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Abstract

All stars below around 10M� will eventually become white dwarfs, making them the most
common type of stellar remnant. Due to the large densities of white dwarfs, their atmospheres are
dominated by the lightest element present, with around 80% of white dwarfs in magnitude-limited
samples possessing hydrogen-dominated atmospheres. A signi�cant portion of the remaining white
dwarfs posses helium-dominated atmospheres, which are the result of born-again or late thermal
pulse scenarios, where hydrogen is either completely burned or is diluted during or after the AGB
phase. These white dwarfs are the subject of this thesis.

A major uncertainty in the current 1D atmospheric models of white dwarfs lies in the
treatment of convective energy transport, usually modelled under the mixing length approximation,
which depends on a free parameter called the mixing length parameter, ML2/α. 3D simulations
improve upon this by treating convection from �rst principles and by not relying on any free param-
eters, resulting in more physical models. In this thesis, I present the �rst 3D atmospheric models of
white dwarfs that posses cool pure-helium atmospheres (DB) and helium-dominated atmospheres
with traces of hydrogen (DBA). These models were calculated with the CO5BOLD radiation-
hydrodynamics code and cover the hydrogen-to-helium number ratios of −10.0 ≤ log H/He ≤ −2.0,
surface gravities of 7.5 ≤ log g ≤ 9.0 and e�ective temperatures of 12 000 K . Teff . 34 000 K.

To determine the 3D e�ects on spectroscopic parameters, I compare the synthetic spectra
computed from 3D and 1D models. In 1D models, the mixing length parameter is set to a commonly
used value of 1.25. The 3D corrections on spectroscopically-derived values of hydrogen abundance
and e�ective temperature are similar in magnitude to typical observational errors. However, the
1D models overestimate the surface gravity for Teff . 22 000 K. By increasing hydrogen abundance
in the atmosphere, the surface gravity corrections shift to a lower e�ective temperature range.

To test the 3D spectroscopic corrections, the Sloan Digital Sky Survey (SDSS) spectroscopic
sample of DB and DBA white dwarfs is used, alongside the astrometric and photometric data from
Gaia data release 2. Both 1D and 3D spectroscopic parameters are found to agree with Gaia within
1-3σ for individual white dwarfs, yet neither type of model produces a perfect agreement.

The uncertainty in line broadening caused by the e�ect of the neutral helium atom on its
own species is also investigated to better understand additional systematic issues in current 1D and
3D model spectra. By comparing several samples of DA and DB/DBA white dwarfs, I show that
the precision and accuracy of both types of 3D models are similar.

To extend the usefulness of 3D atmospheric models, I perform the calibration of the mixing
length parameter for the bottom of the convection zone in order to determine more accurate bulk
properties of the convection zone, such as its mass. Thus, the calibration is applicable for studies
of planetary debris around white dwarfs, carbon dredge-up from the core, envelope and astero-
seimological models. Overall, the calibrated value of the mixing length parameter is found to be
around 0.8 and is much lower than the commonly used value of ML2/α = 1.25 in DB and DBA 1D
modelling, meaning that convective e�ciency was previously overestimated by a signi�cant factor.
This is the �rst step in investigating convective overshoot in helium-dominated atmosphere white
dwarfs.
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Chapter 1

Introduction

I came from very far

A little unknown star, hello

I don't know what to do

It feels so cold and blue, without you

Sitting on the Moon

Enigma

1.1 Formation of a white dwarf

1.1.1 Protostar and the Main-Sequence

It is a well-established fact that the majority of stars in our galaxy will conclude

their lives by evolving into white dwarfs [Althaus et al., 2010]. Main sequence stars

below ∼ 10M� are destined to follow this path [Woosley and Heger, 2015; Ibeling

and Heger, 2013]. The stars of this mass range are born in a typical fashion. Their

emergence begins with the collapse of a giant molecular cloud, which splits into

smaller clumps via the process of fragmentation. Fragmentation prefers the forma-

tion of smaller mass stars, leading to what is known as the initial mass function, an

example of which is shown in Fig. 1.1 [Chabrier, 2003]. The collapse results in an

increase of the pressure inside a given clump, as well as the increase in temperature

due to conversion of gravitational potential energy into heat. Such conditions bring

forth the creation of a protostar [Hayashi, 1966].
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Figure 1.1: Experimental and theoretical initial mass functions for the Pleiades
cluster. The theoretical initial mass functions for single and binary stars are shown
in short-dashed and long-dashed lines, respectively. The squares, triangles and circles
are data for the Pleaides cluster from three separate studies indicated in Chabrier
[2003]. This �gure illustrates the preference for formation of lower mass stars which
occurs as a result of the process of fragmentation of the molecular cloud. Reproduced
from Chabrier [2003].

The protostar grows in mass through the accretion of the remainder of the

clump, until its internal temperature reaches around 107 K [Carroll and Ostlie, 2007,

Chap. 13]. At this point, hydrogen, the element that makes up the majority of the

cloud, begins fusing into helium via the proton-proton chain reaction or the CNO
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cycle [Bethe, 1939]. Which reaction is preferred depends on the object's mass, since

stars with mass above 1.2M� have hot enough cores to burn hydrogen via the CNO

cycle. Hereupon, the ongoing fusion inside the core is enough to support the protostar

against the forces of gravity and thus a main-sequence star is formed. Indeed, the

majority of a star's evolution is governed by the interplay of the forces of gravity

and nuclear energy production.

The main sequence is the longest nuclear burning stage in the evolution of

a star, as hydrogen provides a stable source of fuel that can sustain a star like the

Sun for around 10 billion years [Carroll and Ostlie, 2007, Chap. 13]. For stars with

masses below 1.2M� the region of hydrogen-burning grows as the star evolves. This

is because the growing mass of helium causes the mean molecular mass of the core to

increase, thus raising the density and temperature of the core and the surrounding

shell. It also means that as time passes more energy will be released via the CNO

cycle [Carroll and Ostlie, 2007, Chap. 13]. More massive stars have convective cores,

which means that the material inside the core is well mixed and there is no chemical

gradient.

1.1.2 Red giant branch

Once the hydrogen in the core of a white dwarf progenitor is depleted, fusion ceases

there. As the core can no longer support itself against the mass of the overlying

layers, it will begin to contract, releasing gravitational potential energy into the en-

velope, causing the envelope to expand. The contraction also results in the unburned

hydrogen from higher up layers to be brought down into the shell surrounding the

core, where the temperature is high enough for fusion to begin [Carroll and Ostlie,

2007, Chap.13]. This stage is known as hydrogen-shell burning and will also con-

tribute to envelope expansion. For white dwarf progenitors the expansion causes

the temperature of the envelope to decrease, leading to formation of H− ions in the

photosphere, increasing the opacity and resulting in the formation of a convection

zone [Iben, 1991]. The zone extends all the way down to the hydrogen-burning shell,

allowing for e�cient energy transport straight to the surface and the transportation

of the products of nuclear reactions to the photosphere. This is known as the �rst

dredge up and is indicated in Fig. 1.2 [Iben, 1991]. The nuclear products can then

be observed in the spectra of such stars and can be used to test our understanding

of stellar evolution [Lambert, 1981].

Once the contribution of the hydrogen-shell burning makes the mass of the

helium core exceed the Sch�onberg-Chandrasekhar limit, the core will become degen-

erate and will contract further [Sch�onberg and Chandrasekhar, 1942]. The increase
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of the temperature boosts the rate of hydrogen-burning, rising the luminosity of the

star, explaining the position of the red giant branch in the Hertzsprung-Russell dia-

gram (Fig. 1.2).

Figure 1.2: A typical Hertzsprung-Russell diagram following the evolution of
1M� and 5M� main sequence stars in terms of their luminosity and e�ective tem-
perature. Adapted from Iben [1991].
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At the tip of the red giant branch, helium fusion will begin in the core through

the triple-α process, which converts helium into carbon [Bethe, 1939]. The onset

of helium-burning releases vast amounts of energy with the luminosity produced

rivalling the luminosity of an entire galaxy. However, the majority of this energy is

used to lift the degeneracy of the core and therefore cannot be observed [Taam, 1980;

Iben, 1991]. The energy release will expand the core and the hydrogen-burning shell,

decreasing the shell's temperature and decreasing the energy production there. The

luminosity of the star decreases, the envelope contracts and e�ective temperature

increases.

1.1.3 Horizontal branch

The star now joins the horizontal branch (Fig. 1.2). The helium-burning horizontal

branch is an analogue to the hydrogen-burning main sequence. The fusion of helium

is not as long lived as the fusion of hydrogen. Thus, the Sun will spend around 108

years at this evolutionary stage [Iben, 1991].

During this part of stellar evolution, the star can exhibit pulsations in its lu-

minosity, temperature and radius due to instabilities. This type of stars are known as

RR Lyrae variables [de Vaucouleurs, 1978]. The pulsations can be observed and are

quasi-periodic [Christy, 1966]. They can also be used to test the stellar evolutionary

models (see e.g. Bellinger et al. [2020]). Similarly to the end of the main sequence,

the end of the horizontal branch will see core contraction and an increase in the tem-

perature of the shell around the core, resulting in a helium-burning shell surrounding

the core. Due to this energy production, the material above will expand, resulting

in lower temperature and thus the cessation of hydrogen-burning [Iben, 1991].

1.1.4 Asymptotic giant branch

The asymptotic giant branch (AGB) is a helium analogue to the red giant branch

(see Fig. 1.2). At the start of this stage, the energy production is dominated by

helium-burning in the shell surrounding the core [Iben, 1991]. This causes the en-

velope to expand, decreasing its temperature. As a result, a deep convection zone

is formed, extending down to the region between the helium and hydrogen burning

shells, bringing up the products of nuclear burning to the surface once again [El-

dridge et al., 2007]. This is known as the second dredge up event (see Fig. 1.2). It

occurs only for stars with masses above 4M� [Carroll and Ostlie, 2007, Chap.13].

At some point, helium is exhausted in the helium-burning shell. Contraction

and subsequent temperature increase allows for the hydrogen-burning shell to once
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again become active [Carroll and Ostlie, 2007, Chap.13]. Eventually, helium will be

dumped from the hydrogen-burning shell onto the quiescent helium-shell, leading

to a helium shell �ash and the resumption of helium-burning [Schwarzschild and

H�arm, 1965]. This cycle of helium- and hydrogen-burning is repeated resulting in

quasi-periodic helium �ashes. With each subsequent �ash, the pulse amplitude and

the convection zone depth increases [Carroll and Ostlie, 2007, Chap.13]. A third

dredge up event will follow, once the convection zone becomes deep enough to reach

the region where carbon is synthesised. Stars below 4M� will only experience the

�rst and third dredge-up events [Carroll and Ostlie, 2007, Chap.13]. This dredge-up

event can occur multiple times due to helium �ashes and can be observed in stars

known as carbon stars [Iben and Renzini, 1983].

As more helium is converted into carbon, and some carbon is also further

synthesised into oxygen, the carbon-oxygen core will grow. Eventually, it will con-

tract and the density increase will mean that the electron degeneracy pressure will

dominate the total pressure of the core [Carroll and Ostlie, 2007, Chap.13]. For

more massive stars, between 4 < M < 8 M�, additional nucleosynthesis will occur,

creating a �nal core of oxygen, neon and magnesium [Oswalt and Barstow, 2013,

Chap. 11].

During the AGB, a star with a mass below ≈ 10M� will lose around 10−6

M� per year through stellar wind and superwind [H�ofner and Olofsson, 2018]. As

the expelled material is cool enough, dust will be able to form inside it. Earlier

stages of this part of the evolution will experience stellar wind while the later stages

will also experience superwind, where a large amount of mass is expelled [H�ofner and

Olofsson, 2018]. Post-AGB the envelope of the star is expelled forming a planetary

nebula, leaving behind only the core and the two burning shells [Iben, 1991]. The

burning stops, decreasing the luminosity and what is left of the star is now a white

dwarf. This is the most common type of white dwarf observed.

For very low mass stars with M . 0.5 M�, the core never becomes a carbon-

oxygen core, since the burning of helium into carbon cannot occur. Instead, such

stars become white dwarfs with helium cores [Oswalt and Barstow, 2013, Chap. 11].

These white dwarfs cannot currently exist, because the time taken for this evolution

to occur is longer than the present age of the Universe. Low mass white dwarfs have

been observed, however, but they are assumed to be a result of binary evolution

[Oswalt and Barstow, 2013, Chap. 11]. For massive stars with 4 < M < 8 M�, the

formed white dwarfs will have oxygen, neon and magnesium cores.

For main sequence stars with larger masses than 10 M�, the core of carbon-

oxygen will be able to undergo further fusion, such as carbon into neon and neon
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into iron [Heger et al., 2003]. The core will grow in mass and eventually will exceed

the possible mass that can be supported by degeneracy pressure. A core-collapse

supernova will then follow, producing a di�erent type of compact object, either a

neutron star or a black hole [Carroll and Ostlie, 2007, Chap. 13].

1.1.5 Formation of hydrogen-de�cient white dwarfs

The subject of this thesis are white dwarfs with no outer hydrogen shell. The forma-

tion of these stellar remnants can be explained by either the born-again scenarios or

the AGB �nal thermal pulse (AFTP). There are two types of born-again scenarios,

the late thermal pulse (LTP) and the very late thermal pulse (VLTP). Both types

of thermal pulses are caused by the reignition of the helium-burning shell, returning

the post-AGB star back to the AGB, hence the born again name [Herwig, 2001].

VLTP occurs following the star's departure from the AGB, while it is becom-

ing a white dwarf. The helium-burning creates enough energy to develop a convection

zone between the helium- and hydrogen-shells [Werner and Herwig, 2006]. The ab-

sence of fusion in the dormant hydrogen shell, means that the convection zone can

extend into the hydrogen shell, transporting the hydrogen downwards into a region

where the temperature is high enough for hydrogen fusion to begin [Bl�ocker, 2001].

This results in the surface being completely depleted of hydrogen. Sakurai's object is

a famous example of a star undergoing a VLTP [Asplund et al., 1999]. As the VLTP

channel results in a complete elimination of hydrogen, it is predicted to result in

the formation of pure-helium atmosphere white dwarfs [Metcalfe et al., 2005; Miller

Bertolami and Althaus, 2006].

The LTP scenario is hypothesised to occur earlier in the star's evolution than

VLTP, when hydrogen is still fusing [Bl�ocker, 2001]. This means that the convection

zone cannot spread into the hydrogen layer. Instead, the helium �ash will cause the

star to expand, cooling the outer layers and causing a convection zone to form near

the surface [Werner and Herwig, 2006]. This convection zone is able to dilute the

hydrogen on the surface into the envelope, e�ectively producing a hydrogen-poor

white dwarf [Herwig, 2001].

Unlike the born again scenarios, an AFTP occurs while the star is still on

the AGB. It is related to the third dredge up event, such that the nuclear products

brought up from the deep layers dilute the hydrogen at the surface, making the

surface of the star hydrogen-poor [Herwig, 2001]. After this �nal pulse, the star will

leave the AGB and will eventually become a hydrogen-de�cient white dwarf.

In order to be able to determine which evolutionary path is true for hydrogen-

poor white dwarfs, models are created for all three scenarios and the outputs of
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these models are compared to observations [Werner and Herwig, 2006]. The study of

hydrogen in the helium-atmosphere dominated white dwarfs, known as DBA stars,

can shed light on the two processes which do not completely remove the hydrogen

from the atmosphere. The hydrogen abundance can also allow us to study the

amount of residual hydrogen that is left over from the AGB stage and thus give

information on the nuclear burning rates in those stars [Werner and Herwig, 2006].

Asteroseismology can be used to probe the deep interior of white dwarfs.

Since the di�erent formation scenarios result in di�erent interior chemical pro�les,

asteroseismology of pulsating helium-dominated atmosphere white dwarfs can also

be used to distinguish the di�erent formation scenarios [Battich et al., 2020].

The above discussion encapsulates the importance of helium-dominated at-

mosphere white dwarfs in the overall picture of stellar evolution, speci�cally for the

AGB and post-AGB stages.

1.2 Composition of a white dwarf

On average, a white dwarf's mass is around 0.6 M� (see e.g. Tremblay et al. 2019b)

and its size is comparable to that of the Earth (see e.g. Joyce et al. 2018). Typical

mass distributions of DA and DB/DBA white dwarfs are shown in Fig. 1.3. Consid-

ering their masses and radii, one can easily deduce that white dwarfs are extremely

dense. The average mass of a white dwarf also highlights the mass loss a star experi-

ences during its previous evolutionary stages, since all stars below around 10M� will

become white dwarfs. This is summarised in the initial-to-�nal mass relations (see

e.g. Cummings et al. 2018).

A white dwarf is made up of an electron and nucleon plasma, which is sup-

ported against the force of gravity by electron degeneracy pressure of the core [Fowler,

1926]. The pressure is a consequence of the fermion nature of electrons. Due to

the Pauli exclusion principle, two electrons cannot occupy the same quantum state

[Pauli, 1925]. This means that even at zero temperature, electrons cannot be all

con�ned to the lowest energy level, and instead have to distribute themselves across

all available lowest energy levels. Thus, at 0 K, such a system will have a non-zero

energy, known as Fermi energy [Fermi, 1926]. The pressure comes about due to the

gravitational compression of a white dwarf, as this increases the number of electrons

in a given volume. The Heisenberg uncertainty principle de�nes the lowest possi-

ble uncertainty in a particle's momentum and position [Heisenberg, 1927], which in

combination with the Pauli exclusion principle means that the uncertainty in elec-

tron's position cannot be larger than the separation of electrons [Carroll and Ostlie,
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2007, Chap. 16]. The decrease in their separation due to compression decreases this

uncertainty, increasing the electron's momentum, kinetic energy and therefore the

outward pressure which supports the white dwarf.

Figure 1.3: The mass distributions for DA and DB/DBA white dwarf samples are
shown as black and red histograms, respectively. The DA and DB/DBA white dwarf
samples are from Gianninas et al. [2010] and Rolland et al. [2018], respectively. The
mean masses and their standard deviations are indicated on the plot. Adapted from
Tremblay et al. [2019b].

As the mass of the white dwarf increases, its radius decreases (see e.g. Joyce

et al. 2018), since the density increase following compression causes electrons to get

closer together. At in�nite mass, the white dwarf's radius will become zero, however,

if relativistic e�ects are taken into account due to electron velocity approaching the

speed of light, a zero volume can be achieved with a �nite mass. This is the maximum

9



mass of a white dwarf allowed by electron degeneracy pressure and it is known as

the Chandrasekhar mass of 1.44M� [Chandrasekhar, 1931]. Above this mass, the

white dwarf would become a neutron star through a core-collapse supernova. Other

e�ects, such as rotation, can increase the value of the Chandrasekhar limit. No white

dwarfs above the Chandrasekhar mass limit are observed (see Fig. 1.3).

For temperatures and densities of white dwarfs the assumption of complete

degeneracy is valid even though it is not completely true, since the core is not at 0

K. As the temperature is higher, a number of electrons will be able to jump to higher

energy levels if their energy is larger than the Fermi energy [Oswalt and Barstow,

2013, Chap. 11]. White dwarf cores are therefore partially degenerate [Wares, 1944].

The core has high thermal conductivity due to the degenerate nature of the

electrons [Oswalt and Barstow, 2013, Chap. 11]. Therefore, energy is mostly trans-

ported by electron conduction, which is done via collisions between particles. In

white dwarfs conduction is an e�cient energy transport, thus the core is isothermal

and has a uniform temperature of around 107 K [Fontaine et al., 2001]. It also means

that the core does not cool fast. The cooling is instead moderated by the outer lay-

ers, which transport the energy from the conductive core to outer space [Fontaine

et al., 2001].

1.2.1 Atmosphere

In most cases, the core of the white dwarf is surrounded by two separate and pristine

layers of helium and hydrogen, the remains of the burning shells of the previous

evolutionary stages [Koester and Chanmugam, 1990]. This type of white dwarfs

have hydrogen-dominated atmospheres. If the hydrogen shell has been lost during

the AGB or immediately following it, the core will only be surrounded by an envelope

of helium and thus it will have a helium-dominated atmosphere [Werner and Herwig,

2006]. Fig. 1.4 shows the typical elemental composition of a hydrogen-rich white

dwarfs.

The core makes up most of the mass of the white dwarf [Fontaine et al.,

2001]. Therefore, the depth of the atmosphere is much smaller than the radius of

the stellar remnant. The strong strati�cation of a white dwarf is due its immense

gravity, which sinks the heaviest elements to the core, leaving the lightest material

in the upper layers. This is known as gravitational settling and is a di�usion process

[Schatzman, 1948; Koester and Chanmugam, 1990].
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Figure 1.4: The typical elemental composition of a hydrogen-rich white dwarf with
Teff= 12 000 K and mass of 0.56M�. Each coloured line represents a di�erent ele-
ment. The y-axis is the fractional abundance of the element and x-axis is the outer
mass fraction, where Mr is the mass from the surface to a given depth, r, in the
structure of the white dwarf and M? is the total mass of the white dwarf. The ex-
planations for the observed elemental abundances are given on the top of the plot.
A He-rich white dwarf would have a much thinner outer hydrogen shell. Adapted
from C�orsico et al. [2019].

White dwarfs are classi�ed based on their spectra as their atmospheric compo-

sition can be deduced from the spectral lines [Sion et al., 1983], which are pressure-

broadened due to the large surface gravities. Fig. 1.5 shows examples of typical

white dwarf spectra. The majority of white dwarfs show hydrogen Balmer lines in

the optical (see e.g. Kepler et al. 2019) and are classi�ed as DA. The letter "D"

stands for degenerate, owing to the degenerate nature of the majority of the white

dwarf, "A" mirroring main sequence star classi�cation [Oswalt and Barstow, 2013,

Chap. 11]. The helium-pure atmosphere white dwarfs can be classi�ed into more

subcategories, for example the DO white dwarfs which show He II lines or the DB

white dwarfs which show He I lines. The second most numerous class is DC, whose

spectra is composed only of continuum [Kepler et al., 2019]. Any helium-dominated
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atmosphere white dwarf will cease exhibiting helium lines below around 10 000 K and

thus appears as DC [Oswalt and Barstow, 2013, Chap. 11]. Hydrogen-dominated

atmosphere white dwarfs will no longer show hydrogen lines below around 5 000

K. Therefore, DC stars with e�ective temperatures below around 5 000 K cannot

be di�erentiated as having hydrogen- or helium-dominated atmospheres [Bergeron

et al., 1997]. This highlights the fact that the spectral classi�cation does not always

determine the atmospheric composition.

Other notable spectral classi�cations of white dwarfs are DQ, which show

only carbon lines in their spectra [Pelletier et al., 1986], and DZ white dwarfs which

only show metal lines [Koester et al., 1990]. The classi�cations can be combined,

for example a white dwarf with a helium-dominated atmosphere that has traces of

hydrogen would have both helium and hydrogen lines, and would be classi�ed as

DBA, "B" being the �rst letter given that the helium lines are the strongest.

DA white dwarfs are found in a large e�ective temperature range, from around

5 000 K to 100 000 K. DO white dwarfs are found at temperatures that are high

enough for helium to singly ionize and subsequently be excited, which is around

45 000 . Teff . 100 000 K [Oswalt and Barstow, 2013, Chap. 11]. The upper limit

of e�ective temperature is due to previous evolution. DB white dwarfs are found in

the temperature range 10 000 . Teff . 35 000 K where neutral helium can be excited.

Due to their large surface gravities, white dwarf spectra can be used as lab-

oratories to study the behaviour of di�erent elements in extreme conditions that

cannot be currently replicated in laboratories (see e.g. Kritcher et al. 2020). If the

models do not match observations, a possible explanation can therefore be missing

physics. Thus, white dwarf observations can pinpoint issues in our understanding of

atomic physics.
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Figure 1.5: Examples of di�erent types of white dwarf spectra. The coloured lines
indicate di�erent types of spectral lines. In the case of DA white dwarfs the red
dashes denote H lines, and for DB white dwarfs the green dashes mark the He I
lines. DZ and DAZ spectra exhibit metal lines, in the examples shown here the
blue dashes indicate calcium H and K lines, while the orange dash indicates the
magnesium II line. The purple dashes identify the carbon Swan bands seen in DQ
stars. The letter "H" is used to indicate white dwarf spectra that shows magnetic
features. In this example the DAH spectrum contains hydrogen Balmer lines which
are split due to Zeeman e�ect. Reproduced from Manser [2018].
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1.3 White dwarf evolution

Unlike stars, single white dwarfs do not undergo any nuclear burning. Thus, the

energy that powers their luminosity must come from somewhere else. This source

is the thermal energy stored in their nuclei [Koester and Chanmugam, 1990]. Due

to their degenerate nature, electrons are unable to provide thermal energy as they

already occupy the lowest available energy states [Mestel, 1952]. As white dwarfs cool

with age their evolution is commonly referred to as cooling and thus their e�ective

temperature can be used to estimate their age [Fontaine et al., 2001]. The thermal

energy of a white dwarf results in long cooling times of around 106-109 years [Oswalt

and Barstow, 2013, Chap. 11].

The cooling time also depends on the mass of the white dwarf. The more

massive the white dwarf is, the bigger its thermal energy reservoir and the longer its

cooling time [Fontaine et al., 2001]. Additionally, it also depends on the composition

of the core since a white dwarf that has a pure-carbon core will take longer to cool

than a white dwarf with a pure-oxygen core. This happens because the speci�c heat

per gram is larger for carbon than oxygen [Fontaine et al., 2001].

The processes that take place in white dwarf atmospheres are also important

for cooling, since the atmosphere governs how the internal energy of the white dwarf

is released into space [Garc��a-Berro and Oswalt, 2016]. This highlights the need for

accurate atmospheric models of white dwarfs.

There is a potential in being able to predict the evolution of a white dwarf

to a great degree of accuracy. It means that white dwarfs can be used as accurate

clocks to age di�erent stellar populations, such as local stars (see e.g Tremblay et al.

2014; Fantin et al. 2019), the galactic inner halo (see e.g. Kalirai 2012) or disk

[Winget et al., 1987]. An example comparison between the theoretical evolutionary

predictions and white dwarf observations can be seen in Fig. 1.6. It shows both

the theoretical and observational luminosity functions. As white dwarfs cool with

age, their luminosity also decreases, therefore this type of plot can be used as an

indication of white dwarf evolution (see Koester and Chanmugam 1990 for more

detailed explanation).
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Figure 1.6: A comparison between theoretical and observational luminosity functions
of white dwarfs. Open circles are observations from Liebert et al. [1988] and the solid
line is the theoretical luminosity function of Iben and Laughlin [1989]. Luminosity
can be used as a proxy for the age of the white dwarf. The number of white dwarfs
in a given luminosity bin informs the time spent at a given luminosity. Several of
the important stages in white dwarf evolution are indicated on the plot. Adapted
from Koester and Chanmugam [1990].

1.3.1 Pre-white dwarf and gravitational contraction

At the pre-white dwarf stage where the remnant leaves the AGB and converges onto

the white dwarf track, the gravitational contraction of the outer layers is important

as it can contribute signi�cantly to the luminosity, slowing down the cooling [Iben,

1991]. Due to its degeneracy the core does not contract signi�cantly. This is because

the di�erence between the core's radii when it is partially degenerate and when it is

fully degenerate is small [Koester and Chanmugam, 1990].

Gravitational contraction becomes less important after the pre-white dwarf
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stage, but its contribution to the energy released is never zero. Because of this

reason, it is said that white dwarfs evolve at almost a constant radius [Koester and

Chanmugam, 1990].

1.3.2 Neutrino cooling

In the �rst stage of white dwarf evolution, accelerated cooling is experienced through

the loss of neutrinos from the degenerate core [Fontaine et al., 2001]. In Fig. 1.6 this

is observed below Abs(log L/L�) ≈ 1.0 [Koester and Chanmugam, 1990], where there

is a sharp decrease in white dwarfs. This is because this stage is so fast that it is not

likely for us to observe a signi�cant amount of white dwarfs with these luminosities.

The neutrinos are created via the plasmon neutrino process, which dominates

the energy loss due to the hot and dense conditions of the core [Koester and Chan-

mugam, 1990]. In this process, a plasma photon, known as a plasmon, decays into

a neutrino and an antineutrino pair. It is not possible for a normal photon to do

this since it possesses no mass. However, in a dense plasma the interactions between

the photon and surrounding free electrons slow the photon down, making it behave

as if it has mass [Koester and Chanmugam, 1990]. As these plasmons are unsta-

ble, they quickly decay into a neutrino and an antineutrino without violating mass

conservation laws [Oswalt and Barstow, 2013, Chap. 11]. The neutrinos are then

able to quickly and e�ciently leave the white dwarf since they have small interac-

tion cross sections, leading to accelerated cooling of the white dwarf. Indeed, such

cooling leaves the core cooler than the layer surrounding it, since photon cooling in

the outer layers is not as e�cient [Fontaine et al., 2001].

When the density of the core of the white dwarf exceeds 104 g cm−3 and its

temperature is above 108 K, neutrino cooling dominates the energy release [Lamb

and van Horn, 1975]. This occurs in the early stages of white dwarf evolution.

The mass of the plasmon is proportional to the square root of the plasma density,

so the large density of the core means that larger mass plasmons are created and

they decay into more energetic neutrinos, which leave the white dwarf possessing

a larger amount of energy [Winget et al., 2004]. The temperature also increases

the number of plasmons, as the photons are interacting more with matter [Winget

et al., 2004]. Since white dwarfs are dense and at this stage hot, they have large

neutrino �ux leading to signi�cant cooling. Once the white dwarf cools enough,

its loss through neutrino cooling reduces and normal thermal cooling via photons

becomes dominant. Variable DB white dwarfs, known as DBV, can potentially be

used to test our understanding of the plasmon neutrino process, as it is predicted to

a�ect the pulsation periods of the hottest DBV stars [Winget et al., 2004].
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1.3.3 Convection

As explained earlier, white dwarfs with hydrogen-rich and hydrogen-de�cient atmo-

spheres have di�erent progenitors. However, from observations it is apparent that

during its evolution a white dwarf is able to change its atmospheric composition and

thus its spectral type. The reason for this is closely linked with convection.

One example of such a transformation is the de�ciency of hydrogen-poor

white dwarfs in the temperature range 30 000 . Teff . 45 000 K, formally known

as the DB gap [Wesemael et al., 1985; Eisenstein et al., 2006]. A gap of this sort

cannot be explained by a di�erent progenitor. Instead, it is assumed that in this

temperature range the helium-dominated atmosphere white dwarfs transform into

hydrogen-dominated white dwarfs [Fontaine and Wesemael, 1987]. It is proposed

that the reason for this lies in any remaining hydrogen �oating up to the surface

at Teff ≈ 45 000 K, causing the atmosphere to become hydrogen-dominated. At

Teff ≈ 30 000 K, the helium convection zone becomes large enough to dilute the

hydrogen, turning the star back into a DB or a DBA.

Another way a convection zone impacts the evolution of white dwarfs can

be seen at low e�ective temperatures. The ratio of DA to DB/DBA white dwarfs

decreases signi�cantly below Teff . 12 000 K, implying that DA stars transform into

helium-dominated white dwarfs. Around this temperature the hydrogen convection

zone reaches the underlying helium layer, bringing up large amounts of helium to

the atmosphere and transforming it [Strittmatter and Wickramasinghe, 1971].

It is theorised that the progenitors of cool DQ white dwarfs are helium-

dominated, because the atmospheres of cool DQ white dwarfs are helium-dominated

atmospheres with traces of carbon. It is assumed that for these white dwarfs, the

helium convection zone becomes deep enough to penetrate the underlying carbon

layer, bringing up carbon to the surface [Pelletier et al., 1986].

These examples highlight the importance of convection in the evolution of

white dwarfs. Therefore, any uncertainties in our understanding of convection re�ect

themselves in our inability to fully understand white dwarf evolution. Additionally,

the population analysis can be used as a useful indicator of the thickness of the hy-

drogen layer, a needed parameter in white dwarf evolution models, asteroseismology

and planetary system studies [Fontaine et al., 2001]. Lastly, these examples also

show the importance of helium-dominated atmosphere white dwarfs in the overall

picture of white dwarf evolution.
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1.3.4 Pulsating white dwarfs

As white dwarfs cool they go through a region of e�ective temperature where they

experience non-radial gravity wave pulsations with periods on the order of minutes

[Fontaine and Brassard, 2008]. The two main types of white dwarf pulsators are

DAV stars which are found at 11 000 . Teff . 13 000 K [McGraw, 1977] and DBV

white dwarfs found at 25 000 . Teff . 30 000 K [Winget et al., 1981, 1982]. As

the names imply they are hydrogen-dominated and helium-dominated atmosphere

white dwarfs, respectively. Asteroseismology can be used to study the interior of

white dwarfs as the waves penetrate deep into the star [Giammichele et al., 2018].

The pulsations are due to the recombination of the main constituent of the

atmosphere [Fontaine and Brassard, 2008]. If a star is compressed, the temperature

and density will increase. If opacity increases with compression, i.e. with tempera-

ture, less heat is allowed to escape. This pushes the outer layers, causing the star

to expand and become unstable against pulsations, since this cycle would repeat

until conditions change enough for the cycle to stop [Carroll and Ostlie, 2007, Chap.

14]. However, in most stars opacity decreases with temperature. If a gas is partially

ionized, the energy released during compression will go into ionizing the gas, thus

opacity will increase with compression and therefore with temperature [Fontaine and

Brassard, 2008]. Recall that partial ionization is also responsible for the formation

of convection zones in white dwarfs, so the onset of pulsations is closely related to

convective energy transport becoming dominant. Pulsations will eventually cease

when convective energy transport becomes e�cient, allowing the photons to escape,

stopping the cycle [Carroll and Ostlie, 2007, Chap. 14]. This process is not well

understood as it involves time-dependent convection, a process di�cult to model in

1D [Van Grootel et al., 2012], highlighting the need for better models of convection.

The frequency of pulsations is proportional to the temperature of the core

[Koester and Chanmugam, 1990]. This in turn means that as the white dwarf ages

its pulsation period increases, introducing another way to estimate the ages of white

dwarfs.

1.3.5 Crystallisation

Once enough thermal energy is lost by the white dwarf and the temperature of the

core reaches its freezing point, it is energetically favourable for the ions in the core to

form a crystalline structure [van Horn, 1968]. This is known as crystallisation. The

gas undergoes a �rst-order phase transition to become a solid and latent heat is re-

leased slowing down the cooling of the white dwarf [van Horn, 1968]. Crystallisation
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begins in the center of the white dwarf. Over time the crystallisation front moves

upwards until the entire star becomes solid. This process is gradual and slows down

the cooling over a long period of time [Koester and Chanmugam, 1990]. In Fig. 1.6

this is seen around Abs log L/L� ≈ 3 [Koester and Chanmugam, 1990].

Most white dwarfs possess carbon-oxygen cores. The freezing point of oxygen

is higher than carbon's and therefore it crystallizes �rst. As solid oxygen is more

dense than carbon gas, it moves inwards releasing gravitational energy. This be-

comes an additional source of heat that slows down the cooling [Isern et al., 1997].

Signatures of both e�ects have been con�rmed by the recent Gaia DR2 observa-

tions [Tremblay et al., 2019a], which also showed that the presence of neon and its

sedimentation in high mass white dwarfs can a�ect the observed luminosity func-

tion and thus needs to be taken into account when modelling white dwarf evolution

[Camisassa et al., 2020].

The temperature at which crystallisation occurs is proportional to the cube-

root of density. Therefore, more massive white dwarfs solidify at higher e�ective

temperatures and thus at an earlier stage in their evolution [van Horn, 1968].

1.3.6 Convective core coupling

Another signi�cant event in the evolution of a white dwarf happens when the convec-

tion zone reaches the degenerate core. This couples the core directly to the surface,

leading to signi�cant energy losses which accelerate the cooling [B�ohm, 1968]. This

is known as convective core coupling. Before this occurs, the core is well insulated

by the opaque, radiative layers in the envelope. When convection becomes domi-

nant the opacity decreases, releasing large amounts of stored thermal energy. Thus,

the cooling is initially slowed down compared to purely-radiative models [Fontaine

et al., 2001]. Once this energy is freed, due to the lower insulation, convection

will accelerate the cooling as energy is e�ciently transported from the core directly

to the surface. Similarly, cool white dwarfs with hydrogen-dominated atmospheres

cool slower than helium-dominated white dwarfs because hydrogen acts as a better

insulator compared to helium [Hansen, 1999].

Convective coupling occurs when the convection zone is adiabatic. This

means that the changes happening at the surface directly impact the base of the

convection zone [Fontaine et al., 2001]. Adiabatic convection is well modelled in 1D

and therefore the theoretical predictions at this evolutionary stage are not a�ected

by issues with the modelling of convection.
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Figure 1.7: The luminosity as a function of e�ective temperature for DA white dwarf
structures. Each separate thin line illustrates the evolution of a white dwarf with
di�erent total mass, starting from the top (right) line which is for a 0.4M� white
dwarf all the way down to the bottom line which is for a 1.2M� white dwarf. The
thick black lines indicate isochrones of constant age. The age of each isochrone in
Gyr is speci�ed nearby. The open circles near the top left corner indicate the e�ective
temperature at which neutrino cooling becomes less important than thermal cooling.
The onset of convective core coupling is shown as open circles at lower luminosities.
The �lled black circles designate the onset of crystallisation in the core of the white
dwarf. This plot shows that for higher mass white dwarfs convective core coupling
occurs later in the evolution than crystallisation, whereas for low mass white dwarfs
the opposite is true. Reproduced from Fontaine et al. [2001].
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As shown in Fig. 1.7 for larger mass white dwarfs, crystallisation occurs

earlier than convective core coupling and these two processes can be observed as

two separate peaks in the theoretical luminosity function due to the separation in

age when the onset occurs [Fontaine et al., 2001]. This means that for these white

dwarfs the two processes can be distinguished. For lower mass white dwarfs this is

not possible as the two processes overlap in time. The signature of convective core

coupling is also more signi�cant on the luminosity function, because the latent heat

release of crystallisation occurs over a larger period of time [Fontaine et al., 2001].

Therefore, its e�ect is averaged over a larger range, reducing its signature. This is

illustrates in more detail in Fig. 5 of Fontaine et al. [2001].

1.3.7 Debye cooling

Once the white dwarf becomes cool enough, it will once again experience acceleration

in its cooling. This time due to quantum e�ects, in a process known as Debye

cooling [Lamb and van Horn, 1975]. In the crystallised solid that is now the white

dwarf's core the speci�c heat is determined by the phonons which are created by the

vibrations of the ions in the lattice [van Horn, 1971]. This speci�c heat is low, leading

to accelerated cooling. In Fig. 1.6 this stage is seen around Abs log L/L� ≈ 5.0

[Koester and Chanmugam, 1990].

Debye cooling will set in faster for more massive white dwarfs due to their

larger density [Fontaine et al., 2001]. This means that massive white dwarfs will cool

faster to the same luminosity than average mass white dwarfs. This will also happen

if the oxygen content of the core is enriched [Fontaine et al., 2001].

Gravitational contraction of the outer layers becomes signi�cant once again,

when the Debye cooling has removed a large portion of white dwarf's thermal energy

[Fontaine et al., 2001]. Eventually, a white dwarf will lose the entirety of its thermal

reservoir, leaving it devoid of light in a state known as a black dwarf.

1.3.8 Remnant planetary systems

Since the majority of stars will become white dwarfs, a question arises regarding

the fate of planetary systems. There is now plenty of evidence that such systems

do survive into the white dwarf stage. A transit of a disintegrating planet has

been observed around the white dwarf WD1145+0170 [Vanderburg et al., 2015]. An

evaporating giant planet has been inferred to orbit WDJ0914+1914 [G�ansicke et al.,

2019]. The short-term variations of emission lines in the spectrum of SDSS1228+1040

have also provided evidence for the existence of a planetesimal which is causing a 20
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year precession in the gas disk around the star [Manser et al., 2019].

Evidence also comes from the observations of metals in the spectra of DZ (or

DBZ, DAZ etc) white dwarfs [Jura, 2003; Farihi et al., 2010]. Due to the immense

densities and surface gravities, metals should rapidly di�use out of the atmosphere

as the di�usion timescales are much less than the lifetime of the white dwarf [Koester

and Chanmugam, 1990]. Thus the presence of metals in the spectra hints that there

has been recent or ongoing accretion of metals from an external source. Some have

argued that the interstellar medium (ISM) could be such a source [Dupuis et al.,

1992]. However, studies have shown that typical accretion rates from ISM are not

enough to counteract di�usion [Koester and Chanmugam, 1990]. Additionally, there

does not seem to be any correlation between metal abundances observed and the

white dwarf position in relation to interstellar material [Farihi et al., 2010].

Radiative levitation is another possible explanation. In this scenario it is

assumed that the radiation �eld of the white dwarf gives momentum to the metals

depending on their absorption coe�cients [Oswalt and Barstow, 2013, Chap. 11]. As

the temperature of the star decreases from the core to the surface, the metals would

experience higher momentum from the bottom than the top, overcoming di�usion

making them �oat in the atmosphere. The absorption coe�cient can vary many

orders of magnitude across di�erent metals. Therefore, radiative levitation can lead

to relative di�usion, where some metals di�use faster out of the atmosphere than

others [Oswalt and Barstow, 2013, Chap. 11]. However, the majority of metal-rich

white dwarfs are convective, and are found below the e�ective temperature where

radiative levitation is said to occur. Thus, it is not a likely explanation.

The most favoured explanation is the accretion of metals from planetesimals

orbiting a white dwarf. These planetesimals can be perturbed onto highly eccentric

orbits that brings them into the tidal disruption radius of the white dwarf, disrupting

the planetesimal, creating a planetary debris disk that eventually gets accreted onto

the white dwarf [Jura, 2003]. Such debris disks have been observed around white

dwarf by studying them in infrared [Zuckerman and Becklin, 1987; Jura, 2003].

The identi�cation of the metal lines and the ability to measure the metal

abundances allows for unique determination of the interior compositions of exoplan-

etary systems [Zuckerman et al., 2007]. No other such method exists. However,

to transform the observed abundances into masses, it is necessary to know the vol-

ume over which the metals are distributed. Convection e�ciently mixes the metals

homogeneously over the entirety of the convection zone and increases the di�usion

timescales of metals. Provided we know the size of the convection zone, we can

therefore deduce the masses of the metals. The size of the convection zone is closely
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related to the e�ciency of convection, which is di�cult to determine in 1D. There-

fore, 3D models can also be used to improve this aspect of white dwarf modelling.

Helium-atmosphere white dwarfs are important for remnant planetary sys-

tems as the di�usion timescales in helium-dominated atmospheres are longer than

in hydrogen-dominated atmospheres [Oswalt and Barstow, 2013, Chap. 11]. This

means that it is easier to observe rarer metals in helium-dominated atmosphere white

dwarfs [Girven et al., 2012]. The combination of observations of metals in helium-

dominated and hydrogen-dominated atmosphere white dwarfs can also be used to

determine the lifetimes of the debris disks [Girven et al., 2012]. There is also evi-

dence that the presence of hydrogen in helium-dominated atmosphere white dwarfs

is correlated with the presence of metals, giving evidence for accretion of water-rich

planetesimals [Gentile Fusillo et al., 2017].

1.4 Atmospheric modelling

The observed spectroscopic and photometric data of a star is made up of light that

was generated in its deep interior and left through its envelope and atmosphere.

