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“A still more glorious dawn awaits, not a sunrise, but a galaxy-rise. A

morning filled with 400 billion suns. The rising of the Milky Way.”

Carl Sagan
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Abstract
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terpart to a binary neutron star merger, gravitational-wave multi-messenger astronomy
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way of looking at the Universe has unlocked. This thesis is a compilation of original

work from across time-domain astronomy – with a common thread of applying statisti-

cal methods to large datasets to extract new conclusions.

Chapters 3 and 6 fuse deep learning and databases to build high-performance,

uncertainty-aware source classification algorithms for large-scale optical sky surveys,

breaking new ground in integrating contextual information directly into deep-learned

classifiers. Chapter 4 constructs a Bayesian inference pipeline for homogeneous re-

processing of over 20 years of high-resolution spectra of the principal continuous-wave

source and cornerstone LMXB, Sco X-1 – delivering the most precise ephemerides for

the system thus far to enable high-sensitivity searches for gravitational waves. Chap-

ter 5 presents a search for short- timescale variability in supernova light curves, with

the aim of providing novel constraints on the structuring and density of the circumstellar

medium in these systems. Although null results were obtained, the data constrain the

amplitude of and rate of occurrence of previously-observed fluctuations, and allow us

to develop the techniques necessary to extend this study to a larger sample in future.
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Chapter 1

Introduction

“I don’t believe in astrology; I’m a Sagittarian and we’re sceptical.”

— Arthur C. Clarke

1.1 The advent of time-domain astrophysics

Since the dawn of time, humanity has been captivated by the dynamic Universe we find

ourselves in. The periodicity of the seasons, the re-emergence of familiar constellations

from below the horizon, and the slow dynamical dance of the planets across the night

sky have formed part of our human culture for many thousands of years – dictating

when to sow our crops, guiding epic voyages across vast oceans, and forming the in-

spiration for ancient myths and legends that have transcended the generations through

oral tradition.

This neat, ordered picture of the Cosmos has proven incompatible with real-

ity however, with the night sky presenting countless irregular and chaotic phenomena,

many observed with the naked eye throughout antiquity. The arrival of comets from the

outer Solar system, fleeting flashes of light from the sky, and stars changing brightness

erratically all called the ‘static’ perspective into question in ancient times, revealing a

Universe more complex than could be comprehended at the time, and causing untold

problems for the reigning philosophical perspectives of the day. Among the more telling

hints of this dissonance is in the translated Arabic name of the naked-eye eclipsing

1



binary star Algol (β Persei) – the head of the Ghoul.

These ‘transients’ were among the first hints of the extraordinary complexity

of the time-varying sky, that we now know to be populated at all time, length, and

energy scales – from short and low-luminosity stellar flares, to the explosive deaths

of massive stars as supernovae (SNe) that outshine their entire host galaxy for weeks,

to energetic gamma-ray bursts (GRBs) in the distant Universe illuminating the large-

scale structure of the Universe. Although ultimatedly non-exhaustive owing to the sheer

scale of the field, a brief history of time-domain astrophysics follows, focusing largely

on our knowledge of explosive transients.

The earliest verifiable records of astrophysical transients in human history come

from compendia published in ancient China. Chinese astronomers noted ‘guest stars’,

bright new astrophysical sources that appeared on short timescales, reached naked-

eye brightness, and faded over timescales of months. From the sparse historical records

that survive to the present day, and association to supernova remnants identified in all-

sky surveys, these are now inferred to be associated with galactic supernovae. One par-

ticularly notable ‘guest star’ (Ye, 500) remained visible to the naked eye for 18 months

after its’ sudden appearance in the Southern Gate (南門) – the modern Western con-

stellation of Circinus. It would be over 1800 years before this event was tied to the

diffuse emission nebula RCW 86 as our earliest recorded SN, SN 185: with X-ray stud-

ies yielding a consistent age, and elemental abundances pointing towards a Type Ia

supernova (SN Ia) origin (Williams et al., 2011).

Although numerous other naked eye supernovae were reported throughout an-

tiquity (Tycho’s Supernova in 1572 ; Kepler’s Supernova in 1604), systematic study of

such objects (and indeed, understanding their true astrophysical significance) was not

possible until the early 20th century with the availability of photographic plates. With

a means to now objectively capture the night sky, and make precise and repeatable

measurements, more systematic efforts could truly begin.

2



1.1.1 The dawn of supernova science

The first major supernova surveys began from the Palomar Observatory in the late

1930s, led by Walter Baade and Fritz Zwicky, imaging the sky using the Palomar 18-

inch Schmidt telescope. Supernovae were identified using a blink comparator, which

flipped between two aligned images of the same patch of sky, revealing sources that

had changed in brightness between the two observations. The first discovery from this

survey was made in March 1937, 18 months after the start of the survey. This founda-

tional work continued until Zwicky’s death in 1974, having discovered 120 supernovae

over the space of ∼40 years, providing a rich sample to begin learning more about

these explosive transients.

The theoretical question of what these ‘super-novae’ could be was addressed

in two seminal papers, Baade & Zwicky (1934a,b). These visionary papers illuminate

many aspects of supernovae that are taken for granted today – that supernovae begin

life as ordinary stars and these events constitute an explosive end to their lives, that

these events must be in a different luminosity class to any common novae observed

thus far (owing to their association with distant galaxies), and the first tentative rate esti-

mates for both our own galaxy and the Local Volume. One particularly prescient remark

was that supernovae may represent the transition of an ordinary star into a dense, com-

pact neutron star, largely supported by neutron degeneracy pressure. The energetics of

this situation suggested production of high-energy cosmic rays, with this later being sug-

gested to originate from particles being accelerated in shocks (Fermi, 1949). It would

be over 70 years later that gamma-ray observations with Fermiconfirmed supernova

remnants as among the cosmic ray sources, a testament to this early theoretical work.

Both papers underscored the need for more follow-up observations: both high-quality

multi-colour light curves and spectroscopy. These techniques remain the cornerstone

in our understanding of supernovae, even today.

The first high-quality spectroscopic studies of supernovae began in 1941, with

Minkowski (Minkowski, 1941) obtaining the first optical spectra of Zwicky’s discoveries.

These were classified into two broad groups: Type I and II, depending whether they

showed signatures of hydrogen – the progenitor to the supernova classification scheme
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in use today. By the 1970s (Oke & Searle, 1974), sufficient numbers been classified

such that ‘peculiar’ SNe could be identified, that did not neatly fit into the Type I/II

dichotomy. A more in-depth description of supernovae and other explosive transients

is deferred to Section 1.2.2, but it suffices now to say this provided an early hint of

the extraordinary complexity present in the transient zoo – and there is still no fully

satisfactory classification scheme at the time of writing.

1.1.2 SN 1987A – the birth of multi-messenger astronomy

One specific supernova, SN 1987A (Arnett et al., 1989), merits special discussion: as

the main instigator of modern multi-messenger astrophysics, the closest supernova in

modern astronomy, and as a cornerstone in our understanding of core-collapse su-

pernovae (CCSNe) at all observable wavelengths (Wooden et al., 1993; Chevalier &

Dwarkadas, 1995; Matsuura et al., 2022; Larsson et al., 2023), at late times (Woosley

et al., 1989; Jerkstrand et al., 2011; Arendt et al., 2020), and with resolved ejecta (Fryx-

ell et al., 1991; Mueller et al., 1991; Wang et al., 2002). Discovered while still rising,

SN1987A (Kunkel et al., 1987) occurred in the Large Magellanic Cloud (50 kpc; Pietrzyński

et al. 2013), a satelite galaxy of the Milky Way. A supernova at this distance enabled

two key landmark discoveries. Deep pre-imaging of the Large Magellanic Cloud (LMC)

enabled the identification of the progenitor star for the first time. Sanduleak -69 202, a

blue supergiant star in the Tarantula Nebula, was identified on photographic plates (San-

duleak, 1970) as astrometrically consistent (West et al., 1987) with the explosion site.

The observation of the progenitor served as direct confirmation of the supernova-massive

star connection, yet also raised additional questions: CCSNe were thought to be pri-

marily from larger red supergiants, with signficant implications for the progenitor sys-

tem (Podsiadlowski, 1992). Later work has revealed that SN 1987A is not a typical

CCSN: evolving far more slowly, and with a lower overall luminosity as a result of the

different progenitor. A small but growing class of ‘1987A-like’ supernovae has emerged,

showing comparable behaviour and consistently pointing towards a blue supergiant

(BSG) origin. The detection of 31 neutrinos (Bionta et al., 1987; Hirata et al., 1987)

from the direction of the LMC further cemented this event as the first extragalactic multi-
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messenger event. The flux of neutrinos provided crucial data with which to test existing

supernova explosion models, as well as placed an upper limit on the mass of the neu-

trino (Burrows & Lattimer, 1987). For the first time, a test of supernova physics with

both light and neutrinos was possible, enabling powerful tests of the theorised mecha-

nisms, nuclear reactions, and energy transport occurring at the heart of the supernova

explosion.

Astronomers and particle physicists eagerly await the next CCSN in the lo-

cal Universe (Adams et al., 2013), with new detectors primed and ready to detect

∼thousands of neutrinos, make detailed inferences about the explosion mechanisms (Mi-

genda, 2020) and deep core physics of supernovae, and provide some of the most

constraining tests yet of fundamental physics. Rates remain uncertain, (∼1/century

in the Milky Way; Tammann et al. 1994; Reed 2005), and there is a non-zero chance

such an event will occur in the Zone of Avoidance created by the dust extinction from

our own Milky Way. Nevertheless, such an event is sure to bring about a significant

paradigm shift in our understanding of the physics of supernova explosions, in a way

that observing more distant extragalactic supernovae simply cannot: we must be ready.

1.2 The Transient Zoo

With the step changes in survey capability over the past decades, we have discov-

ered significant numbers of supernovae and other extragalactic transients, and begun

to unveil a rich taxonomy of different types of transient, each with unique progenitor

systems, pathways to explosion, and observable properties. In the following sections, I

summarise some of the key properties of supernovae and other transients.

1.2.1 The landscape of transients

To contextualise the diversity of transients we see, it is useful to consider the key observ-

ables of transient events that connect directly to our theoretical models: the luminosity

and characteristic timescale (Kulkarni, 2012). These two observables constrain directly

the underlying physics of the transient (Villar et al., 2017) – with radioactively- powered
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transients for example having tightly-constrained timescales owing to the fixed half-life

of radioactive isotopes (with variance emerging from ejecta velocity.) Similarly, the lumi-

nosity of SNe Ia is tightly constrained due to the (approximately) fixed progenitor mass

through the Chandrasekhar limit, yielding a comparable nickel mass for each transient.

Nickel-powered transients show a characteristic late-time decay slope (see Figure 1.2),

fixed primarily by the half-life of the isotopes involved. Figure 1.1 shows the luminosity-

timescale paraameter space of transients, using data from the ZTF Bright Transient Sur-

vey (Perley et al., 2020) sample split into broad phenomenological classes (see Sec-

tion 1.2.2). As noted above, thermonuclear transients show a very narrow distribution of

timescales and peak absolute magnitudes, whereas the more complex core-collapse-

like transients show a broader range owing to their broader ranges of progenitors. Sig-

nificant diversity in the light curves of specific transient classes is challenging, although

exciting: this means the properties of the explosion are strongly governed by parame-

ters of the system, and thus successful modelling can yield insights into the nature of

these transients, and constraints on their properties – if we can understand the under-

lying physics.

A key open question however surrounds the ‘filling’ of this luminosity-timescale

parameter space – where do the limits of this parameter space lie? Is this plot fully

filled with transients of all types, or are there regions ‘forbidden’ by explosion physics or

stellar evolution? Conversely, pushing out into regions unexplored by current surveys

may yield novel new physics, insights into stellar evolution, and previously unforeseen

phenomena. With the higher cadences and greater photometric depths of current-

generation transient surveys, we are beginning to fill out regions of this luminosity-

timescale parameter space that were previously challenging – populated by only a few

serendipitous detections. We are successfully expanding this space to both shorter

timescales and fainter luminosities via new surveys, finding new types of transient in

seemingly all directions we explore. Nevertheless, we are also unveiling ever larger

populations of familiar transients – supernovae, which I discuss in the following Sec-

tion.
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Figure 1.1: Luminosity-timescale plot for supernovae and other associated transients,
constructed based on kernel-density estimates of the ZTF-BTS (Perley et al., 2020)
sample, aggregated by broad transient class. The 68th, 90th, and 95th percentiles
are plotted as contours for each class. The extraordinary fast blue optical transient
AT 2018cow is represented with the cow-shaped marker, laying at the extreme end of
the gap transient distribution in terms of luminosity and timescale.
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1.2.2 Supernovae

Supernovae (SNe) are the violent endpoints of stellar evolution, creating some of the

brightest transient events observed and outshining their entire host galaxies for weeks

at a time. This extreme brightness has underpinned use of supernovae as cosmolog-

ical probes (Schmidt et al., 1998; Riess et al., 1998; Perlmutter et al., 1999) due to

the great distances they are visible at. Only around 1% of stars will experience this

catastrophic fate, with the vast majority ending life as white dwarfs, destined to slowly

cool for billions of years unhindered (Althaus et al., 2010). Despite this comparatively

small fraction, SNe have a profound influence in the evolution of the Universe across

a range of spatial scales. SN explosions are responsible for seeding the interstellar

medium (ISM) with heavy elements, with a large amount of these being synthesised via

silicon burning (Woosley et al., 1973) in the intense pressure created by the infalling

outer layers of the star onto the stiff core. Through this interaction with the ISM, SNe

also directly influence the evolution of their galaxies and modulate the star formation

rate, via coupling and feedback (Hopkins et al., 2018; Smith et al., 2018). The dual

is also true, with the environments in which supernovae explode encoding information

about their progenitors (e.g. Modjaz et al. 2008; Rigault et al. 2013; Anderson et al.

2015). As briefly introduced in Section 1.1.1, SNe are separated into classes based on

their spectroscopic properties – with the top-level split being between Type I (hydrogen-

poor) and II (hydrogen-rich) (Minkowski, 1941). This classic dichotomy has persisted

to the present day, with numerous extensions to cover the various supernovae we have

uncovered.

SNe Ia are the result of a detonation and deflagration of a CO white dwarf that

exceeds the Chandrasekhar limit (1.4 M⊙), where neutron degeneracy pressure can

fully support the degenerate star against gravitational collapse. When the white dwarf

gets sufficiently close to this limit, the increased pressure permits a deflagration front

of carbon-oxygen burning to advance through the star, synthesising significant yields of

radioactive elements – with heavy elements like nickel (the main source of luminosity)

and iron, with the characteristic Si features of SNe Ia being synthesised closer to the

surface of the dying white dwarf. The star is destroyed in the process leaving no rem-
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nant behind, as sufficient energy is released to fully unbind the white dwarf, launching

ejecta at significant velocity. Owing to the precise constraint on the mass at which SN Ia

explosions are triggered and the largely homogeneous composition of WDs, the energy

budget (and thus luminosity) of these events is tightly bounded – making these tran-

sients crucial standard candles for cosmological studies. White dwarfs massive enough

to detonate in a SN Ia explosion are typically the result of significant accretion from a

main-sequence companion star (single-degenerate origin), or the merger of two white

dwarfs (double-degenerate origin), with the progenitor system embedding on the prop-

erties of the explosion. In contrast, core-collapse (Type II) supernovae (CCSNe) are

a more diverse group of transients, stemming from the death of massive ≳ 5− 8 M⊙

stars. As these massive stars fuse successively heavier and heavier elements in shells

surrounding the core as they approach the end of the their lives, the energy yield from

fusion decreases – causing the star to expand to greater radii and cool, whilst the core

also contracts inwards. Fusion ceases at Fe/Ni and the core can no longer generate

sufficient pressure The intense luminosity of supernovae (both Type I and II) comes pri-

marily from the radioactive decay of 56Ni (Arnett, 1982), synthesised in the explosion –

with the half-life of 56Ni setting the characteristic timescales for the decay of luminosity

in SN Ia and other hydrogen-poor transients. Hydrogen-rich supernovae from massive

star progenitors are more complex (e.g. Heger et al. 2003; Woosley & Janka 2005),

partially due to the presence of hydrogen. After the photosphere has cooled sufficiently

(4000-6000K), hydrogen begins to recombine providing an additional source of energy

at later times. This yields a long (∼ 100d) plateau in the light curve in the case of

SNe IIP (plateau), where abundant hydrogen is available. In SNe IIL (linear), there is no

significant hydrogen envelope, and so this effect is negligible and the light curve drops

at approximately the rate of radioactive decay instead. Core-collapse supernovae also

find utility in cosmological studies, not as standard candles via their (highly variable,

see e.g. Richardson et al. 2014) peak luminosities, but via the ‘expanding photosphere’

method (Kirshner & Kwan, 1974; Eastman et al., 1996) – linking the expansion velocity

(measured from spectral lines) and angular size of the photosphere (from photometry,

assuming a blackbody emitter) to obtain a purely geometric distance measurement to
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Figure 1.2: Typical light curves for thermonuclear, core-collapse, and stripped super-
novae plotted to show their typical timescales (reproduced from Arcavi et al. 2017).
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the transient.

Lacking both strong hydrogen emission lines, and the characteristic Si bump,

stripped envelope supernovae represent an extreme endpoint of stellar evolution (Ly-

man et al., 2016). The progenitors of these transients have had their outer layers

removed either by intense stellar winds (Smith, 2014), or by binary interaction (e.g.

Eldridge et al. 2008. The degree of stripping dictates the overall evolution and observa-

tional parameters of these transients, with mildly-stripped supernovae (with a remaining

He layer) known as SNe Ib, and supernovae fully stripped of H and He known as SNe Ic

– determined primarily by their spectral appearance. These events are nominally core

-collapses of massive stars, although are given the SN I label as they are hydrogen-

poor. SNe IIb (e.g. SN 1993J Woosley et al. 1994) represent a transitional phase be-

tween SNe II and SNe Ib, with some remaining hydrogen still visible in the spectrum,

that disappears giving way to strong helium emission.

One key complicating factor is the presence of ‘interaction’ across a wide range

of supernovae (Fraser, 2020). In interacting supernovae, the supernova blast wave

ploughs into a surrounding dense circumstellar medium (CSM), driving additional emis-

sion from heating of this material. This manifests observationally (Ofek et al., 2014a)

as strong, blue emission at early times close-in to the supernova (where the CSM is

densest, e.g. Chevalier 1982), with strong, narrow line emission from metals. Depend-

ing on the extent and density of the CSM, these emission features can either disappear

days after explosion (flash features, e.g. Khazov et al. 2016; Bruch et al. 2022) or per-

sist for weeks afterwards in the case of dense CSM, often denoted by appending an n

to the classification to denote narrow lines . Unlike stripped envelope supernovae, the

mass must remain around the SN progenitor, likely favouring stellar winds or eruptive

mass loss (Ofek et al., 2014b) as a mechanism (despite being challenging for ther-

monuclear explosions like SNe Ia). The most common of these interacting transients

are SNe IIn (e.g. Schlegel 1990; Kiewe et al. 2012), with the CSM arising from erup-

tive mass loss (Chugai et al., 2004) (see Section 5.1) – although populations of more

rare Ibn, Icn, and Ia-CSM supernovae have been noted. Signatures of interaction, and

searching for them, lie at the heart of Chapter 5 – providing a novel route to test predic-
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Figure 1.3: Schematic diagram illustrating the various supernova classes, with a par-
ticular focus on the often hierarchical nature of the classification schemes. Reproduced
from Turatto (2003)

tions of stellar mass loss, and constrain these parameters to improve our evolutionary

models going forward.

Figure 1.3 attempts to illustrate the existing classification scheme of super-

novae graphically, and emphasises the mismatch between the classification scheme

and e.g. progenitor pathways/mechanisms. Although replacement schemes have been

proposed (e.g. Gal-Yam 2017), none have succeeded in gaining traction in the com-

munity. This is largely driven by the staggering diversity of SN spectra, as well as the

difficulties in assigning quantitative ‘grades’ using data of inhomogeneous quality. As

we discover and characterise more transients , we consistently find new objects that

defy classification within the framework of whichever labels are currently in use – ei-

ther being classified as ‘peculiar’ variants of existing types, or branching out into new

classes of their own.

The growing population of fast blue optical transients (FBOTs) (Drout et al.,

2014; Pursiainen et al., 2018; Ho et al., 2021) is a key example of this – as survey

cadences increased to sample large areas at ∼day cadence, a population of tran-

12



sients with evolution timescales comparable to this emerged. Although the first tran-

sients emerged from local, small-area surveys, an increasing number began to emerge

serendipitously from wide-field sky surveys (although largely post-peak). The hallmarks

of this class of transients are: short time spent above half maximum light ⪅12d (Drout

et al., 2014), and blue optical colours throughout rise/peak. Many FBOTs also show

radio/X-ray emission, indicative of shock interaction with a dense circumstellar medium.

Among the most remarkable of these events was AT 2018cow (Prentice et al., 2018), a

bright, nearby FBOT with a high luminosity and rapid rise time (3.5d) that is the hallmark

FBOT owing to the rich dataset we gathered on this object. Since then, many more ‘fast

transients’ (Ho et al., 2021) have been discovered, but only 5 of these are ‘Cow-like’

in terms of luminosity, indicating again rich diversity in this region of transient parame-

ter space. Many of the sub-luminous FBOTs are thought to be interaction-dominated

IIb/Ib/Ic explosions, with the origins of the most luminous members of the class still

largely unclear (e.g. Perley et al. 2019; Leung et al. 2020; Lyutikov 2022) owing to the

intrinsic difficulty of gathering datasets of the quality required to distinguish between

scenarios, especially at early time. Particularly intriguing is the observation of very

short-timescale flaring in the ‘Cow-like’ explosions, up to a factor 100 over timespans

of minutes (Ho et al., 2022a). Although further discussion is left to Section 5.1, we

note here that this remarkable behaviour is further evidence for compact objects be-

ing responsible for many of the properties of these transients – the causal length-scale

of this phenomena must be smaller than 1012 cm, incompatible with the photospheric

radius/shock-front radius at the times observed. Engine-driven variability of a nascent

magnetar, or modulation of accretion onto a compact object is compatible both with this

timescale, as well as the significant X-ray (e.g. Matthews et al. 2022) and radio emission

of these events generated through non-thermal emission.

Closer to home, increasing numbers of intermediate luminosity optical transients

(ILOTs) in local galaxies are being discovered through dedicated local- Universe sur-

veys. As their name suggests, these transients characteristically have luminosities be-

tween classical novae and supernovae, and have long evolution timescales of∼months

– predominantly red due to the cool, dusty components they eject. ILOTs encapsulate
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a diverse range of origins, including luminous red novae (LRNe; Kulkarni et al. 2007;

Williams et al. 2015; Cai et al. 2022) from stellar mergers, failed supernovae (Gerke

et al., 2015), and supernova ‘impostors’ (Pessi et al., 2022). From a theoretical perspec-

tive we expect many more poorly-characterised transient sub-types to inhabit this region

of luminosity-timescale space: the explosive deaths of cataclysmic variable stars (Met-

zger & Fernández, 2021) and planetary engulfments (De et al., 2023). As always, more

observations are required to place these events within context, and further probe the

diversity of individual events within our broad classifications.

At the most extreme luminosities, and shortest timescales, lie the explosive

GRB, among the most energetic explosions in time-domain astrophysics. Whilst in-

depth discussion of GRBs is left to the extensive literature on the subject (see e.g.

Paradijs et al. 2000), these events divide into short and long GRBs based on their dura-

tion, the T90 value, over which 90% of total counts are detected. Short GRBs (sGRBs)

have T90 values less than 2 seconds, and are believed to originate predominantly from

the mergers of binary neutron stars. The electromagnetic counterparts of short gamma-

ray bursts receive extensive discussion in Section 1.3.2. Long GRBs originate from the

deaths of the most massive stars, powered by the ‘collapsar’ mechanism – meta-stable

accretion disks formed from the outer layers of the star re-accreting down onto the

nascent compact remnant of the star. Relativistic jets are launched off of the compact

object, which interact with the dense material surrounding the collapsar, and create a

gamma-ray burst when they ‘punch’ out of the material. To both form the accretion

disk required and leave a massive-enough central remnant to power the emission, the

progenitors of GRBs must be extremely massive (≳ 40M⊙). After the main gamma-

ray burst, a luminous supernova can emerge on timescales of ∼ days, typically of type

Ib/Ic, but with significant ejecta velocity from the violent GRB event. Observations of

GRB-SNe (e.g. SN 1998bw, Woosley et al. 1999), their host environments, and the lack

of H or He in their spectra further cement the collapsar origin of these events.

The section above has provided a broad, non-exhaustive overview primarily

focused on our knowledge of transients from the perspective of electromagnetic ob-

servations. Recent advancements have enabled us to move beyond this, and obtain
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unprecedented new insights into the side of transients we cannot ‘see’ directly.

1.3 The promise of multi-messenger astrophysics

Multi-messenger astronomy is a powerful emerging paradigm in the study of transient

events. Different ‘messengers’ carry information about different physical processes, po-

tentially occurring at different mass/length/energy scales than classical electromagnetic

waves. A key example is in supernova explosions: at early times, the stellar interior/e-

jecta is optically thick to the oncoming supernova shockwave. The shockwave travels at

local sound speed, and must reach the edge of the star/where the CSM becomes op-

tically thin before being visible (shock breakout; Waxman & Katz 2017) – taking hours

to days dependent on stellar radius and density. Unlike the electromagnetic emission

however, neutrinos can traverse the dense regions relatively unattenuated at the speed

of light, emerging well before the shock breakout occurs. Neutrinos not only carry in-

formation from the very heart of the supernova explosion, but can also provide early

warning of supernova explosions.

Multi-messenger astronomy has only recently come to prominence as a field of

research, although multi-messenger observations themselves go back many decades.

Our own Sun was the first multi-messenger source, with observations of solar energetic

particles (Forbush, 1946) being made and associated to the Sun. These observations

probe particle acceleration in flares on the Sun’s surface, and have yielded constraints

on the elemental abundances of our Sun (Breneman & Stone, 1985). The landmark

extragalactic multi-messenger event, SN 1987A Section 1.1.2, remains our cornerstone

in the understanding of core-collapse supernovae, and is our principal constraint on the

innermost workings of supernova explosions, despite only 31 neutrinos being observed.

A recent significant breakthrough in the domain of multi-messenger astrophysics

was the discovery of neutrinos (IceCube Collaboration et al., 2018a) and very high en-

ergy (VHE) emission (Ansoldi et al., 2018) temporally coincident with an optical flaring

episode in the blazar TXS 0506+05 (IceCube Collaboration et al., 2018b; Keivani et al.,

2018). This event cemented the previously-theorised role of active galaxies as nature’s
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most powerful particle accelerators, and provided a wealth of new observational data

to constrain jet models (Cerruti et al., 2019). This picture has been borne out by more

recent detections of neutrino excesses from another active galaxy, NGC 1068 (IceCube

Collaboration et al., 2022). Further, there is emerging evidence that tidal disruption

events (TDEs; van Velzen et al. 2021) are another significant (≳ 10% of total flux) source

of astrophysical neutrinos (Stein et al., 2021, 2023), with some models also predicting

observable neutrino emission from kilonovae (Kimura et al., 2018).

Most recently, the advent of gravitational wave (GW) multi-messenger astro-

physics with the discovery and in-depth study of GW 170817 (Abbott et al., 2017e)

has proven transformative in our understanding of explosive transients, the neutron star

(NS) equation of state (EoS) equation of state, and relativistic astrophysics in the ex-

treme – underpinned by the most precise metrology in the physical sciences thus far,

distributed across multiple continents. I devote the next few sections to discussing this

profound new approach in depth.

1.3.1 Gravitational-wave astrophysics

The existence of GWs were theorised prior to Einstein’s general relativity by Poincare

and Heaviside as analogs to electromagnetic radiation, however these theories lacked

mathematical grounding until the advent of general relativity (GR) by Einstein (Einstein,

1916). The Einstein field equations of GR permit simple plane wave-like solutions in the

weak-field regime. These solutions are the ‘gravitational waves’: transverse, traceless

perturbations of space- time – that is they only cause perturbations perpendicular to the

direction of propagation, and cause only ‘shearing’ forces. These perturbations propa-

gate at the speed of light as ripples on the fabric of space-time, and are generated in

principle via motion of mass. More specifically, GW sources require non-axisymmetric

motion of mass – or more rigorously, the second derivative of the quadrupole moment

of the system’s stress-energy tensor must be non- zero. This is mathematically encap-

sulated in the ‘quadrupole formula’,

h̄i j(t,r) =
2G
c4r

Ïi j

(
t− r

c

)
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, where Ii j is the stress- energy tensor (with i j representing spatial indices following

Einstein sum convention), and hi j is the metric perturbation caused by the gravitational

wave itself, sometimes called the ‘strain’. Two points are worth remarking upon here.

The principal observable h scales as 1
r , in contrast to the typical 1

r2 scaling seen in

electromagnetic (EM) astronomy. The amplitude |hi j| scales approximately as I/t2 –

meaning the amplitude of GWs can be made greater by moving more mass-energy, or

simply by moving it more quickly. These properties directly inform what we expect to be

the most prominent sources of gravitational-wave radiation: the orbital decay of compact

binary star systems, the spindown of rapidly-rotating non- axisymmetric sources. Some

other astrophysical events like supernovae have predicted GW signatures, although

these give off more stochastic ‘bursts’.

Despite this, GWs are incredibly feeble, with typical predicted strains ≲ 10−20,

requiring metrology below the scale of individual nucleons to detect. Claimed direct

detections of GW radiation were made as early as the 1960s (Weber, 1967, 1969) using

a ‘Weber bar’ antenna: this was composed of two aluminium cylinders with resonant

frequencies close to the expected frequency of gravitational waves. Although these

claims were ultimately not reproducible by numerous independent attempts (e.g. Levine

& Garwin 1973), the ideas and metrology developed by Weber laid the groundwork for

many modern breakthroughs.

The first experimental evidence for gravitational-wave emission being a real

and measurable effect came from radio timing measurements of the binary pulsar

PSR J1915+1606 – known now as the Hulse-Taylor binary after the two discoverers.

