+RISE

13052 56180.985753(4) 56180.992053(4) no WHT+ULTRACAM

13308 56214.878678(4) 56214.883086(4) no WHT+ULTRACAM

15138 56457.148120(20) 56457.151097(20) no LT+RISE

16051 56578.015743(44) 56578.020324(44) no LT+RISE

16254 56604.892625(38) 56604.894847(38) no LT+RISE

18069 56845.172310(22) 56845.177148(22) no LT+RISE

18650 56922.088099(26) 56922.094003(26) no LT+RISE

Table A.59: 0 published and 8 unpublished mid-eclipse times for CSS 09704, a detached white
dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.50 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-4133 55529.041029(5) 55529.041486(5) no NTT+ULTRACAM

-1974 55866.934176(4) 55866.937284(4) no WHT+ULTRACAM

0 56175.873099(4) 56175.879528(4) no WHT+ULTRACAM

7 56176.968661(3) 56176.975070(3) no WHT+ULTRACAM

217 56209.836343(3) 56209.841269(3) no WHT+ULTRACAM

Table A.59: Continues on next page.
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Table A.59: Times for CSS 09704; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

2130 - 56509.236672(12) no VLT+HAWK-I

4168 56828.192144(30) 56828.195379(30) no LT+RISE

5093 56972.960943(49) 56972.963135(49) no LT+RISE

Table A.60: 0 published and 6 unpublished mid-eclipse times for SDSS J2235+1428, a detached
white dwarf + M-dwarf of spectral type M4. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.51 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

298 - 55512.113583(5) no NTT+ULTRACAM

318 - 55515.002759(24) no NTT+ULTRACAM

4901 56177.041836(3) 56177.048015(3) no WHT+ULTRACAM

4928 56180.942176(3) 56180.948348(3) no WHT+ULTRACAM

7200 56509.149014(21) 56509.154334(21) no VLT+HAWK-I

9457 56835.191007(19) 56835.193575(19) no LT+RISE

Table A.61: 0 published and 1 unpublished mid-eclipse times for SDSS J2306-0555, a detached
white dwarf + M-dwarf of unknown spectral type. Numbers in parenthesis indicate the uncertainty
in the last digit(s).

cycle MJD(UTC) BMJD(TDB) pub? source

7574 57024.540637(21) 57024.539104(21) no TNT+ULTRASPEC

Table A.62: 34 published and 17 unpublished mid-eclipse times for HT Cas, a cataclysmic variable
with an M-dwarf donor of spectral type M5.4. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.52 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 43727.437783(50) yes Patterson 1981

448 - 43760.433778(50) yes Patterson 1981

461 - 43761.391293(50) yes Patterson 1981

462 - 43761.464917(50) yes Patterson 1981

732 - 43781.350620(50) yes Patterson 1981

746 - 43782.381721(50) yes Patterson 1981

1599 - 43845.203167(50) yes Patterson 1981

1600 - 43845.276745(50) yes Patterson 1981

1897 - 43867.149100(50) yes Patterson 1981

1898 - 43867.222796(50) yes Patterson 1981

1993 - 43874.218953(50) yes Patterson 1981

1926 - 43869.284880(50) yes Patterson 1981

1938 - 43870.168673(50) yes Patterson 1981

1939 - 43870.242209(50) yes Patterson 1981

Table A.62: Continues on next page.
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Table A.62: Times for HT Cas; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