The atmosphere is the last point of contact with the star for the observed photons,

thus in order to decode the information stored in spectroscopic and photometric

observations, we must understand the path of the light as it travels through the

atmosphere [B�ohm-Vitense, 1989, Chap. 5]. This is achieved by modelling the

stellar atmospheres. Assumptions are used to simplify the calculations involved.

We know that stars are not in thermodynamic equilibrium, because there is a

net outward energy �ow which we observe. When modelling the atmospheres of cool

white dwarfs we use the assumption of local thermodynamic equilibrium [Oswalt and

Barstow, 2013, Chap. 11]. However, this assumption is not valid for white dwarfs

with high e�ective temperatures of around Teff > 50 000 K [Barstow et al., 1993;

Dreizler and Werner, 1993]. We do not consider such white dwarfs in this thesis.

Local thermodynamic equilibrium means that a portion of a star's atmosphere at a

given geometric depth can be considered to have the same temperature, such that

thermodynamic equilibrium can be assumed at that depth [B�ohm-Vitense, 1989,

Chap. 4]. For cool white dwarfs this is a good assumption, because the distance

over which temperature changes considerably is much larger than the mean free path

of photons [Carroll and Ostlie, 2007, Chap. 9]. This is due to the high density of

white dwarfs causing frequent collisions between the photons and particles in the

atmosphere.

The net movement of photons from the deep interior to the surface is caused
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by the outwardly decreasing temperature and pressure strati�cations. An example

of observational evidence for this comes from limb darkening in stars. This occurs

due to line of sight allowing us to see deeper into the star near its center than its

limb as can be seen in Fig. 1.8. The center of the star's disk will appear brighter

than its limb because the temperature of the deeper layers is higher [Carroll and

Ostlie, 2007, Chap. 9]. Although, temperature and pressure decrease outwardly,

each layer must transmit the same amount of �ux, meaning that the star is in

thermal equilibrium [B�ohm-Vitense, 1989, Chap. 6]. If this was not the case, then

the observed temperature of the star would vary greatly from one moment to next,

which does occur in pulsating white dwarfs.

Another assumption that can be made in white dwarf atmosphere modelling

is the plane-parallel geometry of the atmosphere [Oswalt and Barstow, 2013, Chap.

11]. This is a good assumption because the depth of the atmosphere is much smaller

than the radius of the white dwarf. This assumption is needed to de�ne the vertical

optical depth, so that it is independent of the angle of the light beam [B�ohm-Vitense,

1989, Chap. 4].

Figure 1.8: A schematic of limb darkening in stars. The line of sight of the observer
is indicated by the black arrows. The observed photons are generated at τλ = 2/3,
where τλ is the optical depth at given wavelength, λ. However, this optical depth
does not correspond to the same geometric depth. The photons travelling near the
center of the disk (arrow a) come from a deeper atmospheric layer where temperature
is higher and thus the disk appears brighter. Photons travelling near the limb (arrow
b) come from a geometrically shallower depth, where temperature is lower and thus
the limb appears darker.
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In atmosphere modelling we have to use these approximations to determine

the temperature, pressure, density and opacity strati�cations in order to be able to

calculate synthetic energy distributions that can be used to compare with observed

spectra or photometric magnitudes [Oswalt and Barstow, 2013, Chap. 11].

1.4.1 Radiative energy transport

The total �ux radiated by a star is given by the Stefan-Boltzmann law

πF (0) = σT 4
eff , (1.1)

where πF (0) is the total �ux per cm−2 emitted at the surface and σ is the Stefan-

Boltzmann constant equal to 5.67 × 10−8 W m−2 K−4 [Boltzmann, 1884]. This is

also the amount of �ux that has to be transmitted by each layer of the atmosphere

[B�ohm-Vitense, 1989, Chap. 6]. This law allows for the determination of the e�ective

temperature of a star, which is de�ned as the temperature of a blackbody emitting

the same amount of �ux.

We �rst assume the �ux is carried by photons alone, which get absorbed and

re-emitted in random directions by gas particles in the atmopshere. This happens

in a radiative equilibrium. In the prescription of radiative energy transport we only

need to consider the radial direction of the star because for a spherically symmetric

star other components are equal to zero [B�ohm-Vitense, 1989, Chap. 5]. This is

a good assumption for white dwarfs since the depth of the atmosphere is much

smaller than the total radius of the white dwarf [Oswalt and Barstow, 2013, Chap.

11]. Although photons are massless, they carry momentum and thus exert radiation

pressure that supports the atmosphere against gravitational collapse [B�ohm-Vitense,

1989, Chap. 4].

The energy of the light beam is de�ned as

Eλ = Iλ dλ dω dA dt, (1.2)

where Eλ is the energy of the photons at a given wavelength, λ, Iλ is the speci�c

intensity, ω is the solid angle, A is the cross sectional area of the light beam and t is

time [B�ohm-Vitense, 1989, Chap. 4]. This equation de�nes the speci�c intensity of

the light beam. It is the amount of energy carried by photons at a given wavelength

in a unit time and per unit solid angle. Since it is de�ned per unit solid angle, the

speci�c intensity of a light beam does not change with the beam spreading out as

it travels. An example of speci�c intensity is the Planck function which determines

the speci�c intensity for a blackbody.
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For the Sun we are able to observe its speci�c intensity as its surface is

resolvable. For stars that are not resolvable with a telescope, we are observing the

speci�c intensity integrated over all angles, which is the �ux [B�ohm-Vitense, 1989,

Chap. 5].

The intensity transmitted by radiation is given by

cos θ
dIλ
dτλ

= −Iλ + Sλ, (1.3)

where θ is the angle between the light beam and the radial direction of the star, τλ

is the optical depth of photons with given wavelength, Sλ is the source function and

is de�ned as Sλ = ελ/κλ, where ελ is the emissivity coe�cient (at given wavelength)

and κλ is the absorption coe�cient which is also known as the opacity [B�ohm-Vitense,

1989, Chap. 5]. This is the radiative transfer equation and it considers what happens

to the intensity of the light beam as it travels through matter. Emission will increase

the intensity of the light beam, whereas absorption will decrease it. Therefore, the

source function describes how the intensity of the light beam changes as the original

photons from the light beam are removed and are replaced by photons from the

surrounding gas.

From Eq. 1.3 we can deduce three scenarios. The �rst is when intensity does

not change and this occurs when the intensity of the light beam is equal to the

source function [B�ohm-Vitense, 1989, Chap. 5]. This happens in a blackbody. As

the intensity is equal to the source function, the blackbody's source function is equal

to the Planck function.

If the intensity of the beam is larger than the source function, then the

intensity will decrease as the beam moves through the atmosphere. On the other

hand, if the source function is larger, then the intensity will increase. In general the

intensity tends to change in order to represent the local source function, i.e. the

local photons in the surrounding gas [B�ohm-Vitense, 1989, Chap. 6]. This is not

always possible, especially if the source function varies too rapidly with distance for

equality to be attained.

The radiative �ux can then be found by integrating the speci�c intensity with

respect to the solid angle.

πFλ =

∫
Iλ cos θ dω. (1.4)

1.4.2 Temperature strati�cation

The temperature strati�cation of the atmosphere is determined by the �ux transport.

To determine it, we can use the Eddingtion approximation as a simpli�cation, where
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the intensity varies linearly as a function of cos θ [B�ohm-Vitense, 1989, Chap. 6].

This leads to the Eddington-Barbier relation where the surface �ux is de�ned by

Fλ(0) = Sλ(τλ = 2/3). (1.5)

This means that the observed �ux at the surface of the star comes from photons

at an optical depth τλ = 2/3 (see Fig. 1.8). If local thermodynamic equilibrium is

assumed then the source function at a given depth is equal to the Planck function

and with the assumption of a grey atmosphere, where the opacity is independent of

wavelength, one �nds

T 4
eff = T 4(τ = 2/3). (1.6)

This indicates that the e�ective temperature of a star is its temperature at τ = 2/3

[B�ohm-Vitense, 1989, Chap 6.].

In reality, however, a more rigorous calculation, which takes into account the

non-greyness of the atmosphere, leads to a temperature strati�cation that can be

written as

T 4(τ) =
3

4
T 4

eff(τ + q(τ)), (1.7)

where q(τ) is a slow-varying function of τ [B�ohm-Vitense, 1989, Chap. 6]. When

computing atmospheric models, the grey atmosphere solution is found �rst in order

to be able to determine the value of q(τ).

1.4.3 Opacity

As a photon travels through the star it constantly gets absorbed and re-

emitted by gas particles. This means that photons do not travel through a star at

the speed of light in vacuum. Instead, they follow a path characterised by a random

walk with a small mean free path [Carroll and Ostlie, 2007, Chap. 9]. The absorption

coe�cient of photons with given wavelength, κλ, is the collisional cross section of

a photon which determines how it interacts with particles in the atmosphere. It is

also known as opacity. The optical depth, τλ, is de�ned as the number of mean

free paths a photon will travel from its original position to the surface [Carroll and

Ostlie, 2007, Chap. 9]. This means that we will not see light that has been formed

deeper than around τλ ≈ 1. An optically thick gas is therefore de�ned by τλ � 1,

whereas optically thin is de�ned by τλ � 1. The optical depth is written as

τλ =

∫ z

0
κλdz, (1.8)

27



where z is the geometric depth with z = 0 de�ning the surface.

There are four ways photons can be absorbed by particles. True absorption

involves the complete removal of photons from the light beam and surroundings, but

opacity also takes into account scattering, where a photon is removed from the light

beam by changing its direction of travel [B�ohm-Vitense, 1989, Chap. 7]. In true

absorption the energy of the photon is completely deposited into the thermal energy

of the surrounding gas.

The �rst type is known as bound-bound absorption and it is due to the

transition of a bound electron between two energy levels of an atom or an ion [Bohr,

1913]. This is also known as excitation. In true absorption the photon will be lost.

However, if a photon is �rst absorbed by an electron and then is re-emitted following

de-excitation, it becomes a scattering process since it is unlikely that the emitted

photon will be travelling in the same direction as the light beam [B�ohm-Vitense,

1989, Chap. 7]. This type of opacity contributes only at wavelengths corresponding

to energy di�erences between the levels. Therefore, it is responsible for the formation

of lines in the spectra of stars.

Another source of opacity is the bound-free absorption or photoionisation.

This happens when a photon has enough energy to ionize a particle by providing

the energy for an electron to become unbound. The resulting thermal energy of the

electron will then be equal to Eν −Eionisation, where Eν is the energy of the photon

and Eionisation is the ionisation energy [B�ohm-Vitense, 1989, Chap. 7]. This means

that unlike the bound-bound absorption, bound-free absorption contributes to the

opacity at many wavelengths as long as the wavelength of the photon corresponds to

Eν > Eionisation. Therefore, these transitions contribute to the continuum opacity.

For large wavelengths and therefore low photon energies, only high energy levels of

the atom or ion can contribute to bound-free absorption [B�ohm-Vitense, 1989, Chap.

7].

Free-free absorption occurs when a free electron in a presence of an ion absorbs

a photon. This leads to an increase of the thermal energy of the electron. The

presence of an ion is needed to conserve both energy and the momentum [B�ohm-

Vitense, 1989, Chap. 7]. This, again, contributes to the opacity of the continuum as

this type of process can occur at any wavelength. For the largest wavelengths only

free-free absorption is able to contribute to the opacity.

As mentioned earlier, scattering also contributes to the opacity of the gas.

If the temperature of the atmosphere is large, then bound atoms cannot exist and

therefore electron scattering dominates the opacity. There are three main types of

scattering processes. The �rst is Thomson scattering, which happens when a free
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electron scatters a photon. It has a constant, small cross section at all wavelengths,

which is smaller than the hydrogen cross-section for photoionisation [B�ohm-Vitense,

1989, Chap. 7]. This type of scattering is most dominant when the electron density is

large and thus it is important for white dwarfs. Compton scattering is the scattering

of a photon by a loosely bound electron. This occurs if the photon's wavelength

is much smaller than the atom's radius [B�ohm-Vitense, 1989, Chap. 7] and could

be relevant for hot white dwarfs [Madej, 1994; Suleimanov et al., 2007]. Rayleigh

scattering happens when the photon's wavelength is larger than the atom's radius.

Rayleigh scattering dominates in the UV and the blue part of the optical spectrum

of white dwarfs.

All these processes can also lead to emission of light, if instead of absorbing

the photon, a photon is emitted. In the case of free-free absorption, the emission

process is known as bremsstrahlung.

If the atmosphere becomes denser for a given constant temperature, the

chance of an interaction between a photon and a particle increases, leading to larger

atmospheric opacity. At higher temperatures, more of the gas will be ionised, af-

fecting the opacity. This indicates that opacity is both a function of density and

temperature [Carroll and Ostlie, 2007, Chap. 9].

As the opacity depends on the interactions between photons and atoms or

ions, we need to know the number of atoms in di�erent quantum states and the

degree of ionization of the gas in order to accurately calculate the opacity of the

atmosphere. The Boltzmann and Saha equations allow us to do that, respectively

[B�ohm-Vitense, 1989, Chap. 7]. The Boltzmann equation is given by

Nn

N1
=
gn
g1
e−χn/kT , (1.9)

where N1 and Nn are the number of atoms in the ground state and n-th energy

level, respectively; g1 and gn are the statistical weights for the ground and n-th

energy level, respectively; χn is the transition energy between the two levels; k is

the Boltzmann constant and T is the temperature of the gas. The statistical weight

of an energy level is given by the number of combinations of the quantum numbers

that result in the same energy. The number of atoms in di�erent quantum states is

also known as the occupation number [B�ohm-Vitense, 1989, Chap. 7]. The number

of ions present in a gas will decrease the number of atoms in the ground state.

The Saha equation is derived from Boltzmann equation and is de�ned as

N+ne
N

=
u+

u
2

(2πm)3/2

h3
(kT )3/2e−χion/kT , (1.10)
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where N+ and N are the number of ionised and neutral atoms in their ground state,

respectively; ne is the electron density; u+ and u are the partition functions for the

ionised and neutral atoms, respectively, and they depend on the statistical weights

of the energy levels; m is the mass of the electron; h is the Planck constant and

χion is the ionisation energy of the atom [B�ohm-Vitense, 1989, Chap. 7]. For the

same number of particles, the opacity can vary greatly depending on the degree of

excitation and ionisation of the gas, as the interaction between the photons and

particles will change.

For a given atmospheric layer with particular temperature and electron den-

sity or pressure, we can calculate the degree of ionization for all atoms and ions

present and therefore the opacity. In general, larger opacity means that we cannot

see deep into the star. Therefore, the light observed at wavelengths where the gas

is opaque comes from higher up atmospheric layers where the temperature is lower

and thus the emitted intensity is lower for larger opacity.

The Rosseland mean opacity, κR, is a �ux-weighted harmonic mean of opac-

ities over all wavelengths and is de�ned as

1

κR
=

∫∞
0

1
κλ

dBλ
dT dλ∫∞

0
dBλ
dT dλ

, (1.11)

where Bλ is the Planck function. As small opacities result in larger �ux, low opacities

are weighed most heavily. Therefore, the Rosseland mean opacity is closest to the

smallest value of κλ [B�ohm-Vitense, 1989, Chap. 8]. The Rosseland mean opacity

also de�nes the Rosseland optical depth, τR, which can be used as a depth indicator

of an atmosphere. If one were to use a constant opacity over all wavelengths when

computing a stellar atmosphere, then the result would be a grey atmosphere. A non-

grey atmosphere is thus one that considers the opacity as a function of wavelength

and is the most physical model atmosphere. Rosseland mean opacity is constructed

such that it results in a calculation of a grey atmosphere with the same emitted �ux

as the non-grey atmosphere [B�ohm-Vitense, 1989, Chap. 8].

One e�ect caused by non-greyness is called backwarming [B�ohm-Vitense,

1989, Chap. 8]. Non-greyness will cause lines to appear in a star's spectrum by

removing �ux at certain wavelengths. Therefore, an atmosphere with the same tem-

perature strati�cation but with absorption lines will produce less �ux and therefore

will have smaller e�ective temperature. In principle grey and non-grey atmospheres

must produce the same amount of total �ux for a given star. This means that

in a non-grey atmosphere more �ux has to be emitted at other (non-spectral line)

wavelengths with smaller opacities, i.e. the continuum. To produce more energy at

30



smaller opacities, the temperature has to be higher in deeper layers where continuum

is formed, changing the overall temperature strati�cation. Therefore, the continuum

will now resemble the continuum of a hotter star.

The typical opacities are shown in Figs. 1.9 and 1.10. These have been taken

from the Montr�eal white dwarf atmospheric code [Bergeron et al., 1995]. The opacity

is made up of various sources, each highlighted in the �gure. Both in DA and DB

white dwarfs the bound-free opacities dominate the continuum.
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Figure 1.9: The opacity as a function of wavelength for a DA white dwarf with
log g = 8.0 and Teff = 13 000 K. The units of the variables are in cgs. Each opacity
source is detailed in the label. The optical range is highlighted with the use of
grey dashed lines. The opacity is heavily dominated by the hydrogen bound-free
absorption and hydrogen spectral lines.
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Figure 1.10: The opacities as a function of wavelength for a DB white dwarf with
log g = 8.0 and Teff = 18 000 K. The units of the variables are in cgs. Each opacity
source is detailed in the label. The optical range is highlighted with the use of grey
dashed lines. The opacity is heavily dominated by the He I bound-free absorption
and helium spectral lines.

1.4.4 Pressure strati�cation

When modelling the atmosphere of a star we have to consider that the outward force

from the pressure exerted by the gas must be balanced by the gravitational force.

If this was not the case, the star would either expel its outer layers if the outward

pressure overcomes gravity or collapse if the opposite is true. Thus, we assume stars
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are in hydrostatic equilibrium such that

dPg
dz

= gρ, (1.12)

where Pg is the gas pressure, g is the gravitational acceleration and ρ is the density

of a given layer [B�ohm-Vitense, 1989, Chap. 9]. As the atmosphere is thin compared

to the radius of the white dwarf we can assume that the value of g in the atmosphere

is constant. Additionally, we can also include the turbulent gas pressure which arises

from particles having bulk momentum, and the radiation pressure which comes about

due to photons possessing large momenta if radiation is particularly strong [B�ohm-

Vitense, 1989, Chap. 9].

When modelling the stellar atmospheres, we solve the equations of radiative

transfer, state and hydrostatic equilibrium. This is done numerically due to the

complex dependency of various parameters on opacity. The inputs for such mod-

elling include e�ective temperature, surface gravity and atmospheric composition.

First, a temperature strati�cation is assumed, and with the equation of state and

hydrostatic equilibrium, the opacities and the strati�cations of pressure and density

are determined. This process is iterated until the temperature strati�cation satis�es

the equation of radiative transfer, usually to a level of less than 1%.

In order to �nd the pressure of a given atmospheric layer, we have to integrate

the right hand side of Eq. 1.12, therefore the procedure described in the above

paragraph is made slightly more complicated. Numerical integration is used and is

started at a small optical depth where the initial gas pressure is much smaller than

the gas pressure of the atmospheric layer to be found [B�ohm-Vitense, 1989, Chap.

9]. Once the pressure of the layer is found, we can continue integrating stepwise for

a layer below. This is repeated until the entire pressure strati�cation is found.

1.4.5 Convection

In the atmosphere of a white dwarf, energy can either be transported by radiation

or convection. Which process is dominant depends on the Schwarzschild criterion.

A layer inside a star is said to be unstable against convection if∣∣∣∣dTdP

∣∣∣∣
radiative

>

∣∣∣∣dTdP

∣∣∣∣
adiabatic

, (1.13)

where T and P are the temperature and gas pressure of the layer [B�ohm-Vitense,

1989, Chap. 14]. This particular form of Schwarzschild criterion assumes that we

started with a radiative atmosphere. The energy can be carried by both processes
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at the same time, with one being dominant or both transporting equal amounts of

energy �ux.

Convection transports energy via the movement of a �uid. In general, if a

parcel of gas that is less (or more) dense than its surroundings receives a kick, it

will move upwards (or downwards). The Schwarzschild criterion then determines

whether this parcel of gas will carry with this motion or if it travel back to its

original position [B�ohm-Vitense, 1989, Chap. 14]. If the motion carries on, then the

gas is said to be unstable against convection causing convective energy transport to

set in. During its travel, the bubble of gas must be in pressure equilibrium with its

surroundings, thus for it to be less dense it has to be hotter. Therefore, in convection

hot gas rises to the surface while cold gas falls to the center [B�ohm-Vitense, 1989,

Chap. 14]. This can be observed in the convection zone of the Sun or in Earth's

atmosphere. The parcel of gas will eventually reach a layer where the density of the

surroundings matches its own. There it will deposit (or absorb) its excess (or de�cit)

of energy and dissipate into the surroundings [B�ohm-Vitense, 1989, Chap. 14].

The amount of energy that can be transported depends on the temperature

gradient, with larger gradients needed to transport larger amounts of energy. Ra-

diative energy transport can also be made di�cult by a large opacity, which then

requires an increase in the radiative temperature gradient of the gas and thus ful-

�ls the Schwarzschild criterion. Therefore, if either the opacity or the temperature

gradient becomes too large, this will result in the onset of convection [Carroll and

Ostlie, 2007, Chap. 10]. Convection will also kick-in if the adiabatic gradient is low,

which happens when the speci�c heat of the gas is large. For example, this occurs

in the ionization zone, where energy is used to ionize the gas rather than heat it

[Carroll and Ostlie, 2007, Chap. 10]. This is the main reason for convection zones

in the atmospheres of white dwarfs [Fontaine et al., 2001]. Hydrogen ionization is

responsible for the formation of a convection zone in the atmospheres of DA white

dwarfs. For DB white dwarfs both the He I and He II ionization takes place, leading

to the formation of two convection zones in the atmosphere.

For the bubble of gas to keep rising or sinking, it must not have the same

density as its surroundings. To achieve this, it has to travel fast enough not to be

able to exchange heat with the material surrounding it. Due to these high velocities

the convection is turbulent, leading to complete mixing of the material inside the

convection zone [Carroll and Ostlie, 2007, Chap. 10]. This occurs when the star's

temperature gradient is the same as the adiabatic temperature gradient, leading to

what is known as adiabatic convection. In white dwarfs such convection happens

in the deeper layers of the star [Tassoul et al., 1990]. In the upper layers of a
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star, where the opacity is lower and the star's temperature gradient is larger than

the adiabatic temperature gradient, radiative energy transfer will transport energy

alongside convection, leading to what is known as superadiabatic convection [Tassoul

et al., 1990]. From this it is clear that convection is a time-dependent 3D process

and needs the treatment of �uid dynamics. However, because of computational

limitations in the majority of atmosphere modelling, convection is treated using 1D

approximations.

In white dwarf 1D atmosphere modelling the ML2/α version [Tassoul et al.,

1990] of the mixing length theory [B�ohm-Vitense, 1958], MLT, is used to treat con-

vection. This approximation depends on a free parameter that de�nes how far a

parcel of gas will travel before it dissipates (or absorbs) its excess (or de�cit) of en-

ergy [B�ohm-Vitense, 1989, Chap. 14]. The characteristic distance travelled is known

as the mixing length, l, and is characterised in modelling by the mixing length pa-

rameter, α = l/Hp, where Hp is the pressure scale height. However, this is not the

only free parameter used in MLT. There are three additional parameters denoted as

a, b, c that de�ne the average speed of convective elements, the energy �ux and the

convective e�ciency, respectively [Tassoul et al., 1990]. The ML2/α version of MLT

sets these values to a, b, c = 1, 2, 16 [Tassoul et al., 1990]. For DA white dwarfs the

commonly used value of the mixing length parameter is 0.8 [Tremblay et al., 2010].

For DB and DBA white dwarfs the value of 1.25 is used instead [Bergeron et al.,

2011]. These values were determined from observations as the theory does not de-

�ne them. Observations also show that deeper layers have more e�cient convection

which results in larger values of mixing length parameter, highlighting the fact that

no one choice of the mixing length parameter can describe all of the convection zone.

One such example comes from asteroseismological studies, where the observed blue

edge of the instability strip is located at a higher e�ective temperature than the

theoretical blue edge calculated at ML2/α = 1.25. Therefore, to raise the e�ective

temperature of the theoretical blue edge, the convective e�ciency must be increased

at the bottom of the convection zone compared to the value of 1.25, which has been

calibrated from spectroscopic observations that originate from higher up layers (see

e.g. Bergeron et al. 2011; Van Grootel et al. 2012; Hermes et al. 2017; Van Grootel

et al. 2017; Giammichele et al. 2018). This leads to the conclusion that MLT is a

poor approximation of convective energy transport. A recent improvement in the

prescription of convection in white dwarfs has been achieved with the introduction

of 3D atmosphere modelling which treats convection from �rst principles with no

need for free parameters [Tremblay et al., 2011, 2013b]. 3D modelling is especially

important for those layers that experience superadiabatic convection. The subject
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of this thesis revolves around the use of such modelling to simulate the atmospheres

of DB and DBA white dwarfs.

In 1D atmosphere modelling convection is included according to the following

procedure. For each layer, the temperature and pressure is determined following the

calculations described in above sections. With these values the Schwarzschild crite-

rion is then checked to determine whether convection sets in. If it does, then the

�ux transported by that layer is modi�ed as

πF = πFr + πFc = σT 4
eff , (1.14)

where Fr is the radiative �ux and Fc is the convective �ux. Convection a�ects the

total transported �ux and thus the temperature strati�cation. Convective �ux is

proportional to the density [B�ohm-Vitense, 1958, Chap. 14]. In the upper layers

of the atmosphere where density is low, convection will transport less of the �ux.

These are the layers where superadiabatic convection occurs.

1.4.6 Synthetic spectra

The continuum of a star's spectrum is de�ned by slow changes in opacity. Rapid

changes cause the formation of spectral lines which remove (or add in the case of

emission lines) intensity at speci�c wavelengths from (or to) the continuum. For ab-

sorption lines to be able to form the temperature of the star must decrease outwards

[B�ohm-Vitense, 1989, Chap. 10]. Absorption lines are caused by large opacity at

speci�c wavelengths determined by the bound-bound transitions of electrons, which

need signi�cant amounts of energy [B�ohm-Vitense, 1989, Chap. 10]. Therefore,

spectral lines are often observed at shorter wavelengths of the star's spectrum. This

means that the inclusion of lines tends to make colours of the star redder as it

removes intensity from the bluer parts of the spectrum.

A useful tool to measure the strength of a given line is called the equivalent

witdh, Wλ. It is the width of a rectangle with height equal to one that would have

the same area as the line. It is de�ned as

Wλ =

∫
line

Fcontinuum − Fλ
Fcontinuum

dλ, (1.15)

where Fcontinuum and Fλ are the continuum and line �ux, respectively [B�ohm-Vitense,

1989, Chap. 10]. The integral is performed over the wavelength range of the line.

The depth of the line thus depends on the continuum and line opacity, and the

temperature gradient of the atmosphere.
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The core of the line denotes the highest opacity region and therefore is formed

highest up in the atmosphere. As one moves away from the core of the line to its

wings, the opacity decreases. Therefore, the wings are formed progressively deeper

in the star until they reach the depth where the continuum is formed, merging the

wings into the continuum.

Line broadening

One would assume that the lines seen in the spectra of stars should occur at one

speci�c wavelength corresponding to the di�erence in energy between the two energy

levels of the electron bound to an atom or ion. However, the observed spectral

lines are spread over a range of wavelengths. This happens due to line broadening

processes.

The �rst is natural broadening and it is due to the Heisenberg's uncertainty

principle, which can be written as

σtσE ≥
~
2
, (1.16)

where σt and σE are the standard deviations of time and energy, and ~ is the reduced
Planck constant [Heisenberg, 1927]. As the electron occupies an energy level for an

instant of time, it means that the energy of the level has some uncertainty. Both

levels in the transition will have such uncertainty, resulting in a line that extends over

a range of wavelengths. The larger the amount of radiation, the shorter the lifetime

of an electron in a given energy level and therefore the broader the line. The shape

of this line pro�le is known as a Lorentzian or damping pro�le [Carroll and Ostlie,

2007, Chap. 9]. As the transitions can be described using a classical oscillator, the

strength of the transition is referred to as its oscillator strength. These can be either

measured in lab or derived theoretically.

Another type of broadening comes from the movement of atoms or ions in the

gas. It is known as Doppler broadening, since it arises from the Doppler shift of the

wavelength of the line caused by motion of particles [Carroll and Ostlie, 2007, Chap.

9]. The shape of a Doppler broadened line is a Gaussian. In thermal equilibrium,

the motion of the particles is described by the Maxwell-Boltzmann distribution. As

the distribution has an exponential tail, the wings of the Doppler broadened line

fall-o� exponentially as one moves away from the line core [B�ohm-Vitense, 1989,

Chap. 10]. This is a faster drop o� than observed in naturally broadened lines.

Therefore, a spectral line broadened by both natural and Doppler broadening will

be dominated by Doppler broadening near the line core and dominated by natural
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broadening in the wings [Carroll and Ostlie, 2007, Chap 9.]. Other motions can

contribute to Doppler broadening. Convection is one type of large scale motion

contributor. It a�ects the broadening in two ways. First is macroturbulence and it

is due to the granulation of the convection zone [B�ohm-Vitense, 1989, Chap. 10].

Granulation means that di�erent parts of the star's surface have di�erent velocities.

Within each granule the absorption does not change, thus the line pro�le is the same.

However, when all granules are considered together, the apparent line pro�le seems

wider as the lines from di�erent granules are centred at di�erent wavelengths. The

second is microturbulence and it is caused by particles having di�erent velocities due

to convective motions, resulting in photons which interact di�erently compared to

an atmosphere with no convection [B�ohm-Vitense, 1989, Chap. 10]. This alters the

opacity and therefore changes the line pro�le. In 1D modelling these e�ects are taken

into account using free parameters. In 3D these parameters are not needed since

the motions are taken into account from �rst principles. Other sources of Doppler

broadening include stellar rotation, pulsations and mass loss [B�ohm-Vitense, 1989,

Chap. 10].

The most important type of broadening in the spectra of cool white dwarfs is

pressure broadening [Oswalt and Barstow, 2013, Chap. 11]. It occurs due to the col-

lisions between atoms or due to the in�uence of electric �elds of ions [B�ohm-Vitense,

1989, Chap. 10]. Both of these e�ects perturb the energy levels of atoms or ions.

It has the same pro�le as natural broadening. It is also called the damping pro�le

as the shape can be described mathematically as an electric charge experiencing

damped simple harmonic motion. In some stars, natural and pressure broadening

are comparable. However, the width of pressure broadening is proportional to the

number of collisions that occur, therefore in environments of high density (e.g. white

dwarfs), this type of broadening is most signi�cant.

A combination of Doppler and damping pro�les is known as Voigt pro�le and

it describes the total line pro�le [B�ohm-Vitense, 1989, Chap. 10]. As mentioned

before, this pro�le will have a Doppler broadened core and damped wings due to

either natural broadening or pressure broadening.

Additional broadening can occur due to factors outside the stellar atmosphere.

These include issues with the �nite resolution of a spectrograph and instrumental

pro�les, amongst others [B�ohm-Vitense, 1989, Chap. 10].

Hydrogen and helium spectral features

One of the features observed in the spectra of stars that have hydrogen in their

atmosphere is known as the Balmer jump [B�ohm-Vitense, 1989, Chap. 8]. It occurs
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Table 1.1: The Balmer series of hydrogen spectral lines. Data taken from Reader
et al. [1980]

Hα Hβ Hγ Hδ Hε Hζ Hη
Transition 2 → 3 2 → 4 2 → 5 2 → 6 2 → 7 2 → 8 2 → 9

Wavelength (�A) 6563 4861 4340 4102 3970 3889 3835

at 3646�A due to the bound-free absorption of electrons from the n = 2 orbital which

increases the opacity causing a sharp decrease in continuum intensity for wavelengths

larger than 3646�A. The size of the jump will depend on the number of hydrogen atoms

in the n = 2 orbital. The presence of the Balmer jump in the near ultraviolet part of

the spectrum increases the U-B colour in the UBV magnitude system [B�ohm-Vitense,

1989, Chap. 8].

In cool DA white dwarfs Balmer hydrogen lines are observed in the optical

part of spectrum. Similarly to the Balmer jump, these lines are caused by bound-

bound transitions of electrons from the n = 2 energy level [B�ohm-Vitense, 1989,

Chap. 8]. Table 1.1 shows more in depth information regarding the Balmer series.

The hydrogen lines in DA white dwarfs are broadened by the Stark e�ect which is

caused by the electric �elds of passing ions and electrons [Tremblay and Bergeron,

2009]. This is a type of pressure broadening. The Stark e�ect acts in two ways

[B�ohm-Vitense, 1989, Chap 11]. Firstly, the electric �eld causes a shift to the energy

levels as they decrease the lifetime of an electron in a given energy level. Secondly,

the electric �eld lifts the degeneracy of the energy levels, resulting in formation of

not one, but several lines. These new lines occur in the wings of the central line,

such that the resultant line looks broadened. The closer the ion passes, the larger

the energy level splitting and therefore the larger the broadening. The splitting

also increases with n2, so higher energy levels have more splitting and therefore the

associated lines appear broader. Stark broadening is dependent on pressure and thus

is important in the atmospheres of white dwarfs.

In the spectra of cool helium-dominated atmosphere white dwarfs, He I lines

are observed. The lines listed in Table 1.2 are the He I lines observed in the optical

and similarly to hydrogen are due to electron transitions from the n = 2 level. Stark

broadening is important above Teff > 16 000 K. Below around Teff < 16 000 K the

dominant broadening is due to van der Waals forces from neutral helium atoms and

therefore it is known as van der Waals or neutral broadening [Beauchamp et al.,

1996]. This happens because the temperature of the atmosphere is low enough for a

signi�cant number of neutral atoms to form.
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Table 1.2: The optical He I lines. Data taken from Martin [1960] and Martin [1987].

3587, 3614, 3634, 3705, 3733, 3820,
3889, 3965, 4009, 4026, 4121, 4144,
4388, 4438, 4471-4472, 4713, 4922, 5016,
5048, 5876, 6678, 6867, 7065-7066, 7281

Calculation of synthetic spectra

Once the temperature and density (or pressure) strati�cations are calculated, they

can be used to determine the energy distribution of the star [B�ohm-Vitense, 1989,

Chap. 10]. This is essentially a synthetic spectrum that can be utilised to �t ob-

servations of a star in order to �nd its e�ective temperature, surface gravity and

composition. To model a synthetic spectrum one has to solve the radiative transfer

equation wavelength by wavelength.

Not all electron transitions are as likely to occur. Transitions where an elec-

tron moves from its initial level to a closer level are more likely to occur than to an

energy level further away. These probabilities are known as f -values or oscillator

strengths and will determine the opacity of a given line. The oscillator strengths are

de�ned such that they give the number of electrons per atom or ion involved in the

transition [B�ohm-Vitense, 1989, Chap. 10].

Once the synthetic emergent energy distribution is calculated, it can be in-

tegrated to determine synthetic magnitudes and/or colours, which can also be com-

pared to observations in order to �nd the atmospheric parameters.

1.5 Thesis layout

In this thesis, the work I carried out to improve the current modelling of helium-

dominated atmosphere white dwarfs will be presented. Chapter 2 describes the com-

putation of 1D and 3D models using multiple atmosphere modelling codes. Chapter

3 reviews the computation of the 3D atmospheric models of DB white dwarfs. In

it I also derive the corrections to the spectroscopic parameters based on the better

treatment of convection. In Chapter 4 the 3D DBA models are introduced and the

resulting corrections are applied to observations. The implications of such analysis

in terms of further model improvements are also discussed. In Chapter 5 the 3D

models are used to calibrate the mixing length parameter in terms of the large scale

properties of the convection zone. The work is summarised in Chapter 6.

40



Chapter 2

Methodology

She was taken under, drowning in her sea

Running like an angel, she was crying and could not see,

Now see everyone's watching as she starts to fall

They want her to breakdown, be a legend of her fall

Mona Lisa

Britney Spears

2.1 1D ATMO code

A large part of the work presented in this thesis has relied on the 1D white dwarf

atmosphere code created by the Montr�eal group. In the following, this code is

referred to as ATMO. The ATMO model grid covers the following parameter range:

−2.0 ≥ log H/He ≥ −10.0 dex, 7.5 ≤ log g ≤ 9.0 dex and 11 000 ≤ Teff ≤ 40 000 K,

with a step size of ∆log H/He = 0.5 dex, ∆log g = 0.5 dex and ∆Teff = 1 000 K. All

units are in cgs. In some cases the grid has been expanded and this is mentioned

in the relevant chapters. For DB and DBA white dwarfs ML2/α = 1.25 is used,

unless otherwise stated. The code assumes a plane-parallel atmosphere in LTE with

a constant value of gravity [Saumon et al., 1994]. The models are non-grey and

include hydrogen and helium only [Bergeron et al., 1995].

When calculating a model atmosphere and a synthetic spectrum, the input

parameters are hydrogen-to-helium number ratio (or abundance), surface gravity

and e�ective temperature. The code is split into two parts. In the �rst part a

model atmosphere is calculated. The input �le for this part of the code is shown in

Listing 2.1. The second part of the code calculates a synthetic spectrum for a given
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temperature and pressure strati�cation. The input �le for this part of the code is

shown in Listing 2.2. Thus, one would run a model using the �rst part of the code

and use the output in the second part to calculate a synthetic spectrum.

Listing 2.1: A typical input �le for calculating a model atmosphere in ATMO. The

�rst line indicates a �le that contains a frequency grid needed for calculating the

model. The second line speci�es a �le which contains the e�ective temperatures of the

grid to be calculated. On the third line, the �rst, second and third numbers specify

the smallest surface gravity of the grid, the largest surface gravity and the step size

for surface gravities considered. On the fourth line, the �rst and second numbers are

numerical switches for linearisation in temperature and pressure strati�cations, and

for calculation of non-grey atmosphere. Fifth line speci�es the number of maximum

iterations and a numerical parameter that can be used to start the model from a

pre-existent model. If this parameter is equal to 1 as shown here, then the model

is run from scratch. The next line speci�es the helium-to-hydrogen number ratio,

the number of grid points in the atmosphere and a numerical switch which indicates

whether to print the output on the terminal during the run. The following line

indicates whether to include line blanketing of H, He I and He II. However, the code

now automatically includes blanketing when needed and thus these indicators are

obsolete. The last number on this line is a numerical parameter that determines

what type of neutral broadening to use. When running an atmospheric model, this

is not important and thus should be set to 0 as shown in the example. The next line

gives the four parameters of the mixing length theory. In this example it is set to

ML2/α = 1.25. Last line speci�es the su�x for the �le name of the output model

atmospheres.

grid_DA_FINAL

tg r i d

7 .5 9 .0 0 .5 logg1 , loggn , dlogg

1 1 l i n ea r tp , nongray

100 1 n i t e r , i g r i s

1 . 0 e+7 100 1 y , ndepth , i p rn t

1 1 1 0 ihblk , ihe1blk , ihe2blk , ivdw

1.25 1 .000 2 .000 16 .0 mixlen , mla , mlb , mlc

1 .000 e−06 2 .000 e+02 tau1 , taun

_rad iat ive
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Listing 2.2: A typical input �le for calculating a synthetic spectrum using the ATMO

code. The �rst line provides a �le name which contains the values of frequency to

be used in calculating the spectrum. The second line indicates the format of the

numbers in the frequency �le. The third line speci�es the type of the input model, 0

is for models calculated with ATMO, 1 is for 3D models, 2 is for models calculated

with the 1D LHD code (described in next section). The next line indicates whether

to include H, He I and He II lines. For example, one can calculate a spectrum

for a DB model, but without any spectral lines. Such model is not physical, but

can be useful for some applications. The last number of the same line indicates

the type of neutral broadening to include, 0 is for no van der Waals broadening,

1 is for Unsold [1955] broadening and 2 is for Deridder and van Rensbergen [1976]

broadening (described later on in this section). The following line gives the output

�le name, whereas the last line is the �le name of the input atmospheric model.

grid_DB

0 0 = f8 format , 1 = f10 format

0 0 = regu l a r mode (1 f i l e per model )

1 1 1 2 ihblk , ihe1blk , ihe2blk , ivdw

950120 _radiat ive_spectra

950120 _rad iat ive

In general, the following procedure is used when running a model in the

ATMO code [Bergeron et al., 1991]. First, a grey atmosphere is calculated using

the Rosseland mean opacity. When the convection zone forms it leads to numerical

instabilities. This is due to radiative and convective energy transport being treated

using separate equations leading to instabilities when a radiative layer turns convec-

tive [Bergeron et al., 1991]. The instabilities are combated with corrections ensuring

a smooth model convergence. A converged grey atmosphere is then used as an input

for calculating the non-grey atmosphere. The model is then run until the following

convergence is achieved at each depth

∆P/P < 10−2,

∆T/T < 10−3,

∆H/H < 10−3,

(2.1)

where ∆ denotes the di�erence in a given parameter between the current and previous

iteration; P , T and H are the pressure, temperature and integrated Eddington �ux

[Bergeron et al., 1991].

To calculate a synthetic spectrum, a model atmosphere must be provided as

an input parameter to the second part of the ATMO code. This input �le must
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contain the values of temperature and pressure as functions of depth in the atmo-

sphere. The values of temperature and pressure are then used to calculate opacity as

a function of frequency at each layer in the atmosphere. With this information the

radiative transfer equation is solved to �nd intensity at each frequency. The shape

of the lines are determined and various line broadening mechanisms are taken into

account. Thus, the calculation of a synthetic spectrum is complete.

2.1.1 Microphysics

ATMO is similar to other stellar atmospheric codes in the way it solves radiative

transfer and hydrostatic equations. However, it has been speci�cally adapted to deal

with the microphysics of white dwarfs, namely DA, DB and DBA white dwarfs. In

general, both the Bolztmann and Saha equations depend on the partition function,

which for isolated atoms diverge to in�nity as isolated atoms have an in�nite number

of energy levels available for transitions [Bergeron et al., 1991, 1995]. ATMO uses

the equation of state, EOS, from Hummer and Mihalas [1988], which provides a

prescription for the treatment of the dissolvement of upper energy levels due to

interactions with neighbouring particles [Bergeron et al., 1991]. Thus, these atoms

do not have in�nite energy levels and the partition function converges.

The Hummer and Mihalas [1988] equation of state treats non-ideal e�ects

and allows for self-consistent calculation of level populations and opacities [Bergeron

et al., 1991]. For this equation of state an important ingredient is the occupation

probability formalism, which can be calculated in the following fashion. First, it is

assumed that an electron has a �nite probability of being bound or ionised. Inter-

actions with neighbouring atoms lead to the decrease of bound probability. There

are two types of interactions considered, those with neutral and those with charged

neighbouring particles. The neutral interactions are treated using the hard sphere

model, where each energy level in an atom is modelled as a sphere of given radius,

rn,

rn ≈ f2
na0, (2.2)

where a0 is the corresponding Bohr radius of a given energy level of the atom under

consideration and fn is a free parameter. In ATMO fn is set to 0.5, a value that has

been calibrated based on observations of DA white dwarfs [Bergeron et al., 1991]. An

atom's energy level is e�ectively destroyed if its rn is bigger than the interparticle

distance. The value of fn is important for DB/DBA white dwarfs with e�ective

temperatures below 16 000 K where the helium atom is neutral [Bergeron et al.,

1995].
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The interactions with charged particles are treated using a screened Coulomb

potential. It assumes that a given atom experiences an electric �eld generated by

surrounding charged particles, and if the electric �eld exceeds a critical value the

atom becomes ionized [Bergeron et al., 1991]. The critical �eld value roughly corre-

sponds to a condition where a transition to an energy level n, which has been a�ected

by the Stark e�ect, has the same energy as a transition to the n-1 energy level.