The system is comprised of two neutron stars – one pulsar and one in relative qui-

escence. The ≈ 59ms pulse period of the pulsar, although challenging to measure,

provided an exquisitely accurate clock with which to trace the orbit. Through measuring

the pulse arrival times over a period of 14 years, it was revealed that the orbital period

of the pulsar was decaying (Hulse & Taylor, 1975), indicating a loss of angular momen-

tum from the system. The measured rate of decay (ν̇ = 8.62713(8)×10−18 s/s; Taylor

& Weisberg 1989) shows remarkable consistency with the predicted period derivative

expected from gravitational-wave radiation (Peters & Mathews, 1963), providing both a
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pioneering test of general relativity and the first (albeit indirect) measurement of GWs.

All current gravitational-wave detectors follow a design inherited from the Michel-

son interferometer (Michelson & Morley, 1887), by sending a beam of light down two

perpendicular arms using a beam-splitter, then combining the two reflected beams and

measuring the interference pattern created. Any differences in the path length in each

arm will manifest in subtle changes in the interference fringes. This technique enables

measurement of changes in the arm lengths significantly smaller than the wavelength

of the light used. This is illustrated in Figure 1.4. The principal observable GW detec-

tors measure is the strain time-series h(t) - the ratio of the difference in length between

the two perpendicular arms divided by arm length as a function of time. The ‘shear-

ing’ behaviour of GWs causes one arm to contract (or expand) relative to the other.

Naturally, these detectors have a characteristic sensitivity pattern for detection of GW

sources, with ‘blind spots’ where the GW shear axis is perpendicular to the plane of the

detector. Localisation requires multiple detectors ideally, with differences in the time of

arrival helping to constrain sources to annuli on the sky. The simple descriptions above

abstracts away decades of instrumentation development, computational advances, and

work – the step change comes not only from significant scale changes (∼cm to ∼km)

but a continuous heritage of technological advancement (e.g. Lück et al. 2006).

The first direct detection of gravitational waves came in 2015 with GW 150914 (Ab-

bott et al., 2016a,d), a binary black hole (BBH) merger at a distance of around 500

Mpc – generating a peak strain of h≈ 10−21, or a deviation in arm length approximately

1/1000th the width of a nucleon. Modelling with numerical relativity suggested this event

was caused by the merger of two black holes (36 and 29 M⊙ respectively), with 3M⊙ of

mass-energy being radiated away in gravitational waves. Alongside validating another

direct prediction of general relativity and showing an excellent fit to predictions from nu-

merical relativity, this event further constrained the parameter space for post-Newtonian

theories of gravity (Abbott et al., 2016c). This event heralded the beginning of a new era

of gravitational-wave astrophysics in its’ own right, but also re- invigorated prospects of

gravitational-wave multi-messenger astronomy.
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Figure 1.4: Schematic diagram of Advanced LIGO (reproduced from LIGO Scientific
Collaboration et al. 2015), showing the Michelson interferometer-based design in more
detail. Laser light is split along two perpendicular arms, and recombined to measure
phase differences indicating changes in the arm lengths.
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Figure 1.5: The ‘chirp’ waveform of GW150914 (reproduced from Abbott et al. 2016a),
as detected by the LIGO Livingston and Hanford detectors in 2015. The ‘chirp’ in-
creases in frequency as the binary orbit decays to shorter periods, and the amplitude
dramatically increases towards coalescence as it too depends on frequency.
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1.3.2 Electromagnetic counterparts to GW-driven mergers

With the unambiguous1 detection of a compact binary coalescence, focus shifted in

the astronomical community to identifying potential EM counterparts to the events be-

ing unveiled successfully through gravitational-wave detections. Given the significant

amounts of mass being shifted around, it seemed natural that such events would be

accompanied by significant, energetic signatures where baryonic matter was involved.

Even prior to the detection of GWs, EM counterparts to binary neutron star (BNS) merg-

ers had been theorised to exist (Li & Paczyński, 1998; Kulkarni, 2005; Metzger et al.,

2010) – termed ‘macro-novae’ or ‘kilo-novae’. These transients were theorised to oc-

cupy a region of luminosity space between classical novae, and SNe – powered by

the radioactive decay of freshly-synthesised r-process elements. The synthesis of lan-

thanides on ∼day timescales drives changes in opacity, yielding a rapidly-reddening,

fast-evolving transient. Although some transients discovered through high-energy trig-

gers (e.g. GRB 130603B; Tanvir et al. 2013) bore many of the hallmarks of a kilonova,

none could be directly linked to a compact binary coalescence. Similar events are pre-

dicted for NSBH mergers (Tanaka et al., 2014; Kawaguchi et al., 2016; Barbieri et al.,

2019; Gompertz et al., 2023), with lower luminosities (around 2–10 magnitudes less)

given the overall smaller mass of ejecta present.

Given that no baryonic matter is present, BBH mergers are expected to be

largely EM-dark, as no normal matter is involved in typical isolated mergers of black

holes. Some more exotic progenitors (Liebling & Palenzuela, 2016; Loeb, 2016; de

Mink & King, 2017) or environments have the potential to trigger short-timescale, high-

energy events from more exotic progenitors. Some have claimed EM counterparts to

BBH mergers within active galactic nucleus (AGN) (Graham et al., 2020, 2023) – with

the merger kicking the resultant BH through the dense accretion disk of the AGN, cre-

ating a short-lived optical flare. Accounting for the intrinsic variability of AGN (which

already show regular flares) however remains challenging

With the prospects of resolving long-standing uncertainties about the birth sites

of r-process elements, and the progenitors of short GRBs, GW triggers were intensively

1Some groups (Creswell et al., 2017) disagreed with this initial detection.
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followed up by the EM community – with the hope of finding kilonovae within the locali-

sation region of GW-detected binary neutron star mergers . It would not be long before

the community were granted their wish, with GW170817.

1.3.3 GW170817 and AT2017gfo

GW 170817/GRB 170817A/AT 2017gfo was perhaps the single most significant target

in multi-messenger astronomy thus far, with over 1,637 peer-reviewed publications ref-

erencing the event at the time of writing. The rich, multi-facility, multi-wavelength dataset

on this event is among the richest in observational astronomy, crucial to the interpre-

tation and understanding we have gleaned from it. Although a fully comprehensive

account is too large to fit within this thesis, I outline some of the key events, outcomes,

and findings from this extraordinary cosmic explosion.

GRB 170817A (Goldstein et al., 2017; Abbott et al., 2017f) was the first reported

trigger of this event, with a clear detection from the Fermi GBM instrument. 1.7s be-

fore this high-energy trigger, the LIGO Livingston, LIGO Hanford, and Virgo detectors

observed a compact binary coalescence, given the name GW 170817 (Abbott et al.,

2017c). Parameter estimation routines confirmed this as a merger of two neutron stars

of masses 1.16 and 1.60 M⊙respectively (Abbott et al., 2019a), with a joint sky localisa-

tion of 31 square degrees, and median luminosity distance of 40 Mpc. This is illustrated

in Figure 1.6 The time delay of 1.7 seconds between the two triggers provided strong

constraints on the speed of propagation of gravitational waves – predicted to be the

speed of light, and empirically verified to 1 part in 1016. Although this messenger ar-

rived before, latencies in the detection pipeline meant it was only reported after the fact,

when the significance of the association became clear. An extensive multi-messenger

campaign ensued to search for potential optical counterparts in the joint localisation

area between GW 170817 and GRB 170817A (Abbott et al., 2017e). 10.9 hours post-

trigger, a bright transient (known as AT2017gfo, see Coulter et al. 2017b) in the nearby

galaxy NGC 4993 (Hjorth et al., 2017) was discovered (Coulter et al., 2017a), with mul-

tiple independent discoveries (Soares-Santos et al., 2017; Arcavi et al., 2017; Lipunov

et al., 2017) confirming the discovery. Later spectroscopic confirmation (Lyman et al.,
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Figure 1.6: Graphical summary of GW170817, reproduced from Abbott et al. (2017e).
The joint localisation between GW and EM triggers is illustrated

2017; Shappee et al., 2017) confirmed that this was a transient entirely unlike any su-

pernovae seen prior – with a featureless spectrum with a clear deficit of flux in the bluer

wavelengths, a cool black-body. Intensive follow-up was triggered on facilities around

the world, and in space, providing among the richest datasets in astronomy.

From this singular event, many long-standing questions and theories have been

verified empirically. The optical afterglow counterpart cemented the association be-

tween GW 170817 and GRB 170817A, providing observational confirmation of the the-

orised link between compact binary mergers and short gamma-ray bursts (e.g. Eichler

et al. 1989; Narayan et al. 1992). Modelling the rapidly-reddening observed spectral

energy distribution (Drout et al., 2017), paired with spectroscopic observations (Smartt

et al., 2017), provided strong observational evidence for the synthesis of r-process ele-

ments. Based on the inferred yields of lanthanides from these observations, it is likely

that binary neutron star mergers are the dominant r-process sites in the Universe (Tan-

vir et al., 2017).
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Late-time observations continue to the present day across all bands, as the kilo-

nova has faded, and the jet launched by the GRB collides with the ISM dominates the

emission (Lyman et al., 2018). GRB 170817A is an off-axis GRB, and shows evidence

for a structured jet (Alexander et al., 2018; Troja et al., 2019) with a simple power-law

spectrum. Long-term X-ray emission (Troja et al., 2017; Margutti et al., 2017; Piro et al.,

2019; Troja et al., 2020) continues from synchotron emission from the shocked ISM in

front of the jet. This has proven brighter than expected at very late times (Hajela et al.,

2022), likely due to fallback accretion (Rossi & Begelman, 2009; Metzger & Fernández,

2021; Ishizaki et al., 2021).

Despite everything we have learned from this event, and the validation of our

theoretical predictions of kilonova observables, many uncertainties lie ahead: how typi-

cal was AT 2017gfo of the wider population of kilonovae? Out to what distances can we

effectively conduct follow-up of typical kilonovae? We expect significant diversity in the

light curves and properties of kilonovae (Gompertz et al., 2018) from theoretical mod-

els (Bulla, 2019), with the viewing angle, lanthanide fraction, and ejecta massses driv-

ing significant changes in the observational appearance. Paired with numerical relativity

modelling to map between merger parameters and kilonova properties, this provides a

potential route to inferring binary properties from high-quality light curve data (Coughlin

et al., 2019; Nicholl et al., 2021), with potential synergistic constraints possible from a

joint GW-EM detection. Further, the recent detection of a kilonova from a long gamma-

ray burst (lGRB) (Rastinejad et al., 2022) suggests that some lGRBs are the result of

compact binary mergers, further complicating the picture. This particular event showed

(temporally) extended emission (Norris & Bonnell, 2006) in gamma rays, in the context

of the compact binary merger powered by a high rate of fallback accretion onto the

remnant. Although the LVK detectors were offline at the time of this event, at 350 Mpc

it is unlikely to have been detected (e.g. Buikema et al. 2020), making the follow-up

of high-energy triggers an important complement to pure gravitational-wave triggers for

this type of object. Resolving the broad uncertainties remaining will require the discov-

ery and follow-up of more optical counterparts to gravitational-wave events, a uniquely

challenging task owing to the nature of gravitational-wave detectors.
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1.4 The challenges of multi-messenger astrophysics

Despite the great promise of GW-EM multi-messenger astrophysics, significant chal-

lenges remain even now. The sky localisations of gravitational wave events can be

large, especially in the case of detection in a single detector where the localisation is

largely driven by individual detector response patterns, rather than time-of- arrival dif-

ferences between detectors in the network. Whilst in the case of GW 170817 we were

lucky to obtain a separate high-energy trigger, we have no reason to expect that every

BNS merger observable by LVK will be accompanied with a gamma-ray burst. Off-axis,

lower fluence bursts like that of GRB 170817A would simply not be visible at greater

distances. The expanded detector horizon resulting from increased sensitivity also

means more BNS events will be observed, and at typically greater distances (Petrov

et al., 2022), further complicating follow-up efforts and reducing the prospects of joint

high-energy triggers. Large localisations are especially challenging for surveys not ded-

icated to GW-EM follow-up, where interrupting the overall survey cadence and strategy

for triggers is not possible/heavily constrained.

A further issue is the volumes of unrelated transients (termed ‘contaminants’)

unearthed by multi-messenger searches (e.g. Smartt et al. 2016). Given the markedly

higher volumetric rates of regular supernovae, stellar variability, and other phenomena,

identifying intrinsically rare GW-related transients is challenging. Recent searches have

unveiled families of transients with similar evolutionary timescales and observed prop-

erties to kilonovae (KNe) at early times (Agudo et al., 2022), further complicating the

process of triaging candidates in the error region. Recent observational (Gompertz

et al., 2018) and theoretical (Kawaguchi et al., 2020; Barnes et al., 2021; Bulla, 2023)

efforts further reveal significant diversity in the photometric and spectroscopic signa-

tures of kilonovae themselves – resulting from varying systemic parameters. Although

such diversity in observational properties may make initial identification more challeng-

ing, it also directly encodes information about the kilonova that may be retrievable with

accurate models (Bulla, 2019; Nicholl et al., 2021).

Putting aside the challenges of multi-messenger follow-up efforts: upcoming
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observing runs will require not only wide fields of view to cover the vast localisations, but

the depth to push to more distant targets – all while operating at high enough cadence to

identify counterparts before they fade to luminosities incompatible with intensive follow-

up (e.g. Chase et al. 2022). Such a balance is ideally met by purpose-built all-sky

surveys that are dedicated predominantly to GW-EM follow-up.

1.5 Eyes on the skies: the modern landscape of large scale

sky surveys

With the wide-scale adoption of the charge-coupled device (CCD), and rapidly growing

computational power (Moore, 1965) available to astronomers, the process of survey-

ing the sky could now be digitised. CCDs improved significantly over the photographic

plates used previously, with higher sensitivity, a more linear response to light, and the

ability to perform processing on the raw pixel data. This last point is particularly impor-

tant: with human eyes on photographic plates being the limiting factor previously, image

processing and automated routines could reduce this burden and enable surveys to ex-

tend to greater fields of regard.

The first digital transient sky surveys such as the Lick Observatory Supernova

Search (LOSS; Li et al. 2000) and ESSENCE (Miknaitis et al., 2007) discovered as

many supernovae as Zwicky had in 40 years in just a few years, marking a step change

in capability. Surveys such as OGLE (Udalski et al., 2015) also began large-scale time-

domain surveys of the Magellanic Clouds and Galactic Plane, delivering vast catalogs

of stellar variability and microlensing events. Difference imaging (see Section 2.4 for a

more in-depth mathematical discussion) proved transformative in facilitating searches

at larger scale, by making automated measurements of candidate transient sources

possible. Through matching point spread functions (PSFs) and background fluxes be-

tween a ‘science’ image and a suitable ‘template’ or reference image of the same patch

of sky, the flux of non-varying sources can be subtracted away, leaving (ideally) resid-

ual PSF-like sources on a clean background that reveal sources that have changed in

brightness. Traditional source detection algorithms and photometry routines (e.g. Bertin
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Figure 1.7: Supernova discoveries and classifications plotted with time, as reported
to the Transient Name Server. The inset panel shows the last ∼ 10 years on a linear
scale, to highlight the rapidly-widening gap between transient discoveries and success-
ful classifications

& Arnouts 1996) can then be applied to this ‘difference’ image to identify candidate tran-

sients and make measurements of their brightness. Whilst initially limited in capability

(e.g. Alard & Lupton 1999), this technique was rapidly scaled up to wide field of view

instruments, enabling deep searches for transients over 10s of square degrees. This

technique now underpins the vast majority of modern transient surveys. These surveys

are now unveiling significant yields of astrophysical transients, and observing at the

necessary cadence to begin to discover transients that evolve on timescales of ∼ days.

The evolution of technologies and techniques used in wide-field transient surveys have

driven an explosion in the number of transients discovered over the past 10 years. Fig-

ure 1.7 illustrates the progress of the field over the past century, showing exponential

growth over time. The inset shows the extraordinary growth in the numbers of discov-

ered transients over the past 10 years, but also highlights one of the central issues

of the field – the ever-widening gap between the number of transient discoveries, and
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Figure 1.8: Mollweide projection of all extragalactic transients discovered up to the
time of writing. There is a notable deficit of transients within the galactic plane, owing
to the strong dust extinction from our own Milky Way, and less transients in the South-
ern Hemisphere owing to fewer transient surveys operating below declinations of -30◦.
Some ‘clumps’ are also visible, corresponding to ‘deep’ sky surveys

the number of transient classifications. This shows no sign of abating, as spectroscopic

classifications require both larger telescopes and longer integrations to achieve suitable

signal to noise than simple imaging of transients.

The on-sky distribution of extragalactic transient discoveries is illustrated in Fig-

ure 1.8, showing that we are finding objects all across the sky. There is a notable

deficit of discoveries in the Galactic plane, where foreground extinction limits the effec-

tive depth of surveys, as well as in the Southern sky, where fewer discovery facilities

exist.

Two major paradigms for large-scale optical sky surveys have emerged (here

named ‘monolithic’ and ‘modular’), driven by strategic tradeoffs between depth, field

of view (grasp), and cadence. ‘Monolithic’ surveys tend to be wide-field instruments

installed on a single, large telescope. The large aperture allows deep imaging in com-

paratively short exposure times (e.g. ZTF’s 1.2m aperture enables imaging down to

g′ = 21.5 in 30 second exposures). Some key examples of this type of survey include

ZTF (Bellm et al., 2019), PanSTARRS (Chambers et al., 2016a), and SkyMapper (Keller

et al., 2007). The upcoming Legacy Survey of Space and Time (LSST; Ivezić et al.
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2019) delivered by the Vera C. Rubin Observatory also falls into this category, although

on a thus unprecedented scale. In contrast, ‘modular’ surveys increase sky cover-

age by having multiple telescopes (potentially at multiple sites). Some examples of

these survey designs include ASAS-SN (Shappee et al., 2014), ATLAS (Tonry et al.,

2018), BlackGEM (Bloemen et al., 2016), CRTS (Drake et al., 2012), and GOTO (see

Section 1.6, Steeghs et al. 2021) Although limited to somewhat shallower depths than

‘monolithic’ surveys, the possibility of operating in parallel significantly increases the

instantaneous field of view, and the additional scheduling flexibility and resilience to po-

tential bad weather provide significant advantages. Collectively, these surveys are re-

sponsible for driving the significant increase in the discovery of extragalactic transients

over the past 10 years (see Figure 1.7).

In contrast to the numerous wide-field efforts, a number of surveys have been

launched focusing on surveying smaller areas of sky, at higher cadences and depths

using large-aperture telescopes such as PanSTARRS and the Victor Blanco 4m (home

to the DECAM instrument). Some prominent programs include the Young Supernova

Experiment ( YSE; Jones et al. 2021), Deeper Wider Faster (DWF; Andreoni & Cooke

2019), DECAMERON, and DESIRT (Palmese et al., 2022). More limited surveys have

also been performed with space-based observatories with similar goals, such as the

HST-based See-Change program (Hayden et al., 2021) and the Spitzer SPIRITS sur-

vey (Kasliwal et al., 2017). These deeper, more focused surveys have played a pivotal

role in unveiling populations of fast transients at high redshifts (Pursiainen et al., 2018),

providing robust and well-characterised samples of SNe Ia at cosmological distances

(Scolnic et al., 2018; Brout et al., 2019; Hayden et al., 2021), and probing the minute-

timescale variability of the extragalactic sky (Andreoni & Cooke, 2019).

Whilst the majority of transient discoveries have been driven by a limited group

of professional sky surveys, it is important to acknowledge the efforts of hard-working

amateur astronomers in discovering many transients, and in some cases providing

classifications and early-time data that have proven crucial to informing professional

studies. Data-mining efforts are also unveiling populations of historical supernovae
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from historical data that were previously missed (e.g. PALEO2), and discoveries and

follow-up (Bersten et al., 2018) of bright transients being performed by a small but ded-

icated group of amateur observers. Indeed, during the writing of this thesis the nearest

(5.4 Mpc) core-collapse supernova in a decade, SN 2023ifx, was discovered by Koichi

Itagaki, a prolific amateur discoverer of nearby supernovae (Itagaki, 2023).

We leave more in-depth discussions of future prospects and upcoming surveys

in time-domain astrophysics to Chapter 7, but remark here that the discovery capabil-

ities of time-domain astrophysics are evolving rapidly, populated with a diverse set of

discovery instruments with complementary capabilities. The demands of gravitational-

wave follow-up are markedly different to the requirements for other transient survey pro-

grams, requiring a tailor-made approach in both hardware (to survey rapidly) and survey

strategy (requiring rapid response to incoming triggers). These needs are ideally met

by purpose-built sky surveys, which I discuss in the following Section.

1.6 The Gravitational-wave Optical Transient Observer (GOTO)

Built specifically with the follow-up of poorly-localised optical counterparts (see White

2014), the Gravitational-wave Optical Transient Observer (GOTO) is a wide-field, mod-

ular optical sky survey with a flexible design. Beyond the content of this thesis, a full

description of the prototype phase is given in Steeghs et al. (2021), with some key sci-

entific ‘highlights’ from the Laser Interferometer Gravitational Observatory (LIGO) O3a

observing run published in Gompertz et al. (2020). Below, I summarise some of the key

ideas, methods, and features of the design-specification GOTO systems as they are at

the time of writing, to provide broader context to Chapters 3 and 6.

1.6.1 Hardware

The GOTO project has two antipodal installations, one at Roque de los Muchachos Ob-

servatory, La Palma, and the other at Siding Spring Observatory, Australia. Each ‘node’

has two telescopes, each comprised of 8 co-mounted 40 cm f/2 astrographs, having a

2http://scan.sai.msu.ru/~denis/Paleo/paleo-sky-map.html
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45 square degree field of view each. Each astrograph is paired with a 50 megapixel

CCD, sampling the sky at 1.4 arcsecond/pixel resolution. Typical survey images with

the final design-specification hardware reach a 5-sigma limiting magnitude ofL = 20.3

in a single 4x60s pointing, with typical survey speeds of ∼ 600 square degrees per

hour, per mount, per site. This capacity is ideally suited to rapidly tiling the ∼ 1000s

square degree localisations of typical GW events, uniquely also positioned to survey

some of the more poorly localised events, and among the transient surveys with the

best prospects of detecting a kilonova (Chase et al., 2022). Figure 1.9 depicts the full

design specification GOTO hardware, across both hemispheres. GOTO is fully instru-

mented for autonomous operations (see Dyer 2020), with observing orchestrated by a

distributed, just-in-time scheduler that allocates pointings to each mount independently,

and performed by a fault-tolerant control system for each mount (Dyer et al., 2018). This

is designed from the ground up to be responsive to time-sensitive alerts in low-latency.

The ‘sentinel’ listens to the NASA Gamma-ray Coordinates Network (GCN; Barthelmy

et al. 1998) for incoming alerts from a variety of trigger sources, including gravitational-

wave, gamma-ray, and neutrino facilities. Upon receipt of an alert, the skymap is passed

to an in-house processing utility (goto-tile) which generates an optimal tiling strategy

for the GOTO network, and submits pointings to the scheduler for observation. GOTO

responds in real time to incoming events, being primarily limited by sky visibility rather

than response time itself (e.g. the events with 5 minutes response time in Gompertz

et al. 2020). Even while in the prototype phase (2018–2021), based on targets of op-

portunity, GOTO contributed to various studies on variable stars (Duffy et al., 2021),

transient follow-up (Gompertz et al., 2020; Ackley et al., 2020; Mong et al., 2021), and

minor planets (Borisov et al., 2018).

1.6.2 Software

Real-time response to gravitational-wave events requires real-time data reduction, clas-

sification, and candidate vetting. The main GOTO science pipeline (kadmilos; Lyman

et al., in prep.) performs calibration and reduction of the raw data gathered by GOTO in

real time, with ∼10 minutes from close of shutter to transient candidates. The pipeline
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Figure 1.9: The GOTO network, as of April 2023. Image credit: M. Dyer / GOTO
Collaboration
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automatically creates optimal stacks of biases, flats, and darks from nightly calibration

observations, calibrates incoming raw data with these, performs astrometry and pho-

tometry, and combines multiple (typically 4) dithered observations from a single visit to

improve depth and image quality. Difference imaging (see Section 2.4) is performed on

incoming stacks of science images using the HOTPANTS (Becker, 2015) algorithm to

remove sources of static flux, with source extraction being applied to identify transient

candidates. Templates are provided as part of a dedicated reference survey, with an

extra ∼magnitude of depth over regular all-sky imaging. Difference imaging is a notably

‘noisy’ process however, generating significant volumes of false-positive candidates that

must be sifted through to identify genuine astrophysical sources.

GOTO makes extensive use of machine learning source classification tech-

niques to filter the significant incoming data volumes to levels where humans are able

to keep pace and follow up promising candidates. I reserve further discussion of this to

a dedicated Chapter (Chapter 3), although here remark that application of these tech-

niques can reduce the number of candidates by two orders of magnitude. Candidates

that pass this initial machine-learning filter are propagated to the GOTO Marshall (Ly-

man et al., in prep.), a web-based platform for humans to validate candidates, assess

their significance in the context of external GW triggers, and trigger further follow-up as

required.

A key part of this vetting process is considering contextual information: pulling in

data from existing catalogs and images to provide a richer picture of the surroundings of

a candidate. For example, historical data may reveal variability at the explosion site from

many years prior, suggesting a variable star or AGN is responsible. Looking at nearby

(in sky separation) galaxies can give hints as to the host of a given candidate, with

associated distance estimates giving bounds on the absolute magnitude/luminosity. For

a multi- messenger trigger, this can rule out potential transients by comparing to the

(e.g.) GW-estimated distance. The concept of contextual classification, and automating

this process to minimise human effort, is discussed further in Chapter 6.
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Figure 1.10: The first GW events of the LVK O4 observing run, from the first month of
observing. There were 6 BBH mergers, and one 1 black-hole neutron star/BNS merger
in total. Figure based on all publicly-available data from GraceDB, and plotted with the
ligo.skymap Python package.

1.6.3 The first month of O4

Owing to logistical delays, the LIGO-Virgo-KAGRA O4 observing run began during the

writing period for this thesis, on 24th May 2023, and is anticipated to continue for 18

months. I here discuss some of the early outcomes from this pivotal phase of GW-

EM astronomy. 1 month into this period, a total of 6 statistically significant events in

3 weeks have occurred, a large step change in the number of events being detected.

Alongside this, 38 low significance events were also reported. The high-significance

events are plotted in Figure 1.10. The participation of the Virgo detector in the run has

been delayed until later in the year, owing to significant technical issues that require

the detector to be brought out of deep vacuum for investigation. This means that only

two detectors (excluding KAGRA, whose sensitivity is limited) are actively observing

the extragalactic sky, meaning that most localisations so far have been poor in nature

– displaying the characteristic arcs associated with two- detector coincidences. This
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is a vastly different landscape to what was expected, but one that is ideally suited for

wide-field surveys to explore and make significant contributions to.

1.7 Thesis Outline

With the advent of gravitational-wave multi-messenger astrophysics, and the optical sky

survey capability to follow up the challenging localisations of compact binary mergers,

we are uniquely placed to be able to resolve some of the key scientific questions of

multi-messenger astrophysics – the birth sites of heaviest elements produced in the

Universe, the progenitors of the most luminous explosions, and the underlying (and

emergent) properties of compact binary coalescences.

Significant challenges remain however – both in terms of the data volumes gen-

erated as part of these searches, and the numbers of unrelated transients we discover

routinely. Triaging this data, and identifying promising counterparts with minimal hu-

man effort is a crucial step to being able to perform the science we want to do – and

the current methods are not well-optimised for the new scales we are looking at. This

thesis explores both the observational and computational aspects of time-domain astro-

physics, and the cross- cutting synergies between them, aiming to build new techniques

that work well at the scales involved, and drive the study of transients in new directions

to gain novel insights that would not otherwise be possible.

Chapter 2 introduces the overarching techniques that power modern scien-

tific discovery in transient astrophysics, and underpins the latter chapters. Chapter 3

discusses the development of the real-bogus classifier employed in the live GOTO

pipeline, gotorb. Chapter 4 presents the most precise ephemeris yet for the candi-

date continuous-wave source, Scorpius X-1 – delivering the best constraints yet on the

orbital motion of the donor star, and facilitating high-precision searches for the upcom-

ing (at time of writing) LVK ‘O4’ observing run. Chapter 5 presents a novel time-domain

study of bright, nearby supernovae at high cadence, searching for signatures of inhomo-

geneities in the circumstellar material surrounding supernovae. This study uses SALT

and LT data to place some of the strongest constraints yet on such variability, and pre-
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empts on-going studies led by myself using NTT/ULTRACAM. Chapter 6 presents my

recent work on developing contextual classification for GOTO and other time-domain

surveys, making use of extensive literature catalogs to provide high-accuracy predic-

tions on potential hosts for transients, as well as delivering rich contextual information

to aid human classification. In the concluding Chapter 7, I give an overall summary of

the thesis contents, and outline the bright future of time-domain astrophysics with the

advent of upcoming large-scale sky surveys, whilst also noting some critical problems

that the community must overcome to make the most of the opportunities afforded by

an order-of- magnitude increase in data volumes. This thesis is composed of original

published work from the PhD.
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Chapter 2

Methodologies

As the data volumes generated by astrophysics have grown, so too have the methods

that we use to process and analyse our gathered data. This chapter is intended to

provide an overview of some of the key methods employed in the following chapters to

provide some context for their use.

2.1 Machine learning in astronomy

Machine learning (ML) is a family of statistical techniques that employ algorithms that

‘learn’ to predict quantities from data without explicit instruction, or assuming some

underlying model. In particular, the more data that is used to train a ML model, the

better the performance on a given task. These powerful, non-parametric methods have

been at the heart of many modern breakthroughs, attaining human-level performance

on computer vision and speech recognition tasks, and are now ubiquitous in modern

society (for better or worse).

ML workflows are now beginning to receive mainstream acceptance in the sci-

entific community as an essential and necessary tool in processing the vast datasets

in play in modern scientific experiments. ML is even being used in the optimal design,

execution, and automation of experiments, with entire lab setups being orchestrated

by ‘robot scientists’ (King et al., 2009) in search of new phenomena. Astrophysics is

no exception to this. In contrast to computer science, where datasets are complex,
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messy, and inhomogeneous (e.g. Gao et al. 2020; Schuhmann et al. 2022), astronom-

ical datasets are clearly defined in terms of modality, selection criteria, and quality.