20473 - 45235.217088(50) yes Horne et al. 1991

20475 - 45235.364438(50) yes Horne et al. 1991

20476 - 45235.438058(50) yes Horne et al. 1991

20477 - 45235.511638(50) yes Horne et al. 1991

26338 - 45667.157925(50) yes Horne et al. 1991

26339 - 45667.231595(50) yes Horne et al. 1991

26351 - 45668.115345(50) yes Horne et al. 1991

26352 - 45668.189015(50) yes Horne et al. 1991

26394 - 45671.282174(50) yes Horne et al. 1991

26421 - 45673.270674(50) yes Horne et al. 1991

26447 - 45675.185474(50) yes Horne et al. 1991

26473 - 45677.100344(50) yes Horne et al. 1991

26475 - 45677.247624(50) yes Horne et al. 1991

26501 - 45679.162404(50) yes Horne et al. 1991

26502 - 45679.236014(50) yes Horne et al. 1991

119537 - 52531.003765(5) yes Feline et al. 2005

119550 - 52531.961207(5) yes Feline et al. 2005

125129 - 52942.838901(5) yes Feline et al. 2005

125130 - 52942.912534(5) yes Feline et al. 2005

141152 - 54122.887730(30) yes Borges et al. 2008

144918 - 54400.242723(10) no WHT+ULTRACAM

163613 - 55777.076233(12) no LT+RISE

164035 - 55808.155347(10) no LT+RISE

164820 - 55865.968341(10) no LT+RISE

165199 - 55893.880677(6) no LT+RISE

165540 - 55918.994386(10) no LT+RISE

169261 56193.032097(12) 56193.035631(12) no LT+RISE

170102 56254.968449(20) 56254.972921(20) no LT+RISE

170250 56265.868550(8) 56265.872738(8) no LT+RISE

174298 56563.992811(12) 56563.996604(12) no LT+RISE

175452 56648.981946(13) 56648.985410(13) no LT+RISE

178483 - 56872.210113(3) no WHT+ULTRACAM

178508 - 56874.051317(2) no WHT+ULTRACAM

179093 56917.131717(10) 56917.134949(10) no LT+RISE

180367 57010.957870(13) 57010.961499(13) no LT+RISE

180062 56988.494693(7) 56988.499115(7) no TNT+ULTRASPEC

180539 57023.625821(12) 57023.628798(12) no TNT+ULTRASPEC
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Table A.63: 7 published and 8 unpublished mid-eclipse times for FL Cet, a cataclysmic variable
with an M-dwarf donor of spectral type M5.5. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.53 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

10250 - 53589.115210(6) yes O’Donoghue et al. 2006

10251 - 53589.175729(6) yes O’Donoghue et al. 2006

10317 - 53593.169806(6) yes O’Donoghue et al. 2006

10332 - 53594.077554(6) yes O’Donoghue et al. 2006

10761 - 53620.039053(6) yes O’Donoghue et al. 2006

10762 - 53620.099568(6) yes O’Donoghue et al. 2006

10777 - 53621.007336(6) yes O’Donoghue et al. 2006

46390 55776.173120(11) 55776.175191(11) no LT+RISE

46917 55808.062576(7) 55808.067297(7) no LT+RISE

47875 55866.035618(4) 55866.041894(4) no LT+RISE

48650 55912.938371(2) 55912.942043(2) no LT+RISE

53033 56178.180048(86) 56178.185105(86) no LT+RISE

65243 56917.083757(38) 56917.089321(38) no LT+RISE

66397 56986.919938(36) 56986.925243(36) no LT+RISE

61499 56690.517033(1) 56690.516239(1) no TNT+ULTRASPEC

Table A.64: 0 published and 17 unpublished mid-egress times for GY Cnc, a cataclysmic variable
with an M-dwarf donor of spectral type M3. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.54 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

24537 55886.160739(25) 55886.162898(25) no LT+RISE

24685 55912.123886(50) 55912.128339(50) no LT+RISE

24776 55928.088162(55) 55928.093675(55) no LT+RISE

24834 55938.263267(29) 55938.269265(29) no WHT+ULTRACAM

24851 55941.245674(7) 55941.251783(7) no WHT+ULTRACAM

24861 55943.000041(10) 55943.006207(10) no WHT+ULTRACAM

24862 55943.175481(4) 55943.181653(4) no WHT+ULTRACAM

24885 55947.210540(8) 55947.216826(8) no WHT+ULTRACAM

26407 56214.241775(33) 56214.240287(33) no LT+RISE

26640 56255.115852(64) 56255.118366(64) no LT+RISE

26760 56276.167396(37) 56276.171755(37) no LT+RISE

27426 56393.013137(39) 56393.016182(39) no LT+RISE

28749 56625.123556(31) 56625.126507(31) no LT+RISE

29057 56679.156446(80) 56679.162756(80) no LT+RISE

29083 56683.717816(10) 56683.724210(10) no TNT+ULTRASPEC

31345 57080.568716(32) 57080.574693(32) no TNT+ULTRASPEC

31444 57097.938384(39) 57097.943445(39) no LT+RISE
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Table A.65: 8 published and 7 unpublished mid-eclipse times for SDSS J1035+0551, a cataclysmic
variable with a brown dwarf donor. Numbers in parenthesis indicate the uncertainty in the last
digit(s). See Fig. B.55 for the O-C diagram of all eclipse times with respect to the best linear
ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-27277 - 53798.981480(10) yes Littlefair et al. 2008