In ATMO the included bound-free opacities are due to H−, H, He and He+

atoms and ions [Bergeron et al., 1991]. Note that in the pure-helium case, there are

no hydrogen atoms and therefore the opacity does not depend on hydrogen. The

included free-free absorptions are due to H−, H, He+ (He I), He++ and He− atoms

and ions [Bergeron et al., 1991]. The free-free absorption of He− ion is from John

[1994]. The He+
2 molecule absorption is described using Stancil [1994] [Beauchamp

et al., 1995]. Hummer and Mihalas [1988] is used to calculate bound-bound, bound-

free to true continuum and pseudo-continuum opacities, which are described below

[Bergeron et al., 2011].

2.1.2 Line broadening

When calculating a synthetic spectrum an important ingredient is the description

of line broadening. Helium starts to be ionised at Teff & 16 000 K, therefore be-

low this e�ective temperature, the helium lines are dominated by neutral broaden-

ing. Neutral broadening can be split into two subcategories: resonance and van der

Waals broadenings [Bergeron et al., 1991]. Above Teff ≈ 16 000 K, Stark broaden-

ing dominates the helium lines [Beauchamp et al., 1996]. Both neutral and Stark

broadening are examples of pressure broadening [Bergeron et al., 1991]. For helium

lines the pro�le of resonance broadening is calculated using the Ali and Griem [1965,

1966] prescriptions. The van der Waals broadening is described using either Unsold

[1955] or Deridder and van Rensbergen [1976] prescriptions [Beauchamp et al., 1996;

Genest-Beaulieu and Bergeron, 2019a,b]. In the regime where both broadenings

are important, the neutral broadening pro�les are convolved with Stark broadening

pro�les [Bergeron et al., 1991].

The following procedure is used to calculate neutral broadening of helium

lines [Beauchamp et al., 1996; Genest-Beaulieu and Bergeron, 2019a]. First, van der

Waals broadening is calculated for each spectral line using both Unsold [1955] and

Deridder and van Rensbergen [1976] prescriptions. The width of a line broadened

by van der Waals broadening, ωvdw, is then decided based on

ωvdw = max(ωU, ωD), (2.3)
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where ωU and ωD are the widths of Unsold [1955] and Deridder and van Rensber-

gen [1976] line broadening, respectively. However, the helium lines at 4121�A and

4713�A are always treated using Unsold [1955] broadening, as they agree better with

observations [Beauchamp et al., 1996; Genest-Beaulieu and Bergeron, 2019a]. The

width of a neutrally broadened line, ωneutral, is then decided based on

ωneutral = max(ωresonance, ωvdw), (2.4)

where ωresonance and ωvdw are the widths of resonance and van der Waals broadened

lines, respectively. In the following, this procedure is simply referred to as Deridder

and van Rensbergen [1976] van der Waals line broadening [Beauchamp et al., 1996;

Genest-Beaulieu and Bergeron, 2019a]. The shape of the resultant broadened line is

Lorentzian [Genest-Beaulieu and Bergeron, 2019a].

In general, Stark broadening causes the splitting of an energy level into multi-

ple levels. Therefore, for a transition involving an energy level that has been split by

the Stark e�ect, we get not one spectral line but several. These individual lines are

not seen separately as the electric �eld varies with time and position. What is seen

is the integral of all possible �elds causing the line to appear broadened. If Stark

broadening is large enough, the higher lines of the hydrogen series can merge into

a pseudo-continuum [Bergeron et al., 1991]. The equation of state of Hummer and

Mihalas [1988] treats Stark broadening using three types of transitions: the bound-

bound, bound-free to a true continuum and bound-free to a pseudo-continuum, where

a transition happens from a lower level to a destroyed upper level. For helium-rich

white dwarfs, helium lines overlap signi�cantly (see Fig. 1.5), thus pseudo-continuum

is also important [Bergeron et al., 1991; Beauchamp et al., 1997]. Additionally, the

larger the pressure in the atmosphere, the more upper levels will be destroyed, thus

correct treatment of the pseudo-continuum is important for white dwarf spectra

overall [Bergeron et al., 1991].

Linear Stark broadening can also lead to transitions which are usually pro-

hibited by selection rules [Beauchamp et al., 1997]. Such transitions can be seen in

the spectra of DB/DBA white dwarfs as well-isolated forbidden lines [Beauchamp

et al., 1995]. These forbidden lines are treated using the prescription described in

Beauchamp et al. [1995] and Beauchamp et al. [1997].

If hydrogen is present in the atmosphere, it gets ionised at Teff & 10 000 K.

Thus, above this e�ective temperature and indeed for all DBA stars considered in

this thesis, the hydrogen lines are Stark broadened due to the presence of electrons

and protons. In ATMO the Stark broadening of Balmer lines follows the prescription
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of Tremblay and Bergeron [2009].

2.2 3D CO5BOLD code

The 3D simulations of DB and DBA white dwarfs presented in this thesis have been

calculated with the 3D radiation-hydrodynamics code called CO5BOLD [Freytag

et al., 2002; Wedemeyer et al., 2004; Freytag et al., 2012; Freytag, 2013, 2017] ver-

sion "002.02.2012.11.XX ". This code allows the calculation of two types of stellar

atmosphere models: local models with the box-in-a-star set-up and global models

with the star-in-a-box set-up [Freytag et al., 2002]. The box-in-a-star set-up simu-

lates a portion of a stellar atmosphere in a Cartesian box with x, y and z coordinates,

where z is the vertical axis. An example of a stellar atmosphere calculated with the

box-in-a-star model is shown in Fig. 2.1. Star-in-a-box simulates the entirety of

a stellar atmosphere and example of this is shown in Fig. 2.2. The star-in-a-box

models can only be run for stars with convection zones made up of large convective

cells, such as red giants [Freytag et al., 2002]. This set-up is not applicable for white

dwarfs due to computational limitations and thus will not be discussed any further.

For white dwarfs the convective cells are much smaller than the radius of

the white dwarf, therefore box-in-a-star set-up is used. Akin to 1D, these models

ignore spherical symmetry and thus the gravitational �eld only acts in the negative z-

direction. The variables are cell-centered and the cell spacings can be non-equidistant

[Freytag et al., 2012]. For local models it is important that the vertical extent of the

simulation box is deep enough to simulate both the optically thin upper layers, where

radiative transfer dominates, and the optically thick convective layers. Radiative

transfer in the upper layers causes radiative cooling, which creates down-drafts that

have a signi�cant e�ect on the deeper convective layers [Freytag et al., 2002]. These

down-drafts also result in the appearance of convective cells at the surface of cool

white dwarfs. For physicality of the simulation, the bottom layers of the simulation

must be approaching adiabatic convection. As a consequence the bottom layers do

not have much in�uence on the upper layers [Freytag et al., 2012]. In summary, both

convective and radiative transfer have to be modelled correctly for the simulations

to be physical.

In CO5BOLD the equations of time-dependent hydrodynamics, which are

used to treat convective energy transport, are solved alongside radiative transfer. Es-

sentially, the stellar atmosphere is modelled as a compressible, homogeneous plasma

under a constant gravitation �eld [Wedemeyer et al., 2004]. The microphysics are

taken into account by using pre-computed equation of state and opacity tables [Frey-

47



tag et al., 2012]. OpenMP is used for linear parallelisation to decrease computational

time.

Figure 2.1: An example of a box-in-a-star (local) model of the Sun's photosphere.
It shows the convective granulation cells on the surface as emergent grey intensity
(units of erg cm−2 s−2). On the sides of the box the convective down-drafts which
extend from the upper layers are shown in units of entropy. Adapted from Freytag
et al. [2002].

i) ii)

iii) iv)

Figure 2.2: An example of a star-in-a-box (global) simulation of a grey atmosphere
of a mini-Sun, where the radius was arti�cially decreased to obtain a manageable
number of convective cells at the surface. The entirety of the atmosphere is modelled
in this case. Adapted from Freytag et al. [2002].
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2.2.1 Hydrodynamics equations

In order to simulate the convective energy transport, hydrodynamics equations are

used [Freytag et al., 2002; Freytag, 2017]. These include the conservation of mass,

∂ρ

∂t
+
∂ρv1

∂x1
+
∂ρv2

∂x2
+
∂ρv3

∂x3
= 0, (2.5)

where ρ is mass density, x1,2,3 and v1,2,3 are the spatial coordinates and velocity

values for the three dimensions; conservation of momentum

∂

∂t

ρv1

ρv2

ρv3

+
∂

∂x1

ρv1v1 + P

ρv2v1

ρv3v1

+
∂

∂x2

 ρv1v2

ρv2v2 + P

ρv3v2

+
∂

∂x3

 ρv1v3

ρv2v3

ρv3v3 + P

 =

ρg1

ρg2

ρg3

 ,

(2.6)

where P is pressure and g1,2,3 are the directional components of gravity de�ned asg1

g2

g3

 = −


∂
∂x1
∂
∂x2
∂
∂x3

Φ, (2.7)

where Φ is the gravitational potential (local models ignore spherical symmetry thus

gravity is only non-zero in the z-direction); and conservation of energy

∂ρet
∂t

+
∂(ρet + P )v1

∂x1
+
∂(ρet + P )v2

∂x2
+
∂(ρet + P )v3

∂x3
+
∂F1, rad

∂x1
+
∂F2, rad

∂x2
+
∂F3, rad

∂x3
= 0,

(2.8)

where F1,2,3,rad are the directional components of radiative �ux and et is the total

energy de�ned as

ρet = ρei + ρ
v2

1 + v2
2 + V 2

3

2
+ PΦ, (2.9)

where ei is the internal energy. In CO5BOLD these equations are solved for each

grid cell in the Cartesian box and for each time-step. CO5BOLD uses ρ, v1, v2, v3

and ei as independent variables. For stability, arti�cial tensor viscosity is introduced

at each time-step [Wedemeyer et al., 2004]. The hydrodynamics equations are solved

alongside the radiative transfer.

Operator splitting is used to simplify the numerical calculations, by separat-

ing each original hydrodynamics equation at a given time-step into several di�erent

sub-equations. These sub-equations are quicker to solve than the original equation.

Once solved, operator splitting is then used to combine the solutions of the sub-

equations into a solution to the original equation.
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In CO5BOLD the equations are solved using the Riemann solver of the Roe

type [Freytag et al., 2012]. For solving the equations, it is imperative to interpo-

late over the grid cells. The interpolation method used is called a reconstruction

scheme. For 3D DB and DBA models we use the FRWeno second-order recon-

struction scheme, which provides better stability than the methods used in previous

versions of CO5BOLD, and means that less arti�cial viscosity needs to be added

[Freytag, 2013].

2.2.2 Boundaries

The boundaries of the simulation box for a local model must be chosen such that the

simulated atmosphere behaves like a real atmosphere, meaning that the boundaries

have no e�ect on the �nal result [Freytag, 2017]. In general, it is recommended that

both the top and bottom boundaries should be at least two pressure scale heights

away from the atmospheric layer of interest [Grimm-Strele et al., 2015].

In CO5BOLD ghost cells are added on all sides of the simulation box with

the values of the ghost cells being dependent on the boundary conditions chosen

[Freytag, 2017]. For the 3D DB and DBA simulations three ghost cells are used on

each side.

Top boundary

In 3D DB and DBA simulations, the top boundary is always open both to material

and radiative �ows [Freytag et al., 2002]. For this type of boundary, the ghost cell

values are set such that the three velocity components and the internal energy are

constant. However, the density is exponentially extrapolated with a scale height

equal to a fraction of the pressure scale height [Freytag, 2017]. The boundary can

experience shocks which are either allowed to leave the simulation or which cause

material to fall downwards [Wedemeyer et al., 2004].

Bottom boundary

Two types of bottom boundaries are used in this thesis. The �rst is an open bottom

boundary, which allows both material in�ows and out�ows [Freytag et al., 2012].

However, the material �ows have to be adjusted to conserve the total mass in the

simulation [Wedemeyer et al., 2004]. This type of bottom boundary applies for white

dwarfs whose convection zones are too large to be fully simulated vertically. Instead,

only a portion of the atmosphere is vertically simulated. The bottom boundary must

be deep inside the convection zone, where convection tends towards becoming adia-
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batic [Wedemeyer et al., 2004]. The velocity of the up-�ows at this bottom boundary

is constant. The input parameter for controlling the boundary is the value of the

in�owing entropy. It indirectly controls the e�ective temperature of the simulation.

The entropy value is set to the entropy of the adiabatic up-�ows [Freytag, 2017].

The ghost cell values are extrapolated from the bottom layer assuming constant

gravitational potential.

The second type of bottom boundary is the closed bottom boundary, which

is used for modelling white dwarfs whose convection zones are small enough to be

vertically modelled. The input parameter that controls this type of boundary is

the radiative energy �ux at the boundary and it a�ects the e�ective temperature of

the model. The values in the ghost cells are the same as in the bottom layer, the

gravitational potential is set to zero and the vertical velocity is inverted [Freytag,

2017].

Side boundaries

The side boundaries of the simulation box are periodic [Freytag et al., 2002]. At

each timestep of the simulation, the values from leftmost columns are copied to the

ghost cells of the right side, and vice versa for left, front and rear sides [Freytag,

2017]. Side boundaries are used because they are easy to implement, they allow for

the existence of standing and travelling waves, and they create no artefacts [Freytag,

2017]. When using periodic side boundaries, it is important to make sure that enough

convective cells are simulated horizontally such that the �nal results are not a�ected

by the boundaries [Freytag et al., 2012]. For DB and DBA models at least 4×4
convective cells were simulated. As discussed by Tremblay et al. [2013a], the number

of simulated convective cells is chosen such that the power spectrum of intensity of

the simulation is well resolved.

2.2.3 Input and numerical parameters

The input parameters of CO5BOLD include surface gravity, microphysics in the form

of an equation of state and opacity tables, the parameters that control the boundary

conditions and the initial starting model [Freytag, 2017]. The initial starting model

can be a 1D model with the same atmospheric parameters that has been extended

into three dimensions. However, the best choice for a starting model is another 3D

simulation with similar atmospheric parameters [Freytag et al., 2012]. It is important

to make sure that the starting model is as close as possible to the �nal solution in

order to save computational time.
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The numerical parameters are numerous. They include the boundary condi-

tions, reconstruction scheme used for the hydrodynamics solver, the number of rays

used in solving radiative transfer, the magnitude of the tensor viscosity, resolution

of the computational box and its size [Freytag et al., 2012; Freytag, 2017]. The nu-

merical parameters have to be chosen such that the computational box behaves as

if it is a real atmosphere and such that the parameters do not have an e�ect on the

�nal result. The arti�cial viscosity is a parameter used to deal with shocks which

sometimes occur in the simulation. Shocks cause signi�cant variation in opacity,

which a�ects the radiative transfer and can cause simulations to fail. Arti�cial vis-

cosity dampens such shocks. The work presented in this thesis relies on the classical

treatment of shocks in CO5BOLD, which allows the shocks to pass through the top

boundary into the ghost cells una�ected.

2.2.4 The equation of state

The equation of state is not computed by CO5BOLD. Instead, it has to be provided

as an input parameter in the form of a table of pre-computed values. The table

is then interpolated over and the parameters are extracted by the code when they

are required. The values of temperature, pressure, entropy and the �rst and third

adiabatic coe�cients must be provided in the equation of state table as functions of

density and internal energy [Freytag et al., 2012]. The equation of state for DB and

DBA white dwarfs were computed from information provided by the ATMO code.

2.2.5 Opacity binning

Although convective energy transport is important in the atmospheres of cool white

dwarfs, radiative energy transport can be just as important, especially in the upper

layers. Thus, both energy transfer modes need to be modelled to a good degree

of accuracy. The radiative transfer equation must be solved at each point in the

atmosphere, for each frequency under consideration and for each direction of the

light ray [V�ogler et al., 2004]. This is straightforward to achieve in 1D models and

in ATMO over 1000 individual frequencies are used. However, solving the equation

for a large number of frequencies becomes computationally impossible to carry out

when the dimensions of the models are increased, speci�cally in 3D modelling where

we not only have two additional space dimensions, but also the dimension of time.

The easiest way to decrease the computational time is to reduce the number

of frequencies considered when solving the radiative transfer equation. This is be-

cause for each grid cell in the simulation the radiative transfer equation will have to
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be solved for all frequencies. In the radiative transfer equation the opacity is a func-

tion of frequency, therefore the number of frequencies considered must be decreased

while preserving as much information as possible about the opacities. To do this

CO5BOLD uses the opacity binning procedure [Nordlund, 1982; Ludwig et al., 1994;

V�ogler et al., 2004]. One extreme case of this would be the calculation of a grey

atmosphere, which only has one opacity bin because the opacity is considered to be

constant over all frequency. As discussed in Sec. 1.4.3 the opacity in the stellar at-

mosphere is not constant and can signi�cantly a�ect the atmospheric strati�cation,

especially if lines are included [V�ogler et al., 2004]. More sophisticated opacity bin-

ning allows for a realistic treatment of radiative transfer while saving computational

time. It was �rst introduced by Nordlund [1982] and was later developed by Ludwig

et al. [1994]. It relies on the assumption that the radiative transfer equation can be

rewritten by introducing integrated quantities over a given bin, Ii =
∫

bin Iν dν and

Bi =
∫

binBν dν, such that it becomes

dIi

ds
= −

∫
κνρ(Iν −Bν)dν = −κ̄iρ(Ii − Bi), (2.10)

where i subscript denotes values associated with i-th bin, ν subscript denotes values

for a given frequency ν and κ̄i is the bin-averaged opacity [V�ogler et al., 2004].

The error of the calculated atmosphere is small only if the binned frequencies

are grouped into bins such that the depth dependence of the opacity is similar for all

frequencies in the bin and the opacities are of similar strength. The use of opacity

binning in the work presented here reduces the number of frequencies considered

from around 1000 to 10. In CO5BOLD the method of sorting opacities is τ -binning

[Ludwig et al., 1994], where a frequency ν is grouped into bin i if

τ i−1
R ≥ τR(τν = 1) > τ iR. (2.11)

Essentially, this method will group frequencies that become transparent at similar

height in the atmosphere [Ludwig et al., 1994]. To achieve this we need the optical

depth information for each frequency, which we can get from a reference 1D model.

In the work presented here we use the 1D atmospheres calculated with ATMO. The

3D DB and DBA models use opacity tables that have been binned according to

log τR = [99.0, 0.25, 0.0,−0.25,−0.5,−1.0,−1.5,−2.0,−3.0,−4.0,−5.0], unless oth-

erwise stated. The bin for log τR = [−5.0,−99.0] has been omitted due to interpo-

lation issues [Chap. 1 which has been published in Cukanovaite et al. 2018]. For

CO5BOLD the opacity table must be a function of temperature and pressure. The

tables were computed for each value of hydrogen abundance, surface gravity and for
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Teff = [10 000, 12 000, 15 000, 20 000, 25 000, 30 000, 34 000] K.

2.2.6 Considerations in time

During the simulation, the initial starting model will be run until relaxation

occurs. If chosen correctly, the initial conditions will not impact the �nal result as

the dynamics of convective �ows act on short time-scales [Wedemeyer et al., 2004].

For relaxation, the simulation should be run for around ten convective turnover

time-scales [Freytag et al., 2012]. In this thesis, the relaxation of simulations was

con�rmed by tracking the time evolution of total �ux, of �ux at all depths and of

the velocity �eld.

To determine the size of the time-step that is appropriate for a simulation, the

Courant-Friedrichs-Lewy (CFL) condition is used [Freytag et al., 2012]. Essentially,

if the time-step of the simulation is larger than CFL time-scale, then the simulation

fails. CFL time-scale is estimated as the sound crossing time.

2.2.7 Radiative transfer equation

In CO5BOLD the atmosphere is assumed to be in LTE. For box-in-a-star simulations

the radiative transfer equation is solved using the Feautrier scheme on a number

of long rays [Wedemeyer et al., 2004]. The long rays traverse many inclinations

with respect to the vertical and azimuthal angles, taking into account periodic side

boundaries [Freytag et al., 2012]. The radiative transfer equation is solved for each

grid point starting from the top of the simulation all the way to the bottom. Opacities

are extracted from the pre-computed opacity table.

2.2.8 Average strati�cations

For the work presented in this thesis, the 3D simulations were averaged temporally

and over contours of constant optical depth (Chap. 3 and 4) or geometric depth

(Chap. 5). For spectroscopic applications, the average over constant optical depth

gives a better representation of how emergent �ux is formed. For studies of the bulk

properties of the convection zone and convective �uxes, the average over geometric

depth is more appropriate. In general, it is found that temperature averages over

optical depth result in higher temperature than the averages over geometric depth,

because the temperature �uctuations are smoother over constant contours of optical

depth [Wedemeyer et al., 2004]. This is due to the shock fronts in the simulations,

which span small range of geometric depths, but a large range of optical depths.
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By using the tests listed in Sec. 2.2.6, I made sure that each simulation is

relaxed in the last half of the run. The temporal average is only performed in the

last quarter of the run. For Chap. 3 and 4 at least 12 individual time-steps in the last

quarter were used for the average. In Chap. 5, all time-steps in the last quarter were

used. This is because the average over optical depth is time consuming compared to

averaging over geometric depth.

2.3 1D LHD code

Another type of 1D atmospheric code used for the analysis presented in this thesis is

called LHD [Ca�au et al., 2007]. Similarly to ATMO, LHD uses the assumptions of a

plane-parallel atmosphere in LTE. It is, however, a Lagrangian 1D hydrodynamical

code, which uses the numerical solutions identical to CO5BOLD, but simpli�ed for

1D geometry. In LHD a hydrodynamical model is run until its thermal and dynamical

evolution converges, creating a 1D hydrostatic model.

LHD is a sister code to CO5BOLD and is useful in eliminating any issues with

equation of state and opacity tables. This is because both LHD and CO5BOLD treat

microphysics in the same fashion, thus allowing for the elimination of any issues with

microphysics when comparing the models calculated from these two codes. Sect 3.2.2

explains this in more detail. LHD has been adapted to treat convection in the same

way as the 1D ATMO code (for white dwarfs), using ML2/α = 1.25. As LHD treats

the microphysics in the same way as CO5BOLD, it means that the LHD code pro-

duces 1D models that can be di�erentially compared to CO5BOLD simulations in

order to derive di�erences that are only due to convective energy transport. On the

other hand, when comparing ATMO with CO5BOLD models we could �nd di�er-

ences that are due to both 3D convective e�ects and microphysics.

The LHD code was used to calculate a grid of 1D models that cover −2.0 ≥
log H/He ≥ −10.0 dex, 7.5 ≤ log g ≤ 9.0 dex and 11 000 ≤ Teff ≤ 40 000 K parameter

range, with step sizes of ∆log H/He = 0.5 dex, ∆log g = 0.5 dex and ∆Teff = 1 000

K. All units are in cgs.

2.4 The Spectroscopic Technique

A large portion of the work presented in this thesis is focused on trying to under-

stand how spectroscopically-determined parameters of e�ective temperature, surface

gravity and hydrogen abundance are a�ected by 3D models. In order to be able to

derive the spectroscopic corrections due to 3D modelling, the di�erential approach
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is used, where a given 3D spectrum is �tted with a grid of 1D LHD models to �nd

the best matching 1D spectrum. The di�erence between the atmospheric parameters

of the 3D model and the �tted parameters from the 1D �t gives the spectroscopic

corrections. The �tting of the observed spectra is known as the spectroscopic tech-

nique. Some of the work presented in this thesis used the �tting code of the Montr�eal

group, described in detail by Bergeron et al. [2011]. Other work has been done with

a �tting procedure I have written and this code will be described later in Chap. 4.

In the following a brief description is given for the Montr�eal �tting code, as it is a

good example to illustrate the spectroscopic technique. The �tting procedure is also

dependent on the type of the white dwarf [Genest-Beaulieu and Bergeron, 2019a],

thus in the following we describe the case of DB/DBA stars only.

When �tting a white dwarf spectrum, both the observed and synthetic spectra

are normalised. One such normalisation technique has been described by Liebert

et al. [2005], where the observed spectrum is �tted by a model grid of synthetic

spectra multiplied by a high-order polynomial function of wavelength or frequency.

This allows for the determination of the continuum and the multiplication takes into

account any issues with �ux calibration [Bergeron et al., 2011]. Additionally, this

procedure �nds the line centres which can be then be adjusted to laboratory values.

The �ux at selected wavelengths, known as the normal points, is then set to unity and

this normalised spectrum is used for �tting using linear least-squares minimization

of Levenberg-Marquardt [Bergeron et al., 2011]. The normalised spectrum is �rst

�tted for e�ective temperature and surface gravity only. These values are then �xed

to �t for hydrogen abundance. This is repeated iteratively until the values converge.

In the case of the Montr�eal �tting code iteration is used as the blue and red part

of the spectrum are made up of separate observations. The hydrogen abundance is

only �tted based on Hα, or if unavailable, Hβ. Sometimes only an upper limit can

be found if for example, the hydrogen lines are too weak and noisy. The upper limit

of hydrogen abundance as a function of e�ective temperature has been determined

based on observations by Voss et al. [2007] and Bergeron et al. [2011].

In order to derive the 3D spectroscopic corrections, the 3D synthetic spectra

replace the role of observed spectra. In this thesis this code was only used for �tting

3D DB models (Chap. 3), thus the �tting of hydrogen abundance was disabled.

2.5 Spectroscopic parallax

In this thesis, the data from the second data release (DR2) of the European Space

Agency's Gaia satellite [Gaia Collaboration et al., 2018] are used to test the 3D
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spectroscopic corrections. In some cases the Gaia observed parallaxes for several

samples of DB and DBA white dwarfs are compared to spectroscopic parallaxes,

which are derived from spectroscopic determinations of e�ective temperature and

surface gravity [Holberg et al., 2008; Tremblay and Bergeron, 2009]. By integrating

synthetic spectra over pre-selected band passes it is possible to calculate theoretical

absolute magnitudes for any combination of e�ective temperature and surface grav-

ity of a white dwarf. In the work presented here, the cooling table of the Montr�eal

group which provides this information is used. It is interpolated over to �nd the

absolute theoretical Gaia G magnitudes of the white dwarfs based on their spectro-

scopic e�ective temperatures and surface gravities. The G absolute magnitude can

then be combined with the observed de-reddened (see Gentile Fusillo et al. 2019a)

Gaia G magnitude via the distance modulus equation in order to �nd the spectro-

scopic distance and thus the spectroscopic parallax. The errors on the spectroscopic

parallax depends on the errors of e�ective temperature and surface gravity, which

have been propagated through the relevant equations. In this work, the procedure

is performed for 1D and 3D spectroscopic e�ective temperatures and surface grav-

ities, in order to calculate 1D and 3D spectroscopic parallaxes which can then be

compared to observations.

An independent technique which can also be used to test the 3D spectroscopic

corrections involves the e�ective temperatures and surface gravities derived from

Gaia photometric GBP -GRP colours. These photometric values can then be directly

compared to spectroscopically-derived e�ective temperatures and surface gravities.
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Chapter 3

Spectroscopic 3D DB corrections

Yeah I'm you, you are me, now do you know

Yeah you are me, I'm you, now you do know

We are one body, sometimes we will clash

You can never break me o�, this you must know

Yeah yeah can't break me o�, whatever you do

Yeah you'll be at ease if you admit it too

Yeah succeed or fail, whichever way you �ow

Yeah you can't escape, wherever you go

I am you, you are me, now you do know

You are me, I am you, now do you know

We are one body and we are gonna clash

We are you, we are me, this do you know

Interlude: Shadow

BTS

3.1 Introduction

In this chapter, I present the �rst 3D radiation-hydrodynamics simulations for pure-

helium white dwarf atmospheres. The 3D simulations are used to compute synthetic

DB spectra, which are then compared with 1D synthetic spectra. The full spectro-

scopic analysis of the existing data sets is postponed until Chap. 4 where grids of

3D model atmospheres with mixed He/H compositions are introduced. Even with

this shortcoming, the predictions with a pure-helium equation-of-state (EOS) have

been useful [Tremblay et al., 2019b] to interpret the independent stellar parame-

ters (e�ective temperature, radius, luminosity) revealed from Gaia Data Release 2
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[Tremblay et al., 2017; B�edard et al., 2017; Hollands et al., 2018]. This chapter

is restricted to the atmospheric properties of DB white dwarfs; the calibration of

the mixing-length theory for structure calculations will be presented in Chap. 5. In

Section 3.2, the numerical setup of the 3D simulations is explained and some brief

description of the structural di�erences between the 3D and 1D convection models

is given. The calculation of synthetic spectra for both 3D and 1D structures is ex-

plained in Section 3.3. The proposed 3D corrections on e�ective temperature and

surface gravity are presented and discussed in Section 3.4. A summary of the work

is given in Section 3.5.

Although most white dwarfs have hydrogen dominated atmospheres as a re-

sult of gravitational settling [Schatzman, 1948], a signi�cant number of degenerate

stars have atmospheres dominated by helium, which is understood to be the conse-

quence of late thermal pulses experienced by post-asymptotic giant branch (AGB)

progenitors [Althaus et al., 2005; Werner and Herwig, 2006]. Indeed, about 20% of

white dwarfs in magnitude limited samples [e.g. SDSS; Kleinman et al., 2013; Kepler

et al., 2015] are of DB or DO spectral types. For volume-complete samples where

the white dwarf luminosity function peaks at much cooler temperatures, the fraction

of helium-dominated atmospheres is as large as 50% [Giammichele et al., 2018]. This

increase of helium-rich stars below Teff ∼ 10 000 K is likely due to convective mixing

events in hydrogen-line (DA) white dwarfs, resulting in their thin hydrogen blan-

ket being fully mixed-in with the underlying helium layer [Tremblay and Bergeron,

2008].

For the majority of DB and DBA white dwarfs, the spectroscopic technique,

which compares the observed line pro�les to predictions from model spectra [Berg-

eron et al., 2011, henceforth BW11], is used to determine their atmospheric param-

eters (e�ective temperature, surface gravity and hydrogen-to-helium number ratio).

These parameters coupled with evolutionary models allow for the determination of

white dwarf masses and ages. While DB white dwarfs are not quite as frequent

as DA or DC spectral types, their parameters are still essential to understand the

local stellar formation history [Kalirai, 2012; Tremblay et al., 2014], the late ther-

mal pulses in post-AGB progenitors [Reindl et al., 2014b,a], and the fraction of

primordial hydrogen in white dwarfs [BW11; Koester and Kepler, 2015; Rolland

et al., 2018]. Furthermore, a large fraction of white dwarfs polluted by asteroids and

planetary debris [Veras, 2016] have helium-dominated atmospheres [Kleinman et al.,

2013]. This is expected from the much larger di�usion timescales for the denser

helium atmospheres [Paquette et al., 1986a,b; Koester, 2009; Fontaine et al., 2015].

As a consequence, DB white dwarfs are important objects for the understanding of
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post-main-sequence planetary system evolution, and in particular the detection of

water-rich asteroids [Farihi et al., 2013; Raddi et al., 2015; Gentile Fusillo et al.,

2017].

In the last two decades, detailed spectroscopic analyses of DB and DBA

white dwarfs have resulted in exquisite mass-e�ective temperature distributions,

and sophisticated 1D model atmosphere and spectral synthesis codes which incorpo-

rate detailed line broadening schemes (see, e.g., Beauchamp et al. 1997; Voss et al.

2007; BW11; Koester and Kepler 2015). The importance of hydrogen in the helium-

dominated atmosphere white dwarfs has also been made clear. These studies have

determined that the fraction of DBAs in DB/DBA samples is up to 75%, and that

perhaps all DB white dwarfs have traces of hydrogen with the abundance too low to

cause observable spectral features [Koester and Kepler, 2015], illustrating the close

link between the two spectral classi�cations. The presence of hydrogen, even if not

observed, can signi�cantly a�ect the derived e�ective temperature, especially for the

boundaries of the V777 Her instability strip [Beauchamp et al., 1999], the region

where pulsating DB/DBA white dwarfs are found.

Some issues remain in the spectroscopic analyses of DB white dwarfs. One

such problem is observed at Teff < 16 000 K, where the spectroscopically derived

surface gravities are signi�cantly higher than the predictions of evolutionary models,

possibly due to incomplete treatment of line broadening by neutral helium [BW11;

Koester and Kepler, 2015]. Beauchamp et al. [1996] have shown that better treatment

of the van der Waals broadening implemented from Deridder and van Rensbergen

[1976] does lower the surface gravities at low e�ective temperatures, yet the authors

�nd that gravity is very sensitive to the exact treatment of this broadening. A

similar high-log g problem was known for DA white dwarfs [Bergeron et al., 1990]

for Teff < 12 000 K, a temperature which corresponds to the onset of convective

energy transfer in the photosphere of DAs. This problem was solved by computing

the �rst-ever 3D model atmospheres of DA white dwarfs [Tremblay et al., 2013b,c]

and corresponding 3D synthetic spectra, con�rming the long-standing suspicion that

convection is modelled too approximately in 1D model atmospheres.

Helium-atmosphere white dwarfs develop super�cial convection zones at tem-

peratures as large as 50 000 K and thus all currently known DB stars must rely on

convective model atmospheres. Consequently, the high-log g problem for cool DB

white dwarfs cannot be related to the onset of convection, but it could be caused

by changes in the properties of convection that 1D models do not consider. There-

fore, it is of great interest to look at the predictions of 3D DB model atmospheres,

especially because of the success of modelling DA white dwarfs. In addition to the
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derivation of masses and ages that are likely to be more precise, the sizes of the

convection zones and overshoot regions [Tremblay et al., 2015b; Kupka et al., 2018]

are of particular importance, since they determine the total mass of hydrogen or ac-

creted metals in DBA and DBZ white dwarfs, respectively. Another critical aspect is

the revision of the spectroscopic parameters to determine the empirical edges of the

V777 Her instability strip and the connection to asteroseismic models [Van Grootel

et al., 2017].

For DB and DBA white dwarfs the mixing-length parameter, ML2/α, is usu-

ally set to 1.25 [BW11; Koester and Kepler, 2015]. BW11 derived this value by

looking at possibly unphysical clumping in the log g-Teff distribution arising from

the di�erent values of the mixing length parameter, and from the calibration of

the e�ective temperature derived from �ts of optical and UV spectra. Although

ML2/α = 1.25 performed reasonably well in both tests, BW11 suggested that an

improvement needs to be made in the treatment of convective transport itself, which

is exactly what 3D models can provide. Thus, in this chapter I investigate the ef-

fect of the more physical 3D models on spectroscopically-determined atmospheric

parameters of DB white dwarfs.

3.2 Model atmospheres

3.2.1 Numerical setup for CO5BOLD simulations

The CO5BOLD radiation-hydrodynamics code [Freytag et al., 2012] was used to

compute 47 3D DB model atmospheres with surface gravities ranging between 7.5

and 9.0 in steps of 0.5 dex, and e�ective temperatures between 12 000 K and 34 000 K

in steps of around 2000 K. The grid is illustrated in Fig. 3.1 and presented in Ta-

ble 3.1. As discussed in Chap. 2 of this thesis, the e�ective temperature is not an

input parameter, which results in the unevenly spaced values of e�ective tempera-

ture in the 3D grid. In Fig. 3.1, the models with open and closed bottom boundaries

are indicated by open and �lled circles, respectively. The bottom layer for all mod-

els is around log 〈τR〉 = 3, where 〈τR〉 is the Rosseland optical depth averaged over

space and time. Some closed boundary models were extended deeper to include a

larger overshoot region. The top 〈τR〉 value varies from model to model, ranging

from −8.5 . log 〈τR〉 . −4.8, with all simulations covering the line forming region.

All simulations also cover more than 4.5 pressure scale heights vertically, with the

majority being more than 10 pressure scale heights deep. Apart from the EOS and

opacities, our computational setup is the same as that used for DA white dwarfs

[Tremblay et al., 2013b,c].
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The simulations cover a minimum time of 60 turnover timescales at 〈τR〉 = 1.

We have con�rmed that our models are relaxed in the last quarter of the simulation

by monitoring total �ux as a function of depth over time (including outgoing �ux

at the top). In all cases systematic variations within that time frame were less than

the statistical noise due to periodic waves and the �nite number of convective cells

in our simulations. Convergence of the velocity �eld was also reached for all cases

but the lowest e�ective temperature models, where the velocity �eld is still not in

equilibrium in the uppermost layers (〈log τR〉 < −3). As stated in Tremblay et al.

[2013b,c], the upper layers never reach radiative equilibrium owing to very large

P�eclet number, Pe, de�ned as

Pe = τrad/τadv, (3.1)

where τrad and τadv are the radiative and convective turnover timescales, respectively.

Instead, the entropy gradient in the upper layers slowly converges to a near-adiabatic

structure due to the weak convective overshoot.
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Figure 3.1: The e�ective temperatures and surface gravities of our 3D model atmo-
spheres with pure-helium compositions. Open and �lled circles denote models with
bottom boundaries that are open and closed to convective �ows, respectively.
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In the following we employ 〈3D〉 averages which are derived from spatial and

temporal averages of the 3D simulations over constant τR surfaces. Twelve snapshots

in the last one-fourth of each simulation were used. These average structures are

useful both for a simple comparison with 1D structures and as inputs for the 〈3D〉
spectral synthesis in Section 3.3. In Section 3.3.2 we report on the possibility of

performing full 3D spectral synthesis instead of using 〈3D〉 structures.

3.2.2 Input microphysics and 1D LHD code

Microphysics in the form of an EOS and opacity tables, are input parameters for

CO5BOLD. The EOS and opacity tables have been pre-calculated from reference

1D models, which in our case are the standard 1D DB model atmospheres of BW11

calculated using their 1D atmosphere code. In this thesis we refer to this code as

ATMO. For reference, Fig. 3.2 shows the opacity as a function of wavelength for

the photosphere of two BW11 models with log g = 8.0. The optical depth at which

plasma becomes optically thin for photons of frequency ν is de�ned by τR(τν = 1)

and is shown in Fig. 3.3 for selected 1D and mean 3D (hereafter 〈3D〉) spectra (see

Section 3) at log g = 8.0. Each opacity table has been computed with 10 band-

averaged opacity bins with boundaries at log τR = [99.0, 0.25, 0.0, −0.25, −0.5,
−1.0, −1.5, −2.0, −3.0, −4.0, −5.0]. We note that due to interpolation issues we

did not include the extremely strong far-UV opacities whenever they were assigned

to the missing log τR = [−5.0,−99.0] opacity bin. As Fig. 3.2 shows, at low e�ective

temperatures He I bound-free and He I lines from the ground level provide the

far-UV opacities. At high e�ective temperatures He II bound-free and He II line

opacities also contribute. These frequencies are fully opaque to light everywhere

in the simulations and very little �ux is transported at such short wavelengths in

the photosphere, therefore this missing opacity has little impact on the resulting

temperature and pressure strati�cations that are used for spectral synthesis.

Another important di�erence between standard 1D structures and our 3D

simulations comes from CO5BOLD treating scattering as true absorption, again,

due to current numerical limitations. Therefore, one may argue that any 3D e�ects

we observe when comparing our 3D models with 1D ATMO structures are due to

approximations with opacity tables, scattering and even the missing opacities men-

tioned earlier. To test this hypothesis, the ATMO structures were compared with

strati�cations calculated using a di�erent 1D code called LHD [Ca�au et al., 2007].

The LHD code treats microphysics by employing the same input tables as those used

in CO5BOLD, considers scattering as true absorption, and has been modi�ed to rely

on a mixing length parameterisation of ML2/α = 1.25. Tremblay et al. [2013b] have
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Table 3.1: Selected parameters of the pure-helium 3D model atmospheres. The e�ec-
tive temperature is calculated from the spatially and temporally averaged emergent
stellar �ux and δIrms/〈I〉 is the relative bolometric intensity contrast.

log g Teff Box size Time δIrms/〈I〉
(K) (km × km × km) (stellar s) (%)

7.5 12098 1.22×1.22×0.58 31.6 3.6
7.5 13969 1.98×1.98×0.67 31.6 8.9
7.5 15947 2.86×2.86×1.19 31.6 16.4
7.5 18059 6.09×6.09×1.46 31.6 21.3
7.5 19934 11.96×11.96×2.39 31.6 23.4
7.5 22023 21.75×21.75×4.51 31.6 25.5
7.5 23778 23.96×23.96×4.78 31.6 24.3
7.5 26382 37.47×37.47×10.88 31.6 22.9
7.5 27970 31.22×31.22×10.77 15.0 17.5
7.5 29992 31.22×31.22×11.86 20.0 9.4
7.5 31993 33.48×33.48×14.00 8.0 4.9

8.0 12020 0.70×0.70×0.10 10.0 2.1
8.0 14083 0.79×0.79×0.24 10.0 6.0
8.0 16106 0.94×0.94×0.18 10.0 11.9
8.0 18081 1.23×1.23×0.35 10.0 17.0
8.0 20090 2.00×2.00×0.58 10.0 19.4
8.0 21989 5.19×5.19×0.97 10.0 22.3
8.0 24135 8.62×8.62×1.41 10.0 23.8
8.0 25899 8.62×8.62×1.56 10.0 21.1
8.0 27948 17.69×17.69×3.04 10.0 20.6
8.0 29983 12.63×12.63×3.50 10.0 19.7
8.0 32002 12.63×12.63×3.28 10.0 14.8
8.0 33999 12.63×12.63×3.42 10.0 7.9

8.5 12141 0.25×0.25×0.05 3.2 1.5
8.5 14009 0.25×0.25×0.04 3.2 3.6
8.5 15961 0.34×0.34×0.05 3.2 7.6
8.5 18002 0.39×0.39×0.13 3.2 12.6
8.5 19955 0.60×0.60×0.20 3.2 15.5
8.5 21988 1.03×1.03×0.26 3.2 17.8
8.5 24130 1.78×1.78×0.37 3.2 22.1
8.5 25801 2.37×2.37×0.44 3.2 22.3
8.5 27939 2.53×2.53×0.59 3.2 20.6
8.5 30259 4.53×4.53×1.23 3.2 20.4
8.5 31859 4.53×4.53×1.23 3.2 19.7
8.5 33987 4.53×4.53×0.98 3.2 17.6

9.0 12124 0.06×0.06×0.01 1.0 0.8
9.0 14118 0.07×0.07×0.01 1.0 2.3
9.0 16030 0.11×0.11×0.02 1.0 5.0
9.0 17999 0.12×0.12×0.03 1.0 8.7
9.0 19530 0.12×0.12×0.03 1.0 11.2
9.0 21981 0.20×0.20×0.07 1.0 13.6
9.0 24084 0.39×0.39×0.10 1.0 17.2
9.0 26116 0.76×0.76×0.13 1.0 20.6
9.0 28169 0.76×0.76×0.16 1.0 20.6
9.0 30187 0.86×0.86×0.20 1.0 17.4
9.0 31449 0.86×0.86×0.20 1.0 17.2
9.0 33815 1.43×1.43×0.39 1.0 19.1
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shown, from the comparison of pure-hydrogen structures, that di�erences between

the LHD and ATMO codes are small apart from the input microphysics. Conse-

quently, any di�erence observed between them in the case of pure-helium composi-

tion would likely be caused by approximations in the microphysics.
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Figure 3.2: The total opacity as a function of the logarithm of wavelength for repre-
sentative layers of two BW11 models with log g = 8.0 at Teff = 14 000 K (left) and
Teff = 34 000 K (right). We have selected reference temperature and pressure values
(as indicated on the panels) that correspond to the plasma conditions at τR = 1.
He I and He II line opacities are indicated by green and red colour regions. The
Rosseland mean opacity (dashed grey) and the line region used for the derivation of
the 3D corrections (dotted grey) are also shown.