Problems in astrophysics are more likely to be data quality-limited than architecture lim-

ited: with classification performance being set by label noise, instead of the capacity of

the model architecture. Astronomical datasets do not carry many of the privacy/ethical

issues associated with the large-scale ensemble datasets deployed in training current

state-of- the-art image, text, and audio-based algorithms, making them a more benign

playground for the development of new algorithms and methodologies. To this end, the

astronomical commmunity has made extensive use of, and embraced, machine learn-

ing approaches since the early 1990s (e.g. Sandler et al. 1991; Odewahn et al. 1992).

Providing a full summary of all uses of machine learning in astronomy is beyond the

scope of this thesis, and would almost certainly be out of date by time of publication

given the extreme pace the field is advancing at – spurred on by the latest techniques

from the computer science literature.

Machine learning lies at the heart of parameter estimation in modern astronomy,

delivering photometric redshifts (e.g. Collister & Lahav 2004; Carrasco Kind & Brunner

2013; Beck et al. 2016; Duncan 2022), star-galaxy separation scores (e.g. Fadely et al.

2012; Soumagnac et al. 2015; Miller et al. 2017; Beck et al. 2021), morphology (e.g.

Dieleman et al. 2015; Cheng et al. 2020; Walmsley et al. 2020), source properties

(e.g. Ness et al. 2015; Huppenkothen et al. 2017), and more across all sub-fields of

astrophysics. The huge scale of modern astronomical catalogs (∼ billions of sources)

is ideally suited to exploration with ML, driving data-driven discovery with clustering

algorithms (e.g. Rubin & Gal-Yam 2016; Chattopadhyay & Maitra 2017; Hunt & Reffert

2023), anomaly detection (e.g. Storey-Fisher et al. 2020; Ishida et al. 2021; Lochner

& Bassett 2021; Malanchev et al. 2021), and other unsupervised learning techniques

(e.g. George et al. 2018; Hocking et al. 2018; Shih et al. 2022). ML has found an

important role in reducing the computational time of parameter inference with machine-

learned surrogates for computationally-expensive processes (e.g. Himes et al. 2022;

Mould et al. 2022; Spurio Mancini et al. 2022) and amortising posterior sampling (e.g.

Dax et al. 2021; Zhang et al. 2021; Vasist et al. 2023) Even theoretical astrophysics
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has not been spared the influence of machine learning, with neural networks inferring

conservation laws (Cranmer et al., 2020; Liu & Tegmark, 2021), predicting planetary

dynamics (Cranmer et al., 2021), and accelerating N- body simulations (Emsenhuber

et al., 2020). In the following section, I will provide an overview of the central concepts

of machine learning, to provide context for my use of it in the upcoming chapters, and

tie these back to the astronomical literature.

2.2 Overarching concepts

All machine learning, whether supervised or unsupervised, online or offline, has three

core steps. These are:

• Evaluating a model on some target datapoints to generate some ‘predictions’

• Computing a metric of choice based on the target datapoints and the model out-

puts

• Adjusting model parameters to optimise the metric of choice

These three steps apply from the simplest linear models, up to the largest language

models in existence – with the complexity arising primarily from our choice of model

and the nature of our metric. The steps above are written in a deliberately abstract

manner to encapsulate the breadth of possibilities for each of these steps.

2.2.1 Machine learning models

For all the complexities, machine learning models essentially have one goal – predict-

ing the values of an arbitrary function. More rigorously, the models in machine learning

must map potentially high-dimensional input spaces to potentially high-dimensional out-

put spaces. Such spaces are not well-represented by the (often) parametric models we

deal with in astrophysics, and so machine learning works in a different domain of com-

plex, high-parameter count models. Although a full summary of all machine learning

models is beyond the scope of this section, I focus in on two of the most popular classes
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of models – decision trees and neural networks, as the two that find most usage in the

Chapters that follow.

Tree-based models were some of the first ‘machine learning’ models – emerging

from the usage of decision trees to model human decision making. Starting at the top,

each internal node branches based on a simple condition on a given feature. The tree

is traversed, evaluating the condition at each internal node, until a leaf node is reached

and a classification is made. Optimally building the tree structure has been the subject

of extensive (Quinlan, 1986, 1992; Breiman et al., 1984) work, but each seeks to build

the tree by choosing the attribute that best splits the dataset (in terms of entropy/other

quantities) at each candidate node. This is naturally a greedy approach, but given the

vast potential state space this is necessary. Unlike many other ML models, decision

trees are inherently interpretable, as one can simply traverse the tree, evaluating the

single criterion at each branch until a leaf node (classification) is reached.

With rapidly growing computational power, ensemble learning became possible

– providing predictions based on the aggregated output of a number of smaller, weaker

learners. This aggregation may be as simple as a (weighted) vote between all mem-

bers of the ensemble, or as complex as ‘stacking’ classifiers together by feeding the

outputs of the weak learners into another classifier. Two main approaches to improving

the performance of simple decision trees emerged from this: Random forests (Breiman,

2001) make use of ‘bagging’, or bootstrapping – by fitting individual decision trees to

randomised subsets of both the training dataset and features within the training dataset.

This simultaneously improves predictive performance, and improves generalisation to

unseen data. Boosted decision trees (Schapire, 1990; Freund & Schapire, 1995) itera-

tively learn a dataset by fitting successive decision trees – with the next tree trained on

the residuals of the previous to ‘correct’ the predictive errors. This ‘boosting’ rapidly im-

proves the performance of the overall classifier, minimising predictive bias and variance,

at the cost of being prone to overfitting. RF and BDT algorithms are commonplace in

ML, especially in commercial/enterprise settings as they require very little optimisation

of hyperparameters (see Section 2.2.5). Tree-based classification also finds broad utility

in astronomy, as it works well on tabular data where features have been pre-extracted –
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features here being numerical data like fluxes, line widths, distances, and other param-

eters inferred by some model/routine, as well as categorical data (which other, more

complex techniques cannot process natively).

In parallel, inspired by the biological structures present in the brain, artificial

neural networks (ANNs; McCulloch & Pitts 1943) emerged, with the Rosenblatt per-

ceptron (Rosenblatt, 1958) being among the first physical realisations 1 of this new

architecture. The building blocks of ANNs are neurons, simplistic predictors that take

some input, multiply by a tunable weight, and add a bias value. As described above,

the neuron is essentially linear regression, a statistical methodology used for hundreds

of years. What transforms a linear predictor into a neuron is the addition of non-linearity

via an ‘activation function’ – a function that rectifies the output of the neuron by map-

ping it to some (generally) constrained space. The additional expressiveness provided

by this non-linear transformation makes single-layer perceptrons powerful general mod-

els. The (comparatively) simple architecture, combined with analytic derivatives, makes

ANNs well-suited to optimisation by stochastic gradient descent. Some families of mod-

els (e.g. neural networks with non-linear activations) are provably ‘universal function ap-

proximators (Cybenko, 1989; Hornik et al., 1989): that is, they can reliably approximate

any function to an arbitrary degree of accuracy, given sufficient numbers of neurons

(width). Any is emphasised here, as this ‘any’ is a far looser condition than approx-

imations with e.g. Taylor series (requiring the function to be infinitely differentiable to

attain arbitrary precision) or Fourier series (requirement to be piecewise smooth). This

is also somewhat of a curse, as the weak constraints on the ‘manifold’ geometries make

it trivial to fit directly to noise in the data (‘overfitting’, see Section 2.2.4).

2.2.2 Optimisers

For a a smooth, differentiable function F(θ), we can find the extremal value by iteratively

taking steps in the direction of steepest gradient – the method of gradient descent.

Mathematically, given a smooth , at least once differentiable function, F(θ), and a set

of initial starting parameters θ0, the values θ that minimise F(θ) can be found with

1Implemented entirely in electronic hardware, rather than as a computer program
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iterative application of the update rule

θi+1 = θi−η∇F(θi)

, where η is the step size or ‘learning rate’. The value η must be chosen carefully: too

small, and many steps will be required to converge to a local minimum, too large, and

the algorithm will be numerically unstable, overshooting minima and failing to converge.

It is also possible to set a per-parameter learning rate ηi to mitigate non-uniform curva-

ture in each model parameter, although it is hard to know a priori which learning rates

are appropriate.

For general-purpose optimisation, gradient descent is largely replaced in prac-

tice with approaches with provably better convergence, that adaptively tune η based on

information about the curvature of the minimisation space. The ubiquitous Levenberg-

Marquadt (Levenberg, 1944) method is a key example of this, using the Jacobian ma-

trix J of residuals to compute the optimal step size that guarantees stable, optimal

convergence for well-behaved (twice- differentiable) functions. Gradient-free optimisers

also exist, trading the requirement to compute gradients for more function evaluations

– the Nelder-Mead method (Nelder & Mead, 1965) being among the most popular.

These methods struggle to perform well in high-dimensional parameter spaces how-

ever, owing to the exponentially-increasing parameter space they must search. Gra-

dient information allows a ‘directed’ optimisation, leading to more rapid convergence.

The requirement of gradient/Jacobian evaluations makes the application of these meth-

ods challenging in large- model, large-data scenarios however, scaling O(N3) with N

parameters in the worst case (Gauss-Newton). In these scenarios, valuating F(θ) is

prohibitively expensive, and even with modifications (e.g. Liu & Nocedal 1989) too costly

for large models on large datasets. Approximate methods must be applied to subsets

of the dataset. Stochastic gradient descent (Robbins & Monro, 1951) uses ‘batches’

(subsamples) of the dataset to compute an approximation to the true gradient. This

estimate will be inherently noisy owing to the sampling error (dictated by the size of

batch), but much quicker to evaluate in comparison to the full gradient – effectively
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trading convergence rate for speed of evaluation.

SGD and derivative algorithms have a distinct advantage over ‘standard‘ gradi-

ent descent in high-dimensional optimisation problems: resilliency against convergence

to local minima. This is particularly pronounced when training multi-million parameter

neural networks (see Section 2.2.4), with complex and non-convex loss landscapes.

The issue of step size is more pronounced here, as adaptive step size methods must

infer the step size based on noisy gradient estimates, which lead to inherently unstable

step size estimates. The complex, high-order loss landscapes may also require learning

rate to be tuned per parameter for efficient optimisation. A whole family of techniques

have emerged using moving averages of the gradient estimate to address this, among

the simplest being RMSprop (Tieleman et al., 2012). This method maintains a run-

ning average of the squared gradients, with a chosen decay factor β ≪ 1 dictating the

relative importance of historic versus current squared gradients

E
[
g2]= (1−β )g2

i +β g2
i−1

where gi is the gradient vector at the ith step. The learning rate is then scaled through

by this running average, giving the update rule,

θi+1 = θi−
η∇F(θi)√
E [g2]+ ε

with the ε term ensuring that the denominator does not vanish, causing large steps to

be taken spuriously. Algorithms such as these are at the heart of training the largest

machine learning models in existence, with even marginal improvements in the conver-

gence rate of algorithms translating to potential time savings of days in these peta-scale

scenarios (Coleman et al., 2018). With efficient approaches to optimising potentially

complex, high- dimensional models in hand, the final remaining element of machine

learning is specifiying the function we’re trying to extremise.
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2.2.3 Loss functions

What is F(θ) in the context of machine learning – how to we optimise our models to

maximise their predictive power, given a training dataset to learn from? We seek a

function that measures the degree of disagreement between our observed data and the

predictions of our model – specifically so that we can minimise this and in turn maximise

the fidelity of the model. This is known as a loss (or cost) function, often denoted L (θ),

which should decrease monotonically in the quality of fit. From a theoretical perspective,

one can consider loss functions as distance metrics between the predictions of the

model and the dataset observed, and minimisation of this distance is equivalent to

minimising the predictive error. The chi-squared χ2 goodness of fit used throughout the

physical sciences is a valid loss function - albeit one with some convenient statistically-

motivated properties for parameter inference.

χ
2 =

N

∑
i=1

(
yi− f (xi)

σi

)2

This almost directly maps to the common L2 mean-squared error loss function for re-

gression problems in machine learning - only with the residuals unscaled by the error,

and a prefactor of 1/N for numeric stability 2.

L =
1
N

N

∑
i=1

(yi− f (xi))
2

where all symbols retain their original meaning. We can modify the loss function to

change what we want to prioritise in the model. For example, the L2 loss is sensitive

to the presence of outliers in the data, with the quadratic dependence on the residuals

leading to them dominating the overall loss (and thus gradients) disproportionately. A

simple modification is to take the absolute values of the residuals, rather than squaring

them, known as L1 loss – this change minimises the dominance of outliers, whilst still

having a well-behaved derivative (everywhere apart from zero). The Huber loss (Huber,

1964) is a smooth interpolant between these two cases, and is widely used in robust

2Machine learning operations are often done at reduced numerical precision for speed and compatibility
with hardware accelerators
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regression contexts.

For classification, there are more optimal choices than simple power-residual

forms – given that valid probabilities are bounded between zero and one, and labels

are binary (at least per class). The categorical cross-entropy is given by

CE =−1
e ∑

c,e
yc log pc

where yi is the class label for a given example, pi the model’s predicted probability, and e

enumerates chosen examples in the batch – with the mean over examples being taken.

This has the benefit of being positive-definite (as log pc is always less than zero), and

has convenient numerical properties when paired with the common sigmoid activation

function. One issue with this loss function (indeed all) is its’ unsuitability for imbalanced

datasets – that is where the numbers of classes are not comparable. Weights can be

introduced into both classification and regression losses to address this.

To tie together all the overarching concepts in the previous subsections, let us

mathematically construct the simplest possible neural network for classification – with

multiple inputs to a single layer of neurons, and an identity activation function. This

construction is equivalent to (multi-)linear regression: with the weight and bias terms

mapping directly to the ‘slope’ and ‘intercept’ of the underlying linear model. The single

neuron model can be written (using the Einstein summation convention):

yi = w jxi j +b

where i indexes each item of data, and j indexes the input dimensions of the data, w j is

the weight vector, and b is the bias term. In order to train this model, we need to choose

a loss function – for convenience of mathematics I opt for the mean- squared error (‘L2’

loss).

L =
1
N ∑

i
(yi− f (xi))

2

Using the chain rule, we can compute the gradient of this loss function with respect to
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f (xi) as
∂L

∂ f (xi)
=− 2

N ∑
i
(yi− f (xi))

f (xi) = w jxi j +b

.

f (xi)

is kept as an arbitrary function here in what follows, to emphasise the generality of this

procedure for more complex models. Given this derivative, we need only apply the

chain rule again to obtain derivatives of the loss with respect to our parameters w j and

b. Dropping the xi from f for clarity:

∂L

∂w j
=

∂L

∂ f
∂ f
∂w j

,
∂L

∂b
=

∂L

∂ f
∂ f
∂b

Therefore, computing the relevant derivatives (assuming the simple linear model for

convenience), we obtain

∂L

∂w j
=− 2

N ∑
i
(yi−w jxi j +b)x j

∂L

∂b
=− 2

N ∑
i
(yi−w jxi j +b)

as the gradients of the loss function with respect to our weights and biases. Exten-

sion to non-linear activations is straight-forward, but more involved, requiring another

application of the chain rule to account for the derivative of the activation function. The

true power of neurons comes when we knit them together into neural networks – where

outputs of neurons are passed as the inputs to a new set of neurons. This powerful

approach underpins all of modern machine learning, and I discuss it in more depth in

the next chapter, along with the rich toolkit of methods that have arisen to tame the

complexity of these models.
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2.2.4 Deep learning

Deep learning (DL; LeCun et al. 2015) is a subset of machine learning that seeks to

represent increasingly complex datasets through the use of deep neural network ar-

chitectures. Through stacking multiple layers of learnable blocks (either of dense neu-

rons, or arbitrarily more complex operations), DL algorithms can extract higher-order

features composed of the outputs of previous layers, and represent more complex de-

cision boundaries than otherwise possible. Deep learning approaches generally lack

the requirement for human-selected features, instead learning an optimal feature set

directly from the data itself. As the network is trained by selecting parameters that min-

imise the loss, the network will move to identify the most salient aspects of the data that

enable the best classification. It is this behaviour that is at the heart of deep learning’s

power. Whilst at first glance computing the derivatives of deep neural networks to be

able to optimise them with SGD may seem complex, the only non-linear components

are the activation functions, which are typically chosen to have well-behaved, analytic

derivatives. The derivative of the loss function with respect to the model parameters

can therefore be computed with simple application of the chain rule, with the derivatives

with respect to successive layers using the results of the previous layer. This process

is known as ‘backpropagation’, and directly facilitates the training of large (∼ 100,000+

parameter) neural networks. Modern automatic differentiation frameworks (e.g. The

Theano Development Team et al. 2016) are trivially able to model this with a functional

‘graph’ representation, with derivatives computed by traversing the graph and succes-

sively applying chain rule to the function.

As the data modalities processed by ML have evolved, so too have the tech-

niques to process them. We can exploit the unique properties of different types of data

to choose optimal extractors, and minimise the computational cost involved. Perhaps

the most salient example of this is images. The information contained in images is

highly correlated: the information encoded is shared across multiple pixels, often spa-

tially co-incident or proximal. We as humans know this to be the case – lines, shadows,

patterns, and symmetries are implicit in our understanding of the world, but these are

not natural features of a pixel-by-pixel understanding of images. Convolutional neural
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networks (CNNs; LeCun et al. 1995; Krizhevsky et al. 2017) evolved out of a need to

efficiently process images – with naive fully-connected neural networks the number of

neurons required to process an image scale quadratically with the side length of the im-

age. The principal building block of a CNN is the convolutional filter, in which a learned

kernel is convolved with the input image(s) to obtain feature maps – outputs of typi-

cally reduced size compared to the input images, encoding concise local information.

The learned kernel is shared between all spatial positions, dramatically reducing the

model complexity and number of parameters. Discrete convolution has a well-defined

derivative (discrete correlation), which can be trivially computed by re-indexing the ker-

nel, making this a very efficient computational primitive on which to build networks when

paired with chain rule for backpropagation. The convolution operation itself is one of the

most optimised in ML (e.g. Chetlur et al. 2014). The true power of CNNs emerges when

feature maps are fed as inputs into other convolutional filters, allowing the composition

of higher-order filters with stronger representative power.

As noted above, one requirement to attain maximal performance deep learning-

based workflows is a large quantity of labelled training data. With too little data, a model

with large representative power will tend to ‘overfit’ – memorising the input training data,

and interpolating exactly between input datapoints, fitting the noise (see Figure 2.1). An

overfitted model will show poor predictive performance when applied to unseen data as

a result. In the opposite case, models that ‘underfit’ either lack sufficient expressive-

ness to capture the dataset, or have not been trained for long enough. Both of these

conditions can be diagnosed by testing a model in training on a ‘held-out’ validation set,

which the model has not been trained on. A model beginning to overfit will show de-

creasing training loss but a stall in the validation loss. The best performance on unseen

is obtained precisely at this point , and so training should stop here. If the validation

loss begins to increase beyond this point, the model is overfitted.

In some cases, gathering additional data may be difficult, or impossible. Rather

than opt for a simpler model with worse performance, there are techniques to improve

the diversity of the training dataset. Augmentation is a strategy to increase the effec-

tive data size by applying plausible transformations to your input data. Strategies differ
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Underfitting
n=1

‘Optimal’
n=2

Overfitting
n=19

Figure 2.1: Overfitting, the ‘optimal’ fit, and underfitting, illustrated on a simple toy
dataset generated from a quadratic model with additive Gaussian noise, with Cheby-
shev polynomials of varying degree fitted. In the case of underfitting, the model does
not fully capture the data. In the case of overfitting , the model fully captures the dataset,
including the noise – and thus would note generalise well to predicting an equivalent
dataset with a different realisation of additive Gaussian noise. The ‘optimal’ model here
captures the curvature of the dataset without interpolating noise.

based on data modality, but for images this some effective transformations are flips,

rotations, contrast adjustments, hue changes, and crops. As a base example (also em-

ployed in Chapter 3, consider applying vertical/horizontal reflections and 90 degree ro-

tations to an image. The symmetry group representing these transformations is known

as the dihedral group D4, and represents the set of all transformations applicable to a

square tile that preserve the square footprint. Figure 2.2 shows the Cayley diagram for

this transformation, and shows that by applying this transformation we can multiply by a

factor 8 the input data size. Naturally this is an upper bound, as it is not guaranteed that

each orientation is exactly as informative as each – but by including these transforma-

tions we can improve the model’s resilliency to subjects in different orientations. This

is particularly important for many problems in astronomy – a key example arises from

galaxy morphology studies. We as humans intuitively understand that a spiral galaxy

is a spiral galaxy, no matter which orientation (position angle) it has on the sky – but

this is not inherent in a convolutional neural network’s understanding of galaxy mor-

phology and so makes the task significantly harder. Augmentation, or architectures that

are invariant to rotation (e.g. Dieleman et al. 2015) are critical especially in the case of
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Figure 2.2: Cayley graph illustrating the various members of the D4 symmetry group.
The generator a denotes 90 degree rotations, whereas the generator b denotes reflec-
tion about the horizontal axis. Reproduced from Piesk (2016)
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unsupervised learning/clustering.

2.2.5 Hyperparameter optimisation

Aside from the model parameters themselves, performance is a function of the spe-

cific configuration of the model itself. Items such as the number of hidden layers in a

simple neural network, number of trees in a random forest, or number of convolutional

layers per filter dramatically affect the classification performance of a given algorithm.

These ‘hyperparameters’ should be optimised for maximal performance, however this

is a non-trivial task. Compared to traditional optimisation, evaluating the performance

of model architectures may take minutes-hours of real-world time given the length and

computational cost of the training process. There may be additional complications aris-

ing from non-convex geometry and potential noise in the evaluation output arising from

the stochasticity of the training process. A broad family of techniques have emerged to

evaluate complex, high-dimensional, and expensive objective functions.

A typical approach is to conduct a ‘grid search’ – that is to evaluate candidate

solution points sampled from the solution space on a discrete grid. This suffers from

the curse of dimensionality however, with an exhaustive search becoming exponentially

more computationally expensive with increasing number of parameters. Grid search is

largely a legacy approach inherited from low-dimensional problems, and unless specific

conditions are met (small number of function evaluations,requirement of covering the

entire parameter space evenly) there are more performant choices. A random search

(sampling uniformly over the solution space) is provably more effective (Bergstra & Ben-

gio, 2012) at delivering optimal parameters than a grid search. Geometrically two points

share the same parameter value in a random search, unlike in a grid search where by

nature the ‘grid’ is defined by fixing one parameter.

However, as the name suggests, random search randomly explores the pa-

rameter space, with no guarantees on convergence We ideally want to incorporate

knowledge of previous evaluations into where we choose our next solution to evalu-

ate. Bayesian optimisation (Snoek et al., 2012) is a black-box surrogate optimisation

algorithm that is especially well-suited to this task. Although many distinct variants and
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derivatives exist, the general concept remains the same – we seek to optimise an un-

known function f (θ). Given an arbitrary function f (θ), Bayesian optimisation follows

three steps:

Evaluate Evaluate a given set of parameters θ – f (θ) may be computationally (or

otherwise) expensive to evaluate.

Condition Condition the surrogate model on the evaluated parameters.

Predict Use a minimisation algorithm (e.g. Levenberq-Marquadt) to find the maximum

of a given ‘acquisition function’, which yields the next set of trial points to evaluate.

This loop repeats until an appropriate solution is found, or the resource budget for opti-

misation is exhausted. The key idea of Bayesian optimisation is to perform optimisation

(often requiring expensive Jacobian/Hessian evaluations) on a cheaper, better behaved

model than the true model f (θ), and improve this model as optimisation proceeds to

explore the parameter space whilst also selecting salient points. The surrogate model

is generally a Gaussian process (GP; Rasmussen & Williams 2003), due to the ability

to impose relevant priors on the length scale , and the ability to sample not only the

mean of the function but it’s covariance at trial points. The choice of acquisition function

is also important, and multiple prescriptions exist for this – a natural one that lends itself

well to the use of a GP is the upper confidence bound (UCB, Auer 2003), where the

function to minimise is the GP function mean + some number of standard deviations.

If the cost function f (θ) arises from an iterative optimisation process (e.g. training of

a neural network), a further technique can be applied in conjunction with Bayesian

optimisation to prune ‘bad’ parameter combinations before fully training them if they

do not exceed some fraction of other trial points in quality, known as successive halv-

ing (Jamieson & Talwalkar, 2015). Naturally, no one metric can encompass what makes

a given result ‘optimal’, thus multi-objective optimisation is an emerging field of study –

where trial points aim to optimise multiple metrics. It is useful to introduce the concept

of ‘Pareto’ optimality to choose between solutions in this context – a solution is Pareto

optimal if a given metric cannot be improved without making at least one other worse.

Plotting the set of Pareto-optimal parameters yields the Pareto ‘frontier’, or the set of
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Figure 2.3: Example Pareto frontier from an optimisation process, plotting two un-
specified metrics (where lower values are better) against each other to illustrate the
Pareto-optimal solution set.

non-dominated candidate solutions for a given optimisation problem. By moving along

the Pareto frontier, algorithm designers can make optimal tradeoffs between e.g. perfor-

mance and overall runtime, rather than needing to consider all sampled solutions. This

is also known as the ‘skyline’ in other contexts (e.g. Börzsönyi et al. 2001). Figure 2.3 il-

lustrates the solution set yielded by a test optimisation, evaluated against two unnamed

metrics where lower values correspond to better solutions. I will revisit the algorithms

introduced in this section in Section 2.4.3, where they are applied directly to optimisa-

tion of parameters for difference imaging algorithms, with surprising results. Although

dominant in machine learning, these optimisation methods show significant promise for

some computational workflows in astrophysics where gradient descent (and more in-

telligent derivatives) struggle. Bayesian optimisation and related methods are already

being applied to other domains of physics, where experimental setups (an ‘expensive’

process to evaluate) are being optimised using these techniques.
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2.3 Bayesian methods

Probability lies at the heart of science, and astronomy – from quantifying the signifi-

cance of detections, to rate estimates of astrophysical events and obtaining the credi-

ble intervals of parameters of interest. Science traditionally relied heavily on frequentist

(classical) statistics to make headway. As our demands of our data grow more sophisti-

cated, and the exquisite precision with which we measure quantities begins to bump up

against irreducible sources of systematic error, our analyses must keep pace – incorpo-

rating existing information (priors), mitigating the effect of variables we cannot control

(marginalisation), and weighing the relative likelihoods of potentially nested hypothe-

ses (model selection). Bayesian statistics is a vital tool and facilitator for these more

nuanced analyses, providing a robust framework to work within. There are also some

problems that simply cannot be resolved with a frequentist outlook (e.g. the ‘lighthouse

problem ’, see Gull 1988), owing to pathological distributions and ill-posed problems.

The following subsections provide a brief overview of the heart of Bayesian methods,

to provide introductions to some of the methods used in the latter chapters (see Chap-

ter 4).

2.3.1 Bayes’ theorem, maximum likelihood, and modelling

In a Bayesian outlook, probability encodes a degree of belief about the state of the

world – whether it be the probability of an event occurring within a given timescale, or

our belief about the value of a parameter. Our belief about the world can change upon

receiving new information, and the heart of Bayesian statistics is Bayes’ theorem, which

provides a way to reason given conditional probabilities, and update our beliefs in line

with new evidence.

Bayes’ theorem takes a simple form,

P(θ |D) =
P(D|θ)P(θ)

P(D)

where P(θ) is the prior, encoding our prior belief about the values of the parameters.

P(D|θ) is the likelihood function, encoding the probability of realising a given set of ob-
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servations, assuming some fixed parameters. The model that best explains the data

has the maximum likelihood (or with prior constraints the maximum a posteriori prob-

ability), and we can define credible intervals for parameters of interest by bracketing

the posterior probability (the highest posterior density intervals (HPDIs). P(D) is the

Bayesian evidence or marginal likelihood, which can be thought of as the average likeli-

hood over the prior parameter space. This is a complex and often intractable quantity to

compute, but for most purposes can simply be taken as a normalising constant. Bayes’

theorem combines the above probabilities to infer the posterior probability P(θ |D) - that

is the probability of obtaining given parameter values, given the observed data (and

priors):

In contrast to frequentist statistics, where we often ask ‘what is the probability of

our model being correct, given our observed data’, Bayesian statistics asks the subtly

different question ‘what is the probability of observing our data, given some underlying

model (parameters)’. We do not think of our best estimate of the model parameters

as one that minimises some goodness of fit (e.g. χ2), but instead those that maximise

the likelihood of observing our data given the parameters. This approach is incredibly

powerful, as creating a ‘generative’ model forces us to consider all effects at play in

the problem, and allows us to explicitly model e.g. intrinsic noise in a system, on top

of our measurement noise. We can also model systematic errors in our measurement

process, and ‘marginalise’ over them, in the process converting them to statistical errors

and mitigating their impact.

Model comparison is a subtle endeavour both in frequentist and Bayesian statis-

tics, however a natural route to proceed is by computing the ratio of posterior probabili-

ties between the two models of interest (potentially multiplied by the ratio of the priors if

they differ). This yields a Bayes factor, which quantifies the degree of evidence for one

model being favoured over the other.