-27276 - 53799.038480(20) yes Littlefair et al. 2008

-27275 - 53799.095480(20) yes Littlefair et al. 2008

-27258 - 53800.064590(20) yes Littlefair et al. 2008

-27226 - 53801.888810(20) yes Littlefair et al. 2008

-27225 - 53801.945820(20) yes Littlefair et al. 2008

-27224 - 53802.002820(20) yes Littlefair et al. 2008

-27205 - 53803.085960(20) yes Littlefair et al. 2008

-19154 - 54262.046646(1) no VLT+ULTRACAM

0 - 55353.952449(9) no NTT+ULTRACAM

23311 56682.829422(10) 56682.834967(10) no TNT+ULTRASPEC

23383 56686.933699(8) 56686.939458(8) no TNT+ULTRASPEC

23435 56689.897902(6) 56689.903798(6) no TNT+ULTRASPEC

24379 56743.712260(8) 56743.718086(8) no TNT+ULTRASPEC

30744 57106.559646(17) 57106.565573(17) no TNT+ULTRASPEC

Table A.66: 9 published and 5 unpublished mid-eclipse times for NZ Boo, a cataclysmic variable
with an M-dwarf donor of unknown spectral type. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.56 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 53799.140618(4) yes Littlefair et al. 2008

2 - 53799.258414(7) yes Littlefair et al. 2008

17 - 53800.142070(6) yes Littlefair et al. 2008

18 - 53800.200966(6) yes Littlefair et al. 2008

19 - 53800.259901(6) yes Littlefair et al. 2008

52 - 53802.203911(2) yes Littlefair et al. 2008

68 - 53803.146461(3) yes Littlefair et al. 2008

69 - 53803.205371(6) yes Littlefair et al. 2008

70 - 53803.264277(3) yes Littlefair et al. 2008

40345 56175.845569(4) 56175.843649(4) no WHT+ULTRACAM

40396 56178.850086(2) 56178.848030(2) no WHT+ULTRACAM

40430 56180.853111(2) 56180.850968(2) no WHT+ULTRACAM

48970 56683.936627(3) 56683.937893(3) no TNT+ULTRASPEC

55757 57083.753101(17) 57083.756442(17) no TNT+ULTRASPEC
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Table A.67: 0 published and 13 unpublished mid-eclipse times for SDSS J1702+3229, a cata-
clysmic variable with an M-dwarf donor of spectral type M0. Numbers in parenthesis indicate the
uncertainty in the last digit(s). See Fig. B.57 for the O-C diagram of all eclipse times with respect
to the best linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-538 53593.890944(5) 53593.892793(5) no WHT+ULTRACAM

-537 53593.990979(4) 53593.992823(4) no WHT+ULTRACAM

-528 53594.891796(3) 53594.893592(3) no WHT+ULTRACAM

-508 53596.893512(5) 53596.895200(5) no WHT+ULTRACAM

-498 53597.894390(6) 53597.896023(6) no WHT+ULTRACAM

7445 54392.850720(10) 54392.849022(10) no WHT+ULTRACAM

25291 56178.915967(3) 56178.916293(3) no WHT+ULTRACAM

25610 56210.843825(4) 56210.842515(4) no WHT+ULTRACAM

25640 56213.846424(7) 56213.844985(7) no WHT+ULTRACAM

25650 56214.847281(5) 56214.845801(5) no WHT+ULTRACAM

31059 56756.187557(34) 56756.190500(34) no LT+RISE

30935 56743.777904(37) 56743.780256(37) no TNT+ULTRASPEC

34726 57123.188986(137) 57123.191998(137) no LT+RISE

Table A.68: 0 published and 16 unpublished mid-egress times for V2301 Oph, a cataclysmic vari-
able with an M-dwarf donor of spectral type M5.5. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.58 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

92350 - 55315.381033(6) no NTT+ULTRACAM

92413 - 55320.323431(3) no NTT+ULTRACAM

97320 - 55705.277495(2) no NTT+ULTRACAM

98234 55776.976242(9) 55776.980781(9) no LT+RISE

98629 55807.966128(13) 55807.968532(13) no LT+RISE

100838 55981.265858(9) 55981.264552(9) no LT+RISE

103447 56185.939127(10) 56185.940496(10) no LT+RISE

105478 56345.273839(18) 56345.272454(18) no LT+RISE

105720 56364.257181(26) 56364.257331(26) no LT+RISE

106446 56421.207520(13) 56421.212022(13) no LT+RISE

108239 56561.872344(11) 56561.872827(11) no LT+RISE

110691 56754.229898(15) 56754.232121(15) no LT+RISE

110907 56771.173768(18) 56771.177289(18) no LT+RISE

111848 56844.993112(10) 56844.998740(10) no LT+RISE

112829 56921.957346(15) 56921.958259(15) no LT+RISE

114843 57079.957619(12) 57079.956547(12) no TNT+ULTRASPEC
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Table A.69: 0 published and 10 unpublished mid-eclipse times for EP Dra, a cataclysmic variable
with an M-dwarf donor of unknown spectral type. Numbers in parenthesis indicate the uncertainty
in the last digit(s). See Fig. B.59 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