Fig. 3.3 allows for the identi�cation of the atmospheric layers where the con-

tinuum and lines between 3500 �A and 7200 �A are formed, so that a comparison can

be made between ATMO, LHD and 〈3D〉 structures in the regions relevant to our

spectral study. Such a comparison is shown in Figs. 3.4 and 3.5 for four models with

log g = 8.0 in terms of the temperature and density strati�cations, respectively. On

these �gures we also indicate how the line forming region changes if the wavelengths

that are closer than 0.5 �A from the line cores are not included. This boundary is

more appropriate when models are used to �t typical low and medium resolution

observations. As the line opacity increases signi�cantly for the line cores, their re-

moval causes the upper boundary of the line forming region to be signi�cantly lower

in the atmosphere.
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Figure 3.3: Atmospheric line forming regions for 1D ATMO (solid red) and 〈3D〉
(dashed blue) spectra as de�ned by τR(τν = 1), where the plasma becomes optically
thin for photons of frequency ν.

The �rst observation from Figs. 3.4 and 3.5 is that for Teff ∼ 14 000, 18 000,

and 22 000 K, the di�erences between the 〈3D〉 structures and their 1D counterparts

are larger than the di�erences between 1D ATMO and LHD structures, i.e. the

3D corrections are more signi�cant than the issues with microphysics. Nevertheless,

there is some disagreement between ATMO and LHD models in this regime, espe-

cially at optical depths smaller than the in�exion point above which convection is

abruptly switched o� as per the prescription of the 1D mixing-length approximation

(e.g. log τR . −1.7 for the 18 000 K model). By calculating 1D ATMO structures

with scattering treated as true absorption, we found that scattering only has a minor

e�ect in the line forming region and does not signi�cantly improve the agreement

between ATMO and LHD. Therefore, we are left with opacity binning as the culprit

for the small observed di�erences between 1D structures at cool temperatures.
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Figure 3.4: Temperature strati�cations of spectral line forming regions for 〈3D〉
(dashed blue), 1D ATMO (dot-dashed red) and 1D LHD (dotted green) models.
The line forming region is approximated by the grey vertical lines which represent
the minimum and maximum τR(τν = 1) values in the range 3500 �A and 7200 �A
according to Fig. 3.3. The black vertical lines represent the line forming region if
the wavelengths that are within 0.5 �A of the line cores are ignored. The bottom
boundaries do not change under this de�nition and therefore overlap with the grey
lines.
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Figure 3.5: Similar to Fig. 3.4 but for density strati�cations of spectral line forming
regions for 〈3D〉, 1D ATMO and 1D LHD models.

At large temperatures (e.g. bottom right plot of Fig. 3.4 at Teff ∼ 34 000 K),

the disagreement between LHD and ATMO structures becomes more severe in the

line forming layers. Interestingly, the good agreement between LHD and 〈3D〉 struc-
tures demonstrates that 3D e�ects are expected to be small at these temperatures.

We made attempts to improve the opacity binning procedure or include more bins

in LHD (see Section 3.3.1), but the e�ect of this did not improve the agreement

between ATMO and LHD signi�cantly. Since the LHD and ATMO codes largely

agree at cool temperatures and LHD converges to the 3D simulations in the warm

radiative regime, we conclude that it is best to use 1D LHD structures to derive 3D

corrections from CO5BOLD simulations. One advantage of this di�erential analysis

is the minimization of the uncertainties caused by the approximations in the micro-

physics discussed in this section. Furthermore, 3D corrections are generally used for

DA white dwarfs rather than the 3D models being used for actual �tting [Tremblay

et al., 2013c], suggesting that this method, which we refer to as the di�erential ap-

proach, is also advisable for DB white dwarfs. With these justi�cations, we proceed

with 1D LHD structures in the following.
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3.2.3 3D e�ects on atmospheric structures

To better understand the structural di�erences between 1D (LHD) and 〈3D〉 models,

Figs. 3.6 and 3.7 compare the entropy and temperature strati�cations for all 3D

models with log g = 8.0. Positive and negative entropy gradients as a function of τR

are indicative of atmospheric layers which are unstable and stable against convection,

respectively.
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Figure 3.6: Entropy strati�cations for 1D LHD (solid red) and 〈3D〉 (dashed blue)
models with log g = 8.0. All structures, apart from Teff = 12020 K, are o�set from
each other by 0.1× 109 erg g−1 K−1 for clarity.

69



−4 −3 −2 −1 0 1 2

10000

20000

30000

40000

50000

60000

70000

80000

90000

12020 K

14083 K

16105 K

18081 K

20090 K

21989 K

24134 K

25898 K

27948 K

29982 K

32002 K

33999 K

1DLHD

〈3D〉

log τR

T
em

p
er

at
u

re
(K

)

Figure 3.7: Temperature strati�cations for 1D LHD (solid red) and 〈3D〉 (dashed
blue) models with log g = 8.0. All structures, apart from Teff = 12020 K, are o�set
from each other by 3000 K for clarity.

For the lowest e�ective temperatures, good agreement is observed between

1D and 〈3D〉 structures deeper than log τR = −1.6, where convection is adiabatic and

therefore both 1D and 〈3D〉 structures converge to the adiabatic gradient. Above

these layers, however, the mixing-length approximation predicts no convection and

the radiative equilibrium is reached. In the 〈3D〉 picture, overshoot contributes in
cooling the upper layers and forces them to have an adiabatic strati�cation. Very

similar results were found for cool DA white dwarfs [Tremblay et al., 2013b,c]. Above

Teff ∼ 16 000 K, convection becomes non-adiabatic and sensitive to the prescription

of the convective e�ciency, resulting in emerging di�erences between 1D and 〈3D〉
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models within the convection zone.

For e�ective temperature above 24 000 K but below 34 000 K, two convective

zones develop as indicated by positive entropy gradients. These convection zones are

associated with He I and He II ionization. This is observed for both 1D and 〈3D〉
structures in Fig. 3.6, though for the non-local 3D convection, the two convection

zones are dynamically connected as the entropy gradient never becomes negative

and the convective �ux remains large in-between the two regions. In this regime

the atmospheric structures of DB white dwarfs become more complex compared to

DA stars. Convection is driven both by deep optically-thick He II convection and

super�cial optically-thin He I convection, with a thermally stable but dynamically

active photosphere in between. For this DB temperature regime, Fig. 3.7 also shows

that 3D e�ects become very small in the line forming layers owing to increasingly

ine�cient photospheric convection (τR < 1). Figs. 3.6 and 3.7 do however suggest

strong 3D e�ects near the bottom of the convection zone for warm simulations, which

is related to 1D ML2/α = 1.25 models and 3D simulations predicting signi�cantly

di�erent convection zone sizes. We note that this may not be limited to warmer

simulations since we do not have access to the bottom of the convection zones for

cooler models. The 1D models systematically overpredict the sizes of the convection

zones, suggesting that a smaller mixing-length is necessary to match the deep 3D

convection zones. We will report on the mixing-length calibration for 1D structures

in Chap. 5. The mixing length calibration for the size of the convection zone has

little to do with the mixing-length value that would be needed for the 1D models to

match 3D structures in the line forming regions, τR(τλ = 1), which appears neither

to be overestimated or underestimated according to Figs. 3.6 and 3.7.

Di�erences between 1D and 〈3D〉 structures can also be understood by looking
at the resolved 3D simulations. Fig. 3.8 shows the bolometric intensity emerging at

the top of the simulations for four of the 3D models with log g = 8.0. The results

are very similar at other surface gravities albeit with a shift in temperature. At low

e�ective temperatures where adiabatic convection dominates, the boundaries of the

granules are ill-de�ned. In this regime the lack of energy loss and the large densities

make it possible for convection to transport the required stellar �ux with a very

small intensity contrast. For larger e�ective temperatures convection becomes non-

adiabatic and the intensity contrast increases. The radiative timescale decreases such

that only the largest granules survive, resulting in a granulation pattern of large cells

and narrow intergranular lanes. At Teff ∼ 22 000 K, the surface of a DB star looks

remarkably similar to a DA white dwarf at Teff ∼ 12 000 K [see Fig. 5 of Tremblay

et al., 2013b]. At Teff ∼ 34 000 K, convection is very ine�cient in the photosphere
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and the contrast between the cells and intergranular lanes decreases.
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Figure 3.8: Bolometric emergent intensity for selected models with log g = 8.0. The
e�ective temperatures, surface gravities and intensity contrasts of the simulations
are shown in the legends. The length of the bar on the top right of each panel is ten
times the pressure scale height at 〈τR〉 = 1.

In Fig. 3.9 we show the ratio of the characteristic granule size to the pressure

scale height at 〈τR〉 = 1 for 3D DA and DB models. In this section all quantities

are averaged over constant geometrical depth. The characteristic granule sizes were

calculated from the peaks of the emergent intensity power spectra [Tremblay et al.,

2013a]. Hotter DB models with Teff & 22 000 K have granule sizes that are more

than ten times the local pressure scale height. Almost all of the models with two

convection zones have ratios above 10, suggesting that the presence of He II con-
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vection zone is connected to this behaviour unique to DB white dwarfs. Following

the procedure laid out in Tremblay et al. [2013a] we con�rm that the sizes of the

granules are consistent with conservation of mass �ux, where the continuity equation

reduces to
vhor, rms

vz, rms
∝ L

H
, (3.2)

where vhor, rms and vz, rms are the horizontal and vertical root mean square veloc-

ities, respectively, L is the characteristic granule size and H is the scale height of

momentum density.
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Figure 3.9: The ratio of the characteristic granule size to the pressure scale height
at 〈τR〉 = 1 as a function of logarithm of the Mach number at 〈τR〉 = 1 for 3D DB
(�lled circles) and 3D DA (un�lled circles) models.

Figs. 3.10 and 3.11 show the intensity contrast as a function of e�ective

temperature and as a function of the Mach number at 〈τR〉 = 1, respectively. The

latter plot also includes data for 3D DA atmospheres from Tremblay et al. [2013a].

We de�ne the Mach number as

Mach =
vrms

csound
=

√
〈ρ〉v2

rms

〈Γ1〉〈P 〉
, (3.3)
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where vrms is the convective velocity, csound is the sound speed; 〈ρ〉, 〈P 〉 and 〈Γ1〉
are the geometric horizontal averages of density, pressure and the �rst adiabatic

constant, respectively. Following Tremblay et al. [2013a] v2
rms is

v2
rms = 〈v2〉 − [〈ρvx〉2 + 〈ρvy〉2 + 〈ρvz〉2]

〈ρ〉2 , (3.4)

where 〈v2〉 is the horizontally averaged mean square velocity and 〈ρvx〉2, 〈ρvy〉2,
〈ρvz〉2 are the three horizontally averaged mass �uxes. The density weighted mean

velocity is removed due to its sensitivity to numerical parameters and oscillations.

Both the intensity contrast and the Mach number are measures of the strength

of convection and they span a similar range in DA and DB white dwarfs. Helium-

atmosphere simulations reach a maximum intensity contrast of about 25% compared

to 20% for hydrogen-rich compositions. We note that the range in the former case

is closer to that seen in main-sequence stars where He ionization is also of relevance

[Tremblay et al., 2013a]. For a given intensity contrast or Mach number, the density

is signi�cantly higher for a DB white dwarf compared to any other convective star,

owing to the smaller internal energy density per gram and the larger energy �ux

to transport. The peak in intensity contrast for DB models with log g = 8.0 is

observed at the e�ective temperature of 24 000 K, and above this temperature the

peak signi�cantly decreases and tends towards small intensity contrast for the models

with log g = 8.0 and log g = 7.5. This is expected for models that are becoming fully

radiative. Although it seems that the intensity contrast is useful to measure the

strength of 3D e�ects on spectra, the link between 3D inhomogeneities and opacities

(and thus predicted spectral lines) is highly non-linear. Furthermore, the strength

of 3D e�ects on spectra also depends on how the di�erent regions of the surface

average.

The mean Mach number for a handful of 3D DB models approaches unity at

the photosphere, indicating that the �ows are close to being supersonic. As such,

shocks can occur in the simulation and could imprint themselves on synthetic spectra.

We note that the situation is no di�erent for DA white dwarfs or main-sequence stars

for which the mean Mach number can reach a value close to one.
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Figure 3.10: Bolometric intensity contrast as a function of e�ective temperature for
the pure-helium 3D model atmospheres. The points representing intensity contrasts
for the same surface gravity are connected for clarity.
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Figure 3.11: Bolometric intensity contrast as a function of the logarithm of the Mach
number at 〈τR〉 = 1 for our pure-helium 3D model atmospheres (�lled circles) and
the 3D DA atmospheres of Tremblay et al. [2013a, open circles].

3.3 Model spectra

Neither LHD nor CO5BOLD can perform detailed spectral synthesis. Given our dif-

ferential approach at comparing 1D LHD and 〈3D〉 structures, it is thus appropriate
to use the ATMO code (BW11) to calculate synthetic spectra. We employ the same

numerical setup as used by BW11 to compute their DB grid.

To calculate the di�erential 3D corrections on e�ective temperature and sur-

face gravity, we use the DB �tting code of BW11 to �t 〈3D〉 synthetic spectra with

a grid of 1D (LHD) spectral grid. This allows us to �nd a 1D spectrum that most
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closely resembles a given 3D spectrum. We de�ne the 3D corrections to be

Teff, corr = Teff, 3D model − Teff, 1D fit , (3.5)

and

log gcorr = log g3D model − log g1D fit . (3.6)

The use of BW11 �tting code ensures that we consider the same wavelength region

and the same lines that BW11 analysed in their study. Since DBA stars were also

included in their study, BW11 used the code to either �t hydrogen lines or to apply

upper limits in the case of non-detection. As our models are pure-helium, we have

instead adapted the code to have pure-helium composition as the only option. Before

presenting our proposed 3D corrections, we �rst evaluate the uncertainties from the

di�erent approximations we have made, namely the opacity binning procedure and

the mean 3D approximation.

3.3.1 E�ect of opacity binning

Two sets of 1D LHD structures with log g = 8.0 were computed with the same

e�ective temperatures as the 3D models. The �rst set was computed with 10 bin

opacity tables already employed for our 3D models and we shall refer to these as

�LHDoriginal�. The other �LHD16−20bins� set was calculated using opacity tables with

16 to 20 bins, which do not remove the large far-UV opacity unlike the 10 bin

opacity tables. We have derived synthetic spectra using ATMO for the two sets of

LHD structures. The full grid of BW11 1D DB synthetic spectra is also used for

our opacity binning analysis. This grid was calculated from 1D structures computed

with the ATMO code and therefore all 1745 frequencies were used in the computation

instead of opacity binning. To quantify the corrections arising from the opacity

binning, the two types of LHD spectra were �tted with the 1D ATMO spectral grid

and the di�erences between the atmospheric parameters are shown in Fig. 3.12. A

negative di�erence indicates that ATMO overestimates the e�ective temperature and

surface gravity of the LHD spectrum. BW11 determined external errors by �tting

multiple spectra of the same white dwarf and using the scatter in the �tted values

as the error. This was done using 28 individual white dwarfs. They found average

uncertainties of 〈∆Teff/Teff〉 = 2.3% and 〈∆log g〉 = 0.052 when obvious outliers are

removed (see their Fig. 17). These errors are plotted on Fig. 3.12 and are referred

to as BW11 errors. For comparison, the external uncertainties for the Koester and

Kepler [2015] SDSS sample are 〈∆Teff/Teff〉 = 3.1% and 〈∆log g〉 = 0.12. The reason

why Koester and Kepler [2015] errors are larger than BW11 errors is because the
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SDSS sample has on average a smaller signal-to-noise ratio.
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Figure 3.12: Fits of synthetic spectra based on 1D LHD structures with log g = 8.0
that have been computed with two types of opacity tables: original (10 bins, solid
red) and extended (16-20 bins, dashed blue). These model spectra were �tted with
a grid of standard 1D ATMO spectra of BW11 to quantify the di�erences between
the two types of 1D codes. The resulting e�ective temperature and surface gravity
corrections are presented on the left and right panels, respectively. The external
observational uncertainties of BW11 are also shown with dotted green lines. A dot-
dashed horizontal black line representing a null correction has also been added to
each panel for clarity.

The surface gravity corrections for models with original and extended opac-

ity tables are well within �tting uncertainties (right panel of Fig. 3.12). For the

e�ective temperature corrections only the LHD models with extended opacity ta-

bles fall within the uncertainties. As expected from our discussion around Figs. 3.4

and 3.5 and the comparison of ATMO and LHD structures, the largest di�erences

are expected for the warmest simulations. Although the agreement improves when

doubling the number of opacity bins, we did not pursue the possibility of improving

the opacity binning procedure for LHD and by inference our CO5BOLD simulations

because of the dramatic increase in computation time. Instead we employ our 10

bin tables. This is because deriving 3D corrections with the help of 1D LHD models

removes the o�set observed in Fig. 3.12.

3.3.2 Mean 3D approximation

Ideally, 3D spectral synthesis is performed to compute a spectrum directly from a

3D data cube. One such code, Linfor3D [Ludwig and Ste�en, 2008], was utilised
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by Tremblay et al. [2011] to model synthetic 3D Hβ lines for DA white dwarfs.

While the code could be adapted to synthesise selected 3D spectral lines for DB

white dwarfs, it would be computationally expensive to create a full grid of 3D

model spectra. Instead, we proceed with the comparison of two types of estimates

for calculations of synthetic spectra from 3D simulations: the 〈3D〉 and 1.5D ap-

proximations. Our standard 〈3D〉 spectra are computed from the 〈3D〉 temperature

and pressure structures using ATMO. On the other hand, the 1.5D method assumes

that each 3D simulation, which is made up of 150 × 150 × 150 grid points, is a

collection 150 × 150 �1D� atmospheres, where the vertical extent of the simulation

(z-axis) is the extent of these 1D atmospheres. For each of the �1D� atmospheres

a spectrum is then calculated using ATMO and the resulting 150× 150 spectra are

simply averaged to produce a so-called 1.5D spectrum for a given 3D model. How-

ever, we found that some of the atmospheres exhibited pressure inversion due to

the departure from hydrostatic equilibrium, which is expected in 3D simulations.

ATMO is not adapted to handle such departures and therefore any structures with

pressure inversion were removed from the 1.5D spectrum calculations. At most a

couple of per cent of structures were removed. We also want the 1.5D spectrum to

be representative of the entire simulation and not of one single time snapshot, and

therefore we used several snapshots over the last quarter of the computation for the

average. The 〈3D〉 and 1.5D methods represent the two extremes in neglecting or

enhancing the 3D �uctuations, respectively, and thus the full 3D spectral synthesis

is somewhere in between these two methods. For the majority of 3D DA models,

with the exception of extremely low-mass (ELM) white dwarfs, it has been shown

that 1.5D and 〈3D〉 corrections are equivalent [Tremblay et al., 2015a]. This results

from a complex cancellation of the 3D �uctuations in spectral synthesis [Tremblay

et al., 2013c] and there is no obvious reason to assume the same behaviour for DB

white dwarfs.

To determine the uncertainties arising from not using the full 3D spectral

synthesis, we �tted both the 1.5D and 〈3D〉 spectra with the 1D LHD model grid to

�nd their respective corrections. Fig. 3.13 shows the di�erences between the 〈3D〉 and
1.5D corrections for models with log g = 8.0, although similar results are obtained

for other surface gravity models. The BW11 errors are also shown. A negative

di�erence means that the 1.5D correction is larger and this is what we observe for

3D simulations below ≈ 24 000 K. Most of the di�erences are well within the BW11

external errors, with the maximum o�set observed at ≈ 20 000 K. At this particular

e�ective temperature, He I lines reach their maximum strength (depending on the

assumed convective e�ciency) giving rise to the hot/cool solution problem, where for
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any given DB spectrum there are two possible �ts with equivalent χ2 values. BW11

have also shown that in the range 20 000 . Teff . 28 000 K, the spectra are quite

insensitive to the e�ective temperature. This suggests that �tting uncertainties may

peak in this region even though we have employed a constant average uncertainty in

percentage.

Another possibility for the disagreement between 1.5D and 〈3D〉 corrections
could be related to the high Mach numbers of some of the DB simulations as 1.5D

spectra are more sensitive to thermal �uctuations caused by shocks. However, for

simulations with log g = 8.0, the Teff ≈ 22 000 K model has the highest Mach

number, and yet for this particular model the 〈3D〉 and 1.5D corrections do agree,

suggesting that there is no obvious link.

We stress that since the full 3D spectral synthesis is expected to lie somewhere

between the 1.5D and 〈3D〉 corrections, Fig. 3.13 likely overestimates the error of

using the 〈3D〉 approximation. We conclude that the 〈3D〉 approximation is valid for

DB white dwarfs, a result that is similar to that found for DA stars with log g ≥ 7.0.
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Figure 3.13: 1.5D and 〈3D〉 spectra with log g = 8.0 are compared in terms of the
di�erences between their respective e�ective temperatures (left panel) and surface
gravities (right panel) corrections found by �tting the two types of spectra with
the 1D LHD models. External �tting uncertainties from BW11 are also shown.
A dot-dashed horizontal black line representing the equivalence of 1.5D and 〈3D〉
corrections (and therefore spectra) has also been added to each panel.
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3.4 Discussion

3.4.1 3D corrections

Our proposed 3D corrections for pure-helium DB white dwarfs are shown in Fig. 3.14

and are tabulated in Table 3.2. To derive these corrections the original opacity tables

with 10 bins were used. The corrections were derived using the reference 1D LHD

spectral grid under the ML2/α = 1.25 parametrisation, and Eqs. 3.5 and 3.6. Since

the e�ective temperatures of the 3D models can only be found after the simulation is

run, resulting in uneven spacing in e�ective temperature range of the 3D models, we

interpolated over the corrections to provide corrections that are spaced out by 1 000

K in e�ective temperature. In the �gure, the dashed lines denote log g = [7.5, 8.0,

8.5, 9.0]. The intersection points between the dashed horizontal lines and the blue

lines are the 1D e�ective temperatures and surface gravities. The blue lines then

extend to the corresponding 3D parameters, such that the lengths of the blue lines

represent our proposed 3D corrections for the 1D parameters. The main uncertainty

in the 3D corrections resides in the 〈3D〉 approximation discussed in Section 3.2, but

also important is the validity of the pure-helium atmosphere approximation when

applying the corrections to speci�c DB white dwarfs.

At low e�ective temperatures, we do not observe signi�cant temperature cor-

rections. Above ∼ 22 000 K, especially for large surface gravities, the temperature

corrections can reach up to 3000 K. For log g = 7.5 and 8.0, however, the e�ec-

tive temperature corrections become negligible at the highest e�ective temperatures,

where the spectral line forming regions become radiative and therefore equivalent to

their 1D counterparts. We do not observe any signi�cant temperature corrections

for the V777 Her instability strip [Fontaine and Brassard, 2008] at log g = 8.0. We

remind the reader, however, that asteroseismic predictions could be impacted by the

signi�cantly di�erent sizes for the 3D convection zones as discussed in Section 3.2.3.

It is reassuring that the current ML2/α = 1.25 parameterisation for the optical spec-

tra of DB white dwarfs, which mostly impacts the e�ective temperature scale, is in

reasonable agreement with the 3D simulations.
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[2015a].
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Table 3.2: Our proposed 3D corrections for surface gravity and e�ective temperature
derived from 〈3D〉 structures. A negative value indicates that 1D overestimates the
parameter, while a positive value indicates underestimation.

1D log g 1D Teff 3D log g 3D Teff

correction (dex) correction (dex)

7.5 12000 −0.029 100

7.5 13000 −0.080 154

7.5 14000 −0.139 206

7.5 15000 −0.188 236

7.5 16000 −0.187 340

7.5 17000 −0.126 507

7.5 18000 −0.092 444

7.5 19000 −0.095 200

7.5 20000 −0.080 153

7.5 21000 −0.044 324

7.5 22000 −0.022 341

7.5 23000 −0.013 62

7.5 24000 −0.001 −328
7.5 25000 0.002 −710
7.5 26000 −0.003 −1268
7.5 27000 −0.009 −1915
7.5 28000 −0.010 −1897
7.5 29000 −0.004 −201
7.5 30000 −0.006 −148
7.5 31000 −0.006 −165
7.5 32000 −0.005 −176
7.5 33000 −0.003 −218
7.5 34000 −0.000 149

8.0 12000 −0.029 101

8.0 13000 −0.066 142

8.0 14000 −0.121 202

8.0 15000 −0.214 219

8.0 16000 −0.264 306

8.0 17000 −0.264 400

8.0 18000 −0.238 314

Continued on next page
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Table 3.2 continued.

1D log g 1D Teff 3D log g 3D Teff

correction (dex) correction (dex)

8.0 19000 −0.163 142

8.0 20000 −0.080 234

8.0 21000 −0.031 833

8.0 22000 0.008 1264

8.0 23000 0.015 1055

8.0 24000 0.016 703

8.0 25000 0.017 558

8.0 26000 0.014 146

8.0 27000 0.011 −484
8.0 28000 0.001 −578
8.0 29000 0.003 −105
8.0 30000 0.007 −342
8.0 31000 0.003 −252
8.0 32000 −0.002 66

8.0 33000 −0.001 −627
8.0 34000 0.001 −186
8.5 12000 −0.031 51

8.5 13000 −0.090 21

8.5 14000 −0.161 65

8.5 15000 −0.227 164

8.5 16000 −0.305 231

8.5 17000 −0.367 229

8.5 18000 −0.360 75

8.5 19000 −0.225 18

8.5 20000 −0.096 130

8.5 21000 −0.079 541

8.5 22000 −0.007 1543

8.5 23000 0.032 1886

8.5 24000 0.040 1913

8.5 25000 0.033 1915

8.5 26000 0.032 1570

8.5 27000 0.037 1068

Continued on next page
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Table 3.2 continued.

1D log g 1D Teff 3D log g 3D Teff

correction (dex) correction (dex)

8.5 28000 0.029 666

8.5 29000 0.021 396

8.5 30000 0.012 −116
8.5 31000 0.004 −455
8.5 32000 0.010 −755
8.5 33000 0.011 −1580
8.5 34000 0.006 −789
9.0 12000 −0.043 26

9.0 13000 −0.087 −19
9.0 14000 −0.115 62

9.0 15000 −0.123 387

9.0 16000 −0.211 500

9.0 17000 −0.326 427

9.0 18000 −0.360 168

9.0 19000 −0.271 104

9.0 20000 −0.161 65

9.0 21000 −0.117 137

9.0 22000 −0.083 410

9.0 23000 −0.069 1042

9.0 24000 0.009 3279

9.0 25000 0.018 3071

9.0 26000 0.026 2629

9.0 27000 0.042 2119

9.0 28000 0.047 1610

9.0 29000 0.045 1110

9.0 30000 0.035 389

9.0 31000 0.030 −333
9.0 32000 0.038 −963
9.0 33000 0.040 −1434
9.0 34000 0.024 −993
Concluded
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The 1D models tend to signi�cantly overpredict the surface gravity in the

range 14 000 K . Teff . 21 000 K for log g = 7.5 and 8.0, but this range does extend

further to 22 000 K for log g = 8.5 and to 24 000 K for log g = 9.0. Above these

e�ective temperatures, the 3D surface gravity corrections are within the BW11 er-

rors. BW11 and Koester and Kepler [2015] have shown that DB and DBA white

dwarfs in the range 12 000 K . Teff . 16 000 K have larger than expected surface

gravities, with maximum discrepancy between the spectroscopically derived surface

gravities and those predicted by stellar evolutionary models occurring at around

13 000-14 000 K. Therefore, our proposed 3D surface gravity corrections are an in-

complete solution to this problem. Many studies have attributed the high-log g

problem in DB white dwarfs to issues with the line broadening by neutral helium

and not with the treatment of convection. Our results provide support for this sce-

nario. Furthermore, a smooth mass versus cooling age distribution for DB stars is

expected from evolutionary models. When applying our 3D corrections to the 1D

atmospheric parameters determined in BW11 and Koester and Kepler [2015] assum-

ing pure-helium atmospheres as a very preliminary assessment, the 3D parameters

are not in obviously better or worse agreement with evolutionary models. To fully

understand the mass distribution of DB white dwarfs, we believe that 3D simula-

tions with mixed helium and hydrogen compositions must �rst be calculated, even

though Beauchamp et al. [1999] suggest that hydrogen does not signi�cantly impact

the atmospheric parameters in the range 14 000 K . Teff . 20 000 K.

A study of the temperature and density strati�cations (Figs. 3.4 and 3.5) in

the line forming regions (Fig. 3.3) can be useful to understand the strong predicted

3D corrections at Teff ∼ 18 000 K. Fig. 3.3 (top right panel) illustrates that 3D

e�ects on the mean structure are strong enough at this e�ective temperature that

the 3D lines are formed in a signi�cantly narrower range of the atmosphere. Fig. 3.5

shows that in the line forming region, the density is signi�cantly larger in the 3D

simulation. Since density correlates with surface gravity, it suggests that a higher

gravity 1D structure is necessary to mimic the 3D density strati�cation, resulting

in a negative surface gravity correction. We note that the spectral lines are formed

largely within the convective zone and the 3D e�ects are especially strong in this

regime. We have, therefore, no reason to doubt the accuracy of the 3D simulations

or suspect that any approximation we have made would cause spurious 3D e�ects,

especially in light of our success with pure-hydrogen 3D model atmospheres.

For DA white dwarfs, the 3D line cores of the deep lower Balmer lines were

shown to be too deep when compared to observed white dwarf spectra [Tremblay

et al., 2013c]. This 3D prediction is largely caused by adiabatic overshoot at large

86



Peclet number [see, e.g., Brummell et al., 2002; Kupka and Muthsam, 2017] cooling

the 3D structures in the upper layers of the atmosphere, an e�ect that does not occur

in 1D. This discrepancy led us to remove line cores for calculating more robust 3D

corrections for DA white dwarfs. For 3D simulations of DB stars we do not observe

any obvious issue with the line cores. One reason is that He I lines are weaker and

the cores of the lines do not signi�cantly extend into the overshoot regions. We have

tried to remove the line cores from the �ts, but this does not meaningfully change

the 3D corrections, and thus we suggest keeping the full line shapes in the �tting

procedure.

Fig. 3.15 compares the normalised 1D LHD, 1.5D and 〈3D〉 spectra for log g =

8.0 and Teff = 18 081 K, where the largest 3D corrections for surface gravity are

observed (for models with log g = 8.0). We �nd that all predicted spectra are very

similar in terms of the broadband �uxes from the near-UV to the near-infrared.

This suggests once again that the 〈3D〉 approximation is adequate, but also that

3D corrections are unnecessary for calculating broadband photometric �uxes in this

regime. In Fig. 3.16 we compare our 〈3D〉 spectrum at log g = 8.0, Teff = 21 989 K

with 1D LHD spectra using both ML2/α = 1.25 and 1.75. In this regime, BW11

have found (see their Figure 15) that a mixing-length of ML2/α = 1.75 provides

a better agreement between the optical and near-UV temperatures, while a value

of ML2/α = 1.25 results in a smoother mass distribution as a function of e�ective

temperature. They attribute this behaviour to a potential shortcoming of the mixing-

length theory. It is di�cult to conclude yet about the possible improvements of a

3D spectral analysis, since the 3D e�ective temperature corrections are fairly mild in

this regime and the predicted near-UV �uxes are all very similar in a relative sense.

87



0 2000 4000 6000 8000 10000

Wavelength (Å)
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Figure 3.15: Comparison of 1D LHD (solid red), 1.5D (dotted green) and 〈3D〉
(dashed blue) spectra at Teff = 18 081 K and log g = 8.0. The spectra have been
normalised at 2400 �A.
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Figure 3.16: Comparison of a 〈3D〉 (dashed blue) spectrum and 1D LHD spectra
computed with ML2/α = 1.25 (solid red) and 1.75 (dotted green) for Teff = 21 989 K
and log g = 8.0. The spectra have been normalised at 2400 �A.

3.4.2 Sensitivity to input parameters

〈3D〉 thermal structures of DA white dwarfs show little sensitivity to the input

numerical parameters, which include the grid resolution, arti�cial viscosity, geomet-

rical dimensions, and numerical schemes for the hydrodynamics solver (see Table 3

of Tremblay et al. [2013b] for more detail). This work relies on the same numerical

setup. The change of the gas composition is not expected to have a signi�cant im-

pact on the precision of the thermal structures and numerical setup. Therefore, we

conclude that the earlier numerical tests performed for DA white dwarfs also apply

to the DB grid presented in this paper. This does not rule out, however, that there

are untested numerical setups [e.g., very large grid sizes, see Kupka et al., 2018]
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that could still have an e�ect on our results. These experiments were performed

for a characteristic closed bottom simulation (Teff = 12, 000 K, log g = 8.0, pure-

hydrogen). In this section we expand on these numerical experiments by quantifying

how the open bottom boundary condition impacts our derived corrections.

Grimm-Strele et al. [2015] have shown that vertical boundary conditions can

in�uence layers located two pressure scale heights above or below them. We extended

two models with log g = 8.0, and initially with Teff = 12 020 and 18 081 K, by adding

60 and 50 more grid points to the bottom of the two simulations, respectively. The

former case is the shallowest model at log g = 8.0 with a total of 5 pressure scale

heights. For both simulations we only focus on the lower boundary. This is because

the top of each simulation is more than 3 pressure scale heights above the top of the

spectral line forming region. These new simulations are run for 10 more seconds,

and we make sure they have been properly relaxed using the tests described in

Section 3.2.1. 12 snapshots over the last quarter of the simulations are used to

calculate the mean structures and synthetic spectra. The two new synthetic spectra

are �tted with the 1D LHD grid to derive 3D corrections.

In Fig. 3.17 we compare the temperature and pressure strati�cations between

the original and extended simulations. We �nd that the 〈3D〉 structure at ≈ 12 000 K

does not change signi�cantly with the extended simulation. The 3D spectroscopic

corrections are well within �tting errors. Convection is very adiabatic everywhere in

the simulation and we hypothesize that the mean strati�cation is rather insensitive

to the treatment of convection (either in 1D or 3D). The standard and extended

≈ 18 000 K simulations di�er marginally in the line forming regions according to

Fig. 3.17. The shift in the 3D surface gravity correction is similar to the typical

external observational errors (≈ 0.05 dex). The original simulation was already deep

in terms of the number of pressure scale heights between the photosphere and the

bottom boundary, and therefore the di�erence may not be directly caused by the

change in the bottom boundary condition.
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Figure 3.17: The temperature and pressure strati�cations of the original (solid blue)
and extended (dashed red) simulations for models with log g = 8.0 and Teff ≈ 12 000
and 18 100 K. The spectral line forming regions are indicated by solid grey lines.
Note that the 3D simulations extend deeper into the upper layers than shown here.

3.4.3 Application to observations

Fig. 3.18 shows 1D LHD and 〈3D〉 �ts to WD0845−188, a selected DB white dwarf

from BW11 with a hydrogen abundance small enough to assume pure-helium com-

position [Bergeron et al., 2015]. Fitting with 〈3D〉 spectra lowers the surface gravity
by 0.24 dex, in line with the corrections proposed in Table 3.2. However, the e�ective

temperature di�erence does not exactly match the corrections proposed in Table 3.2,

but since the correction is of the same order as the internal errors we believe this

inconsistency to be negligible.

If we �t WD0845−188 with 1D ATMO instead of 1D LHD, we recover param-

eters that are almost in complete agreement to LHD �tted parameters, reinforcing

what is shown in Fig. 3.12, i.e. the di�erence between the 1D structures calculated

from these two 1D codes are negligible at the given surface gravity and e�ective

temperature.
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Figure 3.18: Examples of 1D LHD (top panel) and 〈3D〉 (bottom panel) �ts to the
spectrum of the DB white dwarf WD 0845−188. The continuum �ux is �xed to unity
by a �tting function at prede�ned wavelength points shown as green tick marks in
the panels (see BW11). The best �t atmospheric parameters assuming a pure-helium
composition are identi�ed on the panels.

For this particular DB white dwarf, the χ2 is marginally smaller in the 〈3D〉
case compared to the 1D LHD �t. However, looking at the whole BW11 sample

excluding DBA white dwarfs, we do not �nd an obvious preference for either model
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grid, suggesting that �ts are of equivalent quality on average. This is in line with

our earlier �nding that there is no obvious line core problem for DB white dwarfs in

comparison to DA stars. This suggests that the next step is to calculate a grid of

mixed He/H 3D atmospheres and revisit earlier spectroscopic analyses.

3.5 Conclusions

We have presented the �rst-ever 3D radiation-hydrodynamics simulations of DB

white dwarf atmospheres and discussed them in terms of the 3D e�ects on synthetic

spectra. Brie�y examined were the signi�cant di�erences between these new 3D

models and their previously available 1D counterparts in terms of the temperature

and density strati�cations. This distinction arises from the di�erent models of con-

vection; the 3D treatment derived from �rst principles and the more approximate

mixing-length theory in 1D. Our 3D simulations are not without approximations ei-

ther, but these issues can be largely overcome when computing 3D corrections with

carefully selected reference 1D models. In our case, the sister-code of CO5BOLD,

LHD, was used, which treats opacity binning and scattering in the exact same fashion

as CO5BOLD.

The 3D corrections on the atmospheric parameters were constrained by using

both 1.5D and 〈3D〉 spectra, which represent the two extremes of enhancing or

neglecting the 3D �uctuations, respectively. Corrections found with either method

are similar, and the di�erences are within typical �tting uncertainties, suggesting

that full 3D spectral synthesis is not required. The 〈3D〉 spectra, drawn from 〈3D〉
structures averaged over constant optical depth, have thus been used to estimate

3D corrections for pure-helium atmosphere white dwarfs. We �nd that current 1D

synthetic spectra, under the ML2/α = 1.25 parameterisation of the mixing-length

theory, overpredict surface gravity in the range 12 000 K ≤ Teff ≤ 23 000 K by as

much as 0.4 dex. It is a surprising result since DB white dwarf parameters have not

been reported to be erroneous in this range of e�ective temperature.

Photometric �ts usingGaia Data Release 2 have provided independent masses

for all known DB stars, giving us a better description of the shortcomings in the

line broadening or current 1D and 3D model atmospheres. In Chap. 4 the earlier

1D spectroscopic analyses are revisited by computing a grid of mixed He/H 3D

simulations. This will account for the hypothesis that most if not all helium-rich

atmosphere white dwarfs have hydrogen traces [Koester and Kepler, 2015].
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Chapter 4

Spectroscopic 3D DBA

corrections

And when we go don't blame us, yeah

We'll let the �res just bathe us, yeah

You made us oh so famous

We'll never let you go

Mama

My Chemical Romance

4.1 Introduction

In this chapter new 3D DBA models from Chap. 5 (from now on referred to as

Cukanovaite et al. 2019 models) are introduced alongside the already discussed 3D

DB models from Chap. 3 (referred to as Cukanovaite et al. 2018 models). These

models are used to �nalise the determination of the atmospheric parameters of DB

and DBA white dwarfs with our accurate treatment of convective energy transport.

We �rst introduce our 3D and reference 1D models in Sect. 4.2. The 3D spectroscopic

corrections are determined in Sect. 4.3 and we apply them to observations in Sect. 4.4.

In that section we also investigate van der Waals broadening and non-ideal e�ects

and we conclude in Sect. 4.5.

The spectroscopically-determined atmospheric parameters of DB and DBA

white dwarfs disagree with the results of photometric studies and evolutionary mod-

els. There is a small systematic di�erence between the parameters derived using

spectroscopic and photometric techniques [Tremblay et al., 2019b; Genest-Beaulieu
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and Bergeron, 2019a,b]. Before the advent of Gaia DR2 [Gaia Collaboration et al.,

2018], the spectroscopic technique was assumed to be more precise, due to the un-

certainties associated with white dwarf parallaxes and absolute magnitudes. With

the use of much more accurate and precise parallaxes of Gaia, the photometric tech-

nique now rivals the precision of the spectroscopic technique. The surface gravities,

log g, (and therefore masses) of DB and DBA white dwarfs derived from photometry

show a more uniform distribution as a function of e�ective temperature, compared to

the surface gravity distribution of the spectroscopic technique, which suggests that

spectroscopic results may be subject to additional uncertainties from the underlying

convection model or input microphyics [Tremblay et al., 2019b]. Historically, the

spectroscopic log g distribution of cool DB white dwarfs has been plagued by the

so-called high-log g problem [Beauchamp et al., 1996; Bergeron et al., 2011; Koester

and Kepler, 2015]. More recent results show that by calibrating the line broadening

and eliminating very cool DB stars with weak lines and uncertain instrumental reso-

lution, the high-log g problem is greatly diminished [Genest-Beaulieu and Bergeron,

2019b]. The photometric technique is much less sensitive to the details of line broad-

ening, but the absolute accuracy of the stellar parameters depends more critically on

the uncertain relative �ux calibration, for which DA white dwarf models are often

employed [Narayan et al., 2019; Gentile Fusillo et al., 2020].

In most studies the dominant uncertainty in the atmospheric parameters of

cool DB white dwarfs (Teff . 16 000 K) is attributed to the implementation of van

der Waals line broadening due to the neutral helium atom [Beauchamp et al., 1996;

Bergeron et al., 2011; Koester and Kepler, 2015]. The two most common implemen-

tations for this type of line broadening used in DB and DBA studies are the Unsold

[1955] theory, used in, for example, Beauchamp et al. [1996] and Bergeron et al. [2011]

and the modi�ed Deridder and van Rensbergen [1976] treatment, used in Beauchamp

et al. [1996] and Genest-Beaulieu and Bergeron [2019a,b]. Beauchamp et al. [1996]

showed that the modi�ed Deridder and van Rensbergen [1976] version produces a

much smoother distribution of surface gravity as a function of e�ective temperature.

Genest-Beaulieu and Bergeron [2019a,b] later showed that neither implementation

gives a perfect agreement between the spectroscopic and the photometric technique

or spectroscopic and evolutionary model predictions. However, from their samples

it is clear that the modi�ed Deridder and van Rensbergen [1976] treatment agrees

better with Gaia data. Either way, a more accurate implementation is needed since

the Deridder and van Rensbergen [1976] version of the line broadening has been

tweaked by Beauchamp et al. [1996] to agree better with observations.

Additionally, there is the issue of non-ideal e�ects due to the neutral helium
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atom, which also become signi�cant for Teff . 16 000 K. The current implementation

used for white dwarf atmosphere models is the Hummer and Mihalas [1988] model,

which depends on a free parameter, rB, that determines the radius of the hydrogen

or helium atom as a fraction of atomic radius according to the Bohr model. The

commonly utilized value is 0.5, which was calibrated based on DA white dwarf spec-

tra, speci�cally the line pro�les of the higher hydrogen Balmer lines [Bergeron et al.,

1988, 1991]. A discussion on the e�ect of rB on surface gravity can be found in

Tremblay et al. [2010]. This free parameter can potentially be adjusted to obtain a

smoother surface gravity distribution for DB and DBA white dwarfs.