2.3.2 Sampling and marginalisation

Given the apparatus provided by Bayes’ theorem, we can now evaluate the posterior

probability of parameters θi given the evidence/data D. For low-dimensional θi, we can
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simply evaluate combinations of parameters via brute-force, over a grid/random sam-

pling of points and obtain satisfactory results. For values of n ≳ a few however, this

becomes computationally inefficient owing to the exponential increase in the volume

of parameter space to evaluate, the ‘curse of dimensionality’. Direct sampling is often

computationally infeasible or challenging . Rejection sampling approaches are a crucial

tool in the toolbox of Bayesian inference, enabling sampling from high-dimensional pos-

terior parameter spaces in a robust way, which in turn underpins estimation of model

parameters and their respective credible intervals. We also want to ‘marginalise’ out

irrelevant parameters by summing or integrating over them to obtain the posterior dis-

tributions of the quantities we are interested in. The chief family of algorithms for this

(although others exist) are Markov Chain Monte Carlo (MCMC) algorithms, in particular

the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is among the most popular rejection-sampling algo-

rithms, in part owing to it’s simplicity. We seek to sample from a target distribution (in

the case of Bayesian inference, the posterior distribution), by constructing a Markov

Chain that draws samples from a distribution that asymptotically approaches our target

distribution. We initialise our chain at a given set of parameters (ideally close to maxi-

mum likelihood), then draw samples from a ‘proposal distribution’ or ‘transition kernel’,

which yields the next state we move to. This is the property that makes the Markov

Chain Markovian – our next state depends only on the current state. The proposal dis-

tribution can be any distribution, although most typically is chosen to be Gaussian due

to it’s property of symmetry and the ease of sampling. More formally, given target dis-

tribution π(θ), a starting location θ0 and a proposal distribution Q(θ ′|θ), MH sampling

proceeds as follows. Over time, our sampling distribution will approach the target distri-

bution, and we will efficiently draw samples from the target distribution – in the case of

Bayesian inference our posterior. The principal tunables are the acceptance probability

α , and the exact form of the proposal distribution Q(θ ′|θ). Algorithm 1 below provides

a pseudocode for computing each MH step.
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Algorithm 1: Metropolis-Hastings algorithm

i← 0;
Set θi← θ0;
for i← 1 to N do

Sample θ ′ ∼ Q(θ ′|θi);

Calculate acceptance ratio α = min
(

1, π(θ ′)Q(θi|θ ′)
π(θi)Q(θ ′|θi)

)
;

Generate uniform random number u∼ Uniform(0,1);
if u≤ α then

θi+1← θ ′;

else
θi+1← θi;

return Samples θi . . .;

It is crucial to note: Markov Chain Monte Carlo algorithms are not for ‘fitting’,

nor do they directly maximise the likelihood. The Metropolis-Hastings algorithm draws

samples with density proportional to the posterior probability, which may then be used

to estimate the maximum a posteriori parameters and associated credible intervals. It

is always advisable to initialise chains around a maximum likelihood estimate of the

parameters to aid in ‘convergence’ - that is convergence of the sampling distribution to

the true underlying distribution.

Adaptive samplers

One drawback of Metropolis-Hastings is the requirement to tune the parameters of the

proposal distribution to obtain a good acceptance fraction. Depending on the posterior

geometry, if the proposal distribution is poorly matched the Markov Chain will not fully

explore the posterior space, and achieve a low acceptance fraction. This is particularly

the case for correlated dimensions, where the sampling efficiency of classic MH is dra-

matically reduced as it is forced to take smaller jumps. Naturally, a number of ‘adaptive’

approaches have emerged as a result to achieve higher acceptance fractions and more

efficient sampling – making use of ensembles (Foreman-Mackey et al., 2013), more

powerful moves (Turner et al., 2013), and other Markov-like approaches (Neal, 2000).

One remaining issue lies in the correlation between steps in the Markov Chain,
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even with adaptive methods. Small steps that remain near each other are correlated

are less informative than big steps that explore the posterior, and the reduced variance

of correlated steps weakens parameter estimates and statistical inferences. The key

metric of interest is the ‘effective sample size‘ (ESS; Gelman et al. 2013), which mea-

sures the number of effectively independent samples, taking into account the correlation

length of the chain. The estimation error on a given quantity scales as 1√
Ne f f

, as correla-

tion between samples effectively reduces the information content of each step. Although

it is always possible to increase ESS by simply drawing more samples, particularly for

high-dimensional problems the computational cost of this may be infeasible, not to men-

tion that issues like poorly-behaved posterior geometry cannot simply be overcome by

‘sampling harder’. New methods that minimise inter- and intra-chain correlations are

therefore crucial for efficient posterior exploration, with significant efforts having been

invested in ‘hybrid Monte Carlo’ schemes, that keep the core ‘accept-reject’ behaviour

of Metropolis-Hastings, yet use more advanced schemes for the proposal distribution,

to suggest moves of higher quality (lower autocorrelation and higher acceptance prob-

ability). Hamiltonian Monte Carlo is among the most common of these, leveraging the

gradients of function parameters with respect to the target distribution, and using Hamil-

tonian mechanics to make moves that explore well the posterior distribution. Naturally,

the requirement of gradients makes this more challenging to implement than the naive

Metropolis-Hastings algorithm. With the emergence of mature linear algebra frame-

works (e.g. Bradbury et al. 2018) that support automatic differentiation, this ‘barrier to

entry’ has been effectively lifted, and Hamiltonian Monte Carlo methods have found in-

creasing utility in astronomical inference tasks. Further, general purpose ‘probabilistic

programming languages’ (e .g. pyro; Bingham et al. 2019) enable the specification of

complex probabilistic models in a principled and intuitive way, and are a powerful tool

for constructing Bayesian models that fully capture the behaviour and parameters of the

system of interest. Such tools minimise the need for more complex ad-hoc models or

implementation of likelihood functions directly, minimising the risk of errors.

A full description of Hamiltonian Monte Carlo (HMC)), and the deep geomet-

rical/dynamical connections underpinning it, is well beyond the scope of this thesis,
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with the reader being referred to Betancourt (2017) for a comprehensive exploration.

Section 4.3.2 of this thesis makes use of Hamiltonian Monte Carlo to sample from

a non-trivial posterior probability encoding both the model parameters of a radial ve-

locity fit, and a series of systematic ‘nuisance’ parameters that are later marginalised

over. Although the posterior geometry of this problem was largely Gaussian, the sig-

nificantly improved sampling speed and stability bodes well for reformulation of this

problem into a Bayesian hierarchical model in future. HMC lies at the heart of many

complex and computationally-intensive inference tasks in modern astronomy, from ex-

oplanetary modelling (Foreman-Mackey et al., 2021), large-scale cosmological infer-

ence (Heavens, 2009; Jasche & Kitaura, 2010), and in powering data-rich hierarchical

inference (Sanders et al., 2015; Shabram et al., 2020; Shen et al., 2022) tasks.

2.4 Difference imaging

As noted in Chapter 1, the technique of difference imaging lies at the heart of modern

time-domain astrophysics, underpinning the discovery capabilities of large-scale sky

surveys. This section provides an overview of the algorithms involved from a computa-

tional and mathematical perspective.

The central aim of difference imaging is to subtract reference flux from a new

‘science’ image, to search for sources that may have varied in brightness between the

two epochs. Difference imaging does not rely on pre-existing knowledge of a variable

sources’ location, and provides significant increases in recovery of variable sources in

crowded field (see e.g. Wozniak 2000; Alcock et al. 2000). Assuming pre-aligned sci-

ence and reference images, three steps are required for successful difference imaging:

• Matching of PSFs between science and reference images.

• Removal of differential background between science and reference images.

• Photometric calibration of difference image.

Of these steps, matching PSF between science and reference images is the most chal-

lenging, and the one that the majority of this Section will be devoted to discussing.
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For an ‘ideal’ image with zero noise or background contribution, the PSF-matching

kernel follows from the convolution theorem Ciardullo et al. (1990); Tomaney & Crotts

(1996) as the (inverse Fourier transform of) ratio of the Fourier transforms of the science

and reference PSFs. Such a ‘Fourier division’ is poorly conditioned however, suffering

both from the finite precision of floating-point arithmetic, and the non-zero Poisson noise

of astrophysical observations. Strictly, if the ‘science’ PSF has smaller spatial scale than

the ‘template’ PSF, this operation amounts to a deconvolution, which has the potential

to significantly increase the noise of the science image and introduce spurious artifacts.

Approaches need to be appropriately regularised to limit the effects of this, as well as to

make better use of image pixels to avoid overfitting. Early approaches directly approx-

imated the PSF as Gaussians, making use of the property that the Fourier transform

of a Gaussian is another Gaussian to avoid the poor numerical conditioning of direct

inversion – although this assumption is far too restrictive for most true instrumental

PSFs. Although approaches such as Wiener filtering have seen adoption for generic

PSF-filtering tasks (e.g. Boucaud et al. 2016), the often limited quality with which the

PSF can be determined poses issues. We would ideally be able to compute the PSF-

matching kernel with zero knowledge of the actual PSFs, as we predominantly care

about the quality of the match itself. An appropriate solution to the problem in this form

naturally arises via the method of least squares.

2.4.1 Difference imaging as a linear least-squares problem

To mathematically formalise the concepts introduced previously, in this subsection I

present the key equations of difference imaging introduced by Alard & Lupton (1998).

We adopt the notation of Bramich (2008) for clarity going forward, although note this is

fully equivalent to the original A&L prescription.

In difference imaging, we seek to match a reference image Ri j to a science

image Ii j using a combination of spatial convolution with a kernel K and differential

background Bi j, where i and j are indexers for the spatial coordinates of the input
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image. This forward model is written

Mi j = (K⊗R)i j +Bi j

. We seek the values of K and Bi j that minimise the residual sum of squares between

the science image Ii j and our matched template Ri j, that is:

χ
2 = ∑

i j

(
Ii j−Mi j

σi j

)2

, where σi j are the per-pixel uncertainties. As discrete convolution (⊗) is a linear oper-

ator, we can write our kernel as a sum of basis components and factor out the coeffi-

cients:

Mi j = ∑
n
(ankn⊗R)i j +bnBn,i j

.

Mi j = Bi j +∑
n

an (kn⊗R)+bnBn,i j

, where an and bn are the coefficients for each background/kernel component, and kn

and Bn are the kernel/background basis vectors. This makes the matched reference

image a linear sum of kernel-convolved reference images, which is a linear model by

definition – and thus solvable via least-squares. Spatially-varying kernels can be ac-

commodated within this framework by multiplying basis components by polynomials in

image space, such as

Mi j = ∑
nm

anmφmi j (kn⊗R)+bnmφmi jBn,i j

where φmi j contains m spatially-varying basis functions. In the simplest case this may

correspond to a series of polynomial terms in the x,y coordinates of each pixel

The choice of basis components is naturally crucial for a proper matching of

PSFs and backgrounds, and as a result many different choices have emerged. A ba-

sis set must be expressive enough to capture the potentially complex shapes of PSF-

matching kernels, yet be computationally tractable for large kernels. The ‘canonical’
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choice of basis vectors was introduced in Alard & Lupton (1998), as a sum of Gaussian

basis functions (GFB) of differing full-width half maxima, each multiplied by a modulat-

ing polynomial. The widths of the basis functions should be tuned relative to the PSF

size such that they can capture the relevant scales of the problem. Bramich (2008)

introduced the ‘delta-function’ basis (DFB), which spans the set of basis functions with

delta functions localised each pixel - with the basis coefficients an mapping directly

to the kernel intensity values. Although far more expressive than other more con-

strained basis sets (e.g. GFBs), this flexibility can lead to numerical artifacting if not

regularised somehow. Multiple prescriptions for this have arisen (Becker et al., 2012;

Bramich et al., 2016), penalising overly complex kernels through adding a curvature-

like term to the normal equations similar in concept to Tikhonov regularisation. Some

other good candidates for basis functions include Gauss-Hermite polynomials, Carte-

sian/polar shapelets (Refregier, 2003; Massey & Refregier, 2005), and mixed-resolution

delta-function bases (Bramich et al., 2013).

The quantity ∑ni j ankni j gives the ‘photometric’ normalisation factor, which gives

the difference in flux scaling between the science and reference image. This should

be close to one ideally, and gives the factor by which the photometric calibration of the

reference should be scaled to match the science image, for difference image photom-

etry. This too may be spatially varying, particularly important in the case of wide-field

imaging, where airmass, seeing, and transparency may vary across the frame.

Implementation of the above least-squares methods on real imaging data has

many subtleties that must be taken into account. However, in comparison to Fourier

space methods, least squares operates on the pixel level, making weighting, masking,

and other similar operations more simple than would be in frequency space. The core

methods of difference imaging have remained largely unchanged since Alard & Lupton

(1999), instead with focus moving to better treatment of data artifacts (via masking),

better selection of optimal stamps to determine the kernel and any spatial variation (via

sigma clipping), and propagation of uncertainties for optimal source extraction. Multi-

ple implementations of the core Alard and Lupton algorithm exist, implementing various

levels of pre-processing . The original, ISIS (Alard & Lupton, 1999), is still regularly
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Figure 2.4: Illustration of the Gaussian basis function set, with up to third order terms
in x and y. Typically three of these of differing widths are combined to provide represen-
tative power for a range of PSFs.
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Figure 2.5: GOTO difference image of the nearby SN Ia, SN 2021hiz. The source
is visible in the science image, but embedded in the bright disk of the host galaxy.
Subtraction of the reference image yields a clear PSF-shaped residual at the location
of the SN.

used today. More recent implementations such as HOTPANTS (Becker, 2015) are better

optimised and built for wide- field surveys with non-trivial spatial dependencies, vary-

ing noise levels, and correct noise scaling. An example difference image is shown in

Figure 2.5, of the nearby SN Ia SN 2021hiz.

Some modern approaches have returned to the ‘frequency-based’ approaches,

leveraging the availability of highly- optimised Fast Fourier Transform libraries (e.g. Frigo

1999). The Zackay-Ofek-Gal Yam (ZOGY; Zackay et al. 2016) is among the most popu-

lar of these approaches, delivering a provably ‘optimal’ matching of PSF and image

subtraction under Gaussian noise. Most recently, Hu et al. (2022) provided a hy-

brid approach, performing a least-squares fit in Fourier space that is equivalent to a

least-squares fit in real space under Parseval’s theorem, in the ‘saccadic Fast Fourier

Transform’ (SFFT) code, designed for rapid execution on graphics processing units

(GPUs). Both methods require explicit knowledge of, or empirical construction of, point

spread functions for both the science and reference image, which is a challenging and

computationally-intensive task in it’s own right.

Despite a diverse set of algorithms, the various failure modes of difference

imaging are common across all algorithms. Mismatched PSFs lead to ringing artifacts

around bright sources, where the radial extents of the science and reference PSFs are

not perfectly matched. Misalignments between science and reference images yields

‘dipole’ artifacts, with positive and negative flux residuals in close proximity around
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sources. These propagate through source detection/photometry into false detections,

thus significant work continues on improving difference imaging algorithms, especially

in the shadow of upcoming next-generation surveys like the Vera Rubin Legacy Survey

of Space and Time.

2.4.2 Challenges

PSF variations add additional complexity to the solution of the best-fit kernel and back-

ground parameters, requiring the incorporation of spatial terms and thus increasing the

size of the least-squares matrix to be solved. For modern wide-field instrumentation

this is a necessity, however. One simple approach is to split the image into ‘regions’

– smaller cutouts of the image that tile it exactly. This allows the representation of

arbitrarily-complex spatial variations (stricly, piecewise-polynomial) and enables trivial

parallelisation. There are two significant problems with this however: existing codes do

not enforce continuity of PSF or background across region boundaries, leading to sig-

nificant discontinuities which may cause issues with source extraction in latter pipeline

steps. Sub-division into regions also reduces the number of stars per region, providing

poorer constraints on the kernel than otherwise.

One significant remaining challenge for all approaches is the treatment of cor-

related noise in images. Correlated noise results from spatially/temporally-close pixels

showing non-zero covariances in their intensities, thus resulting in correlated residuals

upon subtraction of a model. Mathematically, the covariance matrix of measurements

contains off-diagonal terms (implying co-variance between measurements). This is il-

lustrated in Figure 2.6. Correlated noise can arise from a variety of sources , however

for difference imaging it principally arises from interpolation artifacts, background sub-

traction, or from the kernel itself, which naturally spreads the (approximately) Gaussian

noise of the image out on spatial scales comparable to the kernel size. The method

of least-squares is the best linear unbiased estimator (BLUE) for linear regression only

when the core assumptions are met, that is residuals are normally distributed, with sig-

nificant deviations from optimality in the presence of correlated residuals – affecting

kernel/background determination on correlated images. The Poissonian statistics im-
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Figure 2.6: Illustration of white and correlated noise, generated via convolution. The
top panels show the progressive correlation of initially white, Gaussian noise as it is
convolved with a Gaussian with σ=1 pixel. The bottom panels show the covariance
matrix for each image – starting with a pure diagonal covariance matrix for white noise,
and widening to include nearby off-diagonal terms in the correlated noise images.

plicit in many source detection routines do not account for inter-pixel correlation in the

image, leading to the detection of spurious (often real-looking) sources. The correla-

tions lead to an underestimation of the variance, in turn leading to a lower ‘true’ source

detection threshold than specified. Whilst a simple ad-hoc increase in the source de-

tection threshold will reject these sources, different difference images will have differing

degrees of correlation, making this non-ideal. Modelling the correlation itself seems

like a natural next step, following work on modelling covariances in time-series using

Gaussian processes (GPs; Rasmussen & Williams 2006). However, applying this in

2D is more challenging owing to the complexity scaling of GPs (naively O(N3), dom-

inated by the inversion of the covariance matrix), and many of the optimisations (e.g.

Foreman-Mackey 2018) applied to 1D (or N-D independent) datasets to reduce the

computational complexity are not directly applicable. Whilst ZOGY provides a theoreti-

cal guarantee of white noise in the difference images, in practice implementation details

and deviations from the model assumptions on Gaussianity limit this. There is no robust
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extension3 to ZOGY that permits non-stationary kernels and backgrounds, limiting ap-

plicability to wide-field imaging. Recent work has proposed an extension to the original

Alard and Lupton pixel-space difference imaging, involving an ‘afterburner’ decorrela-

tion kernel derived from the PSF-matching kernel to whiten the image noise (Reiss &

Lupton, 2016). This is a promising first step to resolving the issues of correlated noise

in difference images, yet requires further work to extend to spatially-varying kernels,

and spatially-varying degrees of correlation in a robust way.

All difference imaging algorithms, whether explicit (the kernel basis/spatial de-

pendencies in Alard and Lupton-like algorithms) or implicit (pre-processing steps re-

quired for ZOGY/SFFT) have configurable parameters – these are largely left unchanged

from the defaults suggested by a given algorithm’s author owing to the complexity of

tuning these per- instrument. In the following sub-section, I introduce a metric-driven

Bayesian optimisation framework for performing principled parameter tuning of differ-

ence imaging algorithms, inspired by ‘hyperparameter tuning’ techniques from the com-

puter science literature.

2.4.3 Data-driven optimisation of difference imaging parameters

Note: This chapter is based on an in-preparation manuscript. Full perfor-

mance evaluation, and release of accompanying code is deferred to the full

publication.

As with any algorithm, parameter tuning in difference imaging is important to extract

the maximum performance possible. A similar problem arises in machine learning, with

the ‘hyperparameters’ of a particular machine learning model being tunables that can

yield significant improvements in classification performance (see e.g. Section 3.3.1)

There is significant overlap between these tasks: both processes are computationally

expensive to evaluate, have high- dimensional non-trivial solution spaces, and may be

subject to stochastic ‘noise’ in their evaluations. As a proof-of-concept for developing

more general-purpose optimisation routines in future, I present here some early work

3Sub-division of the image into ‘regions’ does not enforce ‘smooth’ (in the mathematical sense) variation
of PSF or background, thus can cause severe artifacts, spurious edge effects
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Table 2.1: Difference imaging parameter bounds, and their accompanying distributions

Parameter Lower bound Upper Bound Default Optimised

g0 (times seeing) 0.5 1.5 0.5 0.684
g1 (times seeing) g0 2.0 1.0 1.305
g2 (times seeing) g1 3.5 2.0 2.900
Kernel size 11 19 - 13
Kernel substamp size 16 23 - 17

on applying Bayesian optimisation to optimising the (hyperparameters) of the differ-

ence imaging algorithm HOTPANTS, with a view to minimising the number of spurious

sources created as part of the process.

The parameters we choose to optimise, and their bounds are given in Table 2.1

– focusing primarily on the kernel. Note that we choose to specify the widths of each

Gaussian basis function scaled according to seeing (estimated as the median across

the frame). This ensures that the PSF-matching kernel remains an appropriate size

across a range of observing conditions . We also enforce an ordering on the Gaussian

basis function components according to intuition – the zeroth one that is modulated

by a high-order polynomial should have the smallest width, to better fit the complex

core features, with the lower order ones requiring a wider width to fit the wings of the

differential PSF.

We choose to optimise a single event follow-up as a proof of concept, taken from

a Fermi GRB follow-up campaign. The images reach typical depths of 20th magnitude,

and have a range of seeing values. As a proxy metric for the quality of a difference

image, we choose to optimise the number of difference image detections divided by

the number of science image detections ( fdi f f ). This should be close to zero in each

image (excluding transient detections ), so minimisation of this minimises the number of

spurious difference image detections. Scaling through by the number of science image

detections ensures that each image is correctly weighted: we naturally expect more

residuals in a dense stellar field, and thus we should not inadvertantly upweight these

images. We use the optuna (Akiba et al., 2019) package, using the Tree-Parzen estima-

tor algorithm (Bergstra & Bengio, 2012) to successively minimise fdi f f , pre-conditioning

with 5 trial solutions uniformly sampled from the parameter space, and performing a fur-
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Figure 2.7: Plot showing the performance of a range of parameter solutions found via
Bayesian optimisation, as a function of the runtime and figure of merit. The Pareto
frontier is overplotted to show the optimal solution set.

ther 75 acquisitions using the upper confidence bound acquisition function. The resul-

tant family of solutions is plotted in Figure 2.7 as a function of fdi f f and the runtime of the

algorithm. The optimal parameters (see Table 2.1) we obtain for the GOTO test dataset

are somewhat different from the defaults suggested – favouring a smaller high-order

component, and broader low-order components than default, and favouring a smaller

kernel and stamp size than suggested by default. Although we only use a small subset

of images, it is clear we can achieve significant improvements over the ‘canonical’ func-

tion values through data-driven optimisation, especially in the case of wide-field imaging

surveys where spatial and PSF variations cause issues. This approach enables us to

choose a tradeoff between runtime and image quality that suits the chosen use case

we are optimising for. A crucial next step is extending this to a larger set of images

to minimise sampling variance in the metrics of choice, as well as expanding the pa-

rameter space probed to remain open to possible unforeseen combinations. Owing to

the compute time required for such searches, node-level parallelisation is an important

implementation detail required for scaling up.

There is no reason the data-driven optimisation methods outlined in this sub-
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section apply only to difference imaging . The (hyper)parameters of any algorithm are

in principle optimisable in this way, provided a suitable metric/metrics exists and a large

enough volume of test data exists such that any inter-sample variance in statistics can

be minimised. In particular, algorithms such as source detection/segmentation, back-

ground extraction, and image alignment are ripe for improvements via these techniques.

Given the relative agnosticity of Bayesian optimisation to what is being optimised, one

could even optimise all stages of e.g a difference imaging pipeline simultaneously, to

exploit the dependence of sequential steps on each other, to enable the maximal per-

formance. It is important to acknowledge there are issues with this approach – in partic-

ular the potential for mis-specification of metrics to skew results, however metric-driven

optimisation shows significant promise in extracting maximal performance from astro-

nomical pipelines. We are in the infancy of such techniques, and work from the machine

learning community on hyperparameter optimisation will only further improve the viabil-

ity of high-dimensional exotic optimisation.

2.4.4 Future directions

Taking into account the challenges listed in Section 2.4.2, significant scope exists for

the improving the efficacy of existing difference imaging algorithms, with the potential

to reduce the considerable false-positive rate such algorithms carry due to the artifacts

they cause – whilst also bringing depth improvements for wide-field surveys.

A particularly promising avenue for improving execution time is by leveraging

the highly optimised convolution and image processing routines delivered by modern

deep learning frameworks, in tandem with the tried-and-tested approaches of the past.

This makes offloading highly-parallelisable steps of difference imaging (namely the con-

volutions and matrix multiplications) to the GPU and just-in-time compilation of key

serial-only branches possible, with potentially significant performance gains available.

Whilst GPU implementations of these algorithms exist already, they are implemented in

domain-specific languages (e.g. CUDA C++) that make them inaccessible to the aver-

age astronomer. In contrast, deep learning frameworks provide bindings from high-level

languages, which makes development , debugging, and optimisation more intuitive.
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Some early work (Hitchcock et al., 2021) makes use of this approach, using stochas-

tic gradient descent (see Section 2.2) to solve for the optimal kernel and background

parameters numerically. The convergence properties of this approach are not ideal

for deployment into large-scale automated discovery pipelines, however this work un-

derscores the significant performance gains possible from adopting new architectures

for the difference imaging problem, and extension to more complex scenarios where a

linearised treatment of the problem is simply not possible.
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Chapter 3

Transient-optimised real-bogus

classification

Note

This chapter is taken from the 2021 MNRAS article, Transient-optimized

real-bogus classification with Bayesian convolutional neural networks - sift-

ing the GOTO candidate stream (Killestein et al., 2021), and based on

the Authors’ Accepted Manuscript. The majority of work contributing to this

publication was performed by myself, with some additional contributions

and guidance from co-authors.

Abstract

Large-scale sky surveys have played a transformative role in our understanding of as-

trophysical transients, only made possible by increasingly powerful machine learning-

based filtering to accurately sift through the vast quantities of incoming data generated.

In this paper, we present a new real-bogus classifier based on a Bayesian convolutional

neural network that provides nuanced, uncertainty-aware classification of transient can-

didates in difference imaging, and demonstrate its application to the datastream from

the GOTO wide-field optical survey. Not only are candidates assigned a well-calibrated

probability of being real, but also an associated confidence that can be used to priori-
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tise human vetting efforts and inform future model optimisation via active learning. To

fully realise the potential of this architecture, we present a fully-automated training set

generation method which requires no human labelling, incorporating a novel data-driven

augmentation method to significantly improve the recovery of faint and nuclear transient

sources. We achieve competitive classification accuracy (FPR and FNR both below

1%) compared against classifiers trained with fully human-labelled datasets, whilst be-

ing significantly quicker and less labour-intensive to build. This data-driven approach is

uniquely scalable to the upcoming challenges and data needs of next-generation tran-

sient surveys. We make our data generation and model training codes available to the

community.

3.1 Introduction

Transient astronomy seeks to identify new or variable objects in the night sky, and char-

acterise them to learn about the underlying mechanisms that power them and govern

their evolution. This variability can occur on timescales of milliseconds to years, and at

luminosities ranging from stellar flares to luminous supernovae that outshine their host

galaxy (Kulkarni, 2012; Villar et al., 2017). Through observations of optical transient

sources we have obtained evidence of the explosive origins of heavy elements (e.g. Ab-

bott et al. 2017e; Pian et al. 2017), traced the accelerating expansion of our Universe

across cosmic time (e.g. Perlmutter et al. 1999), and located the faint counterparts of

some of the most distant and energetic astrophysical events known: gamma-ray bursts

(e.g. Tanvir et al. 2009). Requiring multiple observations of the same sky area to de-

tect variability, transient surveys naturally generate vast quantities of data that require

processing, filtering, and classification – this has driven the development of increas-

ingly powerful techniques bolstered by machine learning to meet the demands of these

projects.

Many of the earliest prototypical transient surveys began as galaxy-targeted

searches, performed with small field-of-view instruments. In the early stages of these

surveys candidate identification was performed manually, with humans ‘blinking’ im-
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ages to look for varying sources. This process is time-consuming and error-prone, and

represented a bottleneck in the survey dataflow which heavily limited the sky cover-

age of these surveys. The first ‘modern’ transient surveys (e.g. LOSS; Filippenko et al.

2001) used early forms of difference imaging to detect candidates in the survey data,

automating the candidate detection process and enabling both faster response times

and greater sky coverage. LOSS proved extremely successful, discovering over 700

supernovae in the first decade of operation, providing a homogeneous sample that has

proven useful in constraining supernova rates for the local Universe (Leaman et al.,

2011; Li et al., 2011).

Difference imaging has since emerged as the dominant method for the identifi-

cation of new sources in optical survey data. With this method, an input image has a his-

toric reference image subtracted to remove static, unvarying sources. Transient sources

in this difference image appear as residual flux, which can be detected and measured

photometrically using standard techniques. Various algorithms have been proposed for

optical image subtraction, either attempting to match the point spread function (PSF)

and spatially-varying background between an input and reference image (Alard & Lup-

ton, 1998; Becker, 2015), or accounting for the mismatch statistically (Zackay et al.,

2016) to enable clean subtraction. Difference imaging also provides an effective way to

robustly discover and measure variable sources in crowded fields (Wozniak, 2000).

Driven by both improvements in technology (large-format CCDs, wide-field tele-

scopes) and difference imaging algorithms, large-scale synoptic sky surveys came to

the fore. In this mode, significant areas of sky can be covered each night to a use-

ful depth and candidate transient sources automatically flagged. This has driven an

exponential growth in discoveries of transients, with over 18,000 discovered in 2019

alone1. Wide-field surveys such as the Zwicky Transient Facility (ZTF; Bellm et al.

2019), PanSTARRS1 (PS1; Chambers et al. 2016a), the Asteroid Terrestrial-impact

Last Alert System (ATLAS; Tonry et al. 2018), and the All Sky Automated Survey for

SuperNovae (ASAS-SN; Shappee et al. 2014) have proven to be transformative, collec-

tively discovering hundreds of new transients per night.

1https://wis-tns.org/
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With the ability to repeatedly and rapidly tile large areas of sky in order to search

for new and varying sources, the follow-up of optical counterparts to poorly localised ex-

ternal triggers became possible, in the process ushering in the age of multi-messenger

astronomy. An early example was detection of optical counterparts to Fermi gamma-

ray bursts by the Palomar Transient Factory (PTF; Law et al. 2009). Typical localisation

regions from the Fermi GBM instrument (Meegan et al., 2009) were of order 100 square

degrees at this time, representing a significant challenge to successfully locate compar-

atively faint (r ∼ 17−19) GRB afterglows. Of the 35 high-energy triggers responded to,

8 were located in the optical (Singer et al., 2015), demonstrating the emerging effec-

tiveness of synoptic sky surveys for this work.

Another recent highlight has been the detection of an optical counterpart to a

TeV-scale astrophysical neutrino detected by the IceCUBE facility (Aartsen et al., 2017).

Recent and historical wide-field optical observations of the localisation area combined

with high-energy constraints from Fermi enabled the identification of a flaring blazar,

believed to be responsible for the alert (IceCube-170922A; IceCube Collaboration et al.

2018b) . This rapidly increasing survey capability has culminated recently in the land-

mark discovery of a multi-messenger counterpart to the gravitational wave (GW) event

GW170817 (Abbott et al., 2017c,e).