116874 56172.860125(2) 56172.861351(2) no WHT+ULTRACAM

116958 56178.963204(1) 56178.964481(1) no WHT+ULTRACAM

116972 56179.980385(1) 56179.981670(1) no WHT+ULTRACAM

116999 56181.942116(22) 56181.943416(22) no LT+RISE

117439 56213.910702(2) 56213.912152(2) no WHT+ULTRACAM

121035 56475.183776(23) 56475.184319(23) no LT+RISE

122394 56573.922785(10) 56573.924225(10) no LT+RISE

124903 56756.218821(42) 56756.218925(42) no LT+RISE

125602 56807.005501(34) 56807.005736(34) no LT+RISE

127115 56916.933388(16) 56916.934722(16) no LT+RISE

Table A.70: 15 published and 9 unpublished mid-eclipse times for V713 Cep, a cataclysmic
variable with an M-dwarf donor of unknown spectral type. Numbers in parenthesis indicate the
uncertainty in the last digit(s). See Fig. B.60 for the O-C diagram of all eclipse times with respect
to the best linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 54337.877266(70) yes Boyd et al. 2011

13 - 54338.987676(40) yes Boyd et al. 2011

47 - 54341.891686(130) yes Boyd et al. 2011

106 - 54346.931796(210) yes Boyd et al. 2011

8596 - 55072.134040(70) yes Boyd et al. 2011

8597 - 55072.219370(70) yes Boyd et al. 2011

8598 - 55072.304930(30) yes Boyd et al. 2011

8599 - 55072.390290(40) yes Boyd et al. 2011

8600 - 55072.475800(60) yes Boyd et al. 2011

8605 - 55072.902800(20) yes Boyd et al. 2011

8605 - 55072.902830(20) yes Boyd et al. 2011

8605 - 55072.902960(30) yes Boyd et al. 2011

8606 - 55072.988180(100) yes Boyd et al. 2011

8606 - 55072.988190(30) yes Boyd et al. 2011

8607 - 55073.073580(130) yes Boyd et al. 2011

17131 55801.178668(3) 55801.181116(3) no WHT+ULTRACAM

21530 56176.934565(3) 56176.937151(3) no WHT+ULTRACAM

21541 56177.874169(2) 56177.876763(2) no WHT+ULTRACAM

21566 56180.009618(2) 56180.012230(2) no WHT+ULTRACAM

26177 56573.874387(31) 56573.876993(31) no LT+RISE

29189 56831.156778(34) 56831.157545(34) no LT+RISE

29668 - 56872.073000(3) no WHT+ULTRACAM

29763 - 56880.187780(9) no WHT+ULTRACAM

30181 56915.890070(48) 56915.892722(48) no LT+RISE
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Table A.71: 215 published and 2 unpublished mid-egress times for HU Aqr, a cataclysmic variable
with an M-dwarf donor of spectral type M4.3. Numbers in parenthesis indicate the uncertainty in
the last digit(s). See Fig. B.61 for the O-C diagram of all eclipse times with respect to the best
linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