The treatment of convective energy transport in atmospheric models of DB

and DBA white dwarfs is another source of uncertainty in�uencing the spectroscopic

parameters. Tremblay et al. [2013c] showed that it is precisely the shortcomings

in the MLT theory that cause a similar high-log g problem for DA white dwarfs,

which as a result can be solved with the help of 3D radiation-hydrodynamical mod-

els, because these models treat convection from �rst principles and do not depend

on any free parameters. Cukanovaite et al. [2018] (Chap. 3) calculated the �rst 3D

DB atmospheric models and found that while a single value of ML2/α = 1.25 can

reproduce reasonably well the temperature distribution and UV �uxes of DB white

dwarfs, no single value of the mixing length parameter can mimic the 3D spec-

tra below Teff ≈ 18 000K, resulting in strong 3D log g corrections1. Nevertheless,

Cukanovaite et al. [2018] (Chap. 3) found that 3D log g corrections do not result in

obviously more accurate stellar parameters. Tremblay et al. [2019b] cemented this

by showing that 1D and 3D DB models provide spectroscopic parallaxes (calculated

from spectroscopically-determined values of e�ective temperature and surface grav-

ity, and observed magnitude) that are in similar agreement with Gaia parallaxes.

It was postulated by Cukanovaite et al. [2018] (Chap. 3) that inclusion of traces of

hydrogen in their 3D models could potentially lead to a better agreement with Gaia.

However, given the known issues with the microphysics of line broadening in cool DB

white dwarfs and concerns with the photometric calibration [Tremblay et al., 2019b;

Ma��z Apell�aniz and Weiler, 2018], it is unclear if Gaia can provide an accurate test of

3D convection. Thus in this chapter, the 3D DB and DBA spectroscopic corrections

are applied to published samples, and the line broadenings are investigated in detail.

1See Cukanovaite et al. [2019] (Chap. 5) for an alternative calibration of the mixing length
parameter, which is relevant for the size of the convection zone.
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4.2 Numerical setup

4.2.1 3D atmospheric models

We computed 282 3D DB and DBA models using the CO5BOLD radiation-

hydrodynamics code [Freytag et al., 2002; Wedemeyer et al., 2004; Freytag et al.,

2012; Freytag, 2013, 2017]. Our 3D grid of models covers the hydrogen-to-helium

number ratio, log H/He, of −10.0 ≤ log H/He ≤ −2.0. Models at log H/He = −10.0

are the same as the pure-helium models discussed in Cukanovaite et al. [2018]

(Chap. 3) and this hydrogen abundance is used for pure-helium atmosphere models

since all known DB white dwarfs have upper limits on hydrogen larger than this

value. Including even less hydrogen in the calculations makes no meaningful change

to the predictions. The grid also spans 7.5 dex ≤ log g ≤ 9.0 dex in steps of 0.5

dex, and 12 000 K . Teff . 34 000 K in steps of around 2 000 K. We show the exact

values of the atmospheric parameters in Fig. 4.1. Additional data on the models can

be found in Appendix 1 of Cukanovaite et al. [2019] (App. B of this thesis) .

The input parameters of CO5BOLD include boundary conditions, surface

gravity, an equation of state (EOS) and an opacity table. The EOS and opacity

table de�ne the hydrogen abundance of the DBA simulations. The opacity tables

are binned and discussed in Cukanovaite et al. [2018] (Chap. 3). Due to interpolation

issues we do not include the log τR = [−5.0,−99.0] bin.
For all models the top boundary is higher than log τR = −5.0, such that

the top of the photosphere is contained within the model. The bottom bound-

ary for all models is around log τR = 3.0, but in some cases the models had to

be extended deeper to include the negative convective �ux region found below the

Schwarzschild boundary of the convection zone [Cukanovaite et al., 2019] (Chap. 5).

In those cases, the vertical extent of the box was also increased, with some models

extending to 250 grid points vertically compared to the original 150 grid points. We

ensure that both the top and the bottom of the photosphere is at least ∼ 2Hp away

from either top or bottom boundary of the simulation.
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Figure 4.1: The atmospheric parameters of 3D DB and DBA models averaged over
time and over contours of constant log τR. 3D simulations with open and closed
bottom boundaries are indicated as un�lled and �lled circles, respectively. The
hydrogen abundance of the models is indicated on each individual sub plot.

4.2.2 1D atmospheric models

In order to calculate 3D spectroscopic corrections, we use a di�erential �tting

approach between 3D and reference 1D synthetic spectra. ATMO is used to calcu-

lated the EOS and opacity tables. However, we use the 1D LHD code [Ca�au et al.,

2007] for determining the 3D corrections.

Fig. 12 of Cukanovaite et al. [2018] (Fig. 3.12 of Chap. 3) shows that the

di�erences between DB ATMO and LHD models are due to the binning procedure
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used in opacity tables. We performed a similar comparison for the DBA grid of

models with log H/He = −2 and log g = 8.0. Two di�erent grids of 1D LHD models

were used, those calculated with 10-bin (same as 3D models) and 20-bin opacity

tables. We �tted each type of LHD spectrum with our standard ATMO grid (See

Sect. 4.3.1 for the �tting procedure) and found that as the number of bins increases,

the agreement between 1D LHD and 1D ATMO DBA synthetic spectra does not

improve. This is not necessarily unexpected as increasing the number of bins does

not always produce more accurate structures [Tremblay et al., 2013c]. However,

since it was determined that for DB structures the opacity binning can introduce

arti�cial 3D corrections that have nothing to do with treatment of convective energy

transport, we utilise the 1D LHD models for calculating 3D DBA spectroscopic

corrections as a precaution.

To compute the spectra for 3D and 1D LHD structures, we use the 1D ATMO

code. This is because neither CO5BOLD nor LHD is capable of calculating synthetic

spectra. We utilise ATMO consistently to calculate spectra for CO5BOLD and LHD

using the exact same numerical setup apart from the input temperature and pressure

strati�cation.

Our 1D LHD grid spans a parameter space slightly extended compared to

that of our 3D models. It covers −10.0 ≤ log H/He ≤ −2.0, 7.0 ≤ log g ≤ 9.5

and 10 000 ≤ Teff ≤ 40 000 K. The models are in LTE and use ML2/α = 1.25.

The input EOS and opacity tables are the same as those used in 3D models, which

include the physics described in Bergeron et al. [2011] and Genest-Beaulieu and

Bergeron [2019a,b]. In terms of van der Waals broadening we use the Unsold [1955]

treatment, unless otherwise speci�ed, such as in Sect. 4.4.1. We have tested and

con�rmed that the particular choice of line broadening theory does not impact the

�nal 3D corrections if the line broadening is used consistently in both 1D and 3D

models.

4.2.3 3D synthetic spectra

Ideally, one would calculate a synthetic spectrum from a 3D atmospheric

model using a 3D spectral synthesis code such as Linfor3D [Ludwig and Ste�en,

2008]. This way all of the information from a given 3D simulation would be used,

including the horizontal �uctuations. However, this process is time-consuming and

typically limited to a small portion of a spectrum, e.g. a few atomic lines. Instead,

to calculate synthetic spectra of DB and DBA white dwarfs from 3D atmospheric

models, we average the models spatially and temporally as explained in Sect. 4.2
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to calculate the so-called 〈3D〉 structure, which we then feed into the ATMO code

to calculate a 〈3D〉 synthetic spectrum. This completely neglects any horizontal

�uctuations in the 3D models. For DA white dwarfs it was shown that synthetic

spectra (Hβ line) derived from 3D and 〈3D〉 structures were identical within 1%

level [Tremblay et al., 2013c]. However, for extremely low mass DA white dwarfs,

the di�erences could reach a few per cent [Tremblay et al., 2015a]. For a discussion

on why 3D and 〈3D〉 synthetic spectra can agree in some cases and disagree in others

see Tremblay et al. [2013c] and Tremblay et al. [2015a].

To test whether the horizontal �uctuations have any e�ect on the derived 3D

spectroscopic corrections, Cukanovaite et al. [2018] (Chap. 3) computed 1.5D spectra

[Ste�en et al., 1995]. This type of spectra is calculated by assuming that each column

in the 3D simulation box is an individual model atmosphere, and for each of these

atmospheres a separate spectrum is calculated. These individual spectra are then

averaged together to calculate the �nal 1.5D spectrum. They also average over

three di�erent snapshots in time. In the 1.5D method the horizontal �uctuations

are enhanced [Tremblay et al., 2015a] compared to a 3D synthetic spectrum which

combines nearby grid points through inclined light rays. The 1.5D and 〈3D〉 spectra
represent two extremes of combining grid points in a 3D model, such that these two

type of spectra encompass a given 3D synthetic spectrum [Tremblay et al., 2013c].

For DB white dwarfs, 1.5D spectra were found to be identical to 〈3D〉 spec-
tra within the observational errors and thus 〈3D〉 spectra were used for �nal 3D

DB spectroscopic corrections. We performed the same test for DBA models with

log H/He = −2.0 and log g = 8.0 and found that the corrections derived using either

type of spectra gave the same results. Therefore, this agrees with the conclusions

reached for 3D DB corrections, with the di�erence between 〈3D〉 and 1.5D for DBA

models being even smaller, resembling the results of 3D DA models. Therefore, we

use 〈3D〉 synthetic spectra when calculating 3D DBA corrections, given also that it

would give the minimum possible 3D correction.

4.3 3D DBA corrections

4.3.1 Fitting code

In order to determine 3D corrections, we want to �nd a 1D LHD synthetic

spectrum that best matches a given 〈3D〉 spectrum. To do this, we wrote a code

that �ts a synthetic spectrum with a grid of di�erent type of synthetic spectra. We
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de�ne the 3D spectroscopic corrections as

xcorrection = x〈3D〉 value − x1D LHD fit, (4.1)

where x can be log H/He, log g or Teff . The code �ts the optical part of the spectrum,

namely the wavelength range 3500 ≤ λ ≤ 7200 �A. This is the same range used

by Bergeron et al. [2011] for �tting observations and in Cukanovaite et al. [2018]

(Chap. 3) for 3D DB corrections. All spectra are normalised by dividing the �ux

at all wavelengths by the �ux value at 5500 �A, a wavelength at which there are no

helium or hydrogen lines.

The code �rst �ts for e�ective temperature and surface gravity assuming a

value of hydrogen abundance. The initial value of the hydrogen abundance does not

matter, but the code converges faster if the abundance is set closest to the actual 3D

value. Once the e�ective temperature and surface gravity are found, the spectrum

is then �tted for hydrogen abundance at �xed values of e�ective temperature and

surface gravity, found in the previous step. This procedure is then repeated until

convergence of 0.1% is achieved across all three parameters. If the hydrogen lines

are not visible or insigni�cant then we do not �t for hydrogen abundance. This

happens mostly for log H/He = −10.0 and −7.0 models, as well as models with

higher hydrogen abundances and large e�ective temperatures.

Using this �tting code, we can recover the 3D DB spectroscopic corrections

of Cukanovaite et al. [2018] (Chap. 3). For Teff & 20 000 K (depending on the surface

gravity) Cukanovaite et al. [2018] (Chap. 3) reported sizeable e�ective temperature

corrections, although they were smaller than the typical observational errors. We can

now report that these corrections were dependent on the method used to normalise

spectra in the �tting code utilised by Cukanovaite et al. [2018] (Chap. 3). With our

new normalisation method, we keep the slope of the spectrum, which means that

�tting retains its sensitivity to e�ective temperature, leading to smaller e�ective

temperature corrections in that particular temperature range. Note that this is only

possible in the case of �tting models with models. This normalisation method would

be unreliable in the case of �tting observed spectra of white dwarfs as there can be

issues with data reduction. Our goal in determining the spectroscopic corrections

is to determine 1D spectrum that best matches given 3D spectrum. In terms of

the surface gravity corrections, both the new and old codes agree within typical

observational errors.
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4.3.2 Line cores

Tremblay et al. [2013b,c] showed that convective overshoot cools the upper layers

(log τR < −2.0) of 3D DA models, causing them to deviate signi�cantly from their

1D counterparts. The cores of Hα and Hβ appear too deep in 3D when compared

to observations. It was found that the discrepancy is unlikely to be a numerical,

structure averaging or microphysics issues with 3D DA models. Tremblay et al.

[2013c] chose to remove the line cores from their �tting when determining 3D DA

corrections. In contrast, Cukanovaite et al. [2018] (Chap. 3) determined that removal

of line cores did not impact 3D DB corrections. This is because helium lines are not

formed as high-up in the atmosphere as the hydrogen lines, despite a similar strength

for convective overshoot. However, hydrogen lines do appear in the spectra of DBA

white dwarfs and therefore we review the properties of the line cores in this section.

In Fig. 4.2 we compare the line cores between 3D, 1D LHD and 1D ATMO

synthetic spectra at Teff = 12 000K, log g = 8.0 and log H/He = −2.0. The 3D line

core is deeper for Hα but the di�erence is less pronounced for Hβ compared to DA

models at the same temperature. We also �nd that the 1D LHD synthetic spectrum

has shallower cores than 1D ATMO. Therefore it appears that the EOS and opacity

tables contribute to a signi�cant uncertainty on the prediction of the line cores, but

with an e�ect in the opposite direction compared to 3D convective overshoot.

In Fig. 4.3 we compare the 3D DBA e�ective temperature corrections for

log H/He = −2.0 derived when �tting the spectrum with and without line cores. We

remove line cores by removing any wavelength range corresponding to �ux that was

formed above a given value of log τR. As shown in Fig. 4.3 the values of log τR =

[−2.0, −3.0, −4.0] are tested. At low e�ective temperatures, this will mostly remove

the cores of hydrogen lines, as helium lines are formed lower in the atmosphere than

log τR = −2.0, but as the e�ective temperature increases the cores of the helium

lines will also be removed. We �nd that the removal of line cores does not a�ect

the 3D corrections (not just e�ective temperature, but also hydrogen abundance and

surface gravity). Therefore, we do not remove them in the rest of our analysis.
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Figure 4.2: A comparison between the synthetic Hα and Hβ lines calculated from
3D, 1D ATMO and 1D LHD models for a DBA white dwarf with log H/He = −2.0,
log g = 8.0 and Teff = 12 044 K. The 〈3D〉 synthetic lines are shown in solid orange,
1D ATMO in dashed green and 1D LHD in dotted red. The center of a given line is
indicated by a vertical dot-dashed blue line.
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Figure 4.3: The di�erence between the e�ective temperature corrections derived from
original spectra and from spectra with line cores removed for 3D DBA models with
log H/He = −2.0. The log τR values indicated on each sub plot denote the atmo-
spheric layer above which we remove any �ux formed. The di�erence in corrections
for models with log g = 7.5, 8.0, 8.5 and 9.0 are shown as orange circles, green trian-
gles, red stars and blue diagonal crosses, respectively. Corrections for each surface
gravity are joined for clarity. The errors from Genest-Beaulieu and Bergeron [2019b]
are shown in dotted black.

4.3.3 3D correction function

For the ease of user application of 3D DB and DBA corrections, we provide

correction functions that can be applied directly to spectroscopically-determined 1D

hydrogen abundances, surface gravities and e�ective temperatures. This removes
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the need for users to interpolate the 3D DB and DBA corrections, and provides

de�nitive corrections that do not vary between studies, since di�erent studies can

use non-identical interpolation methods. Our �tted corrections are not based in any

physical arguments. Unlike interpolation, we do not aim to have an ideal �t between

our correction functions and the 3D DB and DBA corrections. This is because we

do not want to preserve the small �uctuations of our results, which could be the

result of e.g. issues arising due to the �nite size of the simulation or the e�ects of

boundary conditions.

To determine our correction functions we have written a code following the

description of the recursive �tting procedure from Ludwig et al. [1999], Sbordone

et al. [2010] and Allende Prieto et al. [2013]. This code not only provides the values of

the �tted coe�cients but also determines the function to �t. Our aim is to determine

three correction functions for 3D hydrogen abundance, surface gravity and e�ective

temperature corrections, in the form f(log g, Teff , log H/He; ~A), where ~A is the vector

of �tted coe�cients. The �tting is recursive to allow for determination of initial

values for the coe�cient parameters and thus to ensure an e�cient convergence to

a solution.

The code begins by �tting a simple function of f(log g, Teff , log H/He; ~A) =

A0, where A0 is the average of the corrections. The next step is then to replace A0

with (A0 +A1 exp[A2 +A3gx+A4Tx +A5yx]), where

gx = (log g − 7.0)/7.0,

Tx = (Teff − 10 000.0)/10 000.0,

yx = − log (H/He)/(10.0).

(4.2)

For this subsequent �t, the initial values are set as

A0 = A0,

A1 = 0.7×A0,

A2 = 0.5×A0,

A3 = 0.2×A0,

A4 = 0.1×A0,

A5 = 0.01×A0,

(4.3)

and are all based on the value of A0 found during the �rst �t. At this point, we

begin our recursive �tting procedure, where each coe�cient of Ai in the previous

step is replaced one at a time by (Ai+A6 exp[A7 +A8gx+A9Tx+A10yx]), resulting
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in six separate minimisations. The initial values of the �ve new unknown coe�cients

are set as described in Eq. 4.3, but with Ai replacing A0. The best �tted correction

function is then chosen by the smallest value of the cost function. This step is

followed by a similar step where each parameter (11 at this point) is replaced by

Aj = Aj + A11 exp[A12 + A13gx + A14Tx + A15yx]. The function with the smallest

value of the cost function is then chosen as the �nal �tted correction function. In

Fig. 4.4 we compare the 3D DBA corrections with the predictions of the correction

functions for log H/He = −5. The correction functions are

∆log g = a0 + a1 exp
[
a2+

a3gx +
(
a4 + (a6 + a11 exp[a12 + a13gx + a14Tx + a15yx])

× exp[a7 + a8gx + a9Tx + a10yx]
)
Tx + a5yx

]
,

(4.4)

∆Teff = b0 + b1 exp
[(
b2 + b6

× exp
[
b7 + (b8 + b11

× exp[b12 + b13gx + b14Tx + b15yx])gx + b9Tx + b10yx
])

+

b3gx + b4Tx + b5yx

]
,

(4.5)

where ∆log g is the 3D surface gravity correction and ∆Teff is the 3D e�ective tem-

perature correction. These corrections were derived using gx, Tx and yx, therefore

they have to be added in the following way to the 1D spectroscopically-determined

parameters

log g3D = log g1D + 7×∆log g

Teff, 3D = Teff, 1D + 1000×∆Teff .
(4.6)

The 3D hydrogen abundance corrections are insigni�cant, especially com-

pared to typical observational errors and we do not discuss them further. Tab. 4.1

gives the values of the �tted coe�cients (ai and bi). Note that outside the parameter

range of our 3D corrections, these functions lose all meaning and should not be used.

The parameter range for 1D derived spectroscopic values is 7.5 ≤ log g ≤ 9.1 dex,

11 900 ≤ Teff ≤ 33 900 K and −10.0 ≤ log H/He ≤ −2.0 dex. In Appendix A we

supply a Python code to apply our correction functions.

In Figs. 4.5 and 4.6 we show the 3D surface gravity and e�ective tempera-

ture correction functions for all hydrogen abundances, surface gravities and e�ective

106



temperatures considered in this study. There are signi�cant 3D surface gravity cor-

rections for e�ective temperatures below around 20 000 K depending on the hydrogen

abundance, such that the 3D synthetic spectra predict lower surface gravities than

1D models. Uncertainties in the van der Waals broadening fall in a similar parameter

range, Teff ≤ 16 000 K, which overlaps well with our 3D surface gravity corrections

especially for log H/He ≥ −4.0 models. Signi�cant e�ective temperature correc-

tions are observed for 18 000 ≤ Teff ≤ 28 000 K depending on the surface gravity.

This is the temperature range where the issue of cool/hot solutions appears [Berg-

eron et al., 2011]. In this region the He i lines reach maximum strength, such that

the they look identical with decreasing or increasing e�ective temperature near this

maximum point. This means that in this region the �tting becomes insensitive to

e�ective temperature and this could explain the signi�cant 3D e�ective tempera-

ture corrections. Nevertheless, the 3D e�ective temperature corrections could have

a signi�cant e�ect on the spectroscopically parameters of the white dwarfs in the

V777 Her (DBV) instability region. There is currently an issue with the empirical

blue edge, which is too cool in comparison with observations by around 2 000 K

(at log g ≈ 8.0) [Shipman et al., 2002; Provencal et al., 2003; Hermes et al., 2017;

Van Grootel et al., 2017]. However, our 3D e�ective temperature corrections at

log g ≈ 8.0 and Teff ≈ 31 000 K (the atmospheric parameters of the empirical blue

edge) are insigni�cant and therefore cannot solve the disagreement between theory

and observations.
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Table 4.1: The �tted coe�cients of the 3D correction functions described in Eqs. 4.4
and 4.5.

Coe�. Coe�.

a0 7.789804e-05 b0 −1.507415e-03
a1 −1.246790e-01 b1 1.567231e-02

a2 2.266438e-01 b2 −4.028622e-01
a3 7.346191e+00 b3 −4.160986e+00
a4 −4.956186e+00 b4 3.087746e+00

a5 9.319494e-01 b5 2.172546e-01

a6 −2.706825e-03 b6 −1.773794e-02
a7 8.474978e+00 b7 −6.214232e-01
a8 3.139169e+00 b8 −1.388323e+01
a9 −6.493254e+00 b9 5.002702e+00

a10 1.909074e+00 b10 1.520483e-02

a11 −5.272041e+00 b11 4.749075e+00

a12 9.791687e+00 b12 9.447618e+00

a13 2.150441e+00 b13 −3.172587e+00
a14 4.428345e+00 b14 −2.922094e-01
a15 −1.008931e+02 b15 −3.898302e+01
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Figure 4.4: A comparison between the results of the correction functions and the 3D
DBA corrections for the grid with log H/He = −5. 3D corrections for models with
log g = 7.5, 8.0, 8.5 and 9.0 are shown as orange circles, green triangles, red stars
and blue diagonal crosses, respectively. The results of the correction functions for
models with log g = 7.5, 8.0, 8.5 and 9.0 are shown as solid orange, dashed green,
dotted red and dot-dashed blue lines, respectively.
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Figure 4.5: 3D correction functions for surface gravity shown for all hydrogen abun-
dances, surface gravities and e�ective temperatures covered by our study. Dotted
black lines represent the observational errors from Genest-Beaulieu and Bergeron
[2019b]. In solid orange, dashed green, dotted red and dot-dashed blue we show the
surface gravity corrections for log g = 7.5, 8.0. 8.5 and 9.0 values, respectively. The
abundances are indicated on each sub plot.
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Figure 4.6: Same as Fig. 4.5, but for 3D e�ective temperature corrections.

4.4 Discussion

For a demonstration of 3D corrections, the sample of SDSS DB and DBA white

dwarfs is by far the largest spectroscopic sample available [Koester and Kepler, 2015;

Kepler et al., 2019; Genest-Beaulieu and Bergeron, 2019a,b]. We rely speci�cally on

the 1D spectroscopic parameters published in Genest-Beaulieu and Bergeron [2019b].

We cross-matched this sample with the Gaia DR2 white dwarf catalogue [Gentile

Fusillo et al., 2019a,b]. As Genest-Beaulieu and Bergeron [2019b] remarked, only

around 90% of DB and DBA white dwarfs can be cross-matched with the Gaia

white dwarf catalogue and we report a similar percentage. We removed all white

dwarfs with spectroscopic signal-to-noise ratio (S/N) below 20. This results in a
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sample of 126 DB and 402 DBA white dwarfs. We require data with the highest

precision possible to apply the 3D corrections for an appropriate H/He ratio and in

order to inspect systematic model issues.

We have used 1D and 3D corrected spectroscopic parameters to predict syn-

thetic Gaia absolute G magnitudes from our model atmospheres2. From the distance

modulus linking the observed apparent Gaia G magnitude with our predicted ab-

solute magnitude, we derive so-called 1D and 3D spectroscopic parallaxes. These

values can be compared to observed parallaxes. Fig. 4.7 (upper panel) shows the

comparison between 1D spectroscopic parallaxes and Gaia parallaxes, which is sim-

ilar to the results presented in [Genest-Beaulieu and Bergeron, 2019b]. Overall, for

individual white dwarfs the agreement is satisfactory within 1-3σ. In general, spu-

rious large spectroscopic surface gravities should appear above zero on the �gure,

because as surface gravity increases at a constant e�ective temperature, the absolute

G magnitude also increases, i.e. the white dwarf becomes dimmer. Thus, for the

same apparent G magnitude the white dwarf must be closer, and therefore its spec-

troscopic parallax must be larger. If we take the median of the parallax di�erence

in bins of 1 000 K as shown in Fig. 4.7, it is clear that the so-called high-log g prob-

lem is not apparent in the spectroscopic parallax distribution unlike the results of

previous studies of DB and DBA white dwarfs such as Koester and Kepler [2015]

and Rolland et al. [2018]. In fact, it appears that the 1D spectroscopic results of

Genest-Beaulieu and Bergeron [2019b] may have some leaning towards low surface

gravities. Genest-Beaulieu and Bergeron [2019b] attribute the high-log g problem

seen in earlier studies to the inclusion of DB and DBA white dwarfs with weak he-

lium lines where the spectroscopic technique becomes unreliable, as well as the use of

Unsold [1955] treatment of van der Waals line broadening in older studies. Neither

of these two issues a�ecting spectroscopic parameters are fully resolved and may also

depend on the �ux calibration and instrumental resolution of the observations.

Before we investigate this further, in Fig. 4.7 we also compare the 3D spec-

troscopic parallaxes with Gaia. The 3D spectroscopic parallaxes where calculated as

outlined previously, but with atmospheric parameters corrected for 3D e�ects. For

individual white dwarfs, both 1D and 3D results are in satisfactory agreement with

Gaia, suggesting it is not possible to di�erentiate between 1D and 3D models on a

case by case basis, although 3D parameters should be favoured as a starting point

because of the superior input physics. When looking at the median in bins of 1 000K,

the bump which is seen in the 1D-Gaia comparison and is centred around 19 000 K

2We use 1D ATMO model atmospheres to predict absolute G magnitudes in all cases as 3D
e�ects on absolute �uxes are negligible.
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seems to largely disappear with the use of 3D models. The range in e�ective tem-

perature where the bump is observed largely agrees with the e�ective temperature

range of 3D DB corrections discussed at length in Cukanovaite et al. [2018] (Chap. 3)

and shown in Fig. 4.5. At lower e�ective temperatures, where the high-log g problem

was historically reported, 3D models do not produce a better agreement with Gaia,

since the 1D surface gravities are already on average too low in comparison with

Gaia observations.
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Figure 4.7: A comparison between the Gaia parallaxes and the parallaxes derived
from spectroscopic parameters without (top panel) and with (bottom panel) 3D DB
and DBA corrections for the Genest-Beaulieu and Bergeron [2019b] SDSS sample.
The orange �lled circles represent fractional di�erence between the observed and the-
oretical parallax, $, and in light grey we show the error on the di�erence. The dotted
black line illustrates a perfect agreement. The running median of the fractional dif-
ference in bins of 1000 K is shown in dashed green. The block-coloured green area
indicates the 95% con�dence limit of the median, which has been calculated using
bootstrapping.

113



The spectroscopic parallaxes were computed from a combination of surface

gravity and e�ective temperature, as well as Gaia G magnitudes. In order to in-

vestigate the current status of the accuracy of spectroscopic parameters in better

detail, in Figs. 4.8 and 4.9 we plot a comparison of surface gravities and e�ective

temperatures determined from spectroscopic (with and without 3D corrections) and

photometric Gaia observations. The photometric parameters have been determined

using only Gaia data and have been extracted from the Gaia DR2 white dwarf cat-

alogue of Gentile Fusillo et al. [2019a,b]. The photometric parameters are based on

pure-helium models but the presence of hydrogen makes a negligible contribution to

the Gaia photometric parameters of DBA white dwarfs [Genest-Beaulieu and Berg-

eron, 2019b], which is not the case for cooler DC white dwarfs with much weaker

helium opacity [Bergeron et al., 2019]. It was also previously shown that photometric

parameters of DB and DBA white dwarfs have a fairly smooth log g distribution as

a function of temperature, but the accuracy of the parameters is directly subject to

the accuracy of photometric GBP −GRP colour calibration [Tremblay et al., 2019b].

This is an additional uncertainty that did not play a role in our comparison of spec-

troscopic parallaxes as it only depends on the absolute �ux calibration which is tied

to the observed �ux of Vega [Bohlin et al., 2014].

From Fig. 4.8 it is apparent that both 1D and 3D spectroscopic models result

in higher e�ective temperatures when compared with photometrically derived values.

It is unclear whether the o�set is due to the photometric colour calibration, SDSS

spectral calibration, reddening or any issue with the spectroscopic parameters. In

Fig. 4.9, the comparison between surface gravities derived from spectroscopy and

photometry is also shown. We con�rm that within the errors of Genest-Beaulieu and

Bergeron [2019b] the high-log g problem previously observed in Koester and Kepler

[2015] and Rolland et al. [2018] is non-existent. The e�ect of 3D corrections on log g

values is fairly similar to that of 3D corrections on spectroscopic parallaxes observed

in Fig. 4.7. This is not surprising given that the photometric log g distribution is

fairly smooth as a function of temperature [Tremblay et al., 2019b; Genest-Beaulieu

and Bergeron, 2019a], and �uctuations appear to be related to spectroscopic log g

values, which are employed in both Figs. 4.7 and 4.9. We now attempt to understand

better the systematic di�erences between photometric and spectroscopic studies by

reviewing the input microphysics and comparing to external data from DA white

dwarfs with vastly di�erent microphysics.
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Figure 4.8: A comparison between the spectroscopically- and photometrically-
determined e�ective temperatures for the Genest-Beaulieu and Bergeron [2019b]
sample. The spectroscopic parameters have been computed without (top panel) and
with (bottom panel) 3D e�ective temperature corrections taken in to account. The
photometric parameters are from Gentile Fusillo et al. [2019a]. They are calculated
based on Gaia data alone and include a reddening correction. The orange �lled
circles represent the fractional di�erence between the spectroscopic and photometric
e�ective temperatures, and the error on the di�erence is shown in light grey. The
dotted black line illustrates a perfect agreement. The running median of the frac-
tional di�erence in bins of 1000 K is shown in dashed green. The block-coloured
green area indicates the 95% con�dence limit on the median.
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Figure 4.9: Similar to Fig. 4.8 but for spectroscopically- and photometrically-
determined surface gravities.

4.4.1 van der Waals line broadening

There are two types of van der Waals line broadening commonly used in

spectroscopic analyses of DB and DBA white dwarfs. These are the Unsold [1955]

broadening, used in studies such as Bergeron et al. [2011], and the modi�ed line

broadening of Deridder and van Rensbergen [1976] recently resurrected by Genest-

Beaulieu and Bergeron [2019a,b]. In this section, we aim to investigate the e�ect of

van der Waals broadening on the values of the atmospheric parameters and explain

the disappearance of the high-log g problem. In order to achieve this we employ

the 1D ATMO code to calculate two grids of synthetic spectra, one utilising the
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Unsold [1955] broadening theory and the other using Deridder and van Rensbergen

[1976] with the prescriptions of Beauchamp et al. [1996]. We �t each spectrum of

the Deridder and van Rensbergen [1976] grid with the Unsold [1955] grid to �nd the

spectroscopic corrections due di�erent prescription of line broadening. In Fig. 4.10

we show the van der Waals atmospheric parameter corrections. It is apparent that

the surface gravity is most a�ected by the choice of the broadening, with Unsold

[1955] broadening resulting in larger surface gravities. This has already been noted

by Beauchamp et al. [1996].

To investigate further, we derive van der Waals correction functions for hydro-

gen abundance, surface gravity and e�ective temperature to transform from Deridder

and van Rensbergen [1976] to Unsold [1955] spectroscopically-determined parame-

ters. We use the same technique as before. The resulting corrections are

∆log gvdw = d0 + d1

× exp
[
d2 + d3gx + d4Tx+(

d5 + (d6 + d11 exp
[
d12 + d13gx + d14Tx + d15yx

]
)

× exp
[
d7 + d8gX + d9Tx + d10yx

])
yx

]
,

(4.7)

∆Teff, vdw = e0 + e1

× exp
[
e2 +

(
e3 + e6

× exp
[
e7 + e8gx + e9Tx +

(
e10 + e11

× exp[e12 + e13gx + e14Tx + e15yx]
)
yx
])
gx + e4Tx + e5yx

]
,

(4.8)

∆log (H/He)vdw = f0 +
(
f1 + f6

× exp
[
f7 + f8gx+

f9Tx + (f10 + f11 exp[f12 + f13gx + f14Tx + f15yx])yx

])
× exp[f2 + f3gx + f4Tx + f5yx],

(4.9)

and the values of the �tted coe�cients can be found in Table 4.2. Because van der

Waals line broadening remains uncertain, it may be adequate to use a multiplicative

free parameter to these correction functions to illustrate how line broadening could

be corrected to match the observations.
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Figure 4.10: The corrections between two types of van der Waals line broadening.
The intersections of the light grey lines denote the atmospheric parameters deter-
mined using the adapted Deridder and van Rensbergen [1976] broadening. The
coloured lines which extend from the intersections indicate the size of the correction.
The end-point away from the intersection gives the values of the corresponding at-
mospheric parameters when Unsold [1955] broadening is used. The colours of the
lines represent the hydrogen abundance correction, which are omitted for very low
hydrogen abundances.
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Table 4.2: The �tted coe�cients of the van der Waals correction functions described
in Eqs. 4.7, 4.8 and 4.9

Coe�. Coe�. Coe�.

d0 1.354503e-05 e0 −8.048437e-03 f0 −2.270021e-04
d1 −2.129736e+00 e1 1.691468e-02 f1 3.606112e+00
d2 2.285596e+00 e2 −5.845098e-01 f2 −2.589784e+00
d3 −6.941645e+00 e3 3.311933e-01 f3 −9.132723e-01
d4 7.303697e+00 e4 −9.525062e-02 f4 −2.830694e+00
d5 −8.526167e-01 e5 2.450207e-02 f5 −6.040429e+00
d6 −2.027013e+00 e6 −4.539866e+00 f6 −1.296512e-09
d7 1.920717e+00 e7 6.474893e+00 f7 −5.299115e+00
d8 −8.975828e-01 e8 −6.583532e-01 f8 −6.659703e+00
d9 1.259352e+00 e9 −8.687359e+00 f9 5.898993e+00
d10 −9.500635e-01 e10 9.742149e-01 f10 4.629177e+01
d11 −2.873445e+00 e11 −1.348958e+01 f11 −3.197353e-07
d12 1.377208e+00 e12 2.491540e+01 f12 −9.639373e+00
d13 1.345794e-01 e13 1.094585e+02 f13 8.545292e+00
d14 −5.075663e-01 e14 −8.256914e+01 f14 3.598632e+00
d15 −5.002648e+00 e15 −1.018644e+00 f15 3.651746e+01

As an illustration we apply these corrections to the Genest-Beaulieu and

Bergeron [2019b] sample. Due to the way the corrections were derived, they have

to be subtracted from the values of the atmospheric parameters derived using the

Deridder and van Rensbergen [1976] broadening theory, such that

log (H/He)U = log (H/He)D + 10×∆log (H/He)vdw,

log gU = log gD − 7×∆log gvdw

Teff, U = Teff, D − 10 000×∆Teff, vdw,

(4.10)

where D and U denote the parameters derived using models with Deridder and van

Rensbergen [1976] and Unsold [1955] line broadenings, respectively. In Fig. 4.11 we

show a comparison between the photometric and van der Waals corrected spectro-

scopic surface gravities. From the plot, it is clear that the Unsold [1955] theory does

lead to higher values of surface gravities at low e�ective temperatures. Using Derid-

der and van Rensbergen [1976] broadening is, however, not the �nal answer, since

this theory was adapted in the DB and DBA case to better �t observations when

using 1D model atmospheres [Beauchamp et al., 1996]. Instead, the aim should be

to determine a better prescription of van der Waals line broadening. Additionally,

it is therefore not surprising that 1D models produce a slightly better agreement

with Gaia observations compared to 3D models when using Deridder and van Rens-
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bergen [1976]. In Fig. 4.11 we also show a comparison between spectroscopic and

photometric surface gravities, when the SDSS spectroscopic parameters of Genest-

Beaulieu and Bergeron [2019b] are corrected for both the van der Waals broadening

and 3D e�ects. We see that in this case, the 3D models show a better agreement

with observations, hinting that Unsold [1955] van der Waals broadening is closer to

the real prescription of the broadening. However, this combination of corrections

still leaves an irregular log g distribution below Teff ≈ 14 000 K. We conclude that

3D corrections should be employed alongside properly adjusted line broadening using

Eqs. 4.7, 4.8 and 4.9 until a better prescription is developed.
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Figure 4.11: A comparison between the spectroscopically and photometrically-
derived surface gravities corrected for van der Waals broadening only (top plot) and
corrected both for van der Waals broadening and 3D e�ects (bottom plot). Solid
orange circles represent the di�erence in surface gravities with errors shown in light
grey. The running median in bins of 1000 K is shown in dashed green, with the 95%
con�dence limit being represented by the green colour blocked area. For reference,
the dotted black line illustrates a one-to-one agreement.
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4.4.2 Non-ideal e�ects

In this section we derive corrections due to non-ideal gas perturbations from neutral

atoms (i.e. neutral helium) on the atomic levels of light-absorbing helium atoms.

To do this, we calculate new grids of 1D ATMO models with di�erent parametri-

sations of the Hummer and Mihalas [1988] theory currently used in all DB model

atmospheres. We use di�erent multiplicative factors to the Bohr radius rB, namely

rB=[0.25,0.75,1.00], which are then used to scale the size of neutral helium and hy-

drogen atoms. The standard 1D ATMO grid used in previous sections was calculated

at rB = 0.5 and we shall use this grid as a reference for �tting. All previous studies

using the ATMO code have relied on this parametrisation [Bergeron et al., 2011;

Rolland et al., 2018; Genest-Beaulieu and Bergeron, 2019a,b]. The derived correc-

tions for surface gravity and e�ective temperature are shown in Fig. 4.12. We omit

the hydrogen abundance corrections because they are insigni�cant, at most a few

per cent. Similarly to van der Waals broadening corrections, we �nd a signi�cant

e�ect on surface gravity. Increasing the value of rB from 0.5 to 1.0 results in an

increase of around 0.4 dex in most extreme cases. For the highest hydrogen abun-

dances (log H/He = −2.0), we �nd that the non-ideal e�ects do not change with

varying value of rB, and indeed the surface gravity corrections act in the opposite

direction. The reason why rB does not seem to have much e�ect on models with

log H/He = −2.0 is because the hydrogen lines are so strong that they overwhelm

the �tting in that particular range of e�ective temperature.

Because the agreement of current 1D and 3D spectroscopic parameters with

Gaia is reasonable and the non-ideal and line broadening corrections are partially

degenerate, we argue that the commonly used value of rB = 0.5 is still an optimal

choice. However, a more physical treatment of non-ideal e�ects will be needed before

we can verify the accuracy of 3D corrections in this regime.
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Figure 4.12: The corrections in surface gravity and e�ective temperature arising from
varying the value of the multiplying factor to the Bohr radius, rB, in the Hummer
and Mihalas [1988] non-ideal gas theory with respect to the standard value of 0.5.
In solid orange, dotted green and dashed red we show the corrections for rB = 1.0,
0.75 and 0.25, respectively. The hydrogen abundance is indicated on each sub plot.

4.4.3 Comparison between He- and H-atmosphere white dwarfs

A comparison of the atmospheric parameter distributions for both DA and DB/DBA

white dwarfs can help to understand systematic trends. Line broadening physics is

dramatically di�erent between the two spectral types, i.e. in warmer DA white

dwarfs, hydrogen is broadened by the linear Stark e�ect, while helium is subject to

the quadratic Stark e�ect and van der Waals broadening. As a consequence, if there

were any issues caused by microphysics we expect systematic trends to be di�erent
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between spectroscopic parameters of DA and DB stars. In contrast Gaia photomet-

ric parameters have a much weaker dependence on atmospheric composition above

12 000K [Bergeron et al., 2019] and the median masses of DA and DB stars are found

to be the same to within a few per cent [Tremblay et al., 2019b].
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Figure 4.13: A comparison between the e�ective temperatures derived using spec-
troscopic and Gaia photometric observations for samples of DA and DB/DBA white
dwarfs. The median fractional di�erence of each sample was plotted in bins of 2000K
for Teff ≤ 20 000K and of 5000 K above that temperature. The di�erence in e�ective
temperatures for the SDSS DA sample of Tremblay et al. [2019b], with spectroscopic
S/N > 20 and 3D corrections, is shown in dashed orange. The dashed green curve
corresponds to the DA sample of Gianninas et al. [2011] with 3D corrections (see
Tremblay et al. 2019b for the comparison with Gaia). In dashed red and dashed
blue the di�erence is shown for the SDSS DB/DBA sample of Genest-Beaulieu and
Bergeron [2019b] and the DB/DBA sample of Rolland et al. [2018], respectively, both
corrected for 3D e�ects presented in this work. The Genest-Beaulieu and Bergeron
[2019b] sample is also corrected for Unsold [1955] van der Waals broadening (using
corrections from Section 4.4.1), while Rolland et al. [2018] is already using this type
of line broadening. The coloured areas represent the corresponding 95% con�dence
limit on the medians calculated using bootstrapping. The dashed black line indicates
a perfect agreement between spectroscopy and photometry.
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In Fig. 4.13 we compare the e�ective temperatures derived from spectroscopic

and Gaia photometric observations of several di�erent samples of DA and DB/DBA

white dwarfs. In the plot we show the binned median of the fractional di�erence

of each sample in bins of 2 000 K for 12 000 ≤ Teff ≤ 20 000 K, and bins of 5 000

K for Teff > 20 000 K. We rely on the same DB/DBA sample of Genest-Beaulieu

and Bergeron [2019b] as discussed previously, using our 3D corrections and also the

Unsold [1955] prescription of van der Waals broadening (with original atmospheric

parameters corrected according to Section 4.4.1). We also use the DB/DBA sample

of Rolland et al. [2018] where we have applied our new 3D DB/DBA corrections.

The sample of Rolland et al. [2018] already uses the Unsold [1955] prescription of

van der Waals broadening. Our DA white dwarf samples are drawn from SDSS

[Tremblay et al., 2019b], where we have restricted to spectroscopic S/N > 20, and

Gianninas et al. [2011]. In both cases we have applied 3D DA corrections [Tremblay

et al., 2013c]. These DA samples are e�ectively the same as the 3D spectroscopic

samples described in Tremblay et al. [2019b]. All spectroscopic samples have been

cross matched with the Gaia white dwarf catalogue of Gentile Fusillo et al. [2019a,b]

to obtain photometric atmospheric parameters based on dereddened photometry.