3.1.1 Real-bogus classification

For many years, the rate of difference image detections generated per night by sky sur-

veys has significantly exceeded the capacity of teams of humans to manually vet and

investigate each one. This has motivated the development of algorithmic filtering on

new sources, to reject the most obvious false positives and reduce the incoming datas-

tream to something tractable by human vetting. With the growing scale and depth of

modern sky surveys, simple static cuts on source parameters cannot keep pace with

the rate of candidates, with high false positive rates leading to substantial contamina-

tion by artifacts. This situation has motivated the development of machine learning (ML)

and deep learning (DL) classifiers, which can extract subtle relationships/connections

between the input data/features and perform more effective filtering of candidates. The
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dominant paradigm for this task has so far been the real-bogus formalism (e.g. Bloom

et al., 2012), which formulates this filtering as a binary classification problem. Gen-

uine astrophysical transients are designated ‘real’ (score 1), whereas detector artefacts,

subtraction residuals and other distractors are labelled as ‘bogus’ (score 0). A machine

learning classifier can then be trained using these labels with an appropriate set of

inputs to make predictions about the nature of a previously-unseen (by the classifier)

source within an image.

This real-bogus classification is only one step in a transient detection pipeline.

Having established the candidates appearing as astrophysically real sources, further

filtering is required to determine if they are scientifically interesting, or distractors – the

definition of “interesting” is naturally governed by the science goals of the survey. This

process draws in contextual information from existing catalogues, historical evolution,

and more fine-grained classification routines. The last step before triggering follow-up

and further study (at least currently) is human inspection of the remaining candidates.

No single filtering step is 100% efficient in removing false positives/low significance

detections, thus human vetting is required to identify promising candidates and screen

out any bogus detections that have made it this far. Real-bogus classification is the most

crucial step, reducing the volume of candidates that later steps must process and the

amount of bogus candidates that humans must eventually sift through to find interesting

objects – a balance between sensitivity (to avoid missing detections irretrievably) and

specificity (avoiding floods of low-quality candidates) must be reached.

Real-bogus classification is a well-studied problem, beginning with early tran-

sient surveys (Romano et al., 2006; Bailey et al., 2007), and evolving both in complexity

and performance with the increasing demands placed on it by larger and deeper sky

surveys such as PTF (Brink et al., 2013), PanSTARRS1 (Chambers et al., 2016a), and

the Dark Energy Survey (Goldstein et al., 2015). Early classifiers were generally built

on decision tree-based predictors such as random forests (Breiman, 2001), using a

feature vector as input. Feature vectors comprise extracted information about a given

candidate, and often include broad image-level statistics/descriptions designed to max-

imally separate real and bogus detections in the feature space. Examples include the
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source full-width half maximum computed from the 2D profile, noise levels, and neg-

ative pixel counts. More elaborate features can be composed via linear combinations

of these quantities, which may exploit correlations and symmetries. Another method

of deriving features is to compute compressed numerical representations of the source

via Zernicke/shapelet decomposition (Ackley et al., 2019).

However, feature selection can represent a bottleneck to increasing performance.

Features are typically selected by humans to encode the salient details of a given de-

tection, attempting to find a compromise between classification accuracy and speed of

evaluation. This introduces the possibility of missing salient features entirely, or choos-

ing a sub-optimal combination of them.

Directly using pixel intensities as a feature representation avoids choosing fea-

tures entirely, instead training on flattened and normalised input images (Wright et al.,

2015; Mong et al., 2020), these have demonstrated improved accuracy over fixed-

feature classifiers. However, this approach quickly (quadratically) becomes inefficient

for large inputs. Using a smaller input size means information on the surrounding area

of each detection is unavailable, limiting the visible context and affecting classification

accuracy as a result.

Recently, convolutional neural networks (CNN; LeCun et al. 1995) have led to

a paradigm shift in the field of computer vision and machine learning, which has been

transformative in the way we process, analyse, and classify image data across all dis-

ciplines. CNNs use learnable convolutional filters known as kernels to replace feature

selection. These filters are cross-correlated with the input images to generate ‘feature

maps’, effectively compact feature representations. Through the training process, the

filter parameters are optimised to extract the most salient details of the inputs, which

can then be fed into fully-connected layers to perform classification or regression. In

this way, the model can select its own feature representations, avoiding the bottleneck

of human selection. Multiple layers can be combined to achieve greater representa-

tional power, known as deep learning (LeCun et al., 2015). Recent work using CNNs

has demonstrated state-of-the-art performance at real-bogus classification (Gieseke

et al., 2017; Cabrera-Vives et al., 2017; Duev et al., 2019; Turpin et al., 2020). CNNs
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are also efficiently parallelisable making them suitable for high-volume data processing

tasks. Whilst providing substantial accuracy improvements over previous techniques,

deep learning is particularly reliant upon large and high quality training sets to minimise

overfitting, arising from the high number of model parameters. Although augmentation

and regularisation techniques can minimise this risk, they are no substitute for a larger

dataset. The performance of any classifier is ultimately limited by the error rate on the

training labels, so it is important to also ensure the dataset is accurately labelled. Mak-

ing a large, pure, and diverse training set can be among the most challenging parts

of developing a machine learning algorithm, and significant effort has been focused on

this area in recent years.

Traditionally the ‘gold-standard’ for machine learning datasets across computer

science and astronomy has been human-labelled data, as this represents the ground

truth for any supervised learning task. Use of citizen science has proven to be par-

ticularly effective, leveraging large numbers of participants and ensembling their in-

dividual classifications to provide higher accuracy training sets for machine learning

through collaborative schemes such as Zooniverse (Lintott et al., 2008; Mahabal et al.,

2019). However, even in large teams, human labelling of large-scale datasets is time-

consuming and inefficient requiring hundreds–thousands of hours spent collectively to

build a dataset of a suitable size and purity. Specifically for real-bogus classification,

there are also issues with completeness and accuracy for human labelling of very faint

transients close to the detection limit. These faint transients are where a classifier has

potential to be the most helpful, so if the training set is fundamentally biased in this

regime, any classifier predictions will be similarly limited. To go beyond human-level

performance, we cannot solely rely on human labelling, additional information is re-

quired. One specific aspect of astronomical datasets that can be leveraged to address

both issues discussed above is the availability of a diverse range of contextual data

about a given source. Sizeable catalogues of known variable stars, galaxies, high en-

ergy sources, asteroids, and many other astronomical objects are freely available and

can be queried directly to identify and provide a more complete picture of the nature of

a given source.
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Significant effort is being invested in data processing techniques for transient

astronomy in anticipation of the Vera C. Rubin Observatory (Ivezić et al., 2019), due to

begin survey operations in 2024. Via the Legacy Survey of Space and Time (LSST), the

entire southern sky will be surveyed down to a nominal depth of g′ ∼ 24.5 in 5 colours

at high cadence, providing an unprecedented discovery engine for transients to depths

previously unprobed at this scale. The dataflow from this project is expected to be a fac-

tor 10 greater than current transient surveys, and promises to be transformative in the

fields of supernova cosmology, detection of potentially hazardous near-Earth asteroids,

and mapping the Milky Way in unprecedented detail. The main high-cadence deep sky

survey promises to provide a significant increase in the number of genuine transients

we detect, but also a significant increase in the number of bogus detections assuming

there are not similarly large improvements in the capability of machine learning-based

filtering techniques. Development of higher-performance classifiers is crucial to fully

exploit this stream, but also more granular classification involving contextual data (as

recently demonstrated by Carrasco-Davis et al. 2020) to ensure that novel and scien-

tifically important candidates are identified promptly enough to be propagated to teams

of humans and followed up.

A related goal of increasing importance in the big data age of the Rubin Ob-

servatory and similar projects is that of quantifying uncertainty – being able to identify

detections that the classifier is confident are real, and providing a classifier a way to

indicate uncertainty on more tenuous examples. This objective goes beyond the simple

value of the real-bogus score, and can then be used to find the optimal edge cases to

feed to human labellers, allowing new data to be continually integrated to improve per-

formance and keep the classifier’s knowledge current and applicable to a continuously

evolving set of instrumental parameters. Current generation transient surveys provide

a crucial proving ground for development of these new techniques.

3.1.2 The Gravitational-Wave Optical Transient Observer (GOTO)

The Gravitational-Wave Optical Transient Observer (Steeghs et al., 2021) is a wide-field

optical array, designed specifically to rapidly survey large areas of sky in search of the
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weak kilonovae and afterglows associated with gravitational wave counterparts. The

work we present in this paper was conducted during the GOTO prototype stage , using

data taken with a single ‘node’ of telescopes situated at the Roque de los Muchachos

observatory on La Palma . Each node comprises 8 co-mounted fast astrograph OTAs

(optical tube assemblies) combining to give a ∼ 40 square degree field of view in a sin-

gle pointing. The GOTO prototype performs surveys using a custom wide L band filter

(approximately equivalent to g′+ r′) down to L ≈ 20, providing an effective combina-

tion of fast and deep survey capability uniquely suited to tackling the challenging large

error boxes associated with gravitational wave detections. As demonstrated in Gom-

pertz et al. (2020), the prototype GOTO installation is capable of conducting sensitive

searches for the optical counterparts of nearby binary neutron star mergers, even with

weak localisations of ∼1000 square degrees. When not responding to GW events,

GOTO performs an all-sky survey utilising difference imaging to search for other inter-

esting transient sources. Although the GOTO prototype datastream will be the primary

data source used to investigate the performance of the machine learning techniques

developed in this paper, the methods are inherently scalable and will also be deployed

for the future GOTO datastream from 4 nodes spread over two sites. For now, we

concentrate on a calendar year of prototype operations (spanning 01-01-2019 – 01-01-

2020) – which represents a significant dataset, comprising 44,789 difference images in

total.

Raw images are reduced with the GOTO pipeline (Steeghs et al., 2021). Here

we provide a very brief overview of the process for context, and delegate more in-depth

discussion to the specific upcoming pipeline papers. The typical survey strategy for

GOTO is three exposures per pointing, which undergo standard bias, dark and flat cor-

rection, and then are median-combined to reject artifacts and improve depth. Through-

out this paper we refer to this median-combined stack of subframes as a ‘science im-

age’. Each combined image is matched to a reference template, which passes basic

quality checks, and aligned using the SPALIPY 2 code. Image subtraction is performed

on the aligned science and reference images with the HOTPANTS algorithm (Becker,

2https://github.com/Lyalpha/spalipy
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2015) to generate a difference image. To locate residual sources in the difference im-

age, source extraction is performed using SEXTRACTOR (Bertin & Arnouts, 1996). De-

tections in the difference image are referred to as ‘candidates’ through the remainder

of this paper. For each candidate, a set of small stamps are cut out from the main sci-

ence, template and difference images and this forms the input to the GOTO real-bogus

classifier. This process and proposed improvements are discussed in more detail in

Section 3.2.1. From here, candidates that pass a cut on real-bogus score (using a pre-

liminary classifier) are ingested into the GOTO Marshall – a central website for GOTO

collaborators to vet, search and follow-up candidates (Lyman et al., in prep.).

In line with the principal science goals of the GOTO project, the real-bogus clas-

sifier discussed in this work is constructed specifically to maximise the recovery rate

of extragalactic transients and other explosive events such as cataclysmic variable out-

bursts. Small-scale stellar variability can be easily detected via difference imaging,

but is better studied through the aggregated source light curves. An operational re-

quirement for the current version of this classifier is the ability to perform consistently

across multiple different hardware configurations. During classifier development, the

GOTO prototype used two different types of optical tube design, each with varying op-

tical characteristics that led to different point spread functions, distortion patterns, and

background levels/patterns. Due to limited data availability, training a classifier for each

individual OTA (or group of OTAs of the same type) was not viable. This requirement

adds an additional operational challenge over survey programs such as the Zwicky Tran-

sient Facility (ZTF, Bellm et al., 2019) and PanSTARRS1 (PS1, Chambers et al., 2016a),

which use a static, single-telescope design. If acceptable results can be achieved with

this heterogeneous hardware configuration, then further performance gains can be ex-

pected when the design GOTO hardware configuration is deployed. This will use tele-

scopes of consistent design and improved optical quality meaning less model capacity

needs to be directed towards making the classification performance stable and across

a diverse ensemble of optical distortions.

In this paper, we propose an automated training set generation procedure that

enables large, minimally contaminated, and diverse datasets to be produced in less
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time than human labelling and at larger scales. This procedure also introduces a data-

driven augmentation scheme to generate synthetic training data that can be used to

significantly improve the performance of any classifier on extragalactic transients of all

types, but with particular effectiveness for nuclear transients. Using this improved train-

ing data, we apply Bayesian convolutional neural networks (BCNNs) to astronomical

real-bogus classification for the first time, providing uncertainty-aware predictions that

measure classifier confidence, in addition to the typical real-bogus score. This opens

up promising future directions for more complex classification tasks, as well as optimally

utilising the predictions of human labellers. We emphasise that although this classifier

is discussed in the context of GOTO and our associated science needs, the techniques

discussed are fully general and could be applied to general real-bogus classification at

other projects easily. Our code, GOTORB, is made freely available online 3 with this in

mind.

3.2 Training set generation and augmentation

The ‘real’ content of our training set is composed of minor planets, similar to Smith et al.

(2020). Assuming the sky motion is large (but not so large that the source is trailed)

these objects are typically detected in the science image but not the template image,

which provides a clean subtraction residual resembling an explosive transient. Due to

the large pixels of the GOTO detectors and short exposure times of each sub-image,

very few asteroids move sufficiently quickly to trail. We estimate that sky motions of 1

arcsec per minute or greater will lead to trailing.

There are significant numbers of asteroids detectable down to L ∼ 20.5 with

GOTO, and the sky motion ensures that a diverse range of image configurations are

sampled. With the large ∼ 40 square degree field of view provided by GOTO, an

whole-sky average of 4.6 asteroids per pointing are obtained, with this number sig-

nificantly increasing towards the ecliptic plane. Using ephemerides provided by the

astorb database (Moskovitz et al., 2019), based on observations reported to the Minor

3https://github.com/GOTO-OBS/gotorb
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Planet Center4, difference image detections can be robustly cross-matched to minor

planets in the field. This provides a significant pool of high-confidence, unique, and

diverse difference image detections from which to build a clean training set.

We use the online SkyBoT cone search (Berthier et al., 2006, 2016) to retrieve

the positions and magnitudes of all minor planets within the field of view of each GOTO

image, then cross-match this table with all valid difference image detections using a 1

arcsec threshold value to identify the asteroids present in the image. The ephemerides

provided are of sufficient quality that this is adequate to match even faint (L ∼ 20)

asteroids. To avoid spurious cross-matches, only asteroids brighter than the 5-sigma

limiting magnitude of the image are considered. An alternative offline cone search is

made accessible via the PYMPC package5 Python package, which the code can fall

back on if SkyBoT is unavailable. Using minor planets, the training set can reliably

be extended to fainter magnitudes, where the performance of human vetters begins to

significantly decrease. Figure 3.1 illustrates the magnitude distribution of minor planets

used to construct the training set.

To create the bogus content of our training set, we randomly sample detections

in the difference image following Brink et al. (2013). Bogus detections overwhelmingly

(≳ 99%) outnumber real detections in each difference image, so it is justified to sample

in this way. One significant source of contamination taking this approach is variable

stars, therefore we remove all known variable stars from the random bogus component

by cross-matching against the ATLAS Variable Star Catalogue (Heinze et al., 2018)

with a 5 arcsec radius. These variable star detections can constitute 2–4% of the entire

bogus dataset. Of the detections removed by this step, a small fraction of these will be

high-amplitude variable stars which have a strong subtraction residual in a given night’s

data, and thus represent real sources lost. Automating the correct labelling of these

sources using light curve information is feasible, but would add significant complexity

and more potential failure modes, so we instead opt to remove the variable stars entirely

and simply add more verifiably ‘real’ detections in their place in the form of more minor

planets. Inevitably, some small fraction of uncatalogued variable stars will be missed

4https://www.minorplanetcenter.net/
5https://pypi.org/project/pympc/
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Figure 3.1: Magnitude distribution of the minor planets (MP) used to build our training
set. Bright-end number densities are dominated by the true magnitude distribution of
the minor planets, where the faint-end density is constrained by the GOTO limiting mag-
nitude. The magnitude distribution of synthetic transients (SYN) is a sub-sample of the
minor planet magnitude distribution, except with a cut at L ∼16, to avoid unrealistically
bright objects.
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with this procedure, and we develop tools to identify them retrospectively after model

training in Section 3.3.3.

To improve the classifier’s resistance to specific challenging subtypes of data

poorly represented in our algorithmically generated training set, we inject human-labelled

detections into the dataset. More specifically, candidates from the GOTO Marshall (dis-

cussed in full in Lyman et al., in prep.) are included, which were misidentified by the

classifier in the pipeline at the time as real and later labelled as bogus by human vet-

ters. The previous classifier was a rapidly-deployed prototype CNN similar in design to

that presented here, trained on a smaller dataset of minor planets and random bogus

detections. These detections are included to allow the classifier to screen out artifacts

missed by the prototype image processing pipeline, including satellite trails and highly

wind-shaken PSFs. This artifically increases the diversity of the bogus component of

the training set, as these edge-case detections would rarely be selected by naive ran-

dom sampling and so be poorly represented within the model. Although these detec-

tions represent a small fraction of the overall training set (∼ 5%), they provide a marked

improvement in performance in the real-world deployment of the classifier, including

marginal gains on more typical detections.

3.2.1 Data extraction and format

For each detection identified for inclusion in our training/validation/test sets, a series

of stamps are cut out from the larger GOTO image centred on the difference image

residual. In common with previous CNN-based classifiers, we use small cutouts of the

median-stacked science and template images, as well as the resultant difference image

after image subtraction. The size of these stamps is an important model hyperparame-

ter, which we explore in more detail in Section 3.3.1. A example of the model inputs for

a synthetic source are illustrated in Figure 3.2.

An important addition to our network’s inputs compared to previous work is a

peak-to-peak (p2p) layer. This is included to characterise variability across the individual

images that make up a median stacked science image, and is calculated as the peak-

to-peak (maximum value - minimum value) variation of each pixel computed across all
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SCIENCE TEMPLATE DIFFERENCE P2P

Figure 3.2: Example data format for a set of idealised synthetic images of a single
Gaussian source newly appearing in the science image. We apply a naive convolution
of science image with template PSF and vice versa in producing the difference image for
visualisation purposes. From left to right: science median, template median, difference
image, pixel-wise peak-to-peak variation across contributing images to science median.
Cutouts are 55x55 pixels square, corresponding to a side length of 1.1 arcminutes.

individual images that composed the median stack. To ensure consistent alignment

across all individual stamps and remove any jitter, we cut out the region based on

the RA/Dec coordinates of the source detection in the median stack. This additional

provides an effective discriminator for spurious transient events such as cosmic ray hits

and satellite trails. If sufficiently bright, these are not removed by the simple median

stacking in the current pipeline due to the small number of sub-frames used. This is

particularly problematic for cosmic ray hits which are convolved with a Gaussian kernel

for image subtraction, and appear PSF-like in the difference image. This can create

convincing artifacts which are difficult to identify without access to the individual image

level information. In testing, this reduced the false positive rate on the test set by ∼
0.2%. Although this is not a sizeable improvement when evaluated on the full dataset,

cosmic ray hits constitute a very small percentage of overall detections. Testing instead

on a human-labelled set of bogus detections which were initially scored as real by the

existing deployed classifier (without a p2p layer), there is a 2–3% decrease in false

positive rate.

For all of the above steps, stamps extending beyond the edge of the detector

have missing areas filled in with a constant intensity level of 10−6, to distinguish them

quantitatively from masked (i.e. saturated) pixels which are assigned a value of zero

in the difference image by the pipeline. The specific intensity level chosen for this off-

setting is not important, and we choose our value to be well above machine precision
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(significant enough to influence the gradients) but well below the typical background

level. To ensure that the classifier remains numerically stable in later training steps,

each stack of stamps undergoes layer-wise L2 normalisation to reduce the input’s mag-

nitude. Each stamp has the mean subtracted and is then divided through by the L2

(
√

x⃗ · x⃗) norm.

3.2.2 Synthetic transients

Although asteroids provide a convenient source of PSF-like residuals to train on, it

is important to note that they cannot fully replicate genuine transients. Asteroids are

markedly simpler to learn and discriminate for a classifier since they lack the complex

background of a host galaxy. The main goal of this classifier is to detect extragalactic

transients, so adapting the training set to maximise performance on these objects is

important. An ideal approach would be to add a large number of genuine transients

into the training set. However, GOTO has not been on-sky long enough to collect a suit-

ably large set of these detections, and we only build the training set from the previous

year of data. Even assuming every supernova over the past year is robustly detected in

our data this will still yield a number of transients that is significantly less than the target

size of our training set. This would create a severely imbalanced dataset, which could in

principle be used but with reduced classification performance. Using spectroscopically

confirmed transients may also inject an element of observational bias into our training

set, as events that have favourable properties for spectroscopy (in nearby galaxies, off-

set from their host, bright) are preferentially selected (Bloom et al., 2012) to be followed

up. Instead we reserve a set of real, spectroscopically confirmed transients GOTO has

detected (∼ 900 as of August 2020) for benchmarking purposes, as they represent a

valuable insight into real-world performance and can be used to directly evaluate the

effectiveness of any transient augmentation scheme we employ, as in Section 3.4.2.

PSF injection has been used heavily in prior work to generate synthetic de-

tections for testing recovery rates and simulating the feasibility of observations. This

process can be computationally intensive, involving construction of an effective PSF

(ePSF) from combining multiple isolated sources or fitting an approximating function
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(e.g. a Gaussian) to sources in the image. The ePSF model can then be scaled and

injected into to the image to simulate a new source. By injecting sources in close prox-

imity to galaxies in individual images then propagating this through the data reduction

pipeline, synthetic transients could be generated in a realistic way. However, the fast

optical design of GOTO makes this a complex task, as the PSF varies as a function

of source position on the detector. Sources in the corners of an image display mild

coma, which, combined with wind-shake and other optical distortion, can lead to un-

usual PSFs that are not accurately reproduced by the mean PSF. In principle this could

be accounted for by computing PSFs for sub-regions of a given image or assuming

some spatially-varying kernel to fit for, but this would add sizeable overheads to the

injection process and will always be an approximation.

Recent new techniques such as generative adversarial networks (GANs, Good-

fellow et al. 2014) have shown promise in generating novel training examples that can

be used to address class imbalances/scarcity in training sets (Mariani et al., 2018), and

have recently started to be applied to astrophysical problems (Yip et al., 2019). How-

ever these networks are computationally expensive, complex to train and understand

the outputs of, and don’t fully remove the need for large datasets. A robust human-

interpretable method for generating synthetic examples is a better approach for the

noisy, diverse datasets used in real-bogus classification.

We propose a novel technique for synthesising realistic transients that can be

used to significantly improve transient-specific performance when compared to a pure

minor planet training set, without requiring PSF injection or other CPU-intensive ap-

proaches. For each minor planet detected in an image, the GLADE galaxy cata-

logue (Dálya et al., 2018) is queried for nearby galaxies within a set angular distance

of 10 arcminutes, chosen such that the PSF of sources within this region are consis-

tent. Pre-built indices are used via CATSHTM (Soumagnac & Ofek, 2018) to accelerate

querying GLADE. The algorithm chooses the brightest galaxy (minimum B band mag-

nitude) within range, then generates a cutout stamp with with a randomly chosen x,y

offset relative to the galaxy centre. For the implementation within this work, the x,y pixel

offsets are drawn from a uniform distribution U(−7.7) chosen to fully cover the range
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of offsets for nearby galaxies. Sources that are completely detached from any host

galaxy are better represented by the minor planet component of the training set. This

ensures that a diverse range of transient configurations (nuclear, offset, orphaned) are

sampled. The minor planet and galaxy stamp are then directly summed to produce the

synthetic transient. For the purposes of real-bogus classification, accurately matching

the measured transient host-offset distribution is not crucial. The host offset distribu-

tion contains implicit and difficult to quantify biases resulting from the specific selection

functions of the transient surveys that populate it – it does not reflect accurately the un-

derlying distribution of astrophysical transients. By choosing from a uniform distribution,

we instead aim to attain consistent performance across a wide range of host offsets that

overlap with the range inferred from the transient host offset distribution.

The original individual images for each component are retrieved to correctly

compute the peak-to-peak variation of the combined stamp. Model inputs are pre-

processed and undergo L2 normalisation (as discussed in Section 3.2.1) prior to train-

ing and inference, so additional background flux introduced by this method does not

affect the model inputs. The noise characteristic of this combined stamp is not straight-

forward to compute due to the highly correlated noise present in the difference image

and varying intensity levels, and could be higher or lower depending on the specific

stamps – with the straightforward Gaussian case providing a
√

2 reduction in noise.

This is likely not problematic for the classifier, providing a form of regularisation that

could improve generalisation accuracy. We also assume that the spatial gradients in

background across both stamps are ∼ constant, as the stamp scale is far smaller than

the overall frame scale – naturally this breaks down in the presence of nebulosity/galaxy

light but this represents a overwhelmingly small fraction of the sky. We also reject all mi-

nor planets with L < 16, as these are significantly brighter than the selected host galaxy

so are better represented by the pure minor planet candidates. This also cuts down

significantly on saturated detections of dubious quality. This choice has no detrimental

effect on bright-end performance, as discussed in Section 3.4. A random sample of

synthetic transients generated with this approach is shown in Figure 3.3. Our method

bears some similarity in retrospect to the approach of (Cabrera-Vives et al., 2017), who
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added stamps from the science image into difference images to simulate detections in

‘random’ locations. Our approach uses confirmed difference image detections of MPs

and puts them in more purposeful locations, whilst preserving the noise characteristics

of the difference stamp.

This approach has strong advantages over simply injecting transients into galax-

ies. By selecting only galaxies close to each minor planet, the PSF is preserved and

is consistent, regardless of how distorted it may be. Injection-based methods require

estimation/assumption of the image PSF, which is typically a parameterised function

determined by fitting isolated sources. Given the variation in PSF across images and

across individual unit telescopes, this would be a computationally intensive task, and

would likely lead to poorer results compared to using minor planets. However, using

only these synthetic transients introduces unintended behaviour in the trained model

that significantly degrades classification performance if not remedied. Since every syn-

thetic transient in the training set is associated with a host galaxy by design, the model

will over time learn to associate all detections with galaxies as being real as there is

no loss penalty for doing so. To resolve this, we also inject galaxy residuals as bogus

detections, randomly sampling from the remaining GLADE catalog matches at a 1:1

transient:galaxy residual ratio. This way, the model learns that the salient features of

these detections are not the galaxy, but the PSF-like detection embedded in them.

3.2.3 Training set construction

Using the techniques developed in the sections above, we build our training set with

GOTO prototype data from 01-01-2019 to 01-01-2020. This ensures that our perfor-

mance generalises well across a range of possible conditions – with PSF shape and

limiting magnitude being the most important properties that benefit from this randomi-

sation. A breakdown of training set proportions and properties is given in Table 3.1.

Our code is fully parallelised at image level, meaning that a full training set of

∼400,000 items can be constructed in under 24h on a 32-core machine. Training sets

can also be easily accumulated on multiple machines and then combined thanks to

the use of the HDF5 file format. The main bottlenecks of training set generation are
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SCI TEMPL DIFF P2P

Figure 3.3: Randomly selected sample of synthetic transients generated with our algo-
rithm, displayed in the same format as in Figure 3.2. Significant variations in the PSF
are visible due to sampling directly from the image, improving classifier resilience.
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Metalabel Train Test

Minor planet 72992 8133
Synthetic transient 40192 4521
Random bogus 177556 19645
Galaxy residual 28040 3190
Marshall bogus 24577 2662
Total 343357 38151 381508

Table 3.1: Breakdown of the composition of our dataset, partitioned according to train-
ing and test sets. The validation dataset is not shown, but is composed of 10% of the
training dataset, chosen randomly at training time.

IO-related – loading in image data to prepare the stamps, and querying the GLADE

catalogue and SkyBoT cone search.

3.3 Classifier architecture

As a starting point, we follow the BRAAI classifier of Duev et al. (2019) in using a down-

sized version of the VGG16 CNN architecture of Simonyan & Zisserman (2014). This

network architecture has proven to be very capable across a variety of machine learning

tasks, and is a relatively simple architecture to implement and tweak. This architecture

uses conv-conv-pool blocks as the primary component – two convolutions are applied

in sequence to extract both simple and compound features, then the resultant feature

map is reduced in size by a factor 2 by ‘pooling’, taking the maximum value of each 2x2

group of pixels. This architecture also uses small kernels (3x3) for performance. These

structures are illustrated in Figure 3.4. We use the configuration as presented in Duev

et al. (2019) for development, but later conduct a large-scale hyperparameter search to

fine-tune the performance to our specific dataset (Section 3.3.1). The primary inputs to

the classifier are small cut-outs of the science, template, difference, and p2p images as

discussed in Section 3.2.1 which we refer to as stamps.

The sample weights for real and bogus examples are adjusted to account for

the class imbalance in our dataset, set to the reciprocal of the number of examples with

each label. Class weights are not adjusted on a per-batch basis, as our training set

is only mildly imbalanced. For regularisation, we apply a penalty to the loss based on
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conv conv pool (2x2)
conv conv pool (4x4) flatten dense

(55,55,4)(53,53,24) (51,51,24)

(25,25,56)(23,23,56)(21,21,56)
(1400,)

(208,)
(1,)

Figure 3.4: Block schematic of the optimal neural network architecture found by hyper-
parameter optimisation in Section 3.3.1. Each block here represents a 3D image tensor,
either as input to the network, or the product of a convolution operation generating an
‘activation map’. Classification is performed using the scalar output of the neural net-
work. Directly above each 3D tensor block the dimensions in pixels are shown, along
with the operation that generates the next block below it represented by the coloured
arrow. Not illustrated for clarity here are the dropout masks applied between each layer
and the activation layers. Base figure produced with NNSVG (LeNail, 2019).

the L2 norm of each weight matrix. This penalises exploding gradients and promotes

stability in the training phase. L1 regularisation was trialled but did not produce signif-

icantly better results. We also use spatial dropout (Tompson et al., 2015) between all

convolutions which provides some regularisation, but primarily is used for the purposes

of uncertainty estimation (see Section 3.3.3) – a small dropout probability of ∼ 0.01

is found to be optimal from work in Section 3.3.1. Due to the significant training set

size and our use of augmentation, very little regularisation is needed for a model of this

(comparatively) low complexity.