0 - 49102.420003(3) yes Schwope et al. 2001

1319 - 49216.936112(12) yes Schwarz et al. 2009

1320 - 49217.022922(12) yes Schwarz et al. 2009

1321 - 49217.109749(12) yes Schwarz et al. 2009

1322 - 49217.196601(23) yes Schwarz et al. 2009

1333 - 49218.151610(23) yes Schwarz et al. 2009

1334 - 49218.238439(23) yes Schwarz et al. 2009

1367 - 49221.103501(23) yes Schwarz et al. 2009

1368 - 49221.190319(23) yes Schwarz et al. 2009

1369 - 49221.277148(23) yes Schwarz et al. 2009

2212 - 49294.466794(1) yes Schwope et al. 2001

2213 - 49294.553612(3) yes Schwope et al. 2001

2216 - 49294.814078(2) yes Schwope et al. 2001

2222 - 49295.334997(2) yes Schwope et al. 2001

2225 - 49295.595459(1) yes Schwope et al. 2001

2226 - 49295.682282(2) yes Schwope et al. 2001

4241 - 49470.625425(11) yes Schwope et al. 2001

4409 - 49485.211281(28) yes Schwope et al. 2001

6328 - 49651.819628(27) yes Schwope et al. 2001

6341 - 49652.948328(7) yes Schwope et al. 2001

6390 - 49657.202533(7) yes Schwope et al. 2001

6391 - 49657.289378(20) yes Schwope et al. 2001

6403 - 49658.331195(12) yes Schwope et al. 2001

6576 - 49673.351129(13) yes Schwope et al. 2001

6579 - 49673.611592(7) yes Schwope et al. 2001

10707 - 50032.006278(25) yes Schwope et al. 2001

12607 - 50196.965043(14) yes Schwope et al. 2001

13064 - 50236.642003(10) yes Schwope et al. 2001

13620 - 50284.914104(116) yes Schwarz et al. 2009

13621 - 50285.000878(116) yes Schwarz et al. 2009

13632 - 50285.955890(116) yes Schwarz et al. 2009

13707 - 50292.467518(18) yes Schwope et al. 2001

14087 - 50325.459254(28) yes Schwarz et al. 2009

14088 - 50325.546074(28) yes Schwarz et al. 2009

14115 - 50327.890324(116) yes Schwarz et al. 2009

14116 - 50327.977162(116) yes Schwarz et al. 2009

14138 - 50329.887041(116) yes Schwarz et al. 2009

14139 - 50329.973866(116) yes Schwarz et al. 2009

14236 - 50338.395480(28) yes Schwarz et al. 2009

14250 - 50339.610986(11) yes Schwope et al. 2001

Table A.71: Continues on next page.
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Table A.71: Times for HU Aqr; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

14740 - 50382.152977(13) yes Schwope et al. 2001

14746 - 50382.673929(19) yes Schwope et al. 2001

16906 - 50570.205988(7) yes Schwope et al. 2001

17010 - 50579.235344(31) yes Schwope et al. 2001

17030 - 50580.971740(10) yes Schwope et al. 2001

17994 - 50664.666649(20) yes Schwope et al. 2001

21014 - 50926.864280(13) yes Schwope et al. 2001

21023 - 50927.645649(7) yes Schwope et al. 2001

21026 - 50927.906116(7) yes Schwope et al. 2001

22478 - 51053.969347(9) yes Schwope et al. 2001

22788 - 51080.883711(116) yes Schwarz et al. 2009

25892 - 51350.374322(12) yes Schwarz et al. 2009

25926 - 51353.326219(12) yes Schwarz et al. 2009

25938 - 51354.368078(12) yes Schwarz et al. 2009

27394 - 51480.778636(23) yes Schwarz et al. 2009

29946 - 51702.344335(4) yes Goździewski et al. 2012

29955 - 51703.125705(81) yes Schwarz et al. 2009

29955 - 51703.125705(92) yes Schwarz et al. 2009

29957 - 51703.299354(4) yes Goździewski et al. 2012

29958 - 51703.386171(3) yes Goździewski et al. 2012

29966 - 51704.080704(81) yes Schwarz et al. 2009

30265 - 51730.040032(4) yes Goździewski et al. 2012

30276 - 51730.995065(2) yes Schwarz et al. 2009

30277 - 51731.081897(2) yes Schwarz et al. 2009

30287 - 51731.950090(2) yes Goździewski et al. 2012

30299 - 51732.991936(3) yes Goździewski et al. 2012

30300 - 51733.078755(5) yes Goździewski et al. 2012

30310 - 51733.946974(3) yes Goździewski et al. 2012

30311 - 51734.033786(2) yes Goździewski et al. 2012

31312 - 51820.941021(12) yes Bridge et al. 2002

31313 - 51821.027841(12) yes Bridge et al. 2002

35043 - 52144.867925(46) yes Schwarz et al. 2009

35376 - 52173.779097(2) yes Schwarz et al. 2009

35377 - 52173.865910(2) yes Schwarz et al. 2009

35469 - 52181.853385(3) yes Goździewski et al. 2012

38098 - 52410.104163(8) yes Goździewski et al. 2012

38105 - 52410.711871(58) yes Schwarz et al. 2009

38107 - 52410.885575(23) yes Schwarz et al. 2009

38107 - 52410.885578(23) yes Schwarz et al. 2009

38108 - 52410.972392(23) yes Schwarz et al. 2009

38109 - 52411.059193(3) yes Schwarz et al. 2009

38133 - 52413.142851(12) yes Schwarz et al. 2009

38145 - 52414.184740(12) yes Schwarz et al. 2009

Table A.71: Continues on next page.
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Table A.71: Times for HU Aqr; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