The di�erent samples show similar o�sets between photometric and spectro-

scopic e�ective temperatures. The o�set is not obviously caused by calibration issues

of SDSS spectra [Kleinman et al., 2004; Tremblay et al., 2019b], since the samples

of Gianninas et al. [2011] and Rolland et al. [2018] do not use SDSS data. An is-

sue with the approximate treatment of dereddening in Gentile Fusillo et al. [2019a]

is unlikely because there is no obvious correlation between the observed o�set and

distance [Tremblay et al., 2019b], e.g. the o�set is similar even for bright DA white

dwarfs within 40 pc [Tremblay et al., 2020] for which reddening is expected to be

negligible. It cannot be due to 3D e�ects, as 1D DB/DBA models predict a similar

o�set (see Fig. 4.8) and 3D e�ects for DA white dwarfs are essentially negligible

above a temperature of 13 000K. It is unlikely to be caused by microphysics issues,

such as van der Waals or Stark broadening, as the o�set seems to be more or less

constant over the entire range of e�ective temperatures, and is very similar for DA

and DB stars, whereas line opacities vary signi�cantly as a function of e�ective tem-

perature and spectral type. Therefore, they are are unlikely to cause o�sets of similar

magnitude. Therefore, this leaves the possibility that the o�set is due to calibration

issues with Gaia colours, which are the direct input in the determination of photo-

metric e�ective temperatures, given that the sensitivity of surface gravity to colours

is weak. Similar o�sets have been observed in other studies of photometric Gaia

data [Ma��z Apell�aniz and Weiler, 2018; Tremblay et al., 2019b; Genest-Beaulieu and
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Bergeron, 2019a; Tremblay et al., 2020], for example, Ma��z Apell�aniz and Weiler

[2018] suggest an o�set of 0.0032dex in Gaia G magnitude. Our work provides ro-

bust constraints based on 3D spectroscopic parameters of both DA and DB white

dwarfs. The calibration of Gaia astrometry [Lindegren et al., 2018] is not expected

to have a signi�cant role in the determination of surface temperatures. Finally, the

larger scatter observed for DB/DBA samples above Teff ≈ 20 000 K could be ex-

plained by spectral �tting issues regarding the maximum strength of He i lines as

discussed in this work. For DA white dwarfs spectral �tting is straightforward in

this temperature range.

In Fig. 4.14 we show a comparison between the spectroscopically- and

photometrically-derived surface gravities. The remnant high-log g issue for DB and

DBA white dwarfs can be seen in the (3D and Unsold [1955] van der Waals broad-

ening corrected) Rolland et al. [2018] and Genest-Beaulieu and Bergeron [2019b]

samples below Teff ≈ 15 000 K. Similarly to the e�ective temperature comparison,

the agreement between spectroscopically- and photometrically-derived surface grav-

ities is not perfect. When deriving the photometric atmospheric parameters, the

temperature almost only depends on observed colours, while for a �xed temperature

value and mass-radius relation, the surface gravity only depends on mean absolute

�ux. Therefore, it means that if an o�set is observed in e�ective temperature and

is caused by Gaia colour calibration, then an o�set similar in shape is likely to be

seen in surface gravities, as the radius must compensate for the o�set in temperature

to match absolute �uxes. However, the diagnostic potential is complicated by the

fact that the spectroscopic e�ective temperatures and surface gravities have di�erent

sensitivities and possibly di�erent systematics with respect to the line pro�les. For

DA white dwarfs in Fig. 4.14 we �nd that photometric log g values are systematically

lower. This results in larger radii, which compensate for the lower photometric Teff

values in keeping the same absolute �uxes, and is therefore entirely consistent with

a colour calibration issue. In contrast the DB white dwarfs in both samples show an

irregular behaviour, which could suggest that issues with line pro�les dominate or

are similar in strength to colour calibration issues.

In general, it appears that when comparing the spectroscopic results to ex-

ternal constraints, both DA and DB/DBA white dwarfs behave in a similar fashion.

This indicates that 3D DB/DBA atmospheric models are comparable to their DA

counterparts in terms of precision.
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Figure 4.14: Same as Fig. 4.13 but for a comparison between the surface gravities
derived using spectroscopic and Gaia photometric observations for samples of DA
and DB/DBA white dwarfs.

4.5 Conclusions

Using 282 3D atmospheric models of DB and DBA white dwarfs, we have

determined the corrections for hydrogen abundance, surface gravity and e�ective

temperature due to a more physical treatment of convection. We �nd signi�cant

surface gravity corrections for Teff . 16 000 K where the high-log g problem was his-

torically reported for these types of white dwarfs. When applying our 3D corrections

to the spectroscopic sample of Genest-Beaulieu and Bergeron [2019b] we �nd a sim-

ilar agreement between 1D and 3D spectroscopic parameters when compared with

Gaia data. We nevertheless recommend using 3D parameters as a standard starting

point because of the superior input physics. We provide 3D correction functions

that can applied to 1D atmospheric parameters from any study and with any input

model atmospheres.
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The currently employed Deridder and van Rensbergen [1976] theory of van der

Waals broadening has been speci�cally adapted to produce a smooth distribution of

1D atmospheric parameters for Teff . 16,000K, albeit this has not been updated for

the most recent constraints from Gaia DR2. Nevertheless, it is not surprising that 3D

corrections do not lead to a better agreement with Gaia photometry and astrometry

in this regime. When applying 3D corrections to spectroscopically derived values

relying on the Unsold [1955] theory of van der Waals broadening, we �nd that 3D

results are in better agreement with Gaia. However, we stress that the treatment of

non-ideal e�ects due to neutral helium atoms also plays a signi�cant role in this low

temperature regime and that it is degenerate with the choice of the line broadening

theory. This highlights the fact that the treatment of the microphysics for cool DB

and DBA white dwarfs needs to be revisited.

By comparing spectroscopic and photometric atmospheric parameters of var-

ious samples of DA, DB and DBA white dwarfs, we have been able to identify a

prominent o�set in e�ective temperature and a possible smaller o�set in surface

gravity. By ruling out a number of possibilities that could be responsible for such

an o�set, we conclude that it is most likely caused by the Gaia colour calibration.

A similar o�set has been reported in other studies. In general, it seems that the

o�sets are remarkably similar for both DA and DB/DBA white dwarfs. Thus, the

atmospheric models of DB and DBA white dwarfs can be considered to be of similar

precision and accuracy to that of DA models. In the following chapter, we extend the

usefulness of 3D atmospheric models by using them to calibrate the mixing length

parameter at the bottom of the convection zone, which can then, for example, be

used to calculate more accurate envelope and evolutionary models of DB and DBA

white dwarfs.
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Chapter 5

MLT parameter calibration for 3D

DB and DBA white dwarfs

Sanity

I feel like I've been �oating endlessly

Pray for me

'Cause I've been chasing wine with alchemy

I took everything they gave me

I'm still begging for more

Call the exorcist, the hypnotist

They can't �nd a cure

A Pill to Crush

Evalyn

5.1 Introduction

White dwarfs evolve by cooling, as they are unable to fuse matter in their degenerate

cores. As they cool, super�cial convection zones develop in their envelopes and grow

bigger with decreasing e�ective temperature, Teff [Tassoul et al., 1990]. This means

that both the structure and evolutionary models of white dwarfs can be a�ected

by uncertainties arising from the treatment of convective energy transport. Thus,

in this chapter, the 3D DB and DBA atmospheric models are used to calibrate

the mixing length parameter at the bottom of the convection zone, which can be

used in aforementioned models. In Sect. 5.2 we present the grids of 3D DB and

DBA atmospheric models and 1D envelope structures used for the calibration of

the mixing length parameter. Sect. 5.3 describes the general properties of the 3D
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convection zones and the di�erences with 1D convection zones. The calibration

method is described in Sect. 5.4 and results are discussed in Sect. 5.5. We conclude

in Sect. 5.6.

Until recently, the standard white dwarf models used for the atmosphere

and the interior have been 1D, where convection is treated using the ML2 version

[Tassoul et al., 1990] of the mixing length theory, MLT [B�ohm-Vitense, 1958]. As

an improvement, another 1D theory of convection, CMT (abbreviation for authors'

names, Canuto and Mazzitelli 1991, 1992), and its re�ned version CGM (abbreviation

for authors' names, Canuto et al. 1996), have also been used in modelling white

dwarf evolution [Althaus and Benvenuto, 1996, 1997; Benvenuto and Althaus, 1999].

Unlike MLT, CMT does not rely on the approximation of single-sized convective

eddies and instead considers a full range of eddy sizes. Unfortunately, similarly

to MLT, CMT depends on the local conditions of the atmosphere [Ludwig et al.,

1999], which is a restrictive approximation as convection is a non-local process. This

assumption was subsequently removed in non-local 1D envelope models of white

dwarfs [Montgomery and Kupka, 2004]. Given that convection is inherently a 3D

process, the dimensionality issue was �rst improved by 2D atmospheric models of

DA white dwarfs developed by Ludwig et al. [1993], Ludwig et al. [1994] and Freytag

et al. [1996].

More recently, the �rst 3D models for pure-hydrogen atmosphere (DA)

[Tremblay et al., 2013b,a,c; Kupka et al., 2018] and pure-helium atmosphere (DB)

[Cukanovaite et al., 2018] (Chap. 3) white dwarfs have been developed. In 3D mod-

els convection is non-local, is treated from �rst principles and the models do not

depend on any free parameters, although numerical parameters do exist. Spectro-

scopic corrections derived from 3D models have been tested against Gaia DR2 data

[Gaia Collaboration et al., 2018] by comparing the observed parallaxes for samples

of DA and DB/DBA white dwarfs with spectroscopically-derived parallaxes with

and without 3D corrections [Tremblay et al., 2019b]. 3D DA corrections to the 1D

models were shown to be in excellent agreement with the observational data. For

the DB/DBA samples, the 3D DB corrections were not a clear improvement upon

predicted 1D parallaxes. This has been attributed to remaining uncertainties in the

microphysics of DB and DBA models.

In this chapter, we focus on the calibration of the mixing length parameter

at the bottom of the convection zone for 3D DB and DBA models, similar to what

has been achieved for 3D DA models [Tremblay et al., 2015b]. We use the grid of 3D

DBA models consisting of 235 simulations alongside the recently published grid of 47

3D DB models. Our calibration of mixing length parameter is relevant for the overall
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thermal and mixing properties of the convection zone. It di�ers in purpose to the

calibration of the mixing length parameter based on a detailed spectroscopic analysis

performed by Bergeron et al. [2011]. This is because the spectral light forming layers

for DB and DBA stars are always near or above the top of the convection zone.

Additionally, due to the dynamic nature of convection, the mixing length parameter

varies throughout the white dwarf structure [Ludwig et al., 1994; Tremblay et al.,

2015b]. Therefore, no single 1D synthetic spectrum at a given value of the mixing

length parameter can reproduce the entirety of a 3D spectrum [Cukanovaite et al.,

2018] (Chap. 3).

Our calibration is of relevance to many applications. For example, it is cur-

rently not possible to compute 3D evolutionary models of any star. Instead, 1D

stellar evolution models have been improved by calibrating the mixing length pa-

rameter based on 3D atmospheric models and allowing it to vary accordingly as the

star evolves [Trampedach et al., 2014; Magic et al., 2015; Salaris and Cassisi, 2015;

Mosumgaard et al., 2018; Sonoi et al., 2019]. Such a calibration has already been

performed for DA white dwarfs [Tremblay et al., 2015b], but has not been done for

DB and DBA stars.

Additionally, the position of the theoretical blue edge of the instability strip

for V777 Her (DBV) white dwarfs is heavily dependent on the assumed convective

e�ciency at the bottom of the convection zone [Fontaine and Brassard, 2008; C�orsico

et al., 2009; Van Grootel et al., 2017]. Larger values of the mixing length parameter

result in larger e�ective temperature of the blue edge. The current empirical blue

edge of the strip is de�ned by PG0112+104 at Teff ≈ 31 000 K (at log g ≈ 7.8) [Ship-

man et al., 2002; Provencal et al., 2003; Hermes et al., 2017], approximately 2 000 K

higher than the current theoretical blue edge of Teff ≈ 29 000 K (at log g ≈ 7.8)

calculated at the spectroscopically-calibrated ML2/α = 1.25 [Van Grootel et al.,

2017]. This suggests that higher convective e�ciency is needed to correctly model

the empirical blue edge.

Calibration of the mixing length parameter at the bottom of the convection

zone can also provide more accurate convection zone sizes for DB and DBA white

dwarfs. This is needed in order to understand the accretion of planetesimals onto

white dwarfs, including the mixing of the di�erent accreted chemical elements within

the convection zone and their di�usion at its bottom (or �oating in the case of

hydrogen). These events are frequent around DB and DBA white dwarfs [Kleinman

et al., 2013; Veras, 2016] and could explain the origin of hydrogen in DBA stars

[Gentile Fusillo et al., 2017]. However, for a full 3D description of the accretion-

di�usion scenario, convective overshoot must also be accounted for [Kupka et al.,
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2018; Cunningham et al., 2019], which is outside the scope of the current work.

5.2 Numerical setup

5.2.1 3D atmospheric models

Using the CO5BOLD radiation-hydrodynamics code [Freytag et al., 2002; Wede-

meyer et al., 2004; Freytag et al., 2012; Freytag, 2013, 2017], we have calculated 285

3D DB and DBA models with 12 000 K . Teff . 34 000 K, 7.5 ≤ log g ≤ 9.0 and

−10.0 ≤ log H/He≤ −2.0, where log H/He is the logarithm of the ratio of the number

of hydrogen-to-helium atoms in the atmosphere. Fig. 5.1 illustrates the atmospheric

parameter values of our 3D simulations. Appendix B also lists basic information

about the 3D models, including their atmospheric parameters, simulation box sizes,

running times and intensity contrasts. For DB models we use log H/He = −10.0 as

this low hydrogen abundance practically describes a pure-helium composition. The

abundance range chosen covers the majority of observed hydrogen abundances in

DB/DBA samples [Bergeron et al., 2011; Koester and Kepler, 2015; Rolland et al.,

2018]. For all abundances, models with log g = 7.5 only extend up to 32 000 K due to

convective energy transport being negligible at higher e�ective temperatures for this

particular surface gravity. Currently, there are no known low-mass helium-dominated

atmosphere white dwarfs, which would be formed as a consequence of binary evolu-

tion [Tremblay et al., 2019b; Genest-Beaulieu and Bergeron, 2019a]. This indicates

that binary evolution does not produce helium-dominated atmosphere white dwarfs.

Therefore, we do not calculate models with log g < 7.5.

For all simulations the top boundary is located at log τR . −5.0, where

log τR is the logarithm of the Rosseland optical depth. The bottom boundaries are

around log τR = 3.0, however, some closed bottom simulations had to be extended

deeper to justify the enforcement of zero vertical velocity. In most extreme cases,

the models had to be vertically extended to 230 grids points, increasing log τR to

around 4.

The 3D models are spatially- and temporally-averaged in order to extract

the relevant atmospheric strati�cations, i.e. entropy, temperature, pressure and

convective �ux as functions of log τR. The spatial average is performed over constant

geometric height, unlike in Cukanovaite et al. [2018] (Chaps. 3 and 4) where the

spatial average was done over contours of constant log τR. The temporal average is
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performed over the last quarter of the simulation, i.e. the last quarter of the total

run time given in Tabs. B.1-B.6.
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Figure 5.1: The abundances, surface gravities and e�ective temperatures of the 3D
models presented in this paper. Open and �lled circles denote the models with open
and closed bottom boundaries, respectively.

5.2.2 1D envelope models

In order to �nd a mixing length value that best matches the nature of 3D

convection zones, we use the updated 1D DB and DBA envelope models of Van

Grootel et al. [2017] and Fontaine et al. [2001], which span the same parameter

range as our 3D atmospheric models but also di�erent values of the mixing length

parameter, namely 0.4 ≤ ML2/α ≤ 1.4 in steps of 0.1. The envelopes rely on non-
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grey upper boundary conditions extracted from the atmospheric models of Bergeron

et al. [2011], and on the non-ideal EOS of Saumon et al. [1995]. Turbulent pressure

is not included in the envelope structures.

For the majority of 3D models the in�owing entropy at the base of the con-

vection zone (the input parameter for open bottom models which controls e�ective

temperature of the model) is used for the calibration of the mixing length parameter.

In order to have a common entropy zero-point between the 1D envelopes and 3D

atmospheres, we re-calculate the 1D entropy from the temperature and pressure at

the base of the 1D envelope convection zone. The entropy is re-calculated with and

without partial degeneracy to demonstrate the degeneracy e�ects. Fig. 5.2 shows

the entropy at the bottom of the convection zone as a function of e�ective tem-

perature for select models. At high e�ective temperatures the partial degeneracy

is negligible as the chemical potential of free electrons has a large negative value.

Partial degeneracy becomes important for models with cool e�ective temperatures

due to their low temperatures and high densities. For the log H/He = −10.0 grid,

our �rst-order partial degeneracy correction begins to break down for models with

lowest e�ective temperatures, which are not plotted in Fig. 5.2, namely Teff . 14 000,

14 000, 16 000, 18 000 K for models with log g = 7.5, 8.0, 8.5, 9.0, respectively. Sim-

ilar behaviour is observed for the DBA grid. Below these e�ective temperatures

convection in envelopes is almost fully adiabatic everywhere and becomes indepen-

dent of the particular choice of the mixing length parameter. Therefore, we do not

attempt the calibration of the mixing length parameter in that particular e�ective

temperature regime (see Sect. 5.4). We �nd that partial degeneracy is more im-

portant for DB/DBA models with low e�ective temperatures than DA models with

low e�ective temperatures (see Fig. 1 of Tremblay et al. 2015b) possibly due to the

higher densities of DB models.

From 1D envelopes we also extract the ratio log (MCVZ/Mtot), where MCVZ

is the mass of the convection zone integrated from the surface of the white dwarf to

the bottom of the convection zone and Mtot is the total mass of the white dwarf.

An example of this is shown in Fig. 5.3. As expected, varying the value of the

mixing length parameter for models where superadiabatic convection is important

has a signi�cant e�ect on the mass of the convection zone. The change can be as

much as ≈ 4 dex for DB and DBA models with log g = 7.5, and ≈ 3 dex for models

with log g = 9.0. By calibrating the mixing length parameter with our 3D models

(see Sect. 5.4) we can narrow down the uncertainty on the mixed mass within the

convection zone.
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Figure 5.2: The speci�c entropy at the bottom of the convection zone de�ned by
the Schwarzschild criterion as a function of e�ective temperature for 3D DB open
(open circles) and closed (�lled circles) bottom models, and for 1D DB envelopes
with di�erent values of the mixing length parameter. The value of the mixing length
parameter decreases by increments of 0.1 from the dark blue line (ML2/α = 1.4)
all the way up to the dark purple line (ML2/α = 0.4). We show the 1D entropies
with (solid lines) and without (dashed lines) partial degeneracy e�ects taken into
account. The surface gravities of the models are indicated on the panels.
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Figure 5.3: The fraction of the convection zone mass to the total mass of the white
dwarf as a function of e�ective temperature for 3D DB models and 1D DB envelopes
(solid lines) with di�erent values of the mixing length parameter. The value of
the mixing length parameter decreases by increments of 0.1 from the dark blue
line (ML2/α = 1.4) all the way up to the dark purple line (ML2/α = 0.4). The
Schwarzschild boundaries for the 3D open bottom models are indicated by open
circles; �lled circles represent the Schwarzschild boundary for closed bottom 3D
models; open squares represent the �ux boundary for closed bottom 3D models.

The convection zone size increases with decreasing surface gravity and de-

creasing e�ective temperature [Fontaine and van Horn, 1976]. Shallower convection

zones are expected for DBA models as the presence of hydrogen increases the total

opacity, decreasing the atmospheric density and pressure [Fontaine and van Horn,

1976]. This is also seen for late-type stars with increased metallicity [Magic et al.,

2013]. The decrease in density and pressure results in higher adiabatic entropy (see
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Sec. 5.3), and therefore lower convective e�ciency (and entropy jump, see Sec. 5.5.1)

and smaller convection zones [Magic et al., 2013]. Fig. 5.4 shows log (MCVZ/Mtot) for

the log H/He = −2.0 grid. By comparing Figs. 5.3 and 5.4 it is clear that the presence

of hydrogen does indeed shrink the convection zones.
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Figure 5.4: Same as Fig. 5.3, but for a DBA grid with log H/He = −2.0.

5.3 The convection zone

The envelopes of cool DA and DB white dwarfs are convective, with the top

of the convection zone almost perfectly overlapping with the photospheric layers

[Tassoul et al., 1990], meaning that convection is essential for modelling both atmo-

spheres and envelopes of cool white dwarfs. In 1D atmospheric and envelope models
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the convective layers are de�ned by the Schwarzschild criterion(
∂ lnT

∂ lnP

)
radiative

>

(
∂ lnT

∂ lnP

)
adiabatic

, (5.1)

where T and P are the temperature and pressure. Therefore, only those layers that

locally satisfy this inequality are able to transport energy through convection, leading

to abrupt and clearly-de�ned boundaries of the convection zone in 1D. This is a

limited approximation of the turbulent nature of convection, which is better explored

with the use of 3D models. There are at least two ways one can de�ne convection

zone boundaries and subsequently convection zone sizes in 3D simulations. In the

following we use the Schwarzschild criterion (the Schwarzschild boundary) and the

zero convective �ux (the �ux boundary) de�nitions.

The Schwarzschild criterion can be rewritten in terms of the entropy gradient

with respect to log τR, such that the convective layers are de�ned by

ds

dτR
> 0 , (5.2)

where s is the entropy and both log τR and s are averages over constant values of

geometric depth. We use this de�nition to determine the edges of the convection

zone in both 1D and 〈3D〉 entropy strati�cations, focusing on the bottom boundary,

de�ning it to be the Schwarzschild boundary.

Unlike in the 1D case, the 3D convective energy is transported even beyond

the Schwarzschild boundary. This is due to the acceleration of the overdense convec-

tive downdrafts in the layers just above the base of the convection zone. In response,

because of mass conservation warm material is transported upwards, resulting in a

positive convective �ux [Tremblay et al., 2015b]. We de�ne the �ux boundary to be

the region where the ratio of convective-to-total �ux goes to zero. The convective

�ux, Fconv, is calculated using

Fconv =

〈(
eint +

P

ρ

)
ρuz

〉
+

〈
u2

2
ρuz

〉
− etot〈ρuz〉, (5.3)

where eint is the internal energy per gram, ρ is the density, uz is the vertical velocity,

u is the velocity vector and etot is the total energy, de�ned as

etot =
〈ρeint + P + ρu2

2 〉
〈ρ〉 . (5.4)

The �rst term of Eq. 5.3 is the enthalpy �ux, the second term is the kinetic energy
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�ux and the third term is the mass �ux weighted energy �ux, which is subtracted

in order to correct for any non-zero mass �ux arising in the numerical simulations.

This de�nition is identical to the one used in Tremblay et al. [2015b]. Some authors,

for instance Cattaneo et al. [1991] and Canuto [2007], have referred to the sum of

enthalpy and kinetic energy �ux as "convected" �ux. In general, convective �ux is a

synonym for enthalpy �ux only. By adding kinetic energy �ux, the "convective �ux"

boundary is moved closer to the Schwarzschild boundary, as kinetic energy is always

negative for simulations presented here, which have standard granulation topology

of slow and broad up�ows surrounded by fast and narrow down�ows. Therefore,

the calibrated values of the mixing length parameter, which are based on the en-

thalpy and kinetic �ux boundary will be smaller than the calibrated values based

on enthalpy �ux alone [Kupka et al., 2018; Tremblay et al., 2015b]. As shown by

Kupka et al. [2018] the boundary associated with the enthalpy �ux indicates where

down�ows become hotter than their surroundings, which is related to buoyancy, the

driving mechanism of convection. Therefore, the de�nition of convective �ux based

on enthalpy �ux would be crucial in studies of down�ows. However, for consistency

with previous work of Tremblay et al. [2015b] we use the de�nition of "convective"

�ux as de�ned in Eq. 5.3. In MLT, convective �ux refers to enthalpy �ux only, as

kinetic �ux is zero everywhere.

Figs. 5.5 and 5.6 demonstrate the Schwarzschild and �ux boundaries, respec-

tively. In the case of helium-dominated atmosphere white dwarfs, at higher e�ective

temperatures there are two convectively-unstable regions related to He I and He II

ionization. These zones can either be separated by a convectively stable region or

merge into one convection zone depending on the e�ective temperature. This can

also happen for a model at the same e�ective temperature, but for di�erent de�-

nitions of the convection zone as shown in Figs. 5.5 and 5.6, where the model at

Teff ≈ 28 000 K has two clearly de�ned and separated convectively-unstable regions

in terms of the Schwarzschild criterion, yet in terms of the �ux criterion the two

helium zones are indistinguishable, since the �ux boundary penetrates deeper. At

the highest e�ective temperatures only the He II convection zone remains as He I is

fully ionised.
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Figure 5.5: Entropy strati�cations of two 3D closed bottom models with log g = 8.0
and log H/He = −10.0 are shown as solid blue lines. The dashed black lines indicate
the �ux-forming region for wavelengths 3500 �A to 7200 �A, representing the atmo-
sphere of the white dwarf in terms of visible light. 1D models calculated at calibrated
ML2/αS are shown as dashed red lines. According to the Schwarzschild criterion, at
Teff ≈ 28 000 K there are two convectively unstable regions due to He I and He II
ionization. The top and bottom of the �rst convective region is denoted by right-
and left-pointing triangles, respectively. The second convective region is indicated by
upward- and downward-pointing triangles. The two convective regions are separated
by a small region which is convectively stable in terms of the Schwarzschild criterion.
At Teff ≈ 34 000 K, according to the Schwarzschild criterion there is only one con-
vective region (He II) left, which is denoted by the upward- and downward-pointing
triangles.
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Figure 5.6: The ratio of the convective-to-total �ux as a function of the log τR for two
3D closed bottom models with log g = 8.0 and log H/He = −10.0 is shown in solid
blue. The upward- and downward-pointing triangles denote the top and bottom �ux
boundaries of the convection zone, respectively. The dashed black lines represent the
�ux-forming region for wavelengths 3500 �A to 7200 �A. Red dashed lines show the
1D models calculated at calibrated ML2/αf , and green dotted lines show 1D models
calculated at ML2/αFmax (see Sect. 5.5.2). Unlike the Schwarzschild boundary, at
Teff ≈ 28 000 K the two convectively-unstable regions are inseparable in terms of the
�ux due to the dynamics of the downdrafts. Beyond the �ux boundary, a region of
negative �ux related to convective overshoot is observed.

In Fig. 5.6 we see a region beyond the �ux boundary where the ratio of

convective-to-total �ux becomes negative. This is the convective overshoot region,

where the negative convective �ux is due to the convective down�ow plumes being

warmer than the surroundings [Zahn, 1991; Tremblay et al., 2015b]. This is because
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the plumes travel too fast to exchange heat with the surroundings. There is no

equivalent region in 1D models and therefore we do not attempt to calibrate the

mixing length in any form to describe this region. However, overshoot is important

for convective mixing studies. For DA white dwarfs it has been shown that more ma-

terial can be mixed in the convection zone even beyond the negative �ux region (the

velocity overshoot region), impacting the mass, abundances, and di�usion times of

accreted metals [Freytag et al., 1996; Koester, 2009; Kupka et al., 2018; Cunningham

et al., 2019]. This is still unexplored for helium-rich atmospheres.

5.4 The calibration method

5.4.1 Closed bottom models

For the closed bottom 3D models (examples shown in Figs. 5.5 and 5.6) both

the Schwarzschild and �ux boundaries can be directly probed and the 〈3D〉 tempera-

ture and pressure values at the two boundaries can be extracted. Similarly, from 1D

envelope structures we also have access to the temperature and pressure at the bot-

tom of the 1D Schwarzschild boundary. These quantities are displayed in Figs. 5.7

and 5.8.

For each 3D model with given atmospheric parameters, we interpolate over 1D

envelopes with the same atmospheric parameters but varying values of the mixing

length parameter, in order to �nd the value of the mixing length parameter that

gives the same temperature and pressure at the base of either the Schwarzschild or

the �ux boundary of the 3D convection zone. We refer to these calibrated values

of the mixing length parameter as ML2/αS and ML2/αf for the Schwarzschild and

the �ux boundaries, respectively. The calibrated mixing length parameters between

temperature and pressure generally agree within ≈ 0.05 even in the most extreme

cases such as models with log g = 9.0 shown in Figs. 5.7 and 5.8. Therefore, we

take an average of the two values of the mixing length parameter. This gives us

an indication of the average temperature gradient in the vicinity of the base of the

convection zone.
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Figure 5.7: The logarithm of the temperature at the base of the convection zone
as a function of e�ective temperature for DB white dwarfs. The solid lines are
1D envelope temperatures at the Schwarzschild boundary for varying values of the
mixing length parameter. The value of the mixing length parameter decreases by
increments of 0.1 from the dark blue line (ML2/α = 1.4) all the way down to the
dark purple line (ML2/α = 0.4). The solid circles represent the temperature of
closed bottom 3D models at the Schwarzschild boundary, the open squares are the
temperatures of closed bottom 3D models at the �ux boundary. The surface gravities
are indicated on the plots.
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Figure 5.8: Similar to Fig. 5.7 but for pressure at the base of the convection zone.

A larger value of the mixing length parameter means that the convection

zone extends deeper into the envelope and thus both the temperature and pressure

are larger at the base. As e�ective temperatures increases for models with log g =

7.5 and 8.0, the envelopes with di�erent values of the mixing length parameter start

to converge, yet we can still deduce that the calibrated value of the mixing length

parameter in this range of e�ective temperatures must be on the lower end of our

mixing length parameter range, meaning that the convective e�ciency is very low.

The blue edge of the DBV instability strip is thought to be related to recom-

bination of the main constituent of the atmosphere, which also causes convection to

set in. Figs. 5.7 and 5.8 show that our 3D models indicate that a lower value of the

mixing length parameter (around 0.7-0.8) than 1.25 (the value used by Van Grootel
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et al. [2017] to determine the theoretical blue edge) best represents the base of the

convection zone both for Schwarzschild and �ux boundaries. In general, with the

lowering of the value of the mixing length parameter, convection will occur later in

the white dwarf's evolution (i.e. at lower e�ective temperatures). The theoretical lo-

cation of the blue edge of the instability strip should therefore be at a lower e�ective

temperature than predicted by current studies.

With closed bottom models we can also directly calculate log (MCVZ/Mtot) for

either convection zone boundary. In Figs. 5.3 and 5.4 we compare 3D

log (MCVZ/Mtot) to the predictions of 1D envelopes. Unlike the DA case [Trem-

blay et al., 2015b] we do not �nd that mass-calibrated values of the mixing length

parameter are similar to the temperature- and pressure-calibrated values of the mix-

ing length parameter. As the mass is calculated independently of either temperature

or pressure, a disagreement is not unexpected since 1D models cannot reproduce all

of the dynamic quantities of 3D models. This is clearly shown in Figs. 5.5 and 5.6,

where we plot 〈3D〉 structures and corresponding 1D atmospheric models of Bergeron

et al. [2011] calculated at calibrated ML2/αS and ML2/αf values, respectively. As

expected, the 〈3D〉 and 1D structures agree in the vicinity of either boundary, but

the overall 1D and 〈3D〉 structures do not agree well. For all closed bottom models

at log g = 7.5 and 8.0, the masses included in the 3D convection zones diverge o�

the 1D envelope predictions, such that they are much smaller than what is possible

to achieve in 1D within our range of mixing length parameters.

In Figs. 5.3 and 5.4 the �ux and the Schwarzschild boundary reversals are

observed, where the �ux boundary is now inside the Schwarzschild boundary. This

is also observed in 3D DA models. As mentioned previously, the reversal is due to

kinetic energy �ux. If the kinetic energy is neglected then the boundary reversal is

not observed [Kupka et al., 2018; Tremblay et al., 2015b]. Such a reversal does not

occur in 1D models, as kinetic energy �ux is not considered.

For studies in need of the physical conditions near the base of the convection

zone, the calibrations shown in Figs 5.7 and 5.8 and listed in Tabs. B.13 to B.18 of

Appendix B should be used. The masses listed in those tables are the 1D convection

zone masses found from 1D envelopes calculated at 3D calibrated values of the mixing

length parameter. For studies where such approximations are not adequate, the

direct use of 3D structures are bene�cial.

5.4.2 Open bottom models

For open bottom models we are unable to probe the bottom of the convection zone

as our simulations are not deep enough. We can, however, exploit the fact that
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in 3D models a fraction of up�ows from the bottom of the deep convection zone

retain their adiabatic entropy almost all the way up to the observable atmospheric

layers by not interacting with neighbouring down�ows via heat exchange [Stein and

Nordlund, 1989]. Therefore, none of the plumes will have entropy higher than this,

but they can lose entropy due to interactions with surroundings. This means that

the spatially- and temporally-resolved entropy has a plateau corresponding to the

adiabatic entropy value and it can be used to calibrate the mixing length param-

eter [Ste�en, 1993; Ludwig et al., 1999]. Example entropy plateaus are shown in

Fig. 5.9 for log H/He = −10.0 and log H/He = −2.0 models, where we also plot the

temporally- and horizontally-averaged entropy strati�cations. The averaged entropy

is smaller than the adiabatic entropy because it also considers the small entropy of

the down�ows. For CO5BOLD the adiabatic entropy value is the in�owing entropy

input parameter and an entropy plateau is observed in all open bottom simulations.

For each 3D model with given atmospheric parameters, we interpolate

over the 1D envelopes with di�erent values of mixing length parameter and with

the same atmospheric parameters to �nd the 1D entropy at the bottom of the

Schwarzschild boundary that best matches the 3D adiabatic entropy. We show this

in Fig. 5.2. The entropy of closed bottom models is also shown, but for these models

we do not use the entropy to calibrate. This is because we have already calibrated

the mixing length parameter directly in Sec. 5.4.1 and generally for closed bottom

models the up�ows are not adiabatic in any portion of the convection zone.

The adiabatic entropy value is for the 3D Schwarzschild boundary only. We

cannot access the �ux boundary for open bottom models. Instead, we use the results

from closed bottom models to estimate the value of the mixing length parameter that

best represents the �ux boundary for open bottom models. For closed bottom models

that do not show the �ux and Schwarzschild boundary reversal we �nd the relation

ML2/αf= 1.17 ML2/αS with a standard deviation of around 3%. A similar result of

ML2/αf= 1.16 ML2/αS with a standard deviation of around 3% was found for 3D

DA models [Tremblay et al., 2015b].

In Figs. 5.3 and 5.4 we show the log (MCVZ/Mtot) value for both open and

closed bottom models with log H/He = −10.0 and −2.0, respectively. Unlike the

closed bottom case, we cannot directly access the bottom of either convection zone

boundary for open bottom models. Thus, the masses for open bottom 3D models

are extracted from the 1D envelopes with value of the mixing length parameter that

best matches the 3D adiabatic entropy.
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Figure 5.9: The spatially- and temporally- resolved entropy for 3D open bottom
models with log g = 8.0. The top two plots show the entropy strati�cation when
only the He I convection is present, whereas the bottom two panels show models with
both He I and He II convection zones. In green we plot the averaged entropy over
constant geometric depth and time. Although the average entropy does not reach
the adiabatic value near the bottom of the simulation, it is clear that the spatially-
and temporally- resolved entropy has a plateau at deeper layers, which corresponds
to the in�owing entropy, an input parameter of our 3D models.

As mentioned earlier and shown in Fig. 5.2, at the lowest e�ective tempera-

tures the envelopes with di�erent values of mixing length parameter converge to the

same solution as convection becomes adiabatic and insensitive to the mixing length

parameter even in the upper atmosphere. In these cases, the derived mass frac-

tion does not change signi�cantly between the di�erent values of the mixing length

parameter. Therefore, we propose not to interpolate for the best matching mixing

length parameter, but to set it to 1.0 for both Schwarzschild and �ux boundaries.
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5.5 Discussion

The calibrated values of the mixing length parameter are shown in Figs. 5.10

and 5.11 for the Schwarzschild and �ux boundaries, respectively. They are also

given in Appendix B. In all cases, the values of the mixing length parameter are

smaller than what is often used in evolutionary models, i.e. ML2/α = 1.25. This

means that 3D models predict lower convective e�ciencies and smaller convection

zone sizes. Given that the value of 1.25 is based on matching observed and model

spectra and therefore describes the convective e�ciency in the photosphere, it is

not unexpected that it is di�erent to the convective e�ciency at the bottom of the

convection zone. Interestingly, the mean convective e�ciency for DB/DBA white

dwarfs is very similar, or only slightly larger, to that of DA stars [Tremblay et al.,

2015b]. This indicates that convective e�ciency at the bottom of the convection

zone is similar for DA and DB/DBA white dwarfs.

The plateaus observed in Figs. 5.10 and 5.11 for Teff . 18 000 K are arti�-

cial. They are the consequence of �xing the value of ML2/αS = ML2/αf= 1.0 for

e�ective temperatures where the structures become insensitive to the mixing length

parameter. A similar e�ect can be observed for Teff & 30 000 K, where the cali-

bration is forced to values of 0.65 for both ML2/αS and ML2/αf , as none of the

1D values of the mixing length parameter can reproduce the boundaries of the 3D

convection zone. Since the convective zone is in any case very small and ine�cient

in this regime, the �xed value may not be a concern for some applications. If on

the other hand, detailed convective properties are required, it is more appropriate

to directly use 3D models that include velocity overshoot (see Sect. 5.5.3).

The peaks observed in Figs. 5.10 and 5.11 which seem to shift to higher

e�ective temperatures for higher surface gravities, are associated with the knee-like

feature of the 1D envelopes seen in Figs. 5.2, 5.3 and 5.4, which we suggest is related

to the disappearance of the He II convection zone as the white dwarf evolves to lower

e�ective temperature. This transition is di�erent in 3D, potentially because of the

non-local coupling of the two convection zones. The knee-feature also means that

the calibration of mixing length parameter is more sensitive in that region compared

to other regions.
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Figure 5.10: The calibrated mixing length parameter based on the Schwarzschild
boundary is plotted as solid colour points which are connected for clarity for the
same surface gravity. The hydrogen abundance is indicated on each panel.
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Figure 5.11: Same as Fig. 5.10 but for the �ux boundary.

5.5.1 Calibration of the entropy jump

Studies such as Magic et al. [2015] have performed calibrations of the mixing

length parameter for solar-like stars based on the entropy jump associated with

superadiabatic convection. Examples of such entropy jumps can be seen in Figs. 5.5

and 5.9 for closed and open bottom models, respectively. In their calibration, Magic

et al. [2015] de�ne the jump as the di�erence between the constant entropy value

of the adiabatic convection zone and the entropy minimum for both 1D and 3D

models. We use a similar method to investigate more clearly the variations of the

mixing length parameter as a function of e�ective temperature.

To perform the calibration we do not use the evolutionary models presented
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in Sec. 5.2.2. Instead, we use the 1D atmospheric models of Bergeron et al. [2011].

This grid of models spans the same range of atmospheric parameters as our 3D

and 1D envelope grids, but also values of the mixing length parameter in the range

0.5 ≤ ML2/α ≤ 1.5 in steps of 0.25. We de�ne the entropy jump, sjump, as

sjump = s(log τR = 2)− smin, (5.5)

where s(log τR = 2) is the entropy at log τR = 2 and smin is the minimum en-

tropy value. In the 3D case, the entropy strati�cation is temporally- and spatially-

averaged, with the spatial average being performed over constant geometric height

as before. We calculate sjump both for the 3D atmospheric models, and for 1D at-

mospheric models calculated at di�erent values of the mixing length parameter. We

then �nd the value of the mixing length parameter, which we refer to as ML2/αsjump ,

that best represents the given 〈3D〉 entropy jump. In late-type stars, the entropy

jump was found to decrease for increasing values of the mixing length parameter

[Magic et al., 2015]. This is because as convection becomes more e�cient, smaller

temperature gradients in the superadiabatic layers are needed to transport the same

�ux [Sonoi et al., 2019]. This relation holds for DB and DBA 1D models where the

entropy minimum is located at the top of the He I convection zone (see Fig. 5.9

for example). It breaks down when the He I convection zone disappears or when

the entropy minimum moves to the top of the He II convection zone. This hap-

pens for the majority of 3D closed bottom models, and therefore we only perform

ML2/αsjump calibration for 3D open bottom models.

We show the ML2/αsjump values for DB white dwarfs in Fig. 5.12. Similar

results were found for DBA white dwarfs. For all surface gravities apart from 7.5, the

peaks observed in ML2/αsjump are at the same e�ective temperatures as the peaks

observed for ML2/αS and ML2/αf . By looking at the structures directly, the peaks

in Figs. 5.10 and 5.11 are associated with the disappearance of the second-hump in

the entropy pro�le due to He II convection zone as the white dwarf cools to lower

e�ective temperature. Examples of double peaked entropy pro�les are shown in

Fig. 5.9.

For atmospheric parameters where convection is sensitive to the value of the

mixing length parameter (e.g. the calibrated value of the mixing length parame-

ter is not �xed in Figs. 5.10 and 5.11), we �nd reasonable agreement between the

ML2/αsjump , ML2/αS and ML2/αf calibrations.
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Figure 5.12: The calibrated mixing length parameter based on the entropy jump for
open bottom 3D DB models. The solid colour points represent the ML2/αsjump values
and are connected for clarity based on their surface gravity.

Magic et al. [2015] found that their values of the mixing length parameter

based on the entropy jump were higher than the values of the mixing length parame-

ter based on the adiabatic entropy (ML2/αS). They attribute this to the 1D entropy

minimum being lower than the 〈3D〉 entropy minimum, which is also the case for

our models with lower e�ective temperatures. This explains why at low e�ective

temperatures we �nd ML2/αS and ML2/αf values that are larger than the value of

ML2/αsjump (for example, Teff . 20 000 K for DB models with log g = 8.0).

From the studies of ML2/αsjump , ML2/αS and ML2/αf it is apparent that the

peaks in values of the mixing length parameter are observed close to the red edge of

the DBV instability region. This means that in terms of the 3D picture, the mixing
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length changes quite rapidly in the region where pulsations are empirically observed

to stop. As current DBV studies use ML2/α = 1.25, and the peak is closer to this

value than the calibrated values of the mixing length parameter at other e�ective

temperatures, we expect that our calibration will not signi�cantly alter the current

theoretical DBV studies at the red edge of the instability strip.

5.5.2 Calibration of the maximum convective �ux

An alternative way to calibrate the values of mixing length parameter for

closed bottom models has been proposed by Tremblay et al. [2015b]. The calibration

is based on the maximum value of the convective-to-total �ux. This better represents

the total amount of energy transported by convection as shown for DA white dwarfs

by Tremblay et al. [2015b]. We perform this calibration for DB and DBA closed

bottom models using the 1D atmospheric models of Bergeron et al. [2011], i.e. same

grid that was used in Sec. 5.5.1, but with additional grids at ML2/α = 0.55, 0.60,

0.65 and 0.70 as convective �ux changes signi�cantly with the value of the mixing

length parameter. Our results are shown in Fig. 5.13. In Fig. 5.6, we con�rm that

ML2/αFmax calibration does indeed better reproduce the overall shape of DB (and

DBA, although not shown) convection zones.