To further increase the effective size of our training set we randomly augment

training examples with horizontal and vertical flips, which provide a factor 4 increase in

effective training set size over unaugmented stamps. We also trialled the usage of 90

degree rotations following (Dieleman et al., 2015), which do not require interpolations

and thus do not introduce spurious artifacts that could add additional learning complex-

ity. In constrast to other works (Cabrera-Vives et al., 2017; Reyes et al., 2018), we find

consistent performance (over multiple training runs) with simple reflections – potentially

having already reached the saturation region of the learning curve.

Our model is implemented with the KERAS framework (Chollet et al., 2015),
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running with an optimised build of the TENSORFLOW backend (Abadi et al., 2015).

For parameter optimisation we use the ADAM optimiser of Kingma & Ba (2014), which

provides reliable convergence, and use the binary cross-entropy as the loss function.

To avoid overfitting, we utilise an early stopping criterion conditioned on the validation

dataset loss — if there has been no decrease in validation loss within 10 epochs, the

model training is terminated. We perform model training and inferencing on CPU only,

to mirror the deployment architecture used in the main GOTO pipeline. Using a single

32-core compute node, training the finalised model to early-stopping at ∼170 epochs

takes around 10 hours. Inferencing is significantly quicker, with an average throughput

of 7,500 candidates per second with no model ensembling performed. Our model train-

ing code is freely available via the gotorb Python package 6, which includes the full

range of tunable parameters and model optimisations we implement.

3.3.1 Tuning of hyperparameters/training set composition

To achieve the maximum performance possible with a given neural network, we conduct

a search over the model hyperparameters to assess which combinations lead to the

best classification accuracy and model throughput. Initially the ROC-AUC score (Fawcett,

2006) was used as the metric to optimise as in many cases this is a more indicative per-

formance metric than others, however this did not translate directly to improvements in

classification performance. We conjecture this may be due to the score-invariant nature

of the ROC-AUC statistic – it only captures the probability that a randomly selected real

example will rank higher than a randomly selected bogus example, which is indepen-

dent of the specific real-bogus threshold chosen. We instead opt to use the accuracy

score, as this directly maps to the quantity we want to maximise in our model.

Data-based hyperparameters (ratio of real-to-bogus examples, stamp size, data

augmentation) are optimised iteratively by hand due to computational constraints. An

approximate real-bogus ratio between 1:2 to 1:3 was found to be optimal, with greater

values giving better bogus performance at the cost of recovery of real detections – we

opt for 1:2 in the final dataset. The overall dataset size was found to be the biggest

6https://github.com/GOTO-OBS/gotorb
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determinant of classification accuracy, with larger datasets showing improved perfor-

mance – although this increase was subject to diminishing returns with larger and larger

datasets. We chose a training set of O(4× 105) examples, as this was roughly the

largest dataset we could fit into RAM on training nodes – naturally this could be in-

creased further by reading data from disk on demand, but given CPUs were used for

training there was a need to minimise input pipeline latencies as much as possible to

compensate. Model performance was found to be relatively insensitive to the ratio of

synthetic transients to minor planets, as long as there were at least 10,000 of both in

the training set. Using a dataset where 100% of the real content came from minor plan-

ets led to a ∼ 5% drop in the recovery rate of transients on the test set (see Fig. 3.11),

whereas a 100% synthetic transient dataset led to a detrimental 15% decrease in the

recovery rate of minor planets, and a 5% drop on the transient test set. This surprising

result implies that combining both minor planets and synthetic transients has a syner-

gistic effect, with the combination providing better performance overall. The specific

composition of the final dataset is listed in Table 3.1, we found a roughly 2:1 minor

planet:synthetic transient ratio to provide the correct balance between overall test set

performance and sensitivity to astrophysical transients.

A key parameter explored as part of this study is the input stamp size. Larger

stamps take longer to generate and more time to perform inference on, so identifying

the minimum stamp size possible without affecting performance is crucial. In Figure 3.5

we show the results of training identical models on an identical 330k-example dataset,

with varying stamp size between 21 and 63 pixels. We find that there is no significant

increase in performance for our training dataset beyond a stamp size of 55 pixels. The

upper limit of this search was set by available RAM, and took 118 hours of compute time

to complete. When scaled through by the ratio of the GOTO/ZTF plate scales (1.4x),

our best value of 55 pixels appears remarkably consistent with the 63 pixel stamps

that Duev et al. (2019) found optimal for their network. This is an interesting result,

and could imply that the angular scale is actually the more relevant parameter – this

might represent some characteristic length scale that encodes the optimal amount of

information about the candidate and surrounding context without including too much
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Figure 3.5: Classifier performance on the test set of a 330,000 example training set as
a function of input stamp size. Each point is the average of 3 independent training runs
on the same input training set, with the shaded region representing the 1σ confidence
interval.
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irrelevant data.

Network hyperparameters are optimised using the Hyperband algorithm (Li et al.,

2017) as implemented in the Keras-Tuner package (O’Malley et al., 2019). This al-

gorithm implements a random search, with intelligent allocation of computational re-

sources by partially training brackets of candidate models and only selecting the best

fraction of each bracket to continue training. In testing, this consistently outperformed

both naive random search and Bayesian optimisation in terms of final performance.

Table 3.2 illustrates the region of (hyper)parameter space we choose to conduct our

search over. The upper limits for the neuron/filter parameters are set by purely compu-

tational constraints – networks above this threshold take too long to evaluate and train,

and so are excluded. We also set an upper limit of 500,000 on the number of model

parameters to avoid overly complex models and promote small but efficient architec-

tures. Based on initial experimentation, we require the number of convolutional filters

in the second block must be greater than or equal to the number in the first block. This

ensures that the largest (and most computationally expensive) convolution operations

are performed on tensors that have been max-pooled and thus are smaller, reducing

execution time. To maximise performance across all possible deployment architectures,

the number of convolutional filters and fully-connected layer neurons are constrained to

be a multiple of 8. This is one of the requirements for fully leveraging optimised GPU

libraries (such as cuDNN, Chetlur et al. 2014), and also enables use of specialised hard-

ware accelerators such as tensor cores in the future. Conveniently, this discretisation

also makes the hyperparameter space more tractable to explore.

This search took around 1 month to complete on a single 32-core compute

node, and sampled 828 unique parameter configurations. The three top-scoring mod-

els were then retrained from random initialisation through to early stopping to validate

their performance, and confirm that the hyperparameter combination led to stable and

consistent results. The top three scoring models achieved accuracies on the hyperpa-

rameter validation set of 98.88, 98.64 and 98.54% respectively. Some of the candidate

models had to be pruned from the list due to excessive overfitting. The best model was

then selected based on the minimum test set error. Our final model achieved a test set
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continuous
Hyperparameter Min Max Prior Selected

Block 1 filters (N1) 8 32 linear 24
Block 2 filters (N2) N1 64 linear 56
Nfc 64 512 linear 208
Dropout rate 10−2 0.5 log 5.2×10−2

Learning rate 10−5 10−2 log 6×10−5

Regulariser penalty 10−8 10−2 log 2.0×10−8

discrete
Hyperparameter Choice Selected

Kernel initialiser He, Glorot Glorot
Kernel regulariser L1, L2 L2
Activation function ReLU, LeakyReLU, ELU LeakyReLU

Table 3.2: Hyperparameter space over which the optimisation search was conducted,
split by numerical and categorical variables. The final adopted values are given in the
rightmost column.

class-balanced accuracy of 98.72±0.02% (F1 score 0.9826±0.0003), with the selected

hyperparameters listed in Table 3.2. This outperforms the version human-tuned by the

authors through iterative improvement by 0.6%, and trains to convergence in around

half the number of epochs. We adopt this model architecture going forward, and char-

acterise the overall performance in greater detail in Section 3.4. For this final model,

the theoretical maximum ROC-AUC is obtained when the real-bogus threshold is set

to 0.4, although in live deployment we opt for a conservative value of 0.8 to minimise

contamination.

3.3.2 Quantifying classification uncertainty

Uncertainty estimation in neural networks is an open problem, but is of critical impor-

tance for a range of applications. Traditional deterministic neural networks output a

single score per class between 0 and 1. This single value would be sufficient to pro-

vide a measure of confidence, if properly calibrated. However, neural networks are

often regarded as providing over-confident predictions in general, and, worse, provid-

ing misidentifications at high confidence. Giving neural networks the ability to make

nuanced predictions and account for their own uncertainty in decision making is a po-
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tentially powerful improvement, that we discuss in more detail over the next sections.

It is important to be specific and distinguish between epistemic (systematic) and

aleatoric (random) uncertainty for the purposes of our classification problem (Kendall &

Gal, 2017). Aleatoric uncertainty is captured by the classifier’s score value, and orig-

inates from noise in the input data. More crucial for our application is quantifying the

epistemic uncertainty – that is the uncertainty in our choice of neural network’s model

weights. This epistemic source of error is directly quantifiable through Bayesian neural

networks, and in later sections this is the error, confidence, or uncertainty we refer to

and attempt to quantify. In the Bayesian framework, this can be achieved by casting

model parameters as probability distributions, and using the mechanics of Bayesian

statistics to marginalise the neural network output over these distributions, in the pro-

cess finding the score posterior. In this way, the uncertainty inherent in model selection

can be quantified. There are various approximate and exact approaches to achieve this

which we outline below.

Dropout (Srivastava et al., 2014) provides a useful form of regularisation in neu-

ral networks. At each training step, a fraction p (a tunable hyperparameter) of neuron

weights are randomly set to zero, decreasing the effective number of parameters of the

model. In this way, overfitting can be prevented and generalisation accuracy can be in-

creased. In traditional neural networks, dropout is not active at inference time so that all

neurons are used for making predictions. However, Gal & Ghahramani (2015a) demon-

strate the profound result that training and evaluating neural networks with dropout is

equivalent to performing the approximate Bayesian inference discussed above, with

multiple evaluations being equivalent to Monte Carlo integration of the posterior distri-

bution. This is directly applicable to convolutional neural networks, via the Monte Carlo

dropout technique (Gal & Ghahramani 2015b; referred to as MCDropout for brevity from

now on).

Alternative approaches to uncertainty estimation exist (Bayes by Backprop, Blun-

dell et al. 2015), which instead directly performs the approximate Bayesian inference by

instead casting neuron weights as distributions with associated hyperparameters, then

updating these according to the backpropagated gradients (like deterministic NNs). In
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this work, we opt to use MCDropout for computational efficiency and for maximal com-

patibility with existing network architectures and software. No changes to the training

loop are required, and only a simple wrapper is required at inference to perform mul-

tiple predictions with dropout enabled. The only significant additional computational

cost for a Bayesian neural network using the MCDropout technique over a deterministic

CNN is at inference time, as multiple samples need to be drawn to approximate the

posterior. This performance overhead can be mitigated with suitable batching of the

dataset. The ability of neural networks to learn complex, non-linear representations in

high-dimensional vector spaces is well-known and utilised throughout machine learning.

However, estimation of the uncertainty of products of neural networks is often a barrier

to their implementation in scientific applications, where well-grounded determination of

errors is important. MCDropout provides a principled way to introduce this.

Although a comparatively new technique, Bayesian neural networks show emerg-

ing promise across a variety of astronomical classification and regression tasks – includ-

ing supernova light curve classification (Möller & de Boissière, 2020), efficient learning

of galaxy morphology (Walmsley et al., 2020), and age estimation of stars for galactic

archaeology (Ciucă et al., 2020).

There is disagreement in the literature on the precise nature of a Bayesian neu-

ral network and how to implement it ‘properly’, from approximate variational inference

as used here, to applying some variant of the Markov Chain Monte Carlo sampler over

the weight and bias parameters of the neural network. However, what is relevant for

the implementation in this work is that examples the classifier is unconfident about are

assigned lower confidence scores than obviously real/bogus detections. More complex

tests, such as confirming that the classifier’s confidence matches the actual confidence

of the dataset/some human-derived uncertainty score are beyond the scope of the in-

troductory work presented here.

Whilst these posterior predictions are informative to human vetters, converting

them to a single informative summary parameter that captures the overall uncertainty

is more useful for integration into pipelines and enabling coarse filtering of candidates.

To convert the posterior distributions to meaningful information about the confidence
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of a given prediction, we utilise the information entropy H. For a binary classification

problem, the generic entropy formula can be reduced to:

H(p) =−p log2 p− (1− p) log2 1− p

where p is the probability of a given detection being real (the real-bogus score). The

entropy is maximised for p = 0.5, where the probability of being real vs. bogus is equal,

or the classifier prediction carries no useful information. We define the classifier confi-

dence C in terms of the average entropy of the posterior distribution samples, scaling

to confidences in the range [0,1] with the relation

C= 1− 1
N

N

∑
i=1

Hi

where N is the number of posterior samples and Hi is the binary entropy of the ith

posterior sample. This metric is equivalent the second term of the BALD acquisition

function of Houlsby et al. (2011), and is chosen as it is pre-normalised to [0,1] unlike

standard deviation or similar metrics. Naturally the uncertainties we derive here are

correlated with the actual output score, but the multiple samples provide sufficient dis-

persion that this metric is useful to assess model confidence. In future implementations,

these raw posterior samples (or some approximating distribution parameters to reduce

data needs) could be fed directly into downstream, more specialised classification tools

to enable them to make use of the real-bogus classifier’s probabilistic predictions in their

own score/posterior.

3.3.3 Using the uncertainty in classifier predictions

One immediate advantage of Bayesian neural networks over deterministic neural net-

works is the ability to improve classification performance through model ensembling.

Figure 3.6 illustrates the gain in accuracy observed by averaging the predictions of our

BNN, as a function of the number of posterior samples. Although small, this is a def-

inite improvement over single-evaluation predictions, and is likely constrained by our
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Figure 3.6: Classification accuracy on the test set from Section 3.2.3 as a function
of the number of posterior samples averaged. Each point is the average of 10 model
runs, with the shaded area corresponding to the 2σ confidence interval. The BCNN
quickly recovers the performance of a deterministic CNN within statistical uncertainty
(99.18±0.03% accuracy, F1: 0.9877) and provides additional information in the form of
confidence. No significant improvement in classification accuracy is obtained beyond
10 samples, remaining consistent out to 50 samples.

dataset. For the majority of positive and negative examples the model is highly confi-

dent about the assigned RB score, so averaging over the posteriors does not improve

them significantly. This increase in performance is likely to be greater on more complex

(multi-class) classification problems, or scenarios where significantly less training data

is available.

Posteriors and/or associated confidence scores can be added to any down-

stream candidate evaluation tools, providing an additional metric to inform decisions.

Objects with both high score and high confidence are highly likely to be genuine, so

can be prioritised in human vetting of candidates. This means more time can be spent

looking at more marginal candidates, and obvious detections can quickly be identified.

Confidence provides a complementary metric to the pure real-bogus score that can

102



help alleviate some of the issues with the poor dynamic range observed in the classifier

outputs at low/high scores. Classification is still performed on the consensus real-bogus

score derived from the posterior, with the confidence score intended to aid human de-

cision making. In Figure 3.7, we illustrate some example candidates, their associated

real-bogus score, and the score posterior.

Classifier confidence is also a useful tool for the training and development pro-

cess, providing deeper insight into the functioning of the classifier and the associated

training set. Predictive uncertainty provides a useful heuristic to clean datasets of mis-

labelled data. Misclassified detections that the classifier returns a high confidence for

are very likely to be mislabelled, as the confidence score is partially based on seeing

large numbers of similar detections in the training set. These frames can be actively pri-

oritised in any human relabelling efforts, or fixed cuts on the confidence can be utilised

to perform this in a semi-automated way. This ‘optimal relabelling’ scheme provides

a method for human vetters and machine learning models to collaboratively and itera-

tively refine noisy labels. Our label noise is introduced as humans are imperfect judges

of real/bogus, and interpret the vetting rubric in different ways leading to inconsistencies

which can harm model performance.

We demonstrate the effectiveness of this procedure on the training set built in

this work by training the model first on the uncleaned dataset, then attempt to relabel the

misclassified detections in the training and test set ordered by decreasing confidence.

This amounts to a substantial task of 3580 stamps, which would take a prohibitively long

time to relabel by hand, notwithstanding the possibility of human bias in the relabelling.

We instead here propose a heuristic re-labelling scheme based on the BALD score of

Houlsby et al. (2011) that leverages the simplistic nature of binary classification.

The model is first trained on the ‘unclean’ dataset generated with the approaches

in Section 3.2.3, then the BALD score is evaluated over the misidentifications in the test

and training sets. From here, a new set of labels is derived by flipping the labels of

those examples that have a BALD score less than (thus confidence higher than) the

median – effectively accepting the prediction of the classifier over the human vetter.

This approach is naturally capable of flipping the labels of accurately labelled stamps
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Figure 3.7: A selection of example posteriors, taken from real GOTO data. The major-
ity of predictions are highly confident, so we select examples of increasing confidence
score (C) to display here. Plotted here is a Gaussian kernel-density estimate con-
structed from 500 posterior samples. The green line indicates the correct label for each
candidate, with the black line indicating the mean of the distribution. The dashed line
indicates Preal = 0.5

.
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incorrectly, but by imposing this cut in classifier confidence it ensures that the majority

of relabelled stamps each round correspond to regions of classifier parameter space

that are well-covered by the training set and so are classified at high confidence. This

method effectively trades active human labelling time for passive background computa-

tional time, and can be applied iteratively as suggested above to progressively improve

the quality of the dataset labelling. We manually checked a subset of the sources se-

lected to be re-labelled to verify these were sensible and indeed found they were misla-

belled detections that had leaked through the quality cuts we applied. After 1 round of

the heuristic relabelling routine outlined above, the class-balanced accuracy achieved

on the classifier test set improved markedly from 98.72± 0.02 to 99.12± 0.01% (F1

score: 0.9826±0.0003 to 0.9877±0.0002), demonstrating the efficacy of this approach.

We adopt this cleaned dataset for the following sections.

When visualised in an intuitive way, this confidence score can provide insights

into the specific families of detection that the classifier is uncertain about. A natural

approach to combine this with is to examine the latent space of the neural network. The

first convolutional stage of our network can be thought of as a feature extractor, with the

resultant feature vector encoding high-level information about the morphological char-

acteristics of our dataset, providing insight about potential groupings of detection types

through clusterings in this space. To explore the latent space within our model, we apply

t-stochastic neighbour embedding (t-SNE, Maaten & Hinton 2008) to the output vector

of the layer prior to the fully-connected classification layer to reduce the dimensional-

ity and identify clusterings of common data points. The combined process projects an

800-dimensional vector space down to (in our case) a 2D plane. In this space, points

with similar latent vectors appear close to each other, thus providing a clustering of the

latent space which can be used to visualise the internals of the neural network. This

is a purely diagnostic clustering for visualisation purposes, as t-SNE does not preserve

global distances, nor does it provide a bidirectional mapping from the compressed la-

tent space to the full latent vector space. Figure 3.8 illustrates this technique applied to

the test set, coloured by both detection sub-class (left) and classifier confidence (right).

A useful insight this compressed space provides is the ability to identify clusters
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Figure 3.8: Example class-clustering (left) and confidence (right) maps generated from
the classifier’s test set. Each colour in the left panel represents a specific sub-class of
detections, where colour on the right represents classifier confidence. The top legend
gives the classes corresponding to each colour in the left panel. Regions of low confi-
dence in the right panel tend to correspond to cluster boundaries in the left, where there
is more uncertainty about which class each example belongs to.

of low-confidence points. This immediately reveals types of detection where the clas-

sifier may be uncertain, due to intrinsic difficulty of classification (sources close to the

detection limit, nuclear transients, unusual PSFs), or scarcity of training data in gen-

eral. The fact that there are clear divisions between the coloured sub-classes in the left

panel of Figure 3.8 implies that the classifier has learned something about the intrinsic

morphology of the detections beyond simple real-bogus division. Neither the classifier

nor the clusterer receive these higher-level metalabels, so the clear partitions between

the subclasses is purely a result of the internal representations learned.

For more complex datasets where the labelling budget for training examples is

limited, Bayesian neural networks enable active learning – a process where the model

identifies input data from a large unlabelled pool that would provide the greatest gain

in information to it, using the uncertainty. This has been applied to convolutional neural

networks with great success (Gal et al., 2017), and is likely a useful tool for fine-tuning

existing training sets in light of new data. We trialled Bayesian active learning as a tool

to build the training set presented in this work using the BALD score (Houlsby et al.,
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2011) as our acquisition function, although it showed no significant improvement over

a random selection from the unlabelled pool. This is likely due to the formulation of

our classification problem – using only binary labels, and our data being dominated by

large numbers of high-confidence real and bogus examples – only rare examples which

add little to the overall classification accuracy are acquired. The additional complexity

introduced by a multi-class labelling scheme along with the greater entropy provided by

having multiple output neurons would likely yield better results.

3.4 Evaluation of classifier performance

Machine learning algorithms acquire inherent and often subtle biases based on the

training set used in their construction. Given the automated nature of our data set

generation, it is particularly important to verify that performance is consistent across a

range of parameters of interest, such as transient magnitude. Some care is required

in choosing the test set for evaluating classifier performance in a real-world setting, as

the training set has been augmented with both human-labelled data and fully synthetic

data. Although a low FPR/FNR on the validation and test data is encouraging as it is

artificially made more difficult for the classifier to learn, it is not directly representative of

the performance we should expect in deployment as a non-negligible component of it is

synthetic. Performance characterisation should be reinforced with extensive testing on

representative samples of GOTO data. A particular focus is to confirm that the synthetic

augmentation scheme we implement leads to genuine improvements in the classifier’s

recovery rate of real transient detections. We also emphasise that in following sections,

we effectively test the performance of the real-bogus classifier in isolation – the ‘real-

world’ detection efficiency is the product of the efficiency of multiple pipeline stages,

most crucially image subtraction and source extraction. Exploring the impact of these

steps is beyond the scope of this paper, and thus are left to future work.

In the following sections, we use ‘accuracy’ to refer to the class-balanced ac-

curacy, as it is more appropriate for our mildly imbalanced classification task. We

also quote results based on the mean scores of 10 posterior samples (motivated by
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the saturation observed in Figure 3.6) since individual evaluations of a Bayesian neu-

ral network using MCDropout are based on weaker classifiers due to the presence of

dropout. Typical uncertainties (estimated as the standard deviation) on the metrics be-

low are < 0.05%, largely arising from the small number of examples around the decision

boundary – where uncertainties exceed this they are given explicitly.

3.4.1 Performance on the test set

To provide a more granular view of the classifier performance, we further split the test

set into two groups for the purposes of evaluation. The first comprises of only the minor

planet and random bogus detections. We also test a synthetic transient/galaxy residual

test set, to verify that the classifier can genuinely discriminate between galaxies and

galaxies with transients. This also reveals any strong performance differences between

the two main positive classes, which could skew metrics evaluated on the whole dataset.

For both test sets, the human-inspected Marshall data is deliberately excluded, since it

is significantly more challenging for the classifier than normal detections and does not

accurately reflect the true data distribution.

The best-scoring classifier after hyperparameter optimisation shows excellent

performance, attaining balanced accuracies of 99.49% (F1: 0.9935) and 99.19% (F1:

0.9925) on the minor planet and synthetic transient test datasets respectively. Fig-

ure 3.9 illustrates the false positive and negative rates for the classifier on both the

minor planet and transient datasets, as a function of the real-bogus threshold chosen.

There is a clear difference in false negative rate between the minor planet and transient

datasets, reflecting the increased difficulty associated with the complex host morphol-

ogy associated with the transient examples. The classifier displays a notable skew

in the FPR/FNR equality point towards lower values. This is a result of the Marshall

injections in the training set, which are made more difficult to learn than the random

bogus detections due to being misclassified by the previous classifier. This does not

affect classification accuracy, and could be fixed by applying a power transform to the

classifier output if required, conditioned on the validation set.

Given the spatially-variable optical characteristics present in the GOTO proto-
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Figure 3.9: False positive/negative rate evaluated on the test set, excluding Marshall
examples. Performance metrics are split based on minor planet and synthetic tran-
sients. The grey dashed line (MMCE) represents the full-dataset mean misclassification
error, which is below 1% between real-bogus scores of 0.1 – 0.6. Inset: confusion ma-
trix, evaluated on the full test set. There is a slight difference in the false negative rates
achieved between the minor planets and synthetic transients, reflecting the increased
difficulty posed by complex host morphology and subtraction residuals.
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type, it is important to confirm that our classifier provides good performance across the

full detector – and not simply in the centre where distortion is minimal. In Figure 3.10 we

plot the class-balanced accuracy score as a function of radial position on the detector,

using a series of radial bins chosen to equalise source density. These radial bins are

scaled through by the maximum value (corresponding to the image corner) to provide a

scale-free measurement of detector position. Class-balanced accuracy is used here as

the real-bogus fraction varies as a function of detector position, and care must be taken

to account for this. We find a consistent performance of ∼99% out to a fractional radial

distance of 0.7, with a slight drop of 1% out at the far edge of the image. This is primarily

due to the severe distortion found in the image corners of the GOTO prototype optical

tubes, which produces very challenging detections (abnormal PSFs, strong vignetting)

both for source extraction and real-bogus classification. Some contribution to this per-

formance decrease is likely from good quality sources close to the edge of the image

or close to the edge of the science-template overlap. Estimating reliably these sources

and their contribution to the numbers in each bin is a complex task. Suffering only a

1% decrease in performance in these extremely challenging conditions demonstrates

the overall robustness of the classifier. With the significantly improved optical quality of

the GOTO design specification OTAs, we anticipate that future versions of our classifier

trained on data from the upgraded system will display a constant (within statistical error)

classification accuracy as a function of detector position.

3.4.2 Performance on spectroscopically confirmed transients

To provide the most accurate assessment of transient-specific classifier performance

and further confirm that our algorithmically-generated training set generalises well, we

assemble a test set of genuine astrophysical transients. This set was found by cross-

matching a list of all spectroscopically confirmed supernovae reported to the Transient

Name Server (TNS) since January 2019 with the GOTO master candidate table. Those

with an associated GOTO candidate within 3 arcsec, with TNS discovery magnitude

greater than the GOTO source magnitude, and only found in GOTO data after the for-

mal TNS discovery date are accepted. With these cuts, purity is favoured over com-
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Figure 3.10: Class-balanced accuracy evaluated on the test set as a function of detec-
tor position. We use a series of concentric radial bins, chosen to contain equal numbers
of sources for uniform statistics. We scale the radius through by the detector size to give
a relative picture of performance. The drop in performance at large radial distances is
primarily caused by the extreme optical distortion present in the early GOTO prototype,
and only a minor drop of 1% in accuracy in these challenging conditions demonstrates
the very robust performance of our classifier. With the design-specification GOTO op-
tics, we anticipate this curve will be level within error.
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pleteness, a deliberate choice to ensure that the test set is as clean of false positives as

possible. This yields 877 known transients recovered in the GOTO prototype data. The

whole-sample recovery rate is 97.2± 0.3%, consistent with the performance achieved

on the synthetic transients. This is a strong indicator that our generation algorithm for

synthetic transients produces convincing detections which are useful for learning to de-

tect genuine transients. Uncertainties on the TNS-derived set are larger than for our

synthetic datasets due to both the smaller sample size and the increased complexity of

the real dataset.

To confirm that consistent performance across a wide range of magnitudes is

attained, the recovery rate is evaluated across a series of magnitude bins. Figure 3.11

illustrates the transient recovery rate as a function of GOTO L band magnitude. We

find that the classifier maintains excellent performance across the full magnitude range

of detections accessible to GOTO, even towards fainter magnitudes. Our galaxy aug-

mentation scheme provides up to a 30% improvement in recovery rate at magnitudes

fainter than L∼19.5 over a pure minor planet training set. This marked improvement at

the faint end of our detection range is powerful, as the expected number of other tran-

sients increases as a function magnitude, meaning this improvement in recovery rate

will yield a corresponding increase in the total number of transients recovered by GOTO.

Of particular relevance for GOTO, we expect the majority of kilonovae within the current

GW detection volume to also occupy this magnitude range, increasing significantly our

recovery rate of these faint transients in particular.

Our augmentation scheme also provides a significant improvement for sensi-

tivity to nuclear transients, considered to be a more difficult transient morphology to

detect. Motivated by the typical RMS astrometric noise level of GOTO images, we

adopt a fixed threshold of 0.5 arcsec to distinguish between nuclear and offset tran-

sients. We find a 13±5 % increase in the recovery rate of nuclear transients using the

transient-optimised classifier compared to a pure minor planet classifier, on a sample

of 15 confirmed detections. This is a direct result of the host offset distribution chosen

for the augmentation scheme, which permits full freedom to generate close-in nuclear

configurations. The main obstacle to improving this further is the inherent quality of the
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Figure 3.11: Top panel: Recovery rate (TPR) as a function of GOTO discovery magni-
tude, at a fixed real-bogus threshold of 0.5. The dashed line indicates the performance
of a classifier with a similarly sized training set, but with only minor planet detections.
Error bars are derived directly from the classifier score posteriors. The number of detec-
tions per bin is written below each bar. The sharp drop-off in the number of detections
beyond L∼ 19.5 is associated with the median 5-sigma limiting magnitude of the GOTO
prototype, thus expected. Bottom panel: Recovery rate of transients that can be reli-
ably associated with a host galaxy (as cross-matched with WISExSuperCosmos, Bilicki
et al. 2016) as a function of host offset. As above, a similarly-sized minor planet-based
classifier is plotted for comparison. There is a marked improvement in the recovery rate
for very small host offsets, particularly for nuclear transients.
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galaxy subtraction residuals, which limits our bright-end performance.

3.4.3 Further characterisation

Although the main transient sources of interest for GOTO will overwhelmingly be fainter

than the saturation level (L ∼ 15), there are still important secondary science Galac-

tic targets as well as rare transients occurring in nearby Local Group galaxies (e.g.