39731 - 52551.881844(12) yes Schwarz et al. 2009

39742 - 52552.836841(12) yes Schwarz et al. 2009

42352 - 52779.438034(58) yes Schwarz et al. 2009

42395 - 52783.171299(12) yes Schwarz et al. 2009

42441 - 52787.165040(2) yes Schwarz et al. 2009

42463 - 52789.075093(1) yes Schwarz et al. 2009

42464 - 52789.161927(2) yes Schwarz et al. 2009

42486 - 52791.071948(2) yes Goździewski et al. 2012

42487 - 52791.158771(2) yes Goździewski et al. 2012

44534 - 52968.880076(3) yes Goździewski et al. 2012

44557 - 52970.876938(8) yes Goździewski et al. 2012

47253 - 53204.944708(3) yes Schwarz et al. 2009

47254 - 53205.031529(4) yes Schwarz et al. 2009

47300 - 53209.025273(4) yes Schwarz et al. 2009

47335 - 53212.064002(4) yes Schwarz et al. 2009

48265 - 53292.806957(10) yes Schwarz et al. 2009

48288 - 53294.803823(4) yes Schwarz et al. 2009

48299 - 53295.758834(7) yes Schwarz et al. 2009

48334 - 53298.797557(2) yes Schwarz et al. 2009

50702 - 53504.388294(6) yes Schwarz et al. 2009

50713 - 53505.343317(6) yes Schwarz et al. 2009

50714 - 53505.430139(6) yes Schwarz et al. 2009

50724 - 53506.298342(6) yes Schwarz et al. 2009

50725 - 53506.385162(6) yes Schwarz et al. 2009

50737 - 53507.427008(6) yes Schwarz et al. 2009

51020 - 53531.997160(10) yes Goździewski et al. 2012

51032 - 53533.039017(5) yes Schwarz et al. 2009

51066 - 53535.990903(6) yes Goździewski et al. 2012

51067 - 53536.077728(3) yes Goździewski et al. 2012

55466 - 53918.000719(5) yes Schwarz et al. 2009

55535 - 53923.991343(10) yes Goździewski et al. 2012

55546 - 53924.946356(8) yes Schwarz et al. 2009

55627 - 53931.978816(6) yes Goździewski et al. 2012

55661 - 53934.930707(6) yes Goździewski et al. 2012

55719 - 53939.966275(16) yes Goździewski et al. 2012

59524 - 54270.317989(16) yes Schwarz et al. 2009

59525 - 54270.404812(16) yes Schwarz et al. 2009

59558 - 54273.269884(16) yes Schwarz et al. 2009

59559 - 54273.356704(16) yes Schwarz et al. 2009

60085 - 54319.024241(7) yes Goździewski et al. 2012

60096 - 54319.979254(4) yes Schwarz et al. 2009

60097 - 54320.066077(6) yes Schwarz et al. 2009

64657 - 54715.967150(5) yes Goździewski et al. 2012

Table A.71: Continues on next page.
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Table A.71: Times for HU Aqr; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

64885 - 54735.762208(4) yes Goździewski et al. 2012

64886 - 54735.849018(2) yes Goździewski et al. 2012

65265 - 54768.753993(2) yes Goździewski et al. 2012

67604 - 54971.826789(39) yes Qian et al. 2011

67791 - 54988.062271(3) yes Goździewski et al. 2012

67917 - 54999.001639(2) yes Goździewski et al. 2012

67918 - 54999.088453(5) yes Goździewski et al. 2012

68009 - 55006.989116(2) yes Goździewski et al. 2012

68914 - 55085.561477(39) yes Qian et al. 2011

68926 - 55086.603349(39) yes Qian et al. 2011

69328 - 55121.505145(39) yes Qian et al. 2011

69490 - 55135.570057(39) yes Qian et al. 2011

69800 - 55162.484342(39) yes Qian et al. 2011

69812 - 55163.526193(39) yes Qian et al. 2011

69823 - 55164.481195(39) yes Qian et al. 2011

69915 - 55172.468672(39) yes Qian et al. 2011

71785 - 55334.822762(39) yes Qian et al. 2011

72009 - 55354.270604(0) yes Bours et al. 2014b

72010 - 55354.357445(1) yes Bours et al. 2014b

72099 - 55362.084437(3) yes Goździewski et al. 2012

72110 - 55363.039455(2) yes Goździewski et al. 2012

72121 - 55363.994489(3) yes Goździewski et al. 2012

72133 - 55365.036344(2) yes Goździewski et al. 2012

72225 - 55373.023804(5) yes Goździewski et al. 2012

72237 - 55374.065646(4) yes Goździewski et al. 2012

72248 - 55375.020672(4) yes Goździewski et al. 2012

72305 - 55379.969429(3) yes Goździewski et al. 2012

72351 - 55383.963175(2) yes Goździewski et al. 2012

72352 - 55384.049994(2) yes Goździewski et al. 2012

72421 - 55390.040611(1) yes Goździewski et al. 2012

73409 - 55475.819097(58) yes Goździewski et al. 2012

73559 - 55488.842170(58) yes Goździewski et al. 2012

73560 - 55488.929015(116) yes Goździewski et al. 2012

75467 - 55654.495428(4) yes Goździewski et al. 2012

75812 - 55684.448461(2) yes Goździewski et al. 2012

76053 - 55705.372159(1) yes Bours et al. 2014b

76348 - 55730.984142(5) yes Goździewski et al. 2015

76394 - 55734.977882(2) yes Goździewski et al. 2015

76395 - 55735.064695(2) yes Goździewski et al. 2015

76406 - 55736.019723(2) yes Goździewski et al. 2015

76464 - 55741.055278(9) yes Goździewski et al. 2015

76532 - 55746.959088(3) yes Goździewski et al. 2015

76555 - 55748.955959(2) yes Goździewski et al. 2015

Table A.71: Continues on next page.
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Table A.71: Times for HU Aqr; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