Overall, the ML2/αFmax calibrated values are similar to the ML2/αS and

ML2/αf calibration. For most models we �nd ine�cient convection resulting in

small convection zones. Montgomery and Kupka [2004] performed an equivalent

calibration of the maximum convective �ux using their 1D non-local envelope models

of DB white dwarfs. They found ML2/α ≈ 0.5 for DB models with log g = 8.0 and

28 000 K ≤ Teff ≤ 33 000 K, whereas we �nd 0.64 & ML2/α & 0.5 for the same

atmospheric parameter range. Both studies therefore suggest that convection is

less e�cient than what is currently assumed. When comparing DA and DB white

dwarfs in the regime of very ine�cient convection (closed bottom models in our case),

Montgomery and Kupka [2004] found that for given Fconvective/Ftotal, DB stars have

lower values of ML2/αFmax , but larger convection zone sizes. They attribute this

to the He II convection zone being deeper than the H I counterpart, allowing the

same amount of convective �ux to be transported more e�ciently and therefore with

a smaller value of the mixing length parameter. Comparing our results to the 3D

DA calibration of Tremblay et al. [2015b], we also �nd that DB white dwarfs have

smaller ML2/αFmax values and larger convection zone sizes, in agreement with the

�ndings of Montgomery and Kupka [2004].
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Figure 5.13: Same as Fig. 5.12, but for calibration of the mixing length parameter
based on the maximum convective �ux for 3D closed bottom models.

5.5.3 Calibration of velocities

Unlike in 1D models, in 3D simulations we expect there to be signi�cant

macroscopic di�usion at the bottom of the convection zone caused by momenta of

down�ows. We refer to this region as the velocity overshoot region, which over-

laps with the �ux overshoot region shown in Fig. 5.6 where negative �ux is found.

The velocity overshoot both includes and extends beyond the �ux overshoot region.

The overshoot region can be thought of as an extension to the more traditional

convection zones discussed in this chapter, especially for studies of metal di�usion

in the atmospheres of white dwarfs. If included, it would mean larger convection
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zones than presented in this chapter. In Fig. 5.14 we compare the velocities of our

〈3D〉 and 1D structures. In 1D the convective velocities are non-zero only inside

the Schwarzschild convection zone, whereas in 3D, the velocities are signi�cant even

beyond the Schwarzschild and �ux boundaries. As long as these convective veloci-

ties result in a macroscopic di�usion process that is more e�cient than microscopic

di�usion, metals are expected to be fully mixed in the convection zone rather than

di�use out of it. Convective overshoot could also signi�cantly enhance the dredge-up

of carbon from the interior [Dufour et al., 2005] if the size of the super�cial helium

layer is small enough to allow convection to reach the underlying carbon layer.

Macroscopic di�usion can only be studied in 3D models with closed bottoms.

This is because macroscopic di�usion has to be studied directly and therefore both

the bottom of the convection zone and the layers underneath are needed. Yet, it is

expected that all 3D models, including those with open bottoms, will have overshoot

both at the bottom and top of their convection zones, due to the dynamics of the

convective �ows. In order to study velocity overshoot for e�ective temperatures at

which we currently only have open bottom models, a new grid of deep closed bottom

models would have to be calculated.

Cunningham et al. [2019] have recently performed an in-depth study of over-

shoot in 3D DA closed models, �nding that the mass over which metals can mix can

be as much as 3 dex larger than currently used. Such a study for 3D DB and DBA

models is beyond the scope of the current paper. As such, we do not attempt to

perform any calibration of the mixing length parameter based on velocities.

5.5.4 Impact of metals on size of the convection zone

In order to test the e�ect of metals on the size of the convection zone, we calculate

two sets of 3D models with and without metals at two select values of e�ective

temperature. We use the 1D atmospheric code of Koester [2010] to calculate the

input equations of state and opacity tables. When including metals, we use the

metal composition and abundances of SDSS J073842.56+183509.06 determined by

Dufour et al. [2012], as well as their determined hydrogen abundance of log H/He =

−5.73 ± 0.17. We base our atmospheric composition on this white dwarf because

it is one of the most polluted objects with 14 elements heavier than helium present

in its atmosphere. Our aim is not to replicate exactly the atmospheric parameters

determined by Dufour et al. [2012] but rather to study the e�ect of strong metal

pollution on 3D models.
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Figure 5.14: The vertical root mean square velocity as a function of log τR at two
di�erent e�ective temperatures for DB models with log g = 8.0. The 〈3D〉 vz,rms is
shown in solid blue. The 1D models with ML2/α = ML2/αS and ML2/αf are
shown as dotted green and red dashed lines, respectively. The bottom of the
Schwarzschild and �ux boundaries are shown as downward- and upward-pointing
triangles. The dashed black lines indicate the top and bottom of the optical light
forming region. The 1D structures are unable to reproduce 〈3D〉 velocities especially
outside the convective regions. In the upper layers (log τR< -3), the 〈3D〉 convective
velocities have an important contribution from waves in the simulation.

We start our models from two computed simulations of the 3D DBA grid

with log H/He = −5.0, log g = 8.0 and Teff ≈ 14 000 K and ≈ 20 000 K. As hydrogen

abundance is ultimately controlled by the input tables, the hydrogen abundance of

the starting model does not matter, but for convergence it is desirable to start with

the closest available hydrogen abundance. Although, a value of log g = 8.4±0.2 was
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determined by Dufour et al. [2012], we instead use log g = 8.0, more in line with the

recent determination of log g = 8.05± 0.15 by Gentile Fusillo et al. [2019a,b].

As the e�ective temperature is only recovered after the model is run, for

each set of models we tried to achieve an agreement of around 100 K between the

models with and without metals. We �nd that including our selected metal-rich

composition in a 3D model decreases the e�ective temperature by around 1 500

K given the speci�ed in�owing entropy at the bottom boundary (using the same

entropy zero point). Recall, that the in�owing entropy at the bottom boundary

sets the resulting e�ective temperature of the model for a given EOS and opacity

table. For example, the e�ective temperature of one of the metal-poor models is

13 975 K, whereas the e�ective temperature of the metal-rich version is 12 497 K

with the same physical conditions at the bottom, i.e. the same entropy value. In

order to get an agreement of ≈ 100 K between metal-rich and metal-poor models,

we had to increase the entropy of the in�owing material at the bottom boundary for

the metal-rich model. From Figs. 5.2 and 5.3 it is clear that higher in�owing entropy

means higher e�ective temperature and smaller convection zone. Therefore, we can

speculate that with the inclusion of metals, the size of the convection zone becomes

smaller for the same e�ective temperature. This is not unexpected, since similarly

to hydrogen, metals increase the total opacity.

To �nd the mass of the convection zone we utilise the envelope code de-

scribed in Koester and Kepler [2015] with our calibrated mixing length parameter.

The code takes the last point in a given 〈3D〉 atmospheric structure as a starting

point for calculating the corresponding envelope. The envelope code is 1D and there-

fore depends on the mixing length theory. As per our calibration based on 3D models

with log H/He = −5.0, log g = 8.0, we use ML2/α = 1.0 and 0.80 for Teff ≈ 14 000 K

and 20 000 K models, respectively. We do not perform any additional mixing length

parameter calibration beyond what has been described in previous sections. The

total mass of the white dwarf is assumed to be 0.59M� with a radius of 0.0127R�.

The Saumon et al. [1995] equation of state is used and only hydrogen and helium

atoms are considered. Metals are ignored as they do not impact the envelope struc-

ture as long as they are trace species. Therefore, the di�erence in the mass of the

convection zone between the metal-rich and metal-poor models arises from the fact

that the 3D atmospheric structures are di�erent (see Fig. 5.15). In Tab. 5.1 we show

the change in the mass of the convection zone with the addition of metals. We �nd

that in the Teff ≈ 14 000 K case, the mass of the convection zone decreases by a

factor of 2 (or 0.31 dex) when metals are included. For the Teff ≈ 20 000 K case,

a similar change of 0.45 dex is observed. In both cases it would mean that for the
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same metal abundance observed, the total mass of metals present would be smaller

using the appropriate metal-rich model atmosphere. For Teff ≈ 14 000 K, the change

in the mass of the convection zone with the inclusion of metals can be mimicked

by increasing the hydrogen abundance from log H/He = −5.0 to −3.0. Similarly, at

Teff ≈ 20 000 K, the increase of log H/He from −5.0 to somewhere between −3.0 and

−2.0 gives a change in mass similar to the e�ect of metals.

In terms of the 3D picture, the e�ect of metals on the size of the convec-

tion zone is moderate, especially since SDSS J073842.56+183509.06 is one of the

most heavily polluted white dwarfs. However, the e�ect of metals on spectroscopic

3D corrections for e�ective temperature and surface gravity are still to be explored.

Fig. 5.15 suggests that changes in the structure of the light forming layers are im-

portant especially at lower Te�.

Table 5.1: Change in the convection zone mass from addition of metals (DBAZ) in
a helium-rich DBA white dwarf. The DBAZ models use the metal abundances of
SDSS J073842.56+183509.06 determined by Dufour et al. [2012].

log g Teff Change in convection

(K) zone mass (dex)

8.0 ≈ 14 000 K −0.31
8.0 ≈ 20 000 K −0.45

5.6 Summary

With 285 3D CO5BOLD atmospheric models of DB and DBA white dwarfs,

we have calibrated the mixing length parameter for the use of 1D envelope and

evolutionary models. Our results are applicable for studies in need of convection zone

sizes, for example for asteroseismological and remnant planetary systems analyses.

As the nature of the convection zone boundaries is more complex in 3D than in

1D, two de�nitions of the boundary were used for calibration, the Schwarzschild and

�ux boundaries. Overall, values of both ML2/αS or ML2/αf are lower than what

is typically used in envelope and evolutionary models, meaning that convection is

less e�cient in 3D models. On average, for models with log g = 8.0 and 18 000 K .

Teff . 30 000 K, we �nd ML2/αS ≈ 0.80 and ML2/αf ≈ 0.9. This is similar to mixing

length parameters calibrated for 3D DA white dwarfs [Tremblay et al., 2015b].
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Figure 5.15: Temperature strati�cation of 3D models with and without metals at
two di�erent e�ective temperatures. The 〈3D〉 structures for 3D DBAZ models are
shown in solid blue, whereas the metal-poor 3D models are in plotted in solid red.

Near the blue edge of the DBV instability strip, we �nd that the calibrated

values of the mixing length parameter are much lower than the value of 1.25 recently

used in the theoretical seismological study of Van Grootel et al. [2017]. Therefore,

in 3D, e�cient convective energy transport sets in at a lower e�ective temperature.

As the set-in of signi�cant energy transport by convection is related to the blue

edge of the strip, the 3D results would potentially mean lower e�ective temperature

of the theoretical blue edge. Note that compared to the empirical blue edge of

Teff ≈ 31 000 K at log g ≈ 7.8 [Shipman et al., 2002; Provencal et al., 2003; Hermes

et al., 2017], the current 1D theoretical blue edge of Teff ≈ 29 000 K at log g ≈ 7.8

is already too low in comparison (see Fig. 4 of Van Grootel et al. 2017).
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In terms of determining the e�ective temperatures and surface gravities from

spectroscopy, we recommend using ML2/α = 1.25 (but see Chaps. 3 and 4 for details

of 3D DB/DBA corrections). However, it is clear that the actual e�ciency of con-

vection in the atmosphere has little to do with the ML2/α = 1.25 value calibrated

from spectroscopic observations.

The current evolutionary models of white dwarfs can be improved by includ-

ing our calibrated values of the mixing length parameter. 3D models also provide

the best available estimate for the masses of convection zones of DB and DBA white

dwarfs which are relevant for studies of remnant planetary systems. We illustrate

this by calculating example 3D DBAZ models. However, our calibration does not

consider velocity overshoot which could increase the mixing mass by orders of mag-

nitude. In most of the models presented here, however, we cannot currently do any

overshoot studies as the convection zones are too large to model. For the select few

models at the highest e�ective temperatures of our grid, the overshoot region can

be directly accessed and could be used for direct investigation, similar to what has

been achieved for DA white dwarfs [Cunningham et al., 2019].

Convection is not expected to have any direct impact on the derived ages of

white dwarfs, up until the convection zone grows large enough to reach the core,

which directly couples the degenerate core to the surface [Tremblay et al., 2015b].

This occurs at Teff ∼ 5 000 K for DA white dwarfs [Tassoul et al., 1990; Tremblay

et al., 2015b] and ∼ 10 000 K for DB white dwarfs [Tassoul et al., 1990; MacDonald

and Vennes, 1991]. However, at these e�ective temperatures convection is adiabatic

and therefore loses its sensitivity to the mixing length parameter. Therefore, we do

not expect our calibration of the mixing length parameter to have any direct impact

on the ages derived from evolutionary models. However, the 3D models can have an

indirect e�ect on age determinations due to 3D spectroscopic corrections for surface

gravities and e�ective temperatures.
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Chapter 6

Summary

This thesis presented the �rst-ever 3D atmospheric models for DB and DBA white

dwarfs calculated with the radiation-hydrodynamics code called CO5BOLD. The 3D

models treat convective energy transport from �rst principles, which is a signi�cant

improvement upon the commonly used 1D models. The atmospheric models calcu-

lated using 1D codes rely on the mixing length approximation, which depends on a

free parameter known as the mixing length. 3D codes do not rely on free parameters,

but numerical parameters exist. However, these parameters were tested and their ef-

fects were found to be smaller than typical observational errors. Another important

shortcoming in the 3D models is the numerical treatment of microphysics, but by

carefully choosing reference 1D models, convective e�ects can be isolated, and these

uncertainties can be e�ectively eliminated.

6.1 3D spectroscopic corrections

In the �rst part of the thesis, the 3D spectroscopic corrections to the atmospheric

parameters of hydrogen abundance, surface gravity and e�ective temperature were

derived. Due to the limitations of current calculations of 3D synthetic spectra, two

methods of calculating helium-line spectra were used. The two types of spectra are

known as 1.5D and 〈3D〉 and they represent two extremes of combining nearby grid-

points in the 3D simulations, with 1.5D enlarging the horizontal �uctuations. This

means that the real 3D spectrum lies somewhere between these two extremes. Both

1.5D and 〈3D〉 spectra lead to similar sized corrections when taking into account

typical observation errors. Given that 〈3D〉 spectra would result in the smallest

possible 3D corrections, the 〈3D〉 corrections were used as the �nal result.

The corrections for hydrogen abundance were found to be unimportant. Sig-
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ni�cant corrections for surface gravities were found below Teff ≈ 20 000 K, although

the value of the temperature depends on the hydrogen abundance, with more hydro-

gen in the atmosphere leading to the corrections becoming signi�cant at lower e�ec-

tive temperature range. The 3D spectra result in lower surface gravities when com-

pared to 1D. The corrections in log g can be as much as 0.4 dex. Historically, high-

log g values for DB and DBA white dwarfs have been observed below Teff ≈ 16 000

K in numerous studies [Beauchamp et al., 1996; Bergeron et al., 2011; Koester and

Kepler, 2015; Rolland et al., 2018; Genest-Beaulieu and Bergeron, 2019a,b]. Yet,

from the 3D models, we do get corrections at larger e�ective temperatures if the

hydrogen abundance becomes very small. Given that large surface gravities are not

reported above this temperature, this could indicate that only a minute amount of

white dwarfs in the DB/DBA white dwarf samples are close to a pure-helium compo-

sition. The 3D corrections for e�ective temperature are comparable to observational

errors. For ease of user application, we provide 3D correction functions, which can

also be used in conjunction with any 1D DB and DBA atmospheric models.

To test the spectroscopic corrections, the Gaia DR2 astrometric and pho-

tometric data was compared to the Genest-Beaulieu and Bergeron [2019b] DB and

DBA spectroscopic sample. It was found that both 1D and 3D spectroscopic atmo-

spheric parameters agree similarly with Gaia data. However, the adapted Deridder

and van Rensbergen [1976] treatment of van der Waals line broadening used in 1D at-

mospheric models has been deliberately adjusted to match observations [Beauchamp

et al., 1996]. Thus, when 3D corrections are applied alongside the Deridder and van

Rensbergen [1976] broadening, a worse agreement with Gaia data is found. In this

work, it is shown that using the older version of van der Waals line broadening by

Unsold [1955] alongside 3D models produces a better agreement with Gaia. Taking

into account the superior physics of 3D models, it is clear that there are issues with

the microphysics that need to be addressed in DB and DBA models. Alongside the

van der Waals line broadening, there is also the uncertainty in line broadening caused

by non-ideal e�ects due to the relatively large densities in white dwarf atmospheres,

leading to signi�cant perturbations of helium absorbers by neighbouring neutral he-

lium atoms. The impact of this has been investigated and shown to be degenerate

with van der Waals broadening.

6.2 3D MLT calibration

To extend the application of the 3D atmospheric models of DB and DBA white

dwarfs, the calibration of the mixing length parameter for the bottom of the convec-

161



tion zone was performed. This calibration is useful for studies in need of convection

zone masses and of parameters at the bottom of the convection zone. Applications

include investigations in to the chemical composition of remnant planetary debris

accreting and di�using into the interiors of white dwarfs, as well as white dwarf

asteroseismology. However, the calibration does not take into account convective

overshoot, which can increase the convective zone masses by orders of magnitude

[Cunningham et al., 2019]. Due to current computational limitations not allowing

the simulation of large convection zones, the study of convective overshoot is not

possible for most models presented in this thesis, thus this calibration is currently

the best estimate available. Additionally, an accurately calibrated mixing length pa-

rameter is important for envelope and evolutionary models of DB and DBA models,

which currently cannot be calculated in 3D due to computational limitations. It can

also be used to understand the spectral changes arising from convective mixing and

dilution in hot white dwarfs [MacDonald and Vennes, 1991].

Convective energy transport is more complex in 3D models than in 1D. There-

fore, the convection zone boundaries are more di�cult to de�ne in 3D. In this work,

two de�nitions of the bottom boundary were used, the Schwarzschild and �ux bound-

aries. The Schwarzschild boundary was used for open bottom models, where the

convection zone is too large to be simulated vertically. The calibration for this type

of boundary relied on the entropy of the adiabatic up�ows. The �ux boundary was

used for closed bottom models, where the convective �ux goes to zero. The entropy

or temperature and pressure of the 3D models at each of these boundaries were com-

pared with the parameters of 1D envelope models calculated at di�erent values of

the mixing length parameter. The calibrated mixing length value was the value that

gave the best-matching parameters.

In this thesis, it is found that the calibrated value of the mixing length pa-

rameter (≈ 0.8) is lower than the most commonly used value of ML2/α = 1.25,

meaning that 3D models predict lower convective e�ciency. The value of the cal-

ibrated mixing length parameter for DB and DBA white dwarfs is similar to the

calibrated value of the mixing length parameter of 3D DA models [Tremblay et al.,

2015b], indicating that convective transport is similar in both types of stellar rem-

nants. One example consequence of the calibrated value of mixing length parameter

is the e�ect it will have on the empirical blue edge of the DBV instability strip.

Based on 1D theoretical models the blue edge is already too cool (Teff ≈ 29 000 K

at log g ≈ 7.8 [Van Grootel et al., 2017]) when compared to the observational blue

edge (Teff ≈ 31 000 K at log g ≈ 7.8 [Shipman et al., 2002; Provencal et al., 2003;

Hermes et al., 2017]). As 3D models predict lower e�ciency of convection, it means
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that onset of e�cient convection, which is related to the blue edge, will occur at

a lower e�ective temperature, worsening the current agreement between theoretical

predictions and observational results.

6.3 Future work

The future of DB and DBA white dwarf modelling lies in the improvement of line

broadening treatments. The two most important uncertainties at the low e�ective

temperature regime are the van der Waals broadening and perturbations of helium

absorbers due to non-ideal gas e�ects. However, from comparisons with Gaia data it

is clear that there are also issues at temperatures where these e�ects become negligi-

ble, in the regime where Stark broadening becomes important, thus some attention

should be drawn to this type of broadening as well. In order to improve these issues,

detailed theoretical or experimental work needs to be performed [Montgomery et al.,

2015].

There are several avenues of utilising the current 3D atmospheric models of

DB and DBA white dwarfs to aid future research of these stars. One such way

is to include the calibration of the mixing length parameter in 1D envelope and

evolutionary models of DB and DBA white dwarfs. The calibration of the mixing

length parameter can also be used in asteroseismological studies of the deep interior of

white dwarfs. Additionally, 3D structures can directly be used in asteroseismological

modelling ensuring more physical treatment of convection. This is especially relevant

since pulsating DBV white dwarfs are subject to so-called convective driving, where

convective �ux plays an important role in the excitation and observed amplitude of

pulsation modes [Fontaine and Brassard, 2008].

Recently, the issue of emission cores in the He I 5876 �A line in DB and

DBA white dwarfs has been investigated by Klein et al. [2020]. They attribute

this to a temperature inversion near the surface of the atmosphere with one of the

proposed causes being 3D e�ects, such as increased radiative cooling or overshoot.

Radiative cooling would cause the upper layers to be cooler when compared to 1D

models. As a response, the lower down layers could thus become hotter, leading

to temperature inversion in the atmosphere. Overshoot in the upper layers would

mean that the convection zone in 3D models can extend to higher up layers of

the atmosphere when compare to 1D models. This would change the temperature

structure of the atmosphere and could potentially lead to a temperature inversion

near the surface. The 3D DB and DBA model structures can thus be used to either

con�rm or eliminate the 3D e�ects as the cause. In order to fully asses this, the use of
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full 3D synthetic spectra codes such as Linfor3D might be bene�cial to simulate the

most realistic pro�le of the line, which can then be directly compared to observations.

Another avenue to explore in terms of 3D modelling would involve the compu-

tation of metal-rich atmosphere white dwarfs, work which has already been initiated

in this thesis. This could lead to more accurate chemical compositions for the parent

accreted bodies, providing insight into the diversity of rocky exo-asteroids [Zucker-

man et al., 2010]. Related to this would be the study of convective overshoot in the

atmospheres of DB and DBA white dwarfs, which can already be performed for the

closed bottom simulations. Such work would provide more accurate estimates of the

parent body masses.

The Gaia DR2 white dwarf catalogue of Gentile Fusillo et al. [2019a] has

increased the number of white dwarfs by an order of magnitude. This, in combination

with the spectroscopic information released from multi-object spectroscopic surveys

such as SDSS-V [Kollmeier et al., 2017], DESI [DESI Collaboration et al., 2016b,a],

4MOST [de Jong et al., 2016] and WEAVE [Dalton et al., 2012, 2016], means that

white dwarf spectroscopic information will also increase ten-fold. Thus, new and

improved 3D atmospheric models, alongside line broadening improvements, will be

essential to study these spectra. Additionally, a large number of rarer objects are

expected to be found, such as massive helium-rich atmosphere white dwarfs which

could have formed as a result of stellar mergers [Richer et al., 2019; Pshirkov et al.,

2020]. Thus, 3D models can be expanded to study these peculiar objects also.

More improvements can also be made in terms of the numerical parametri-

sation of the simulations. Larger simulations which will become possible with com-

putational improvements, will lead to the ability to simulate more of the convection

zone or simulate it with greater precision. More complex phenomena can also be

included in CO5BOLD and explored for helium-dominated atmosphere white dwarfs,

such as magnetic �elds and the presence of dust particles [Freytag et al., 2012]. Once

the microphysics is improved, it can also be included in the 3D atmosphere models.

In all, 3D atmosphere modelling has allowed for a signi�cant improvement in

our understanding of convection in the atmospheres of DB and DBA white dwarfs.

Additionally, it has allowed us to identify missing physics in the current models. With

these models, signi�cant advancements in other aspects of white dwarf research are

on the horizon.
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Appendix A

Python 3D DBA spectroscopic

correction functions

The following Python code can be used to determine the 3D corrections for given

1D log H/He, log g and Teff values. Brief description of how to use the code is also

provided. The 3D corrections should only be applied to spectroscopically-determined

1D atmospheric parameters in the ranges 7.5 ≤ log g ≤ 9.1 dex, 11 900 ≤ Teff ≤
33 900 K and −10.0 ≤ log H/He ≤ −2.0 dex.
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import numpy as np
""" c o e f f i c i e n t s o f c o r r e c t i on func t i on .
corr_g_x −> c o e f f i c i e n t s f o r l o g ( g ) co r r e c t i on func t i on
corr_t_x −> c o e f f i c i e n t s f o r Tef f c o r r e c t i on func t i on
corr_y_x −> c o e f f i c i e n t s f o r l o g (H/He) co r r e c t i on func t i on """
corr_g_x = [ 7.78980378 e−05, −1.24678964e−01,
2 .26643820 e−01, 7 .34619109 e+00,
−4.95618648 e+00, 9 .31949412 e−01, −2.70682476e−03,

8 .47497762 e+00,
3 .13916897 e+00, −6.49325446 e+00, 1 .90907434 e+00,

−5.27204063 e+00,
9 .79168675 e+00, 2 .15044078 e+00, 4 .42834455 e+00,

−1.00893139 e+02]
corr_t_x = [ −1.50741476e−03, 1 .56723133 e−02,
−4.02862191e−01, −4.16098578 e+00,

3 .08774593 e+00, 2 .17254602 e−01, −1.77379411e−02,
−6.21423204e−01,
−1.38832346 e+01, 5 .00270182 e+00, 1 .52048260 e−02,

4 .74907475 e+00,
9 .44761787 e+00, −3.17258673 e+00, −2.92209394e−01,

−3.89830203 e+01 ,]
corr_y_x = [ 6.82099077 e−04, −5.54974701 e+00,
1 .57704162 e+01, 3 .28321463 e+00,

1 .10683877 e+00, −3.79492811 e+01, −4.39666652 e+00,
6 .79944714 e+00,
−5.94840004 e+00, 3 .87450827 e+00, −9.91733926 e+00,

−8.30112716e−01,
−1.14903810 e+01, −2.79453315e−01, −5.36529860e−02,

2 .40314969 e+01]
""" Correc t ion f unc t i on s :
corr_g −> log ( g ) co r r e c t i on func t i on
corr_t −> Tef f c o r r e c t i on func t i on
corr_y −> log (H/He) co r r e c t i on func t i on """
def corr_g (x , u1 , v1 ,w1 ) :

i f u1 < 7 .5 or u1 > 9 .1 or v1 < 11900.0 or v1 > 33900 or w1 > −2.0:
a = 0 .∗ u1

e l i f w1 < −10.0:
w1=−10.0

else :
u = (u1 − 7 . 0 ) / 7 . 0
v = ( v1 − 10000 .0 )/10000 .0
w = w1/(−10.)
a = (x [0 ]+x [ 1 ] ∗ np . exp (x [2 ]+x [ 3 ] ∗ u+(x [4 ]+( x [6 ]+x [ 1 1 ] ∗ np . exp (
x [12]+x [ 1 3 ] ∗ u+
x [ 1 4 ] ∗ v+x [ 1 5 ] ∗w))∗np . exp (x [7 ]+x [ 8 ] ∗ u+x [ 9 ] ∗ v+x [ 1 0 ] ∗w))∗ v
+x [ 5 ] ∗w))
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def corr_t (x , u1 , v1 ,w1 ) :
i f ( u1 < 7 .5 or u1 > 9 .1 or v1 < 11900.0 or v1 > 33900 or w1 > −2.0

or w1 < −10.0) :
a = 0 .∗ u1

e l i f w1 < −10.0:
w1=−10.0

else :
u = (u1 − 7 . 0 ) / 7 . 0
v = ( v1 − 10000 .0 )/10000 .0
w = w1/(−10.)
a = (x [0 ]+x [ 1 ] ∗ np . exp ( ( x [2 ]+x [ 6 ] ∗ np . exp (x [7 ]+( x [8 ]+x [ 1 1 ] ∗ np . exp (
x [12]+x [ 1 3 ] ∗ u+x [ 1 4 ] ∗ v+x [ 1 5 ] ∗w))∗u+x [ 9 ] ∗ v+x [ 1 0 ] ∗w))+x [ 3 ] ∗ u+x [ 4 ] ∗ v
+x [ 5 ] ∗w))

return a
def corr_y (x , u1 , v1 ,w1 ) :

i f ( u1 < 7 .5 or u1 > 9 .1 or v1 < 11900.0 or v1 > 33900 or w1 > −2.0
or w1 < −10.0) :
a = 0 .∗ u1

e l i f w1 < −10.0:
w1=−10.0

else :
u = (u1 − 7 . 0 ) / 7 . 0
v = ( v1 − 10000 .0 )/10000 .0
w = w1/(−10.)
a = (x [0 ]+x [ 1 ] ∗ np . exp (x [2 ]+( x [3 ]+x [ 6 ] ∗ np . exp (x [7 ]+x [ 8 ] ∗ u+(x [9 ]+
x [ 1 1 ] ∗ np . exp (x [12]+x [ 1 3 ] ∗ u+x [ 1 4 ] ∗ v+x [ 1 5 ] ∗w))∗ v+x [ 1 0 ] ∗w))∗u+
x [ 4 ] ∗ v+x [ 5 ] ∗w))

return a
""" How to use :
For example , you want to f i nd 3D l o g ( g ) co r r e c t i on f o r a 1D
s p e c t r o s c o p i c a l l y−determined va l u e s o f
l o g (H/He) = −5.3 , l o g ( g ) = 8.45 , Te f f = 13540 K. Can a l s o use
l i s t s o f Teff , logg , logH/He . """
correct ion_in_logg = corr_g ( corr_g_x ,8 .45 ,13540 , −5 .3 )
"""This w i l l g i v e the co r r e c t i on in l o g ( g ) which must be ADDED to
1D l o g ( g ) va lue in
order to co r r e c t f o r 3D e f f e c t s .
Same procedure can be repea ted f o r 3D Tef f and l o g (H/He) co r r e c t i on s . """
co r r e c t i on_ in_te f f = corr_t ( corr_t_x ,8 .45 ,13540 , −5 .3 )
correct ion_in_loghhe = corr_y ( corr_y_x ,8 .45 ,13540 , −5 .3 )
cor rected_logg = 8.45 + correct ion_in_logg
co r r e c t ed_t e f f = 13540 + 10000.∗ co r r e c t i on_ in_te f f
corrected_loghhe = −5.3 − 10 .∗ correct ion_in_loghhe
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Appendix B

Additional information on 3D

DBA models

Tabs. B.1 to B.6 list some basic parameters of the 3D simulations. This includes

the surface gravity of a given simulation, its e�ective temperature, the size of the

box the simulation was run in, the run time and the relative bolometric intensity

contrast averaged over space and time.

Tabs. B.7 to B.12 list the parameters needed for the mixing length calibration

of 3D open bottom models, as well as the results of the calibration. For each 3D

simulation, its surface gravity, e�ective temperature and the adiabatic entropy used

for ML2/αS calibration is included. Also given are the ML2/αS, log (MCVZ/Mtot),

T and P values for the Schwarzschild boundary. log (MCVZ/Mtot), temperature

and pressure are found from the 1D envelope calculated at ML2/αS. The same

parameters are also given for the �ux boundary. As the �ux boundary cannot be

directly accessed for open bottom models, we instead use the relation ML2/αf =

1.17 ML2/αS to �nd ML2/αf .

Tabs. B.13 to B.18 list the parameters needed for the calibration of the mix-

ing length for 3D closed bottom models, as well as the results of the calibration.

For each 3D simulation, its surface gravity and e�ective temperature are given.

The mixing length calibration for closed bottom model relies on the spatially- and

temporally-averaged 3D temperature and pressure at the bottom of the convection

zone, and these parameters are given for both the Schwarzschild and �ux boundaries.

The ML2/αS and ML2/αf are also given, as well as the log (MCVZ/Mtot) for each

boundary.
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Table B.1: Select parameters of the 3D DB model atmospheres, where δIrms/〈I〉 is
the relative bolometric intensity contrast averaged over space and time.

log g Teff Box size Total run time δIrms/〈I〉
(K) (km × km × km) (stellar s) (%)

7.5 12098 1.22×1.22×0.58 33.6 3.6

7.5 13969 1.98×1.98×0.67 32.2 8.9

7.5 15947 2.86×2.86×1.19 32.2 16.4

7.5 18059 6.09×6.09×1.46 32.1 21.3

7.5 19931 11.96×11.96×2.39 34.7 23.4

7.5 22044 21.75×21.75×4.51 32.3 25.5

7.5 23774 23.96×23.96×4.78 31.7 24.3

7.5 26497 37.47×37.47×21.40 32.6 21.7

7.5 27993 31.22×31.22×10.77 14.7 17.5

7.5 29991 31.22×31.22×11.86 17.7 9.4

7.5 32001 33.48×33.48×14.00 48.3 4.8

8.0 12020 0.70×0.70×0.10 10.0 2.1

8.0 14083 0.79×0.79×0.24 10.2 6.0

8.0 16105 0.94×0.94×0.18 10.1 11.9

8.0 18082 1.23×1.23×0.35 13.0 17.0

8.0 20090 2.00×2.00×0.58 12.5 19.4

8.0 21014 5.19×5.19×0.97 11.9 21.0

8.0 21465 5.19×5.19×0.97 11.0 21.6

8.0 21987 5.19×5.19×0.97 8.7 22.3

8.0 22988 8.62×8.62×1.41 11.6 24.2

8.0 24144 8.62×8.62×1.41 11.7 23.8

8.0 25898 8.62×8.62×1.56 10.0 21.1

8.0 28107 12.63×12.63×4.93 16.8 20.3

8.0 29997 12.63×12.63×5.12 13.5 19.2

8.0 31999 12.63×12.63×3.28 5.0 14.8

8.0 33999 12.63×12.63×3.42 5.3 7.9

8.5 12139 0.25×0.25×0.05 3.6 1.5

8.5 14007 0.25×0.25×0.04 5.7 3.6

8.5 15961 0.34×0.34×0.05 3.5 7.6

8.5 18000 0.39×0.39×0.13 3.6 12.6

8.5 19955 0.60×0.60×0.20 4.0 15.5

Continued on next page
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Table B.1 continued.

log g Teff Box size Total run time δIrms/〈I〉
(K) (km × km × km) (stellar s) (%)

8.5 21999 1.03×1.03×0.26 3.2 17.8

8.5 24143 1.78×1.78×0.37 3.7 22.1

8.5 25805 2.37×2.37×0.44 3.5 22.3

8.5 27934 2.53×2.53×0.59 2.9 20.6

8.5 30567 4.53×4.53×1.97 4.6 19.5

8.5 32208 4.53×4.53×2.12 3.8 18.9

8.5 34020 4.53×4.53×1.92 3.7 17.6

9.0 12124 0.06×0.06×0.01 3.4 0.8

9.0 14117 0.07×0.07×0.01 2.0 2.3

9.0 16029 0.11×0.11×0.02 1.1 5.0

9.0 17998 0.12×0.12×0.03 1.1 8.7

9.0 19961 0.14×0.14×0.05 1.0 11.7

9.0 21978 0.20×0.20×0.07 1.0 13.6

9.0 24082 0.39×0.39×0.10 1.1 17.2

9.0 26109 0.76×0.76×0.13 0.6 20.6

9.0 28143 0.76×0.76×0.16 1.0 20.6

9.0 30184 0.86×0.86×0.20 1.1 17.4

9.0 31440 0.86×0.86×0.20 3.2 17.2

9.0 34105 1.43×1.43×0.84 2.3 18.3

Concluded
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Table B.2: Select parameters of 3D DBA model atmospheres with log H/He = −7.

log g Teff Box size Total run time δIrms/〈I〉
(K) (km × km × km) (stellar s) (%)

7.5 12098 1.22×1.22×0.58 32.8 3.6
7.5 13967 1.98×1.98×0.67 31.7 8.8
7.5 15936 2.86×2.86×1.19 35.0 16.3
7.5 18051 6.09×6.09×1.46 34.1 21.0
7.5 19865 11.96×11.96×2.44 32.6 22.3
7.5 21873 21.75×21.75×4.04 37.8 22.7
7.5 23789 23.96×23.96×4.80 32.1 24.4
7.5 26501 37.47×37.47×21.40 33.2 22.1
7.5 27993 31.22×31.22×10.77 16.0 17.2
7.5 29993 31.22×31.22×11.86 18.3 10.2
7.5 32002 33.48×33.48×14.00 34.4 4.5

8.0 12019 0.70×0.70×0.11 10.8 2.1
8.0 14083 0.79×0.79×0.24 10.9 5.9
8.0 16099 0.94×0.94×0.19 10.1 11.9
8.0 18074 1.23×1.23×0.35 10.3 17.0
8.0 20088 2.00×2.00×0.58 10.2 19.4
8.0 21996 5.19×5.19×0.97 11.4 22.3
8.0 24036 8.62×8.62×1.41 10.4 24.0
8.0 25956 8.62×8.62×1.56 10.2 21.1
8.0 28037 12.63×12.63×4.93 18.2 20.6
8.0 29963 12.63×12.63×5.12 10.5 20.2
8.0 32000 12.63×12.63×3.28 5.5 14.4
8.0 33999 12.63×12.63×3.42 5.4 8.5

8.5 12147 0.25×0.25×0.05 3.1 1.5
8.5 14004 0.25×0.25×0.04 3.8 3.6
8.5 15958 0.34×0.34×0.05 3.3 7.6
8.5 17998 0.39×0.39×0.13 3.6 12.6
8.5 19951 0.60×0.60×0.20 3.4 15.5
8.5 22002 1.03×1.03×0.26 3.1 17.9
8.5 24047 1.78×1.78×0.37 3.3 22.1
8.5 25943 2.37×2.37×0.44 3.4 22.1
8.5 27907 2.53×2.53×0.59 3.2 20.6
8.5 30514 4.53×4.53×1.97 4.2 19.7
8.5 32012 4.53×4.53×2.12 3.7 19.0
8.5 33949 4.53×4.53×1.92 3.2 17.1

9.0 12120 0.06×0.06×0.01 1.1 0.8
9.0 14114 0.07×0.07×0.01 1.0 2.3
9.0 16026 0.11×0.11×0.02 1.0 4.9
9.0 17985 0.12×0.12×0.03 1.0 8.7
9.0 19957 0.14×0.14×0.04 1.1 11.7
9.0 21982 0.20×0.20×0.07 1.1 13.6
9.0 24093 0.39×0.39×0.10 1.1 17.1
9.0 26115 0.76×0.76×0.13 1.1 20.7
9.0 28141 0.76×0.76×0.16 1.1 20.6
9.0 30006 0.86×0.86×0.20 1.0 17.8
9.0 31472 0.86×0.86×0.20 1.3 16.7
9.0 34021 1.43×1.43×0.84 2.0 18.3
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Table B.3: Select parameters of 3D DBA model atmospheres with log H/He = −5.

log g Teff Box size Total run time δIrms/〈I〉
(K) (km × km × km) (stellar s) (%)

7.5 12009 1.22×1.22×0.59 33.1 3.4
7.5 14013 1.98×1.98×0.67 33.0 9.0
7.5 15886 2.86×2.86×1.19 33.9 15.7
7.5 17920 6.09×6.09×1.46 31.8 21.0
7.5 19900 11.96×11.96×2.44 32.2 23.1
7.5 21946 21.75×21.75×4.51 32.6 24.7
7.5 23757 23.96×23.96×4.80 32.2 24.2
7.5 26522 37.47×37.47×21.40 36.4 22.1
7.5 27998 31.22×31.22×10.77 15.8 17.7
7.5 29992 31.22×31.22×11.86 26.6 9.7
7.5 32002 33.48×33.48×14.00 24.0 5.1

8.0 11978 0.70×0.70×0.11 10.2 2.1
8.0 14031 0.79×0.79×0.24 9.9 5.7
8.0 15974 0.94×0.94×0.19 11.5 11.3
8.0 17952 1.23×1.23×0.35 10.4 16.9
8.0 20012 2.00×2.00×0.58 12.7 19.4
8.0 21959 5.19×5.19×0.97 10.1 22.2
8.0 24014 8.62×8.62×1.41 10.0 24.0
8.0 25963 8.62×8.62×1.56 9.9 20.6
8.0 28086 12.63×12.63×4.93 12.4 20.7
8.0 29989 12.63×12.63×5.12 10.1 18.9
8.0 32002 12.63×12.63×3.28 10.3 14.7
8.0 34000 12.63×12.63×3.42 10.1 8.2

8.5 11996 0.25×0.25×0.05 4.0 1.3
8.5 14012 0.25×0.25×0.04 3.7 3.5
8.5 15957 0.34×0.34×0.05 3.7 7.6
8.5 17956 0.39×0.39×0.13 3.6 12.7
8.5 19924 0.60×0.60×0.20 4.0 15.5
8.5 21962 1.03×1.03×0.26 3.7 17.8
8.5 24004 1.78×1.78×0.37 3.7 21.9
8.5 25938 2.37×2.37×0.45 3.7 22.2
8.5 27946 2.53×2.53×0.59 3.5 20.3
8.5 30517 4.53×4.53×1.97 4.1 19.5
8.5 32015 4.53×4.53×2.12 4.3 19.0
8.5 33947 4.53×4.53×1.92 3.6 17.4

9.0 12077 0.06×0.06×0.01 1.1 0.8
9.0 14059 0.07×0.07×0.01 1.1 2.2
9.0 15930 0.11×0.11×0.02 1.0 4.7
9.0 17885 0.12×0.12×0.03 1.0 8.7
9.0 19922 0.14×0.14×0.04 1.1 11.8
9.0 21942 0.20×0.20×0.07 1.1 13.6
9.0 24076 0.39×0.39×0.10 1.1 17.1
9.0 26099 0.76×0.76×0.13 1.0 20.6
9.0 28181 0.76×0.76×0.16 1.0 20.6
9.0 29952 0.86×0.86×0.20 1.0 17.8
9.0 31452 0.86×0.86×0.20 1.0 17.2
9.0 33986 1.43×1.43×0.84 2.3 18.3
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Table B.4: Select parameters of 3D DBA model atmospheres with log H/He = −4.

log g Teff Box size Total run time δIrms/〈I〉
(K) (km × km × km) (stellar s) (%)

7.5 11983 1.22×1.22×0.58 32.0 3.5
7.5 13985 1.98×1.98×0.67 31.8 9.0
7.5 15973 2.86×2.86×1.19 34.0 16.0
7.5 17979 6.09×6.09×1.46 34.2 20.4
7.5 19932 11.96×11.96×2.75 34.5 22.2
7.5 22021 21.75×21.75×4.51 32.2 23.8
7.5 23464 23.96×23.96×4.80 31.0 23.7
7.5 26632 37.47×37.47×21.40 34.4 21.9
7.5 28004 31.22×31.22×10.77 15.8 17.3
7.5 29993 31.22×31.22×11.86 19.8 9.4
7.5 32002 33.48×33.48×14.00 10.9 5.3

8.0 12008 0.70×0.70×0.11 10.0 2.2
8.0 13999 0.79×0.79×0.24 10.1 5.8
8.0 15994 0.94×0.94×0.19 10.3 11.4
8.0 18052 1.23×1.23×0.35 10.1 17.1
8.0 19991 2.00×2.00×0.58 10.2 19.5
8.0 21981 5.19×5.19×1.02 10.0 22.0
8.0 23953 8.62×8.62×1.41 10.3 23.3
8.0 25961 8.62×8.62×1.56 10.2 20.6
8.0 28092 12.63×12.63×4.93 10.2 21.1
8.0 29994 12.63×12.63×5.12 11.9 19.4
8.0 32002 12.63×12.63×3.28 10.4 14.5
8.0 34000 12.63×12.63×3.42 10.1 8.0