SN2014J; Fossey et al., 2014) which have the potential to brighten beyond the well-

sampled regions of our training set. To simulate these bright transients, GOTO detec-

tions of the first 100 minor planets are used. These have magnitudes from L ∼10–14,

and have well-constrained orbits. Using the SKYFIELD code (Rhodes, 2019), we gener-

ate nightly ephemerides for each minor planet, and locate all difference image detec-

tions associated with each object. This yields a benchmark set of around 200 bright

asteroid detections. Of the 207 detections, 99.5% are recovered, showing good con-

sistency with the recovery rate on the fainter minor planets in the classifier test set. Of

those minor planets with L ≲ 10, 100% are recovered, although small-number statistics

limits the usefulness of this metric. This bright-end testing demonstrates the excellent

dynamic range of the classifier, showing high (>90%) recovery rates from 10th – 20th

magnitude.

Through the host offset distribution choice we make, we expect to generate

a reasonable number of transients at zero offset, so this region of parameter space

should not be empty in the training set. To test the performance in this regime we re-

peated the procedure outlined in Section 2.2, except with the host offsetting routine

disabled to generate synthetic detections overlapping the galaxy nucleus only. This

generated 5,100 synthetic nuclear transients, with a magnitude distribution consistent

with that in Figure 3.1. Testing our model against this dataset (with the negative ex-

amples being galaxy residuals as in Section 3.2.3, we obtain a 97.5% accuracy, with

a recovery rate (TPR) of ∼ 96%. These scores are lower than the full-dataset scores,

reflecting the increased difficulty of classification in this regime. The average prediction

confidence on the real component of this set is 0.9390, which is less than the average

prediction confidence on the real members of the test set is 0.9626, reinforcing that
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Figure 3.12: Top panel: classifier calibration curve, illustrating how well the classi-
fier’s output score corresponds to probability. The mean of 20 samples and the 1σ

confidence interval are plotted to show that individual draws from the posterior remain
well-calibrated. Bottom panel: Score distribution for both real and bogus examples –
with the relative scarcity of examples with 0.2 < RB < 0.8 accounting for the greater
uncertainty in calibration.

these detections are more difficult than the ‘average’ real detection.

Another important factor to consider with any classifier is how closely the output

correlates with probability – known as calibration. Although this does not necessarily

impact on the classification performance, having scores that accurately reflect the prob-

abilities of being real/bogus is important for human use of classification outputs and is

important for performing inference using classifier scores. In Figure 3.12, we illustrate

the calibration of this classifier by plotting as a function of classifier score the fraction of

real detections at a given score. Our uncalibrated classifier shows excellent calibration,

and does not show the characteristic sigmoidal calibration curve of other uncalibrated

classifiers such as random forests (Niculescu-Mizil & Caruana, 2005). Calibration be-

comes increasingly important if different machine learning models are chained together,

with downstream classifiers using the posterior probabilities of the main real-bogus clas-
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sifier. With our high degree of calibration, we are justified to use our RB score as a proxy

for Preal (the probability a given source is real) in such implementations.

One significant benefit of using a Bayesian neural network is a built-in indicator

of out-of-distribution data – that is data poorly represented by or unseen in the training

set. For input data that is completely different to the training set, the classifier will return

a low confidence score which can then be used to remove/deprioritise the candidate in

downstream applications. This confidence can also be used to optimise candidate vet-

ting efforts, with the highest-confidence candidates being a natural choice to prioritise

over lower-confidence, lower quality detections.

In principle, the task-specific knowledge encoded in our trained network weights

can be used to accelerate the training of similar real-bogus classifiers through transfer

learning, and in principle increase generalisation (Yosinski et al., 2014). This requires

that the same data input structure is used and there are no changes to model hyperpa-

rameters. However, we caution that training in this way is susceptible to local minima

and does not offer the opportunity to change the model hyperparameters that training

from scratch does – in Section 3.3.1 we have demonstrated the sizeable performance

improvements doing a full hyperparameter search can yield, and so encourage this.

The techniques and framework we implement in this paper are naturally exten-

sible to more challenging astronomical classification tasks such as those outlined at the

end of Section 3.1.1. A key focus is more fine-grained classification – being able to dis-

tinguish variable stars, supernovae, nuclear transients and other astrophysical objects

of interest in an automated (and crucially, accurate) way. Figure 3.8 already hints at this

being a fruitful approach, as we see evidence of morphological differentiation in both the

positive and negative classes through the emergence of smaller sub-clusters. Similarly,

leveraging the wealth of contextual information available from astrophysical surveys in

a principled, informative, and efficient way within the framework of deep learning poses

an open challenge, with potentially significant gains possible. We aim to address these

challenges, among others, with development of future generations of the classifier we

implement here.
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3.5 Conclusions

We demonstrate a data-driven approach to generating large, low-contamination train-

ing sets, which along with our novel augmentation scheme can be used to train high-

performance, transient-optimised real-bogus classifiers. By combining real PSFs from

minor planets with galaxies, we generate realistic synthetic transients that provide a

measurable improvement in the recovery of genuine astrophysical transients. This tech-

nique is computationally lightweight, easily implemented, and directly applicable to a

variety of both current and future transient survey streams/datasets.

We also demonstrate the efficacy of Bayesian neural networks for the first time in

real-bogus classification, and demonstrate the unique insights that confidence estima-

tion can bring to the real-bogus problem. Being able to assign epistemic confidences

to classifier predictions in addition to the more typical real-bogus score provides an-

other parameter for human vetters further downstream to use in identifying promising

candidate detections – this can potentially be used in future to further automate de-

cision making in the context of follow-up and reporting. Techniques such as this that

minimise human involvement in data-gathering and labelling will become increasingly

important in the new ‘big-data’ era of astronomy that large-scale projects such as the

Rubin Observatory and SKA will bring about.

Our classifier demonstrates excellent performance across a wide magnitude

range, with a missed detection rate of 0.5% at a fixed 1% false positive rate, and up

to 30% improvement in recovery rate of astrophysical transients in the challenging faint

end. This has the potential to markedly increase the number of faint transients GOTO

can discover, and significantly improves the prospects for detecting the kilonova after-

glows of gravitational-wave driven mergers GOTO was designed to find. We anticipate

that improvements to the quality and stability of GOTO’s hardware and dataflow will

bring significant performance gains for the real-bogus classifier presented here.

GOTO is due to undergo significant expansion over the coming years, with a

final configuration of 4 installations spread across a northern (La Palma) and southern

(Siding Spring) site providing a high-cadence datastream covering almost the whole
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sky down to 20th magnitude every 2–3 days. The tools developed in this work have

generated a classifier that is capable of handling and sifting the accompanying volume

of candidate transient detections with robust accuracy and high sensitivity.
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Data Availability

The GOTORB code is made freely available at https://github.com/GOTO-OBS/gotorb,

along with validation examples for testing. Accompanying observational data used in

this work will be made available via upcoming GOTO public data releases.

Postscript

The GOTORB classifier continues to run in the live GOTO pipeline, filtering over 100,000

candidates on a typical night, and delivering candidates to the GOTO Marshall for hu-

man inspection. GOTO underwent significant hardware changes after the publication of

this manuscript, with optical tube assemblies of a different design. The optical perfor-

mance was vastly improved by this change, although this meant that the large training

datasets used for the real-bogus classifier no longer fully represented the real world

dataset. Despite this , the model shows excellent performance (in recovery of minor

planets) on the new datastream. The false positive rate however is elevated, owing to

new changes to the pipeline that allow us to go deeper than prior, meaning we are now

routinely sampling detections at the faintest end of the distribution in Figure 3.1. We

are currently waiting to gather enough data to retrain the classfier and fully expect this

will resolve issues with the concept drift we are seeing currently. The dataset we con-

structed as part of this work forms part of Chapter 6, as the multi-class CNN discussed

there, and we intend to make all future datasets in this multi-purpose fashion to facilitate

further exploration.

The next-generation real-bogus classifier is simultaneously in development, mov-

ing to a new machine learning framework (JAX; Bradbury et al. 2018) and architecture

of rotationally equivariant convolutions (e.g. Dieleman et al. 2015). Given the higher

quality pipeline now and better quality human labelling, we can begin to explore more

powerful architectures, and ongoing work aims to tie the uncertainties predicted by the

Bayesian neural network architecture to human confidence.
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Chapter 4

A precision ephemeris for the

continuous-wave source

Scorpius X-1

Note

This chapter is taken from the 2023 MNRAS article, Precision Ephemerides

for Gravitational-wave Searches – IV: Corrected and refined ephemeris for

Scorpius X-1 Killestein et al. (2023). I led the re-analysis, validation, and

writing of the manuscript. This work continues and extends the previous

analyses presented in Galloway et al. (2014) and Wang et al. (2018)

Abstract

Low-mass X-ray binaries have long been theorised as potential sources of continu-

ous gravitational-wave radiation, yet there is no observational evidence from recent

LIGO/Virgo observing runs. Even for the theoretically ‘loudest’ source, Sco X-1, the

upper limit on gravitational-wave strain has been pushed ever lower. Such searches

require precise measurements of the source properties for sufficient sensitivity and

computational feasibility. Collating over 20 years of high-quality spectroscopic obser-
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vations of the system, we present a precise and comprehensive ephemeris for Sco X-1

through radial velocity measurements, performing a full homogeneous reanalysis of all

relevant datasets and correcting previous analyses. Our Bayesian approach accounts

for observational systematics and maximises not only precision, but also the fidelity

of uncertainty estimates — crucial for informing principled continuous-wave searches.

Our extensive dataset and analysis also enables us to construct the highest signal-to-

noise, highest resolution phase-averaged spectrum of a low-mass X-ray binary to date.

Doppler tomography reveals intriguing transient structures present in the accretion disk

and flow driven by modulation of the accretion rate, necessitating further characterisa-

tion of the system at high temporal and spectral resolution. Our ephemeris corrects

and supersedes previous ephemerides, and provides a factor three reduction in the

number of templates in the search space, facilitating precision searches for continuous

gravitational-wave emission from Sco X-1 throughout the upcoming LIGO/Virgo/KAGRA

O4 observing run and beyond.

4.1 Introduction

With the completion of their third observing run, the catalogue of gravitational-wave

(GW) signals detected by the Advanced Laser Interferometer Gravitational Wave Ob-

servatory (LIGO; LIGO Scientific Collaboration et al. 2015) and Advanced Virgo (Ac-

ernese et al., 2015) is growing rapidly (The LIGO Scientific Collaboration et al., 2021).

These sources include the mergers of binary black holes (BHs) (Abbott et al., 2016b),

a binary neutron star (NS) (Abbott et al., 2017c,e), and NS–BH binaries (Abbott et al.,

2021b). However, compact-object mergers are not the only sources expected to pro-

duced detectable GW emission. Unlike these transient signals, continuous GW (CW)

sources present persistent quasi-monochromatic emission. This as-yet undetected type

of gravitational radiation is emitted by rapidly rotating asymmetric NSs, whether found

as isolated sources or within stellar binaries; see, e.g., Lasky (2015); Sieniawska &

Bejger (2019); Piccinni (2022) for recent reviews.

Numerous mechanisms have been suggested to induce the time-varying quadrupole
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required for GW emission from spinning NSs, whose angular momentum loss would

limit the spin rate and account for the observation that NS spins are measured at

≲ 700 Hz (Hartman et al., 2003; Hessels et al., 2006; Patruno et al., 2017), below

estimated breakup frequencies (Chakrabarty et al., 2003). Low-mass X-ray binaries

(LMXBs) with NS primaries have received particular attention as target sources (Abbott

et al., 2007; Whelan et al., 2015; Aasi et al., 2015; Abbott et al., 2017a,a, 2019c; Mid-

dleton et al., 2020; Zhang et al., 2021; Abbott et al., 2022b). In this scenario, a torque

balance is achieved between the spin-up due to accretion from a stellar companion and

spin-down due to GW emission (Papaloizou & Pringle, 1978; Wagoner, 1984; Bildsten,

1998; Andersson et al., 1999). Such a rotational equilibrium leads to a characteristic

strain that increases with increasing X-ray flux of the source (a proxy for the accretion

rate; see Bildsten 1998). The most promising candidates are thus those that are most

bright in X-rays.

The prototypical LMXB, Sco X-1 (Giacconi et al., 1962; Sandage et al., 1966;

Shklovsky, 1967), is composed of an accreting NS primary and donor star, and has

been intensively studied since its discovery as among the closest X-ray binaries known (Got-

tlieb et al., 1975; Bradshaw et al., 1999; Fomalont et al., 2001). It shows strong emis-

sion across the electromagnetic (EM) spectrum, from radio (Fomalont et al., 1983)

to gamma-rays (Brazier et al., 1990), powered by a near-Eddington accretion rate

from the donor star. Intriguing null detections of very high energy (VHE, TeV) emis-

sion (Aleksić et al., 2011) suggest that the high-energy emission mechanism in Sco X-1

is markedly different to other systems. The donor star in the system remains enig-

matic; the high accretion luminosity shrouds any stellar absorption features present in

the near-infrared (Mata Sanchez et al., 2015), but these observations combined with

dynamical constraints suggest a donor mass of 0.28 < M2 < 0.7M⊙ (stellar type K4IV

or later). As the strongest source of X-rays on the sky, Sco X-1 has been used as

a ‘lighthouse’ to study intervening interstellar material (García et al., 2011), magnetic

fields (Titarchuk et al., 2001), and even the Martian atmosphere (Rahmati et al., 2020).

Very recently, polarised X-ray emission was detected by the PolarLight mission at keV

energies (Long et al., 2022), providing a strong constraint on the system geometry and
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suggesting that the X-ray emission arises primarily from a compact, optically thin corona

near the disc transition layer.

Despite being a cornerstone of our understanding of compact binary systems

across the Universe, Sco X-1 still remains enigmatic, showing great complexity and vari-

ability. These complexities are simply not revealed in more distant systems where lower

signal-to-noise ratio (SNR) limits their visibility. Putting this aside, Sco X-1 is the most

luminous extra-solar X-ray source, which combined with its relative proximity (2.3±0.1

kpc, Lindegren et al. 2021), implies it should be among the loudest CW sources de-

tectable by current GW detectors (Watts et al., 2008) and has made it the target of a

great number of search efforts.

No concrete detection of CW emission has yet been made of what we a priori

expect is the strongest GW source, which remains puzzling. However, improvements in

detector sensitivity have led to correspondingly stronger upper limits on the GW strain

from Sco X-1, (Abbott et al., 2007; Aasi et al., 2015; Abbott et al., 2017a; Meadors et al.,

2017; Abbott et al., 2017d, 2019c; Zhang et al., 2021; Abbott et al., 2022b), with the

most recent analyses reaching ≲ 4×10−26 (in the most sensitive frequency bands and

assuming knowledge of the inclination angle; Abbott et al. 2022c). This level of strain

begins to push below the torque-balance limit (Bildsten, 1998), where the expected GW

emission balances the spin-up torque from donor accretion. One complicating factor

in the case of Sco X-1 is the absence of a measured spin period, unlike many other

accreting NS systems (Abbott et al., 2022a). Sco X-1 has also been the target of

directional, stochastic searches (Abbott et al., 2017b, 2019b, 2021a), leading to further

sensitive (yet also null) results.

As one of the primary uncertainties in any directed search, extensive X-ray tim-

ing observations have been performed in search of the spin period of the (assumed)

NS primary, as revealed by X-ray pulsations or bursts (e.g. Galloway et al. 2010). The

most recent placed an upper limit of 0.034% (90% confidence) on any putative X-ray

variability using Rossi X-ray Timing Explorer (RXTE) data (Galaudage et al., 2022). It

remains unclear whether Sco X-1 is intrinsically or intermittently variable in the X-ray,

and whether any pulsed X-ray emission is being scattered away by surrounding mate-
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rial.

Another crucial component to facilitate CW searches are precise orbital con-

straints for the LMXB systems of interest (Watts et al., 2008). In order to combine long

sections of data coherently, the motion of both the Earth relative to the Solar System

and the orbital motion of the NS in the binary must be accounted for. It is computa-

tionally infeasible to marginalise over the vast, high-dimensional parameter space this

presents, and therefore, it is critical to place constraints on this orbital motion to re-

duce the search dimensionality and increase sensitivity (Dhurandhar & Vecchio, 2001;

Messenger et al., 2015; Leaci & Prix, 2015). This presents a signficant observational

challenge however; in a high accretion rate system like Sco X-1, the Balmer features are

blurred significantly, limiting precision and making them unsuitable for precision radial

velocity (RV) measurements. The disc structure is also dynamic and chaotic, leading to

time- and phase-dependent changes in the emission line geometry.

Fortuitously, the irradiated donor star provides an alternative observational probe

via narrow emission lines generated by Bowen fluorescence, which provide a remark-

ably precise probe of orbital motion, as first demonstrated by Steeghs & Casares (2002).

The NS irradiates the face of the donor star with a strong X-ray flux, ionising He II which

then de-excites, triggering a cascade of emission from C/N/O atomic orbitals (Kastner

& Bhatia, 1996). The (comparatively) compact emission geometry generates narrow

emission lines (with little intrinsic broadening), which precisely trace the heated face of

the donor in contrast to disc emission, which has contributions from either side of the

disc and thus experiences significant Doppler broadening and complex geometric dis-

tortions from specific regions, such as the hot-spot/bulge or the gas stream. This tracer

of orbital motion can be used to estimate the orbital parameters of the NS with RV mea-

surements. Beyond Sco X-1, this technique has found broad applicability to LMXBs in

general (e.g., Casares et al. 2003; Cornelisse et al. 2007; Brauer et al. 2018). To this

end, Sco X-1 has benefited from an extensive spectroscopic monitoring campaign since

1999 as a part of the Precision Ephemerides for Gravitational-wave Searches (PEGS)

project. This has lead to incremental improvements in the ephemeris accuracy (Gal-

loway et al., 2014; Wang et al., 2018), with coverage continuing up to the present day
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through an extensive all-weather campaign with the Very Large Telescope (VLT) Ultra-

violet and Visual Echelle Spectrograph (UVES; Dekker et al. 2000) providing over 200

high-quality spectra.

In support of ongoing CW searches, in this paper, we present the most up-to-

date ephemeris for Sco X-1 in the literature. We leverage 20 years of spectroscopic

coverage with a homogeneous approach that accounts for potential systematic errors

— with a view to maximising not only the precision of the ephemeris, but also the qual-

ity of uncertainty estimates — to correct and improve upon previous analyses. This is

crucial when constraining the parameter space for CW searches; over-optimistic pre-

dictions lead to missing out valid areas of parameter space, whereas over-estimated

errors greatly increase the computational burden of such searches. In Section 4.2, we

describe the observational data used. In Section 4.3, we describe the method to infer

the orbital properties of Sco X-1 via RV measurements and present our updated — and

corrected — ephemeris. In Section 4.4, we further explore the uncertain variability in

Sco X-1. We present our conclusions in Section 4.5

4.2 Data reduction

4.2.1 Spectroscopic observations

As part of the comprehensive analysis performed in this paper, we collate all spec-

troscopy presented in the previous PEGS project papers (Galloway et al. 2014; Wang

et al. 2018) and combine this with more recent VLT/UVES data, extending the overall

observational baseline to 22 years (1999-2021). We obtained (or retrieved) 264 spectra

with the UVES (Dekker et al., 2000) instrument mounted on the 8.2m VLT Unit Tele-

scope 2. All observations were obtained in service mode, across variable observing

conditions but with a typical SNR in the range 50–100. We focus here on the spectra

taken with the blue arm using the CD#2 dispersive element, achieving a typical resolu-

tion ∆λ/λ ∼ 40,000 per spectral element with the 1” slit. Data were reduced using the

v5.10.13 ESO UVES pipeline. We also include all relevant legacy datasets presented in

the previous PEGS releases — two runs of time-resolved spectroscopy taken with the
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Group Instrument Program ID No. spectra
1 VLT/UVES 077.D-0384(A) 5
1 VLT/UVES 087.D-0278(A) 52
1 VLT/UVES 089.D-0272(A) 57
1 VLT/UVES 098.D-0688(A) 32
1 VLT/UVES 599.D-0353(A) 29
1 VLT/UVES 599.D-0353(B) 89
2 WHT/ISIS W/1999A/CAT42 137
3 WHT/ISIS W/2011A/P23 157

558

Table 4.1: Summary table containing all observations included in this ephemeris ver-
sion, along with instrument and program IDs. ‘Group’ here refers to the fitting group
introduced in Section 4.3.2 — datasets in the same group are fitted with common error
scaling and velocity offset parameters.

ISIS double-beam spectrograph on the William Herschel Telescope (WHT) in 1999 and

2011, respectively. These observations were taken with the R400B grating and reduced

using the molly software (Marsh, 2019). All spectroscopic datasets are enumerated in

Table 4.1. A pictorial summary of the VLT/UVES data is given in Figure 4.1, where

we plot the phase-folded spectrogram of the Bowen line region implied by the binary

constraints made in Section 4.3.2.

For all datasets, we recompute both the barycentric time and velocity corrections

at mid-exposure to reduce any scatter introduced by the different conversion routines

used in the data processing pipelines. We use the astropy.time module and adopt

the JPL DE405 ephemerides as our reference. To provide both consistency with pre-

vious ephemerides and an authoritative value, we give ephemeris times in both UTC

Barycentric Julian Date (BJD) and GPS seconds.

4.2.2 Measuring Bowen line velocities

We obtain our Bowen radial velocities by fitting a constrained line model similar to the

one used in Wang et al. (2018) to the reduced spectra. An example spectrum with the

model is given in Figure 4.2. The narrow Bowen components are modelled with Gaus-

sians of fixed width (50 km/s) and variable amplitudes, offset from their rest frame with

a common velocity. In the region of interest, we identify five narrow-line N III/C III/O II
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Figure 4.1: Trailed spectrogram of the VLT/UVES data presented in this work, folded
by the best-fit ephemeris derived in Section 4.3 and corrected to the binary rest frame.
Centred on 4640 Å is the Bowen line region of interest, and 4686 Å is the He II line. We
restrict our analyses in this paper to this specific region of the spectrum, although other
weaker Bowen lines are present in the spectrum.

components that optimally constrain the Bowen RVs: 4634.13 Å, 4640.64 Å, 4647.42 Å,

4650.25 Å, and 4643.37 Å respectively. Some of these narrow lines are not visible at

specific phases due to system geometry. To accommodate this, we constrain all line

amplitudes to be ≥ 0, such that these emission lines cannot be forced by continuum

modulation to unphysical non-negative fluxes when they are not present. The broad-

line component is modelled with a Gaussian of fixed width 1250 km/s. The amplitude

and centroid of this component are fitted for to remove additional correlations with the

centres of the narrow lines. The line widths above were measured by Gaussian fits to

the individual components, and are kept fixed to limit the number of free parameters.

Empirically, the narrow-line components do not change width significantly as a function
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Figure 4.2: Example plot of the Bowen region in one UVES spectrum after continuum
subtraction, with the Bowen line model discussed in Section 4.2.2 overplotted along with
the individual components. Note that one of the fitted line components is not visible
in this spectrum so has zero amplitude. We take care to avoid including the bright
HeII 4686 Å line. Individual spectra typically have SNR ∼ 50.

of orbital phase, and any model–data mismatch is unlikely to cause large deviations in

the fitted velocities as the emission-line peaks are typically clear and share a common

velocity.

The final line model has eight free parameters that are well constrained by the

dense spectral sampling (≈ 0.03 Å/pix) of the UVES data. Our specific line model mit-

igates correlations between parameters, such that uncertainties in the other fitted pa-

rameters do not skew the Bowen line velocities. Through experimentation, the UVES

data could potentially benefit from the addition of more lines, but this leads to issues in

the lower-quality WHT data with deviant line amplitudes so we opt for the above model

for all datasets.

As a pre-processing step, we continuum-subtract the spectra by fitting a third-

order Chebyshev polynomial to 10 Å regions at the red and blue ends of the Bowen line
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region (4605 Å to 4675 Å). We fit the line model using nonlinear least squares, as im-

plemented in the least_squares routine in the scipy package (Virtanen et al., 2020).

The original ephemeris of Wang et al. (2018) is used to set the initial Bowen line ve-

locity, and other parameters are initialised with sensible defaults from the highest SNR

spectrum. The RVs are then computed from the mutual Doppler shift of the measured

emission-line locations with respect to their known rest-frame values. Uncertainties are

rescaled to enforce a unity reduced chi-squared test statistic. We add a constant value

of 0.5 km/s in quadrature with the error values to ensure uncertainties are not under-

estimated due to poor conditioning of the least-squares fit, and to include uncertainties

in the absolute velocity calibration of UVES. At this stage of reanalysis we are more

concerned with correct relative error scaling between velocity measurements, as we

rescale the errors between each dataset in latter analysis steps.

4.3 Binary ephemeris

4.3.1 Corrections to previous Sco X-1 ephemerides

As part of our homogeneous reanalysis, we identified calibration errors that affect

the timing parameters of both previously published ephemerides for the Sco X-1 sys-

tem (Galloway et al., 2014; Wang et al., 2018). These were not readily apparent in pre-

vious work as the statistical uncertainties on the WHT-derived datasets masked their

effect on the ephemeris. With the inclusion of four times as many VLT spectra, these

discrepancies become significant and thus must be corrected. For full transparency, we

elaborate in greater detail on the specific errors and their effect on the ephemeris:

• The subset of VLT data used in PEGS I and PEGS III were inadvertently not

corrected to the mid-exposure time, nor adjusted to the Solar System heliocentre.

As a result, the values of T0 presented in these works bear systematic errors of

∼ 600s.

• Covariances between orbital parameters are underestimated in Wang et al. (2018)

due to being taken from the initial least-squares fit to the data (using a two-point
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finite-difference Jacobian approximation), rather than being computed from the

samples from which the ephemeris is derived. This changes the covariance by

two orders of magnitude.

Discrepancies were identified by cross-checking the reduced data against the

raw frames located at the European Southern Observatory (ESO) Archive, in particular

the metadata stored in the file headers. Through a careful reanalysis of the datasets,

we confirm that addressing these issues brings the data used in both G14 and W18 into

strong agreement, and jointly agree with the VLT data presented in this paper (account-

ing for deviations in the period due to dependence on low-resolution WHT data). We plot

marginal posteriors for each ephemeris in Figure 4.3 to illustrate how the ephemerides

change with the corrections applied above. These issues underscore the importance of

both robust archiving of astronomical data, such that raw frames are easily retrievable

even decades later, and the importance of storing metadata alongside these frames

and documenting reduction steps; without this, these timing issues could not have been

easily diagnosed. With this additional scrutiny, we are now confident any calibration

artifacts are accounted for in our reanalysis – our previously-published ephemerides

are considered obsoleted by the ephemeris presented in this paper, and should not be

used in CW searches going forward.

4.3.2 Bayesian modelling of the Keplerian orbit

Moving forward with the reanalysis, we apply here the velocity corrections derived dur-

ing the previous steps to bring all spectra into the Solar System barycentric frame, and

convert observation times to BJD.

We derive our ephemeris using a standard Keplerian orbit model (assuming

zero eccentricity), using for the Bowen line RVs

v(t) = K sin
(

2π(t−T0)

P

)
+ γ ,

where K is the velocity semi-amplitude, T0 is the reference epoch, P is the period, and

γ is the systemic velocity. To ensure good initialisation prior to sampling, we first do
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Parameter Value Units

T0 2456723.3272±0.0004 (BJD UTC)
1078170682±33 (GPS seconds)

Tasc,ns 1078153676±33 (GPS seconds)
P 0.7873139±0.0000002 (days)

68023.92±0.02 (seconds)
K 76.8±0.2 (km/s)
γ −113.8±0.2 (km/s)
e ≤ 0.0132

Table 4.2: Tabulated posterior distribution summary statistics for our ephemeris. Val-
ues correspond to the posterior median, while uncertainties represent the marginal 1σ

confidence intervals. Explicitly, the value of T0 refers to the inferior conjunction of the
companion star, and Tasc,ns refers to the time of ascending node crossing for the NS,
moving away from the observer. The top rows assume zero eccentricity. Our upper
limit on the eccentricity is given in the bottom row, as the 90th percentile of the marginal
eccentricity distribution. Accompanying this table is a corner plot of posterior samples
in Figure 4.5.

a simple fit to the above model with nonlinear least-squares. To minimise covariance

between P and T0 in our ephemeris, we use a simple bracketing line search to find

the time of conjunction T ′0 = T0 +nP that minimises cov(P,T0) for an integer number of

orbital cycles n. This ‘seed’ ephemeris is then used to initialise parameters for the more

complex modelling that follows, reducing burn-in time during sampling and ensuring our

final ephemeris provides the minimal covariance.

To marginalise over systematics, we include two nuisance parameters per dataset:

a constant offset term, δi, to correct for differences in absolute wavelength calibration

between the datasets, and an error scaling term, εi, intended to correct for underesti-

mated uncertainties. We assume a Gaussian likelihood on the RVs µ and their uncer-

tainties σ measured at time t, given by

logL

(
µ,σ , t|T0,P,K,γ,δi,εi_ ∝ ∑

i

(
µ− v(t)−δi

εiσ

)2

,

where i represents the index of each individual dataset, δi represents the per-dataset

velocity offset, εi represents the per-dataset error scaling. The VLT datasets have the

most stable and accurate long-term calibration, and so the δi value for this dataset is
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Figure 4.3: Marginal two-dimensional posteriors of T0 and P for all previous
ephemerides, propagated forwards to the epoch of our ephemeris (see Table4.2). The
contours show the 1-, 2-, and 3-σ confidence intervals respectively.

fixed to zero. It should be noted that this offset term effectively also absorbs long-term

velocity variations in the system — e.g., due to perturbations from a distant compan-

ion. Over the observational baseline, these would be linear in order. Regardless, the

focus of this work is to provide the most precise timing of the system possible, and we

have no reason to expect significant secular motion. To avoid being biased by previous

ephemerides calculated from these datasets, we assume uninformative uniform priors

on all variables. To mitigate complications associated with multimodality arising from an

unconstrained T0, the prior range of T0 is centred on the seed value and bounded on

either side within the seed period.