76556 - 55749.042775(2) yes Goździewski et al. 2015

76567 - 55749.997804(2) yes Goździewski et al. 2015

76648 - 55757.030248(7) yes Goździewski et al. 2015

76721 - 55763.368141(4) yes Goździewski et al. 2012

76868 55776.124280(2) 55776.130743(2) yes Bours et al. 2014b

77031 - 55790.282457(4) yes Goździewski et al. 2012

77066 - 55793.321156(8) yes Goździewski et al. 2012

77067 - 55793.407984(6) yes Goździewski et al. 2012

77078 - 55794.363018(6) yes Goździewski et al. 2012

77247 55809.029681(3) 55809.035656(3) yes Bours et al. 2014b

77546 - 55834.994949(6) yes Goździewski et al. 2012

77557 - 55835.949990(30) yes Goździewski et al. 2012

77789 - 55856.092285(4) yes Goździewski et al. 2012

77802 - 55857.220940(9) yes Goździewski et al. 2012

77823 - 55859.044179(7) yes Goździewski et al. 2012

77902 55865.901266(2) 55865.902986(2) yes Bours et al. 2014b

78100 - 55883.093404(2) yes Goździewski et al. 2012

80324 56076.179088(2) 56076.181839(2) yes Bours et al. 2014b

80485 56090.155945(2) 56090.159898(2) yes Bours et al. 2014b

81001 - 56134.959164(7) yes Goździewski et al. 2015

81013 - 56136.001030(6) yes Goździewski et al. 2015

81162 - 56148.937269(6) yes Goździewski et al. 2015

81186 - 56151.020949(2) yes Goździewski et al. 2015

81231 - 56154.927850(3) yes Goździewski et al. 2015

81486 - 56177.067025(1) yes Bours et al. 2014b

81531 56180.968253(2) 56180.973947(2) yes Bours et al. 2014b

81532 - 56181.060772(1) yes Bours et al. 2014b

81910 - 56213.878846(2) yes Bours et al. 2014b

82566 56270.834988(5) 56270.832960(5) yes Bours et al. 2014b

84275 56419.208217(11) 56419.208883(11) yes Bours et al. 2014b

84678 56454.193561(2) 56454.197437(2) yes Bours et al. 2014b

85746 - 56546.921478(7) yes Goździewski et al. 2015

85965 56565.930722(1) 56565.935170(1) yes Bours et al. 2014b

86032 - 56571.752079(3) yes Goździewski et al. 2015

86241 - 56589.897536(26) yes Schwope & Thinius 2014

86391 56602.919464(2) 56602.920582(2) yes Bours et al. 2014b

86412 - 56604.743777(3) yes Goździewski et al. 2015

86433 56606.566292(5) 56606.567051(5) yes Bours et al. 2014b

86467 56609.518465(2) 56609.518933(2) yes Bours et al. 2014b

86976 - 56653.710428(36) yes Goździewski et al. 2015

88383 - 56775.866504(2) yes Goździewski et al. 2015

88973 56827.085936(2) 56827.090413(2) yes Bours et al. 2014b

88985 56828.127697(4) 56828.132252(4) yes Bours et al. 2014b

Table A.71: Continues on next page.
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Table A.71: Times for HU Aqr; continued from previous page.

cycle MJD(UTC) BMJD(TDB) pub? source

89066 56835.159672(2) 56835.164713(2) yes Bours et al. 2014b

89339 - 56858.866633(6) yes Goździewski et al. 2015

89340 - 56858.953452(10) yes Goździewski et al. 2015

90009 56917.030775(3) 56917.036181(3) no LT+RISE

90330 56944.902157(2) 56944.905481(2) no LT+RISE

Table A.72: 0 published and 3 unpublished mid-eclipse times for SDSS J2141+0507, a cataclysmic
variable with an M-dwarf donor of unknown spectral type. Numbers in parenthesis indicate the
uncertainty in the last digit(s). See Fig. B.62 for the O-C diagram of all eclipse times with respect
to the best linear ephemeris.

cycle MJD(UTC) BMJD(TDB) pub? source

-1 56214.895281(2) 56214.899412(2) no WHT+ULTRACAM

0 56214.949982(2) 56214.954108(2) no WHT+ULTRACAM

967 56267.841765(56) 56267.841100(56) no LT+RISE

⋆ ⋆ ⋆



Appendix B

Observed - Calculated diagrams

This appendix includes all the observed minus calculated eclipse time diagrams, also known

as O-C diagrams, for the white dwarf binaries in the timing program as described in

Chapter 5. All diagrams include previously published times from the literature as well as

the yet unpublished times, as presented in Appendix A. The O-C diagrams are plotted

with respect to the best linear ephemerides, listed in Tables 5.1 for the detached binaries

and in Table 5.2 for the cataclysmic variables in the program. Times with uncertainties

larger than 3 seconds have been greyed out for clarity.