8.5 12027 0.25×0.25×0.05 3.8 1.4
8.5 13981 0.25×0.25×0.04 3.7 3.6
8.5 15982 0.34×0.34×0.06 4.1 7.6
8.5 17951 0.39×0.39×0.13 3.8 13.0
8.5 19972 0.60×0.60×0.20 3.8 15.8
8.5 21956 1.03×1.03×0.26 3.8 18.0
8.5 23980 1.78×1.78×0.37 3.9 21.9
8.5 26006 2.37×2.37×0.46 3.6 21.5
8.5 27829 2.53×2.53×0.59 3.7 20.8
8.5 30490 4.53×4.53×1.97 3.8 19.4
8.5 32008 4.53×4.53×2.12 4.0 19.0
8.5 33963 4.53×4.53×1.92 3.3 17.4

9.0 12055 0.06×0.06×0.01 1.1 0.9
9.0 14023 0.07×0.07×0.01 1.0 2.2
9.0 16020 0.11×0.11×0.02 1.0 4.9
9.0 17972 0.12×0.12×0.03 1.1 9.3
9.0 19968 0.14×0.14×0.04 1.1 12.2
9.0 21957 0.20×0.20×0.07 1.0 13.9
9.0 23971 0.39×0.39×0.10 1.0 17.2
9.0 26018 0.76×0.76×0.13 1.0 20.5
9.0 27982 0.76×0.76×0.16 1.0 20.6
9.0 29948 0.86×0.86×0.20 1.0 17.8
9.0 31360 0.86×0.86×0.20 1.0 17.0
9.0 33988 1.43×1.43×0.84 1.7 18.3
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Table B.5: Select parameters of 3D DBA model atmospheres with log H/He = −3.

log g Teff Box size Total run time δIrms/〈I〉
(K) (km × km × km) (stellar s) (%)

7.5 11980 1.22×1.22×0.37 31.7 3.3
7.5 13855 1.98×1.98×0.67 36.3 8.8
7.5 15805 2.86×2.86×1.19 34.6 16.2
7.5 18026 6.09×6.09×1.46 32.1 21.2
7.5 20035 11.96×11.96×2.53 33.0 23.3
7.5 22043 21.75×21.75×4.51 31.6 24.8
7.5 23752 23.96×23.96×4.89 31.4 24.5
7.5 26670 37.47×37.47×21.40 35.7 21.0
7.5 28000 31.22×31.22×10.77 15.2 17.2
7.5 29999 31.22×31.22×11.86 22.8 8.8
7.5 32000 33.48×33.48×14.00 23.0 4.3

8.0 12007 0.70×0.70×0.12 11.9 2.1
8.0 13961 0.79×0.79×0.14 10.5 5.8
8.0 16040 0.94×0.94×0.19 10.1 11.6
8.0 17985 1.23×1.23×0.36 10.4 17.0
8.0 20088 2.00×2.00×0.58 10.1 19.5
8.0 22047 5.19×5.19×0.99 10.8 22.5
8.0 24002 8.62×8.62×1.41 10.4 24.0
8.0 25904 8.62×8.62×1.56 10.4 21.2
8.0 28118 12.63×12.63×4.93 11.4 21.4
8.0 30001 12.63×12.63×5.12 11.0 18.9
8.0 31999 12.63×12.63×3.28 10.0 14.1
8.0 33980 12.63×12.63×3.42 9.9 8.1

8.5 12027 0.25×0.25×0.05 3.8 1.3
8.5 13985 0.25×0.25×0.05 3.5 3.5
8.5 15988 0.34×0.34×0.06 3.4 7.6
8.5 18029 0.39×0.39×0.13 3.7 12.8
8.5 20043 0.60×0.60×0.20 3.6 15.7
8.5 22050 1.03×1.03×0.27 3.8 18.0
8.5 24011 1.78×1.78×0.37 3.4 22.0
8.5 25884 2.37×2.37×0.46 3.6 22.1
8.5 27602 2.53×2.53×0.59 3.1 21.5
8.5 30364 4.53×4.53×1.97 3.2 19.2
8.5 31965 4.53×4.53×2.12 5.2 18.8
8.5 34038 4.53×4.53×1.92 3.6 17.3

9.0 11994 0.06×0.06×0.01 1.0 0.8
9.0 13967 0.07×0.07×0.01 1.1 2.1
9.0 15970 0.11×0.11×0.02 1.1 4.8
9.0 18038 0.12×0.12×0.03 1.2 9.0
9.0 20045 0.14×0.14×0.04 1.0 12.0
9.0 22057 0.20×0.20×0.07 1.0 13.8
9.0 24026 0.39×0.39×0.10 1.0 17.1
9.0 25997 0.76×0.76×0.13 1.0 20.6
9.0 28015 0.76×0.76×0.16 1.0 20.6
9.0 29929 0.86×0.86×0.20 1.0 18.3
9.0 31340 0.86×0.86×0.20 1.0 17.5
9.0 33917 1.43×1.43×0.84 1.0 18.6
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Table B.6: Select parameters of 3D DBA model atmospheres with log H/He = −2.

log g Teff Box size Total run time δIrms/〈I〉
(K) (km × km × km) (stellar s) (%)

7.5 11977 1.98×1.98×0.67 39.8 9.0
7.5 13995 2.86×2.86×1.19 38.3 15.0
7.5 16063 6.09×6.09×1.46 40.0 17.7
7.5 17963 6.09×6.09×1.46 73.4 20.2
7.5 20042 21.75×21.75×3.39 36.8 20.6
7.5 21944 21.75×21.75×4.59 33.9 18.2
7.5 22925 23.96×23.96×5.01 32.8 21.8
7.5 26471 37.47×37.47×21.40 33.7 19.7
7.5 27996 31.22×31.22×11.11 16.6 16.1
7.5 29982 31.22×31.22×11.86 24.1 8.0
7.5 32009 33.48×33.48×14.00 24.0 4.0

8.0 12044 0.79×0.79×0.16 14.0 5.8
8.0 13953 0.94×0.94×0.20 12.8 10.6
8.0 15983 1.23×1.23×0.36 14.4 14.3
8.0 17961 1.23×1.23×0.38 19.9 17.1
8.0 19903 3.40×3.40×0.69 23.1 18.4
8.0 22026 8.62×8.62×1.43 11.0 17.6
8.0 24006 8.62×8.62×1.53 11.9 19.3
8.0 25333 8.62×8.62×1.67 12.4 18.1
8.0 27968 12.63×12.63×4.93 11.5 20.2
8.0 30013 12.63×12.63×5.12 10.4 18.3
8.0 31997 12.63×12.63×3.39 10.2 12.5
8.0 33989 12.63×12.63×3.51 10.0 7.0

8.5 12013 0.25×0.25×0.05 5.1 3.4
8.5 14013 0.34×0.34×0.06 4.4 7.1
8.5 15994 0.39×0.39×0.13 6.1 10.6
8.5 17996 0.60×0.60×0.20 4.4 13.7
8.5 19962 0.60×0.60×0.20 7.1 15.1
8.5 22044 1.78×1.78×0.38 3.6 15.8
8.5 24025 2.37×2.37×0.46 3.5 19.7
8.5 25969 2.53×2.53×0.59 3.8 16.1
8.5 27179 3.80×3.80×0.62 4.6 17.4
8.5 30535 4.53×4.53×2.05 7.9 18.4
8.5 31852 4.53×4.53×2.12 3.5 18.7
8.5 33930 4.53×4.53×1.92 3.4 16.9

9.0 12025 0.07×0.07×0.01 1.2 2.0
9.0 13986 0.11×0.11×0.02 1.3 4.4
9.0 16001 0.12×0.12×0.03 1.6 7.3
9.0 17981 0.14×0.14×0.04 1.4 10.2
9.0 20038 0.14×0.14×0.05 2.0 12.0
9.0 21923 0.41×0.41×0.08 2.9 12.9
9.0 24031 0.76×0.76×0.13 1.0 17.7
9.0 26031 0.76×0.76×0.16 2.0 16.9
9.0 27980 0.86×0.86×0.20 1.1 16.3
9.0 29843 0.86×0.86×0.21 1.3 16.0
9.0 31011 0.86×0.86×0.22 2.3 16.7
9.0 33770 1.43×1.43×0.84 3.2 18.2
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Table B.7: MLT calibration for open bottom 3D DB models, where 3D senv

is the 3D adiabatic entropy used for calibration, ML2/αS is the calibrated
ML2/α value for Schwarzschild boundary, log (MCVZ/Mtot)S is log (MCVZ/Mtot) for
Schwarzschild boundary, (log Tb)S is the 1D calibrated temperature at the
Schwarzschild boundary, (logPb)S is the 1D calibrated pressure at the
Schwarzschild boundary. The same parameters are also given for the �ux boundary
and are denoted by subscript `f'.

log g Teff 3D senv ML2/αS log (MCVZ/Mtot)S (log Tb)S (logPb)S ML2/αf log (MCVZ/Mtot)f (log Tb)f (logPb)f

(K) (109 erg g−1 K−1) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 12098 0.40 1.00 −4.14 6.68 16.96 1.00 −4.14 6.68 16.96
7.5 13969 0.44 0.91 −4.56 6.63 16.53 1.07 −4.54 6.63 16.55
7.5 15947 0.48 0.92 −5.16 6.52 15.93 1.08 −5.11 6.54 15.99
7.5 18059 0.59 0.91 −6.57 6.25 14.51 1.07 −6.40 6.28 14.69
7.5 19931 0.78 0.97 −9.16 5.74 11.92 1.14 −8.72 5.83 12.36
7.5 22044 0.94 0.82 −11.06 5.42 10.02 0.95 −10.82 5.46 10.26
7.5 23774 1.02 0.69 −12.07 5.24 9.01 0.80 −11.62 5.33 9.45

8.0 12020 0.38 1.00 −5.21 6.59 16.87 1.00 −5.21 6.59 16.87
8.0 14083 0.42 1.00 −5.57 6.56 16.51 1.00 −5.57 6.56 16.51
8.0 16105 0.46 0.89 −6.08 6.48 16.00 1.04 −6.05 6.49 16.04
8.0 18082 0.52 0.83 −6.96 6.32 15.12 0.97 −6.86 6.34 15.23
8.0 20090 0.66 0.88 −8.71 5.98 13.37 1.03 −8.45 6.04 13.63
8.0 21014 0.66 0.89 −9.92 5.75 12.16 1.04 −9.56 5.82 12.52
8.0 21465 0.75 0.97 −10.38 5.67 11.70 1.14 −9.97 5.74 12.11
8.0 21987 0.78 1.10 −10.82 5.59 11.26 1.28 −10.38 5.67 11.70
8.0 22988 0.82 1.00 −11.39 5.49 10.68 1.17 −11.25 5.52 10.83
8.0 24144 0.82 0.78 −11.90 5.41 10.17 0.92 −11.69 5.45 10.38
8.0 25898 0.87 0.71 −12.61 5.30 9.46 0.83 −12.27 5.36 9.81

8.5 12139 0.37 1.00 −6.38 6.47 16.70 1.00 −6.38 6.47 16.70
8.5 14007 0.40 1.00 −6.64 6.47 16.44 1.00 −6.64 6.47 16.44
8.5 15961 0.43 1.00 −6.99 6.43 16.09 1.00 −6.99 6.43 16.09
8.5 18000 0.48 0.74 −7.60 6.33 15.47 0.87 −7.55 6.34 15.53
8.5 19955 0.55 0.77 −8.62 6.14 14.46 0.90 −8.47 6.17 14.60
8.5 22000 0.70 0.80 −10.56 5.77 12.52 0.94 −10.26 5.84 12.82
8.5 24143 0.82 1.16 −11.93 5.54 11.14 1.36 −11.65 5.59 11.43
8.5 25805 0.87 0.85 −12.50 5.45 10.57 0.99 −12.34 5.48 10.74
8.5 27934 0.94 0.70 −13.27 5.33 9.81 0.82 −12.97 5.38 10.10

9.0 12124 0.35 1.00 −7.69 6.28 16.39 1.00 −7.69 6.28 16.39
9.0 14117 0.38 1.00 −7.84 6.34 16.24 1.00 −7.84 6.34 16.24
9.0 16029 0.41 1.00 −8.09 6.33 15.99 1.00 −8.09 6.33 15.99
9.0 17998 0.45 0.77 −8.47 6.29 15.61 0.90 −8.44 6.30 15.64
9.0 19961 0.50 0.64 −9.18 6.17 14.90 0.75 −9.10 6.18 14.97
9.0 21978 0.59 0.75 −10.32 5.97 13.76 0.88 −10.13 6.01 13.94
9.0 24082 0.72 0.81 −12.00 5.66 12.08 0.95 −11.72 5.71 12.36
9.0 26109 0.79 1.13 −12.81 5.53 11.27 1.32 −12.58 5.57 11.49
9.0 28143 0.85 0.79 −13.41 5.43 10.67 0.92 −13.25 5.46 10.83
9.0 30184 0.89 0.74 −13.86 5.37 10.22 0.86 −13.63 5.41 10.45
9.0 31440 0.92 0.72 −14.18 5.32 9.90 0.84 −13.89 5.37 10.19
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Table B.8: Same as Tab. B.7 but for MLT calibration of open bottom 3D DBA
models with log H/He = −7.

log g Teff 3D senv ML2/αS log (MCVZ/Mtot)S (log Tb)S (logPb)S ML2/αf log (MCVZ/Mtot)f (log Tb)f (logPb)f

(K) (109 erg g−1 K−1) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 12098 0.40 1.00 −4.14 6.68 16.96 1.00 −4.14 6.68 16.96
7.5 13967 0.44 0.91 −4.56 6.63 16.53 1.06 −4.54 6.63 16.56
7.5 15936 0.48 0.91 −5.16 6.52 15.93 1.07 −5.11 6.54 15.99
7.5 18051 0.59 0.91 −6.57 6.25 14.51 1.06 −6.39 6.29 14.69
7.5 19865 0.79 0.91 −9.23 5.73 11.85 1.07 −8.76 5.82 12.32
7.5 21873 0.94 0.79 −11.06 5.41 10.02 0.92 −10.83 5.45 10.25
7.5 23789 1.02 0.69 −12.07 5.24 9.01 0.80 −11.62 5.33 9.45

8.0 12019 0.38 1.00 −5.21 6.59 16.87 1.00 −5.21 6.59 16.87
8.0 14083 0.42 1.00 −5.57 6.56 16.51 1.00 −5.57 6.56 16.51
8.0 16099 0.46 0.88 −6.08 6.48 16.00 1.03 −6.05 6.49 16.04
8.0 18074 0.52 0.82 −6.96 6.32 15.13 0.96 −6.86 6.34 15.23
8.0 20088 0.66 0.88 −8.71 5.98 13.37 1.03 −8.45 6.04 13.63
8.0 21996 0.82 1.10 −10.82 5.59 11.26 1.29 −10.38 5.67 11.70
8.0 24036 0.91 0.79 −11.87 5.42 10.21 0.93 −11.65 5.46 10.43
8.0 25956 0.97 0.71 −12.61 5.30 9.46 0.83 −12.27 5.36 9.81

8.5 12147 0.37 1.00 −6.38 6.47 16.69 1.00 −6.38 6.47 16.69
8.5 14004 0.40 1.00 −6.64 6.47 16.44 1.00 −6.64 6.47 16.44
8.5 15958 0.43 1.00 −6.99 6.43 16.09 1.00 −6.99 6.43 16.09
8.5 17998 0.48 0.74 −7.60 6.33 15.48 0.87 −7.55 6.34 15.53
8.5 19951 0.55 0.77 −8.62 6.14 14.46 0.90 −8.47 6.17 14.60
8.5 22002 0.70 0.80 −10.56 5.77 12.52 0.94 −10.26 5.84 12.82
8.5 24047 0.81 1.15 −11.90 5.54 11.17 1.35 −11.59 5.60 11.49
8.5 25943 0.87 0.83 −12.55 5.44 10.53 0.97 −12.38 5.47 10.69
8.5 27907 0.94 0.69 −13.27 5.33 9.81 0.81 −12.98 5.38 10.10

9.0 12120 0.35 1.00 −7.69 6.28 16.39 1.00 −7.69 6.28 16.39
9.0 14114 0.38 1.00 −7.84 6.34 16.24 1.00 −7.84 6.34 16.24
9.0 16026 0.41 1.00 −8.09 6.33 15.99 1.00 −8.09 6.33 15.99
9.0 17985 0.45 0.75 −8.47 6.29 15.61 0.88 −8.44 6.30 15.64
9.0 19957 0.50 0.64 −9.18 6.17 14.90 0.75 −9.10 6.18 14.97
9.0 21982 0.59 0.76 −10.32 5.97 13.76 0.89 −10.13 6.01 13.94
9.0 24093 0.72 0.81 −12.00 5.66 12.08 0.95 −11.72 5.71 12.36
9.0 26115 0.79 1.13 −12.81 5.53 11.27 1.33 −12.58 5.57 11.49
9.0 28141 0.85 0.79 −13.41 5.43 10.67 0.92 −13.25 5.46 10.83
9.0 30006 0.89 0.75 −13.80 5.38 10.27 0.87 −13.58 5.41 10.49
9.0 31472 0.92 0.72 −14.18 5.32 9.89 0.85 −13.89 5.37 10.19
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Table B.9: Same as Tab. B.7 but for MLT calibration of open bottom 3D DBA
models with log H/He = −5.

log g Teff 3D senv ML2/αS log (MCVZ/Mtot)S (log Tb)S (logPb)S ML2/αf log (MCVZ/Mtot)f (log Tb)f (logPb)f

(K) (109 erg g−1 K−1) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 12009 0.40 1.00 −4.13 6.69 16.98 1.00 −4.13 6.69 16.98
7.5 14013 0.44 0.85 −4.59 6.62 16.51 0.99 −4.56 6.63 16.54
7.5 15886 0.49 0.78 −5.22 6.51 15.88 0.91 −5.14 6.53 15.95
7.5 17920 0.59 0.82 −6.58 6.24 14.50 0.95 −6.40 6.28 14.68
7.5 19900 0.79 0.93 −9.24 5.73 11.84 1.09 −8.78 5.82 12.30
7.5 21946 0.94 0.80 −11.06 5.42 10.02 0.94 −10.83 5.46 10.25
7.5 23757 1.02 0.68 −12.07 5.24 9.01 0.80 −11.62 5.33 9.45

8.0 11978 0.38 1.00 −5.23 6.58 16.86 1.00 −5.23 6.58 16.86
8.0 14031 0.42 1.00 −5.56 6.56 16.52 1.00 −5.56 6.56 16.52
8.0 15974 0.46 0.74 −6.09 6.48 15.99 0.86 −6.05 6.49 16.04
8.0 17952 0.52 0.74 −6.97 6.31 15.11 0.86 −6.86 6.33 15.22
8.0 20012 0.66 0.84 −8.71 5.98 13.37 0.98 −8.45 6.04 13.63
8.0 21959 0.82 1.08 −10.82 5.59 11.26 1.27 −10.37 5.67 11.71
8.0 24014 0.91 0.79 −11.87 5.42 10.21 0.93 −11.65 5.46 10.43
8.0 25963 0.97 0.71 −12.61 5.30 9.46 0.83 −12.27 5.36 9.81

8.5 11996 0.36 1.00 −6.40 6.45 16.68 1.00 −6.40 6.45 16.68
8.5 14012 0.40 1.00 −6.66 6.46 16.42 1.00 −6.66 6.46 16.42
8.5 15957 0.43 1.00 −6.99 6.43 16.09 1.00 −6.99 6.43 16.09
8.5 17956 0.48 0.66 −7.65 6.32 15.43 0.77 −7.57 6.34 15.51
8.5 19924 0.56 0.74 −8.64 6.14 14.44 0.86 −8.51 6.16 14.57
8.5 21962 0.70 0.78 −10.56 5.78 12.52 0.92 −10.26 5.83 12.81
8.5 24004 0.81 1.13 −11.90 5.54 11.17 1.33 −11.58 5.60 11.50
8.5 25938 0.87 0.83 −12.55 5.44 10.53 0.97 −12.38 5.47 10.69
8.5 27946 0.94 0.70 −13.27 5.33 9.81 0.82 −12.97 5.38 10.10

9.0 12077 0.35 1.00 −7.68 6.28 16.40 1.00 −7.68 6.28 16.40
9.0 14059 0.38 1.00 −7.84 6.34 16.24 1.00 −7.84 6.34 16.24
9.0 15930 0.41 1.00 −8.07 6.33 16.01 1.00 −8.07 6.33 16.01
9.0 17885 0.45 0.65 −8.48 6.28 15.60 0.76 −8.45 6.29 15.63
9.0 19922 0.50 0.61 −9.20 6.16 14.87 0.71 −9.11 6.18 14.96
9.0 21942 0.59 0.74 −10.32 5.97 13.76 0.86 −10.13 6.01 13.94
9.0 24076 0.72 0.81 −12.01 5.66 12.07 0.94 −11.72 5.71 12.36
9.0 26099 0.79 1.13 −12.81 5.53 11.27 1.32 −12.58 5.57 11.50
9.0 28181 0.85 0.79 −13.41 5.43 10.66 0.93 −13.25 5.46 10.83
9.0 29952 0.89 0.74 −13.80 5.38 10.27 0.87 −13.58 5.41 10.50
9.0 31452 0.92 0.72 −14.18 5.32 9.89 0.84 −13.89 5.37 10.18
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Table B.10: Same as Tab. B.7 but for MLT calibration of open bottom 3D DBA
models with log H/He = −4.

log g Teff 3D senv ML2/αS log (MCVZ/Mtot)S (log Tb)S (logPb)S ML2/αf log (MCVZ/Mtot)f (log Tb)f (logPb)f

(K) (109 erg g−1 K−1) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 11983 0.40 1.00 −4.21 6.67 16.89 1.00 −4.21 6.67 16.89
7.5 13985 0.44 1.00 −4.61 6.62 16.48 1.00 −4.61 6.62 16.48
7.5 15973 0.49 0.85 −5.27 6.50 15.83 0.99 −5.21 6.51 15.88
7.5 17979 0.62 0.68 −7.01 6.16 14.08 0.79 −6.73 6.22 14.36
7.5 19932 0.82 0.86 −9.67 5.65 11.41 1.00 −9.11 5.75 11.97
7.5 22021 0.95 0.76 −11.16 5.40 9.92 0.89 −10.92 5.44 10.16
7.5 23465 1.01 0.68 −11.92 5.27 9.15 0.80 −11.53 5.35 9.55

8.0 12008 0.39 1.00 −5.30 6.57 16.78 1.00 −5.30 6.57 16.78
8.0 13999 0.42 1.00 −5.60 6.55 16.48 1.00 −5.60 6.55 16.48
8.0 15994 0.46 0.80 −6.11 6.47 15.97 0.93 −6.08 6.48 16.00
8.0 18052 0.54 0.63 −7.22 6.26 14.86 0.73 −7.08 6.29 15.00
8.0 19991 0.68 0.74 −8.98 5.92 13.10 0.86 −8.66 5.99 13.41
8.0 21981 0.83 1.05 −10.98 5.56 11.10 1.22 −10.50 5.65 11.57
8.0 23953 0.91 0.78 −11.88 5.42 10.20 0.91 −11.65 5.46 10.43
8.0 25961 0.97 0.71 −12.61 5.30 9.47 0.83 −12.27 5.36 9.81

8.5 12027 0.37 1.00 −6.45 6.45 16.63 1.00 −6.45 6.45 16.63
8.5 13981 0.40 1.00 −6.70 6.45 16.38 1.00 −6.70 6.45 16.38
8.5 15982 0.43 1.00 −7.04 6.42 16.04 1.00 −7.04 6.42 16.04
8.5 17951 0.49 0.57 −7.76 6.29 15.32 0.66 −7.67 6.31 15.41
8.5 19972 0.57 0.68 −8.81 6.11 14.27 0.79 −8.63 6.14 14.45
8.5 21956 0.72 0.73 −10.73 5.74 12.35 0.86 −10.39 5.81 12.68
8.5 23980 0.82 1.10 −11.95 5.53 11.13 1.28 −11.65 5.59 11.43
8.5 26006 0.88 0.82 −12.58 5.44 10.50 0.96 −12.41 5.46 10.67
8.5 27829 0.94 0.69 −13.26 5.33 9.82 0.80 −12.98 5.38 10.10

9.0 12055 0.35 1.00 −7.74 6.27 16.33 1.00 −7.74 6.27 16.33
9.0 14023 0.38 1.00 −7.88 6.33 16.20 1.00 −7.88 6.33 16.20
9.0 16020 0.41 1.00 −8.13 6.32 15.94 1.00 −8.13 6.32 15.94
9.0 17972 0.45 0.53 −8.57 6.27 15.50 0.62 −8.54 6.27 15.54
9.0 19968 0.51 0.56 −9.29 6.14 14.78 0.65 −9.20 6.16 14.87
9.0 21957 0.60 0.68 −10.45 5.94 13.62 0.79 −10.27 5.98 13.81
9.0 23971 0.72 0.77 −12.00 5.66 12.08 0.91 −11.72 5.71 12.36
9.0 26018 0.79 1.11 −12.80 5.53 11.27 1.29 −12.57 5.57 11.50
9.0 27982 0.84 0.80 −13.37 5.44 10.70 0.93 −13.23 5.46 10.85
9.0 29948 0.89 0.74 −13.81 5.38 10.27 0.87 −13.58 5.41 10.50
9.0 31360 0.92 0.71 −14.18 5.32 9.89 0.84 −13.89 5.37 10.18
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Table B.11: Same as Tab. B.7 but for MLT calibration of open bottom 3D DBA
models with log H/He = −3.

log g Teff 3D senv ML2/αS log (MCVZ/Mtot)S (log Tb)S (logPb)S ML2/αf log (MCVZ/Mtot)f (log Tb)f (logPb)f

(K) (109 erg g−1 K−1) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 11980 0.40 1.00 −4.56 6.59 16.54 1.00 −4.56 6.59 16.54
7.5 13855 0.44 1.00 −4.92 6.55 16.18 1.00 −4.92 6.55 16.18
7.5 15805 0.49 1.00 −5.51 6.45 15.58 1.00 −5.51 6.45 15.58
7.5 18026 0.59 1.18 −6.66 6.23 14.42 1.38 −6.50 6.26 14.59
7.5 20035 0.80 1.08 −9.39 5.70 11.69 1.27 −8.93 5.79 12.15
7.5 22043 0.94 0.81 −11.09 5.41 9.99 0.95 −10.85 5.45 10.23
7.5 23752 1.02 0.69 −12.05 5.25 9.02 0.81 −11.62 5.33 9.45

8.0 12007 0.38 1.00 −5.61 6.51 16.48 1.00 −5.61 6.51 16.48
8.0 13961 0.42 1.00 −5.92 6.48 16.16 1.00 −5.92 6.48 16.16
8.0 16040 0.46 1.00 −6.37 6.42 15.72 1.00 −6.37 6.42 15.72
8.0 17985 0.52 1.00 −7.13 6.28 14.95 1.00 −7.13 6.28 14.95
8.0 20088 0.66 1.02 −8.79 5.96 13.29 1.19 −8.53 6.02 13.55
8.0 22047 0.83 1.17 −10.89 5.57 11.18 1.37 −10.44 5.66 11.63
8.0 24002 0.91 0.79 −11.88 5.42 10.20 0.93 −11.66 5.45 10.42
8.0 25904 0.97 0.71 −12.61 5.30 9.47 0.83 −12.27 5.36 9.81

8.5 12027 0.37 1.00 −6.74 6.41 16.34 1.00 −6.74 6.41 16.34
8.5 13985 0.40 1.00 −6.96 6.40 16.11 1.00 −6.96 6.40 16.11
8.5 15988 0.43 1.00 −7.28 6.37 15.80 1.00 −7.28 6.37 15.80
8.5 18029 0.48 1.00 −7.80 6.29 15.28 1.00 −7.80 6.29 15.28
8.5 20043 0.56 1.02 −8.71 6.12 14.37 1.19 −8.57 6.15 14.51
8.5 22050 0.71 0.88 −10.63 5.77 12.45 1.03 −10.36 5.81 12.72
8.5 24011 0.81 1.18 −11.90 5.54 11.18 1.38 −11.61 5.59 11.47
8.5 25884 0.87 0.83 −12.56 5.44 10.52 0.97 −12.38 5.47 10.69
8.5 27602 0.94 0.67 −13.26 5.33 9.81 0.79 −12.97 5.38 10.10

9.0 11994 0.35 1.00 −8.06 6.22 16.02 1.00 −8.06 6.22 16.02
9.0 13967 0.38 1.00 −8.14 6.27 15.94 1.00 −8.14 6.27 15.94
9.0 15970 0.41 1.00 −8.32 6.28 15.75 1.00 −8.32 6.28 15.75
9.0 18038 0.45 1.00 −8.65 6.25 15.43 1.00 −8.65 6.25 15.43
9.0 20045 0.50 0.98 −9.24 6.15 14.83 1.15 −9.18 6.17 14.90
9.0 22057 0.60 0.90 −10.40 5.95 13.68 1.05 −10.23 5.99 13.84
9.0 24026 0.72 0.86 −11.97 5.67 12.11 1.01 −11.70 5.72 12.38
9.0 25997 0.79 1.15 −12.79 5.53 11.29 1.35 −12.57 5.57 11.51
9.0 28015 0.85 0.78 −13.42 5.43 10.65 0.91 −13.25 5.46 10.82
9.0 29929 0.89 0.73 −13.85 5.37 10.23 0.85 −13.62 5.41 10.46
9.0 31340 0.92 0.70 −14.23 5.31 9.84 0.82 −13.93 5.36 10.15
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Table B.12: Same as Tab. B.7 but for MLT calibration of open bottom 3D DBA
models with log H/He = −2.

log g Teff 3D senv ML2/αS log (MCVZ/Mtot)S (log Tb)S (logPb)S ML2/αf log (MCVZ/Mtot)f (log Tb)f (logPb)f

(K) (109 erg g−1 K−1) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 11977 0.45 1.00 −5.24 6.44 15.85 1.00 −5.24 6.44 15.85
7.5 13995 0.49 1.00 −5.84 6.35 15.24 1.00 −5.84 6.35 15.24
7.5 16063 0.56 1.00 −6.97 6.15 14.11 1.00 −6.97 6.15 14.11
7.5 17963 0.68 1.00 −8.78 5.80 12.30 1.00 −8.78 5.80 12.30
7.5 20042 0.88 1.11 −10.38 5.52 10.70 1.30 −10.23 5.55 10.85
7.5 21944 0.98 0.68 −11.49 5.34 9.59 0.80 −11.19 5.39 9.89
7.5 22925 1.02 0.65 −12.00 5.25 9.08 0.76 −11.60 5.33 9.48

8.0 12044 0.43 1.00 −6.26 6.37 15.82 1.00 −6.26 6.37 15.82
8.0 13953 0.46 1.00 −6.63 6.33 15.45 1.00 −6.63 6.33 15.45
8.0 15983 0.50 1.00 −7.28 6.22 14.80 1.00 −7.28 6.22 14.80
8.0 17961 0.58 1.00 −8.44 6.01 13.64 1.00 −8.44 6.01 13.64
8.0 19903 0.74 1.11 −9.87 5.75 12.21 1.29 −9.50 5.82 12.58
8.0 22026 0.88 0.81 −11.55 5.46 10.53 0.94 −11.40 5.48 10.67
8.0 24006 0.94 0.69 −12.21 5.36 9.86 0.81 −11.96 5.40 10.12
8.0 25333 0.98 0.68 −12.64 5.29 9.43 0.80 −12.30 5.35 9.78

8.5 12013 0.41 1.00 −7.34 6.28 15.74 1.00 −7.34 6.28 15.74
8.5 14013 0.44 1.00 −7.57 6.28 15.51 1.00 −7.57 6.28 15.51
8.5 15994 0.47 1.00 −8.00 6.22 15.08 1.00 −8.00 6.22 15.08
8.5 17996 0.52 1.00 −8.70 6.10 14.37 1.00 −8.70 6.10 14.37
8.5 19962 0.63 1.00 −9.84 5.90 13.24 1.00 −9.84 5.90 13.24
8.5 22044 0.80 0.93 −11.73 5.56 11.35 1.09 −11.28 5.64 11.80
8.5 24025 0.86 0.81 −12.38 5.46 10.70 0.95 −12.23 5.48 10.84
8.5 25969 0.90 0.73 −12.83 5.39 10.25 0.86 −12.63 5.43 10.45
8.5 27179 0.94 0.66 −13.30 5.32 9.78 0.77 −13.01 5.37 10.07

9.0 12025 0.39 1.00 −8.53 6.15 15.54 1.00 −8.53 6.15 15.54
9.0 13986 0.42 1.00 −8.63 6.19 15.44 1.00 −8.63 6.19 15.44
9.0 16001 0.45 1.00 −8.89 6.18 15.19 1.00 −8.89 6.18 15.19
9.0 17981 0.48 1.00 −9.35 6.11 14.73 1.00 −9.35 6.11 14.73
9.0 20038 0.55 1.00 −10.07 6.00 14.00 1.00 −10.07 6.00 14.00
9.0 21923 0.68 0.79 −11.51 5.73 12.56 0.93 −11.23 5.79 12.85
9.0 24031 0.78 0.94 −12.65 5.54 11.43 1.10 −12.31 5.60 11.77
9.0 26031 0.83 0.84 −13.18 5.46 10.90 0.98 −13.05 5.48 11.02
9.0 27980 0.87 0.71 −13.61 5.40 10.47 0.83 −13.43 5.43 10.65
9.0 29843 0.91 0.69 −14.00 5.34 10.07 0.81 −13.75 5.38 10.33
9.0 31011 0.93 0.69 −14.28 5.30 9.79 0.80 −14.00 5.35 10.08

Table B.13: MLT calibration for closed bottom 3D DB models, where 〈3D〉 Tb, S

is the 〈3D〉 temperature at the bottom of the Schwarzschild boundary, 〈3D〉 Pb, S

is the 〈3D〉 pressure at the bottom of the Schwarzschild boundary, ML2/αS is the
calibrated ML2/α value for the Schwarzschild boundary and log (MCVZ/Mtot)S is
the log (MCVZ/Mtot) for the Schwarzschild boundary. The same parameters are also
given for the �ux boundary and are denoted with a subscript `f'.

log g Teff 〈3D〉 Tb, S 〈3D〉 Pb, S ML2/αS log (MCVZ/Mtot)S 〈3D〉 Tb, f 〈3D〉 Pb, f ML2/αf log (MCVZ/Mtot)f

7.5 26497 4.98 7.85 0.76 −13.20 5.10 8.28 0.85 −12.76
7.5 27993 4.90 7.45 0.69 −13.63 4.95 7.66 0.85 −13.41
7.5 29991 4.87 7.24 0.42 −13.84 4.86 7.19 0.65 −13.82
7.5 32001 4.87 7.15 0.65 −13.91 4.85 7.08 0.65 −13.91
8.0 28107 4.99 8.21 0.65 −13.94 5.14 8.74 0.75 −13.36
8.0 29997 4.94 7.86 0.72 −14.24 5.03 8.24 0.85 −13.84
8.0 31999 4.91 7.62 0.73 −14.47 4.94 7.76 0.89 −14.31
8.0 33999 4.89 7.43 0.65 −14.63 4.87 7.35 0.65 −14.63
8.5 30567 5.03 8.58 0.63 −14.59 5.20 9.14 0.74 −13.96
8.5 32208 5.00 8.32 0.71 −14.80 5.12 8.77 0.81 −14.33
8.5 34020 4.95 8.00 0.75 −15.09 5.02 8.27 0.87 −14.80
9.0 34105 5.05 8.78 0.64 −15.38 5.21 9.28 0.75 −14.81
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Table B.14: Same as Tab. B.13 but for MLT calibration of closed bottom 3D DBA
models with log H/He = −7.

log g Teff 〈3D〉 Tb, S 〈3D〉 Pb, S ML2/αS log (MCVZ/Mtot)S 〈3D〉 Tb, f 〈3D〉 Pb, f ML2/αf log (MCVZ/Mtot)f

7.5 26501 4.98 7.84 0.75 −13.21 5.11 8.29 0.85 −12.75
7.5 27993 4.90 7.46 0.70 −13.63 4.95 7.66 0.85 −13.40
7.5 29993 4.87 7.25 0.57 −13.83 4.87 7.21 0.65 −13.82
7.5 32002 4.87 7.16 0.65 −13.91 4.85 7.06 0.65 −13.91
8.0 28037 4.98 8.18 0.64 −13.97 5.13 8.72 0.75 −13.38
8.0 29963 5.00 8.04 0.80 −14.01 5.12 8.49 0.90 −13.55
8.0 32000 4.91 7.60 0.71 −14.48 4.94 7.73 0.86 −14.35
8.0 33999 4.89 7.43 0.65 −14.63 4.87 7.35 0.65 −14.63
8.5 30514 5.03 8.59 0.63 −14.58 5.21 9.15 0.74 −13.94
8.5 32012 4.99 8.33 0.70 −14.80 5.14 8.83 0.80 −14.26
8.5 33949 4.95 8.00 0.74 −15.09 5.02 8.28 0.87 −14.79
9.0 34021 5.06 8.82 0.65 −15.33 5.21 9.29 0.75 −14.79

Table B.15: Same as Tab. B.13 but for MLT calibration of closed bottom 3D DBA
models with log H/He = −5.

log g Teff 〈3D〉 Tb, S 〈3D〉 Pb, S ML2/αS log (MCVZ/Mtot)S 〈3D〉 Tb, f 〈3D〉 Pb, f ML2/αf log (MCVZ/Mtot)f

7.5 26522 4.97 7.83 0.75 −13.23 5.10 8.27 0.85 −12.77
7.5 27998 4.90 7.46 0.70 −13.63 4.95 7.66 0.85 −13.41
7.5 29992 4.87 7.25 0.49 −13.84 4.86 7.19 0.65 −13.82
7.5 32002 4.87 7.16 0.65 −13.91 4.85 7.08 0.65 −13.91
8.0 28086 4.98 8.19 0.65 −13.95 5.13 8.73 0.75 −13.38
8.0 29989 4.94 7.87 0.72 −14.24 5.03 8.24 0.85 −13.84
8.0 32002 4.91 7.61 0.71 −14.48 4.94 7.75 0.88 −14.32
8.0 34000 4.89 7.43 0.65 −14.63 4.87 7.35 0.65 −14.63
8.5 30517 5.02 8.59 0.63 −14.58 5.21 9.16 0.74 −13.93
8.5 32015 5.00 8.36 0.71 −14.76 5.14 8.83 0.80 −14.27
8.5 33947 4.95 8.00 0.74 −15.09 5.02 8.29 0.87 −14.78
9.0 33986 5.06 8.82 0.65 −15.33 5.21 9.30 0.75 −14.79

Table B.16: Same as Tab. B.13 but for MLT calibration of closed bottom 3D DBA
models with log H/He = −4.

log g Teff 〈3D〉 Tb, S 〈3D〉 Pb, S ML2/αS log (MCVZ/Mtot)S 〈3D〉 Tb, f 〈3D〉 Pb, f ML2/αf log (MCVZ/Mtot)f

(K) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 26632 4.97 7.81 0.76 −13.24 5.09 8.23 0.86 −12.81
7.5 28004 4.90 7.45 0.69 −13.64 4.94 7.64 0.84 −13.43
7.5 29993 4.87 7.25 0.51 −13.84 4.86 7.19 0.65 −13.82
7.5 32002 4.87 7.15 0.65 −13.91 4.85 7.07 0.65 −13.91
8.0 28092 4.98 8.17 0.64 −13.97 5.12 8.68 0.74 −13.42
8.0 29994 4.94 7.87 0.72 −14.23 5.04 8.25 0.85 −13.82
8.0 32003 4.91 7.60 0.71 −14.48 4.94 7.73 0.86 −14.35
8.0 34000 4.89 7.43 0.65 −14.63 4.87 7.35 0.65 −14.63
8.5 30490 5.03 8.61 0.63 −14.56 5.20 9.15 0.73 −13.95
8.5 32008 5.00 8.35 0.71 −14.77 5.13 8.81 0.80 −14.29
8.5 33963 4.95 8.00 0.75 −15.09 5.01 8.27 0.87 −14.80
9.0 33988 5.06 8.83 0.65 −15.33 5.21 9.30 0.75 −14.79
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Table B.17: Same as Tab. B.13 but for MLT calibration of closed bottom 3D DBA
models with log H/He = −3.

log g Teff 〈3D〉 Tb, S 〈3D〉 Pb, S ML2/αS log (MCVZ/Mtot)S 〈3D〉 Tb, f 〈3D〉 Pb, f ML2/αf log (MCVZ/Mtot)f

(K) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 26670 4.95 7.74 0.74 −13.34 5.06 8.15 0.85 −12.91
7.5 28000 4.90 7.44 0.69 −13.65 4.94 7.61 0.83 −13.45
7.5 29999 4.87 7.24 0.54 −13.84 4.85 7.15 0.65 −13.82
7.5 32000 4.87 7.15 0.65 −13.92 4.84 7.05 0.65 −13.92
8.0 28118 4.98 8.14 0.64 −13.99 5.11 8.64 0.74 −13.45
8.0 30001 4.94 7.83 0.71 −14.27 5.02 8.18 0.84 −13.90
8.0 31999 4.90 7.58 0.67 −14.51 4.93 7.68 0.82 −14.40
8.0 33980 4.89 7.43 0.65 −14.63 4.87 7.36 0.65 −14.63
8.5 30364 5.03 8.59 0.62 −14.58 5.20 9.14 0.72 −13.96
8.5 31965 4.99 8.30 0.69 −14.81 5.12 8.77 0.79 −14.31
8.5 34038 4.95 7.99 0.75 −15.10 5.01 8.26 0.88 −14.81
9.0 33917 5.06 8.84 0.65 −15.31 5.21 9.31 0.75 −14.77

Table B.18: Same as Tab. B.13 but for MLT calibration of closed bottom 3D DBA
models with log H/He = −2.

log g Teff 〈3D〉 Tb, S 〈3D〉 Pb, S ML2/αS log (MCVZ/Mtot)S 〈3D〉 Tb, f 〈3D〉 Pb, f ML2/αf log (MCVZ/Mtot)f

(K) (K) (dyn cm−2) (K) (dyn cm−2)

7.5 26471 4.93 7.67 0.71 −13.43 5.02 8.04 0.84 −13.04
7.5 27996 4.89 7.38 0.67 −13.70 4.91 7.50 0.80 −13.57
7.5 29982 4.87 7.22 0.65 −13.84 4.85 7.13 0.65 −13.84
7.5 32009 4.86 7.12 0.65 −13.93 4.84 7.04 0.65 −13.93
8.0 27968 4.96 8.07 0.65 −14.05 5.09 8.54 0.75 −13.56
8.0 30013 4.93 7.77 0.71 −14.32 4.99 8.06 0.86 −14.01
8.0 31998 4.90 7.53 0.61 −14.55 4.91 7.58 0.74 −14.50
8.0 33989 4.88 7.41 0.65 −14.65 4.86 7.33 0.65 −14.65
8.5 30535 5.01 8.45 0.64 −14.69 5.17 8.99 0.75 −14.10
8.5 31852 4.98 8.25 0.70 −14.86 5.10 8.70 0.81 −14.39
8.5 33930 4.94 7.95 0.75 −15.14 5.00 8.20 0.89 −14.87
9.0 33770 5.05 8.78 0.66 −15.36 5.20 9.27 0.76 −14.81
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