⋆ ⋆ ⋆
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Figure B.1: O-C diagram of SDSS J0106-0014.
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Figure B.2: O-C diagram of SDSS J0110+1326.
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Figure B.3: O-C diagram of SDSS J0138-0016.
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Figure B.4: O-C diagram of PTFEB28.235.
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Figure B.5: O-C diagram of SDSS J0303+0054.
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Figure B.6: O-C diagram of SDSS J0308-0054.
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Figure B.7: O-C diagram of SDSS J0314+0206.
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Figure B.8: O-C diagram of NLTT 11748.
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Figure B.9: O-C diagram of V471 Tau.
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Figure B.10: O-C diagram of RR Cae.
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Figure B.11: O-C diagram of SDSS J0821+4559.
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Figure B.12: O-C diagram of CSS 40190.
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Figure B.13: O-C diagram of SDSS J0857+3318.
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Figure B.14: O-C diagram of CSS 03170.
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Figure B.15: O-C diagram of CSS 080502.
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Figure B.16: O-C diagram of SDSS J0927+3329.
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Figure B.17: O-C diagram of SDSS J0935+2700.
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Figure B.18: O-C diagram of CSS 38094.
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Figure B.19: O-C diagram of SDSS J0946+2030.
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Figure B.20: O-C diagram of CSS 41631.
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Figure B.21: O-C diagram of CSS 41177.
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Figure B.22: O-C diagram of SDSS J1013+2724.
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Figure B.23: O-C diagram of SDSS J1021+1744.
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Figure B.24: O-C diagram of SDSS J1028+0931.
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Figure B.25: O-C diagram of SDSS J1057+1307.
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Figure B.26: O-C diagram of SDSS J1210+3347.
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Figure B.27: O-C diagram of SDSS J1212-0123.
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Figure B.28: O-C diagram of SDSS J1223-0056.

2013 2014 2015

−5

0

5

O
-C

(s
ec

o
n
d
s)

14000 16000

cycle number

Figure B.29: O-C diagram of CSS 25601.
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Figure B.30: O-C diagram of SDSS J1307+2156.
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Figure B.31: O-C diagram of CSS 21616.
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Figure B.32: O-C diagram of DE CVn.
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Figure B.33: O-C diagram of SDSS J1329+1230.
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Figure B.34: O-C diagram of WD 1333+005.
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Figure B.35: O-C diagram of CSS 21357.
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Figure B.36: O-C diagram of QS Vir.
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Figure B.37: O-C diagram of CSS 07125.
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Figure B.38: O-C diagram of CSS 21055.
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Figure B.39: O-C diagram of SDSS J1411+2117.
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Figure B.40: O-C diagram of GK Vir.
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Figure B.41: O-C diagram of CSS 080408.
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Figure B.42: O-C diagram of SDSS J1424+1124.
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Figure B.43: O-C diagram of SDSS J1435+3733.
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Figure B.44: O-C diagram of SDSS J1540+3705.
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Figure B.45: O-C diagram of SDSS J1548+4057.
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Figure B.46: O-C diagram of NN Ser.
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Figure B.47: O-C diagram of GALEX J1717+6757.
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Figure B.48: O-C diagram of RX J2130.6+4710.
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Figure B.49: O-C diagram of SDSS J2205-0622.
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Figure B.50: O-C diagram of CSS 09704.
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Figure B.51: O-C diagram of SDSS J2235+1428.
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Figure B.52: O-C diagram of HT Cas.
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Figure B.53: O-C diagram of FL Cet.
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Figure B.54: O-C diagram of GY Cnc.
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Figure B.55: O-C diagram of SDSS J1035+0551.
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Figure B.56: O-C diagram of NZ Boo.
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Figure B.57: O-C diagram of SDSS J1702+3229.
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Figure B.58: O-C diagram of V2301 Oph.
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Figure B.59: O-C diagram of EP Dra.
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Figure B.60: O-C diagram of V713 Cep.
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Figure B.61: O-C diagram of HU Aqr.
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Figure B.62: O-C diagram of SDSS J2141+0507.
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C. A., 2006, Science, 314, 1578

Littlefair, S. P., Dhillon, V. S., Marsh, T. R., Gänsicke, B. T., Southworth, J., Baraffe, I.,
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B. T., Hickman, R., 2010a, MNRAS, 402, 2591
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