We generate samples from the posterior distributions with Hamiltonian Monte

Carlo (HMC) sampling (Duane et al., 1987; Betancourt, 2017) and the No U-Turn Sam-

pler (NUTS; Hoffman & Gelman 2011), using JAX (Bradbury et al., 2018) and NumPyro (Phan

et al., 2019; Bingham et al., 2019). The number of burn-in and sampling steps are tuned
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Figure 4.4: Top panel: RV curve for Sco X-1. We show the 1σ confidence intervals of
the RVs measured from the 1999 WHT (blue), 2011 WHT (orange), and VLT (green)
spectroscopic datasets, derived from the Bowen line model. We also plot the median
posterior predictive RV curve implied by our ephemeris constraints (red) and the cor-
responding 1σ , 2σ , and 3σ confidence regions (darker to lighter red shaded regions,
respectively). Note the significantly reduced intrinsic scatter of the higher resolution
VLT data with respect to the older WHT data. Bottom panel: Normalized residuals be-
tween the observational RV measurements with the median RV curve, scaled by the
respective error factors ei

to ensure convergence via the Gelman-Rubin split-r̂ convergence diagnostic (Gelman

& Rubin, 1992). We sample four chains in parallel for 4000 steps in total, discarding the

first 2000 samples of each chain as burn-in. This procedure takes just two minutes to

complete on commodity hardware, running a single chain per core.

As a final step to further minimise cov(P,T0), we repeat the process of shifting

T0 by an integer number of periods, this time using the HMC samples to provide a more

robust estimate of the covariances. We find a shift of -106 periods minimises this, and

thus we adopt this value as T0 going forward.

Our updated ephemeris is presented in Table 4.2. Compared to (our corrected

version of) the ephemeris from PEGS III, we achieve an factor 2.9 improvement in the

uncertainty on the time of conjunction when propagated to the start of O4. In the top
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panel of Figure 4.3, we compare the two-dimensional marginal distribution of (T0,P) for

our updated ephemeris with that for each of the previous (corrected and uncorrected)

ephemerides, propagated to the epoch of the new ephemeris. Our corrections are clear

in the now consistent values of the reference epoch, T0. There are some deviations in

the period P, however this is expected due to the inclusion of more VLT data (with better

resolution of the spectral lines) at later epochs.

In Figure 4.3, we propagate the uncertainty on the PEGS IV T0 to past and

future epochs. This again demonstrates the consistency of our corrected and new

ephemerides with each other. Of course, the uncertainty in the propagated time of

inferior conjunction for the neutron star Tns,asc grows in time, due to the posterior uncer-

tainty in the ephemeris, illustrated by Figure 4.6. However, our updated measurements

reduce this rate of growth into the future observing runs, O4 and O5, of the LIGO/Vir-

go/KAGRA GW detectors, as is crucial for increasing the sensitivity of searches for

CWs from Sco X-1. In Figure 4.4, we present the RV curve of Sco X-1 implied by our

ephemeris inference. The high-resolution VLT spectra result in an excellent match with

the fitted RV curve, with robust uncertainty quantification carried through our Bayesian

measurements of the ephemeris. Finally, Figure 4.5 presents a corner plot of our sam-

ples, along with diagnostic statistics to illustrate the proper exploration of the parameter

space.

For completeness, we present the ephemeris posterior and additional diagnostic

quantities in Figure 4.5. To enable the principled calculation of search boundaries based

on the full posterior distributions, we make high-quality samples available alongside this

paper in the Supplementary Material section.

Examining the posteriors in Figure 4.5, our marginal distributions are largely

Gaussian, and inter-parameter correlations are very weak. Our two-step line-search

algorithm has successfully reduced the covariance between T0 and P significantly to an

(absolute) value of 3.6×10−15 d2 – multiple orders of magnitude improvement over the

value quoted in Galloway et al. (2014). It is further reassuring to see that both δ1999WHT

and δ2011WHT , the systemic offset parameters for each dataset, are consistent with zero

at the 1σ confidence level, verifying the validity of the absolute wavelength calibration of
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Figure 4.5: Corner plot of posterior samples for the e = 0 ephemeris, coloured ac-
cording to each independent chain to confirm randomly-initialised chains converge on
the same posterior mode. Inset: Histogram showing the distributions of marginal en-
ergies against the transition energies for each step taken by the NUTS sampler - the
close match between these two distributions implies full and efficient (low autocorrela-
tion) exploration of the parameter space. The estimated Bayesian fraction of missing
information is close to 1 for all chains, providing a quantitative verification of this also.
These diagnostics are unique to Hamiltonian Monte Carlo and provide an orthogonal
check to the usual split-r̂ diagnostics employed in MCMC that we use above. Refer to
Betancourt (2016) for a full theoretical explanation, and further details.
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both datasets – nevertheless their inclusion is important to account for a potentially non-

trivial systematic effect on the ephemeris, and to provide correct uncertainty estimates

on each parameter.

Our ephemeris provides an excellent (∼ 30s) precision on the time of conjunc-

tion T0, providing a significant (∼ factor 3) reduction in the required template search

space (following Galloway et al. 2014). At these levels of precision, even subtle effects

begin to have marked impacts on the ephemeris. It is therefore crucial to acknowledge

that there are additional sources of statistical and systematic uncertainty on timings that

may hamper efforts to push the ephemeris to even greater precision.

Sco X-1 shows optical variability on the level of ∼ 0.5 mag, with typical vari-

ability timescales of ∼ 1 hour. As a result, we observe a flux-weighted average radial

velocity over the length of our exposure, adding additional uncertainties to our velocity

estimates. This is likely a small effect at the sub-km/s level owing to our compara-

tively short exposure times (≲ 5% flux variability over one ∼ 700s UVES integration),

however may begin to be important when searching for deviations from Keplerian radial

velocities — we discuss this further in Section 4.3.3. There are also potential uncertain-

ties arising from the timestamps applied to each spectrum acquired – it is challenging

to quantify the temporal accuracy as this is often poorly documented, and rarely val-

idated experimentally. This is particularly true in the case of ‘historic’ datasets from

many decades ago. In the ideal scenario, timestamps would be derived from GPS time

(e.g. see Dhillon et al. 2007), or derived from system time that is updated regularly via

Network Time Protocol (NTP), each of which can keep clock errors minimal. This also

implies potential per-observatory time offsets, which may manifest in non-trivial ways.

These effects are currently dwarfed by the statistical error present on our ephemeris,

and are only likely to become problematic given a significantly increased volume of

data – which will reduce the statistical errors on the ephemeris. We nevertheless cau-

tion that the ‘true’ uncertainties on our ephemeris may be larger than implied by our

posterior samples, and encourage conservative allocation of CW parameter spaces to

accommodate this. Future work will look to incorporate some of these effects into our

Bayesian framework, as well as further extending the observational baseline to provide
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the volume of data required to model them.

4.3.3 Eccentricity constraints

We now consider potential deviations from the standard circular orbit model discussed

above. As remarked upon in Wang et al. (2018), obtaining direct constraints on the

orbital eccentricity of Sco X-1 is complicated by the Roche lobe geometry of the com-

panion star. As it fills its Roche lobe, emission occurs from an extended surface of the

donor, which continuously changes aspect ratio with orbital phase. This naturally leads

to deviations from the pure sinusoidal RV curve expected from the base Keplerian orbit

model, and adds additional periodic modulation on the ∼1 km/s level. This creates an

apparent eccentricity dominating over — and potentially degenerate with — any true

orbital eccentricity, which makes it difficult to disentangle the effects of each. As with

other LMXBs, there are strong physical reasons to expect the orbital eccentricity e of

the system to be close to e = 0, due to tidal dissipation occurring during the main se-

quence lifetime of the NS progenitor (see, e.g., Tassoul & Tassoul 1992). As a further

complication, the vanishing phase space (Lucy & Sweeney, 1971) as e→ 0 induces a

bias towards non-zero orbital eccentricities, and therefore, any detection of e > 0 should

be interpreted with caution mathematically also.

Bearing this in mind, we repeat the analysis of Section 4.3, but fit for a nonzero

eccentricity, using a more general form of the Keplerian orbital model described previ-

ously. We adopt the common parameterisation (
√

ecosω,
√

esinω) to sample the orbital

eccentricty e and the argument of periapsis ω . This decorrelates the posterior at low

eccentricities and make sampling easier, assuming uniform priors on both of these pa-

rameters in the range (-1, 1). We use the JAX-based kepler solver from the exoplanet

package (Foreman-Mackey et al., 2021) for compatibility with the NUTS algorithm.

We empirically find an upper limit on the orbital eccentricity of Sco X-1 of 0.0132

(0.0161) at 90% (99%) confidence level. The commonly-employed significance test

of Lucy & Sweeney (1971) is of limited utility here as it considers solely orbital eccen-

tricity, and (falsely) suggests we should adopt an elliptical orbit as a result. We expect

any non-zero eccentricity originates entirely from the Roche geometry, bearing in mind
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the tidal dissipation seen in similar LMXBs. This provides a conservative constraint of

parameter space for potential CW searches; it is difficult to move beyond this without

more intensive modelling efforts, involving full modelling of the binary system in both

light curves and RVs. Some early progress is being made (see, e.g., Cherepashchuk

et al. 2021), although it is important to note that light curve modelling carries potential

systematics that must be carefully accounted for when combined with other indepen-

dent constraints. Even with the high-quality UVES data here, the expected RV modula-

tion from the distorted secondary (see Figure 6 of Wang et al. 2018, of order 100m/s)

is comparable to the statistical uncertainty, making the prospect of direct measurement

unlikely — the greatest modulation occurs around phase zero, where the Bowen emis-

sion lines are weakest. Deviations from a pure sinusoid are directly informative on the

inclination i (Masuda & Hirano, 2021), making further reduction of RV uncertainties an

important goal going forward.

4.4 Binary properties

As the prototypical LMXB, Sco X-1 has been the focus of intense study since its dis-

covery in the early 1960s (Giacconi et al., 1962; Chodil et al., 1965). However, the

high (super-Eddington) accretion rate and its effect on the Balmer lines means there is

still uncertainty surrounding the structure of the accretion disc in Sco X-1 — whether

the observed form is stable over long timescales, and how this correlates with the var-

ious X-ray and optical states of the system (as identified in Scaringi et al. 2015). The

long-term, high-resolution dataset collected as part of the PEGS program provides the

means to probe secular evolution of the disc, as well as search for period derivatives and

other phenomena not detectable with the typical dense but short-baseline observational

sampling presented in previous work, although one pays a penalty in the resolution of

fine structure owing to the dynamic and changing disc state. We expand on this in the

subsections below.
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4.4.1 High-resolution, high-SNR line atlas for Sco X-1

With over 200 high-resolution spectra of Sco X-1, and a high-precision ephemeris, we

construct a ‘line atlas’ by combining the spectra in the donor-star rest frame. By doing

this, weak spectral lines not visible in the individual spectra can be detected, and the

quality of all lines improved. The variability in the broad H/He line profiles leads to some

smearing of these lines. However weaker, narrow lines are not affected as heavily. A

significant number of VLT/UVES spectra taken as part of PEGS also have a simultane-

ous observations with the red arm, which, although of limited utility for constraining the

binary motion due to the lack of strong and narrow spectral features, encodes informa-

tion about the cooler material present in the Sco X-1 system. We include this in our

line atlas primarily for completeness, although caution that telluric subtraction was not

performed as part of data reduction, and so the red arm suffers from residual telluric

contamination. This is somewhat suppressed by our shift-adding scheme.

We use the measured Bowen line velocities to shift all spectra into alignment,

and normalise out the continuum flux by fitting Chebyshev polynomials (7th order for

the UVES Blue arm, 5th for UVES Red arm CCD 1, 1st for UVES Red arm CCD 2),

rejecting outlier points to avoid fitting spectral features. The heavy telluric contamina-

tion redwards of 9000 Å necessitates the use of a low-order polynomial to avoid erratic

ringing effects. Spectra are then reinterpolated onto a common wavelength grid, and

median-combined with a sigma-clipping outlier rejection scheme to remove any cosmic

ray hits or defects. This process is performed separately for the blue arm and the red

arm, and we take care to treat the two red CCDs separately to avoid discontinuities.

Note that the continuum normalisation at the far-red end of the spectrum is hampered

by the strong telluric bands, so we opt for a simple linear continuum only.

Our finalised line atlas is presented across Figure 4.7 (CD#2, blue) and Fig-

ure 4.8 (CD#4, red) — we achieve a median SNR of ∼ 1000 in the blue arm, marginally

above the expected
√

N scaling owing to our use of sigma-clipping, but likely affected

by line variability.
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Figure 4.7: Co-addition of all VLT/UVES spectra in the binary rest-frame, to produce a
line atlas that reveals the presence of many low-strength emission lines. Spectra are
broken into chunks of 400 Å to aid visualisation. We annotate potential lines of interest
to the LMXB community.
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4.4.2 Doppler tomography

We applied Doppler tomography (Marsh & Horne, 1988; Marsh, 2005) to our phase-

resolved UVES spectra to probe the structure of the accretion disc surrounding Sco X-

1. Our spectra are pre-processed to remove continuum flux using the same procedure

as Section 4.4.1 and normalised in flux over the line region of interest to mitigate the

impact of flux variability on the final Doppler map. We use the Python bindings of the

DOPPLER1 code to produce the Doppler maps. The period and systemic velocity are

fixed according to the median of our ephemeris posteriors (see Table 4.2), and we

compute the Doppler map over a square grid 500 km/s in side length, with a per-pixel

resolution of 1.5 km/s in the x-y disc plane velocities vx and vy. We neglect any velocities

in the z plane for computational reasons, but note that our spectra are unlikely to be

constraining along this axis (see Marsh 2022). Doppler maps are constructed for the

Hβ , Hγ , He II and Bowen lines individually. These are shown in Figure 4.9, alongside

the target χ2 value used for the maximum-entropy optimisation procedure. Despite

the marked resolution improvement afforded by VLT/UVES over previous datasets, the

output Doppler tomograms are of similar quality to the previous maps presented based

solely on WHT data in Wang et al. (2018). We speculate that this likely arises to long-

term seasonal variations in the structure of the accretion disc around Sco X-1, and

explore this possibility further in the following section.

1https://github.com/trmrsh/trm-doppler
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Figure 4.10: Doppler tomograms for each observing ‘season’, using the method de-
fined in Section 4.4.3. We compute season-averaged tomograms for the Bowen lines
(top panel) and the He II lines(bottom panel), to search for long-term secular variations
in the disc structure. The Bowen Doppler maps are largely dominated by the strong
donor star signature, but some structure is visible. The red and white markers indicate
the positions of the donor star, and the system centre-of-mass respectively.

4.4.3 Secular variability in the He II disc?

To explore the possibility of seasonal or secular variability in the disc structure of Sco X-

1, we compute He II Doppler maps on subsets of the full UVES dataset presented in this

paper. We manually group contiguous subsets of our data into five ‘seasons’ – selected

roughly corresponding to the ESO observing semesters. We then compute individual

Doppler maps for each season, to avoid averaging over any long-term variability. The

target χ2 is adjusted per-season to avoid over-resolving disc features. The resulting

Doppler maps are shown in Figure 4.10.

We focus our attention on the He II Doppler maps, as these show a clearly-

resolved disc structure. Some tenuous variability is present in the Bowen disc also,

although this is hard to quantify or comment on phenomenologically, given that the

donor star feature (at Vx = 0, Vy = 76.4 km/s) dominates the reconstruction. In the He II

maps, we see a strong asymmetric emission component present in the accretion disc.

Across multiple observing seasons, we see evidence for evolution in intensity of this

‘rim’-like structure — with minimal intensity in Season 2 and maximal intensity in Season
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5. We interpret this feature as an extended region of gaseous material suspended

above the disc and corotating with it — potentially a signature of stream–disc overflow

occurring in the system (see, e.g., Kunze et al. 2001). Given the high accretion rate

of Sco X-1, this is not surprising, as the accretion process is stochastic and variable.

As our Doppler maps are averaged over many orbital periods, this is likely to be a

longer-term secular variation rather than an effect correlated with the disc state. This

may potentially coincide with periods of enhanced accretion onto the NS, as implied by

short- (∼ weeks–months) timescale fluctuations in the X-ray luminosity seen in MAXI

light curves (Hynes et al., 2016). These disc states are well-known (e.g., Scaringi et al.

2015), but we do not resolve these with our sparsely-sampled VLT/UVES dataset.

We encourage additional observations and characterisation of these secular

variations in the disc structure, preferentially via intensive spectroscopic observations

over blocks of a few nights, every few months. This ensures each block has adequate

phase coverage, and minimises the blurring of structure caused by a more coarse ob-

serving program such as our VLT/UVES data. Simultaneous X-ray coverage is crucial

to correlate structural changes with potential modulation of accretion rate, and to under-

stand the disc state. As the prototypical LMXB, targeted studies of this phenomenon in

Sco X-1 have the potential to provide insight into the longer-term dynamics of accretion

across the domain of X-ray binaries and other high accretion rate compact binaries.

4.4.4 Behaviour of the Balmer lines

Complex absorption features are present in the Balmer lines — as reported by Scaringi

et al. 2015 — reminiscent of P Cygni-style outflow profiles with red/blue absorption

wings superimposed on a broad central emission feature. These occur antiphase with

the overall optical brightness of the system (and with the Balmer line intensity itself),

showing maximum absorption when the Balmer lines are strongest and no absorption

when the Balmer lines are barely visible. Both red and blue components are visible,

showing considerable variations in absorption depth. Given the strong time variability

demonstrated in previous sections, it is challenging to probe this with our VLT/UVES

dataset. Nevertheless, we present some broad overview properties below in the hope
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of encouraging further characterisation. Such profiles have also been noted previously

in NIR spectra of the system on the Brγ line, e.g. see Bandyopadhyay et al. (1999).

We focus on the Hα line as this shows the strongest absorption (see Fig-

ure 4.11) and thus provides the most robust velocity measurements, although this phe-

nomenon is also visible in Hβ ,γ . We apply a local continuum normalisation to bring

all spectra onto a common baseline, then fit a Chebyshev polynomial to the line wing

to provide a smooth approximation to the spectrum on this specific region. We find

the minimum value of this polynomial and use bootstrap iterations to measure the un-

certainty on our minimum wavelength value. To reject spectra where no absorption

is present and thus ensure our velocity measurements are robust, we only consider

spectra from this point on where there is ≥ 3% absorption in this red wing.

Under the assumption that this is an outflow, the ‘apparent’ velocity varies be-

tween 100 km/s to 1000 km/s, with variable absorption depth as remarked upon above,

and appears to show some correlation with orbital phase. However, such a phase-

dependent morphology could equally be replicated with the addition of a broad ab-

sorption component superimposed on the emission component (see Figure 4.11). To

illustrate this, we fit a toy model to one of our spectra showing high absorption, com-

posed of a narrow emission line centred on Hα , and a broad (at least 2x wider than

the emission component) absorption line with a free mean value. We note that the true

structure of the Balmer lines is markedly more complex than this, and this simplified

model is intended to be illustrative, rather than fully reproducing all features of the data.

Owing to degeneracies between the strength of the Hα line and this compo-

nent it is not possible to constrain the amplitude of such absorption, but one solution

suggests a width of around 8× that of Hα . This could be created by optically-thick

absorption of the inner disk surrounding the NS in Sco X-1, potentially probing some

NS-driven outflow that may act as a crude tracer of the true NS radial velocity amplitude.

This component appears to have some systemic velocity offset compared to the Balmer

line in emission. It relies largely on serendipity to observe the disc in the right state to

make these measurements, and would benefit strongly from simultaneous X-ray obser-

vations, to this end. Disentangling the origin is not possible with the sparse sampling
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of the VLT/UVES data, and we therefore advocate for additional intensive monitoring to

investigate the nature of this absorption.

4.4.5 Constraints on other system parameters?

Despite the marked improvement in timing uncertainties offered by our reanalysis and

extensive dataset, it is difficult to further constrain the system’s orbital parameters,

which are important in CW searches. The uncertainties on the other system parameters

of interest are dominated by the poor constraints on the mass ratio q and the unknown

neutron star radial velocity K1, that are difficult to further improve on. The additional

VLT/UVES data provide no stronger constraint on K1 owing to the variability we discuss

in Section 4.4.3 blurring the Doppler tomograms. Similarly, we cannot tighten the lower

bound on q as the lines are already fully resolved by our spectra. We recreated the

Monte-Carlo analysis of Wang et al. (2018), casting the problem instead as a Bayesian

forward- modelling approach (using the HMC methods discussed in Section 4.3), but

this failed to provide any stronger constraints, owing to the above considerations.

Further observational work is required to better constrain these orbital param-

eters, yet the complexity of Sco X-1 makes this challenging — detection of donor star

features in the near-infrared is hampered by the strong accretion flux (Mata Sanchez

et al., 2015), and light-curve modelling is made more difficult by the distinct optical high

and low states in the system. Only by jointly considering all available constraints, and

pushing the capabilities of current-generation instruments, can we begin to more ro-

bustly constrain the orbital parameters of Sco-X 1 and further reduce the parameter

space for CW searches going forwards.

4.5 Conclusions

As the prototypical LMXB, Sco X-1 continues to remain central to current searches

for continuous GW sources. Tensions between the predicted GW emission and the GW

strain limits obtained from previous observing runs are beginning to emerge, as specific

sub-bands now reach below the torque–balance between accretion spin-up and GW

148



emission spin-down. However, this is largely contingent on the inclination constraint

obtained from Fomalont et al. (2001), and further data is required to reach constraining

upper limits whilst simultaneously marginalising over the unknown inclination; it may be

the case, e.g., that the radio lobes do not trace the orbital inclination.

Although any GW emission thus far has eluded detection, the upcoming LIGO/Vir-

go/KAGRA O4 observing run promises to further improve instrument sensitivities. Fur-

thermore, searches with increased sensitivity (e.g., Mukherjee et al. 2022) may yield

more stringent constraints over previous results. With upcoming third-generation GW

detectors such as the Einstein Telescope (Maggiore et al., 2020) and Cosmic Ex-

plorer (Reitze et al., 2019) — bringing orders of magnitude increase in strain sensitivity

and delivering high SNR GW detections that will unveil populations of compact objects

currently out of reach for the current ground-based detectors (e.g., Cieślar et al. 2021)

— likely including Sco X-1, alongside a wealth of other science outcomes (Kalogera

et al., 2021).

From a compact object perspective, further studies of Sco X-1 focused on the

transient structure of the disc and the nature of the companion star is crucial in under-

pinning our understanding of more distant LMXBs, and may yield even stronger con-

straints that may synergistically further constrain the parameter space for GW searches.

It is clear many processes remain poorly understood.

Leveraging the improved search sensitivity afforded by the enhanced detectors

and computational methods discussed above is contingent on a precise — and, criti-

cally, up-to-date — ephemeris for the donor star in Sco X-1. The ephemeris presented

in this work will enable precision searches for CW emission from Sco X-1, which will

further constrain any emission down to the torque–balance limit across the entire band

of search frequencies — both in the upcoming LIGO-Virgo-Kagra O4 observing run

and beyond. Sparsely-sampled, high-resolution observations of Sco X-1 over the com-

ing years can efficiently keep this ephemeris current for the foreseeable future, under-

pinned and facilitated by the extensive and corrected VLT/UVES constraints that we

present here.
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Data Availability

All reduced data (excluding those under a proprietary period) are publicly available

via the ESO Archive and ING Archive respectively. All associated data and reduction

codes will be made publicly available after the release of this manuscript at https:

//github.com/tkillestein/pegs_plus. We intend to regularly publish updates to

this ephemeris in light of new data, with the version of record hosted at Zenodo. (DOI:

10.5281/zenodo.7635465) This paper makes use of the following software packages:

numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), astropy (Astropy Collab-

oration et al., 2013, 2018), matplotlib (Hunter, 2007), jax (Bradbury et al., 2018),

numpyro (Phan et al., 2019; Bingham et al., 2019), corner (Foreman-Mackey, 2016),

pandas (McKinney, 2010), cividis colour map (Nuñez et al., 2018)
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Postscript

After the publication of this manuscript, an updated search based on the corrected

ephemeris was conducted (see Whelan et al. 2023). Although no concrete detection of

continuous waves was made, the ephemeris enabled a search of similar sensitivity to

the prior LVK searches, but with ∼3 times less computation time. The wider GW com-

munity remain hopeful for a positive detection in the LIGO-Virgo-KAGRA O4 observing

run, 18 months in length, and with a factor 2 greater sensitivity than the prior O3 run.

Additional monitoring observations of the Sco X-1 system are also being undertaken

with the High Resolution Spectrograph (HRS) on the South African Large Telescope

(SALT; Buckley et al. 2006) at a weekly cadence as part of a 4-semester long-term

proposal I am leading, to provide further phase constraints for the LVK O4 observing

run. Figure 4.12 shows the most recent spectra obtained at the time of writing. The

SALT HRS instrument has a comparable (R ≈ 40,000) spectral resolution to UVES in

our chosen configuration, and we achieve comparable signal-to-noise with each visit

(900s integration time), even during bright time. Based on Monte Carlo simulations,

this ∼ weekly sampling will deliver ∼ 30s ephemeris accuracy across O4, uniquely

enabling the most sensitive CW searches thus far for Sco X-1, and reducing reliance

on the poorer-quality WHT data. One particular region of phase space of interest is

the slight bump in the residuals of Figure 4.4 around φ = 0.3, which may be real and

tied to properties of the donor. Only further modelling can help constrain these donor

properties, along with further observations which we are currently pursuing.
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Figure 4.12: Recent spectra obtained of Sco X-1 with SALT/HRS, plotted centred on
the Bowen blend and He II lines of interest. Wavelengths are given in the binary rest
frame, with systemic velocity and heliocentric velocity corrected for, and times are given
in MJD (UTC). Spectra are plotted with a 3-pixel boxcar smoothing for visualisation, with
the unsmoothed spectra plotted behind.
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Chapter 5

Towards a systematic census of

short-timescale variability in

supernova light curves

5.1 Introduction

Supernovae do not explode in a perfect vacuum, and interaction with the surrounding

circumstellar medium has long been known to play an important role in observed ex-

plosions across the transient zoo. Circumstellar material is a powerful probe of the

poorly-understood latter phases of massive star evolution. We know that massive stars

shed significant amounts of mass prior to supernova from observations of local red su-

pergiants (de Jager et al., 1988; Beasor & Davies, 2018) – as their outer envelopes be-

come less dense and expand, stellar winds are able to drive significant amounts of en-

velope material off, creating dense circumstellar material. It is thus far unclear whether

the dominant mechanism for this occurs on short timescales, in eruptive outbursts (e.g.

Davidson & Humphreys 1997), or on longer timescales via a ‘superwind’ (Heger et al.,

1997). Regardless of how the material arrives at large radial extent from the progenitor,

the shock front from the supernova traverses this CSM, leading to strong interaction

signatures in the light curve (Chevalier & Irwin, 2011) and spectrum that can persist for
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weeks after explosion (dependent on the CSM density and radial distribution). CSM

interaction leads to faster rising, bluer, more luminous light curves than expected from

simplistic radioactive decay models. Some level of CSM interaction is required to repro-

duce the observed light curves of RSG-progenitor SNe II (Morozova et al., 2017). We

also see with some regularity (e.g. Bruch et al. 2022) flash-ionised features present in

early spectra of CCSNe, further indicative of the dense CSM from pre-explosion mass

loss – with observations constraining mass-loss rates and providing spectral diagnos-

tics of abundances (Ofek et al., 2010). These lines are narrow as they arise from more

localised regions in space (i.e. the CSM) and show lower velocity dispersion than the

main supernova lines themselves. Further, sufficiently dense CSM can produce de-

tectable non-thermal (synchotron self-absorption) emission, visible in radio and X-ray

bands (Chevalier, 1982). Under the assumptions of equipartition, it is possible to directly

infer the density of the CSM as a function of radial extent – typically within the context

of a power law. Radio emission has been observed extensively in CCSNe (Weiler et al.,

2002; Bietenholz et al., 2021), with only null detections in SNe Ia (Panagia et al., 2006;

Chomiuk et al., 2016) – as expected from the progenitor channels for these events.

Superluminous supernovae (SLSNe, see (Moriya et al., 2018)) have shown ‘bumpy’

light curves, with at least some evidence pointing towards modulations of density in

the ‘lumpy’ circumstellar material being key to this observed behaviour (Hosseinzadeh

et al., 2021).

Although traditionally associated with CCSNe (with pre-explosion mass-loss

from a giant progenitor providing the CSM structure), spectroscopic evidence of CSM

interaction has been detected in a very small subset of discovered SN Ia (see e.g . Fox

et al. 2015). These transients, known as Ia-CSM supernovae, exhibit the same nar-

row emission lines as found in SNe IIn, superimposed on more typical Ia spectra. The

origins of this interaction continue to elude explanation, with suggestions of planetary

nebulae or winds of evolved binary companions providing the material (Uno et al., 2023;

Sharma et al., 2023). With the explosion in the numbers of transients being discovered

by current-generation sky surveys, we are routinely sampling a growing subclass of

rarer transients where interaction is important for explaining the observed properties.
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For a more comprehensive view of interaction across all families of extragalactic tran-

sients, see Fraser (2020).

One regime of study for supernovae that remains poorly probed is their light-

curve behaviour on sub-day timescales (∼ minutes – hours). This time interval is

largely inaccessible with the typical ∼ nightly cadence of current transient surveys,

has not been studied extensively from the perspective of theoretical modelling, and

suffers from a general dearth of high-quality, homogeneous data suitable for placing

strong limits. Some of the earliest high-cadence light curves of explosive transients

have been obtained serendipitously through space- based exoplanet surveys. Although

the focus of these missions is predominantly high-cadence (∼ minutes) light curves of

bright (V ⪅ 12) stars in search of exoplanet transits (e.g. Charbonneau et al. 2000),

through stacking of multiple full-frame exposures into and difference imaging it is pos-

sible to construct high signal-to- noise light curves of fainter extragalactic transients.

Unhindered by the rotation of the Earth, these surveys observe fields in long (∼ 30

day) stares providing uninterrupted coverage, and in turn unprecedented opportunities

to sample the very-early temporal evolution of transients.

The Kepler (Borucki et al., 2010) and Transiting Exoplanet Survey Satellite

(TESS; Ricker et al. 2015) missions have been the primary sources of early-time high-

cadence photometry thus far. A growing number of transients have serendipitously

exploded within the field of view of these surveys, and have provided stacked ∼hourly

photometry of these targets for many weeks. Although illuminating, such studies suffer

from systematics from difference imaging, limited by the large PSF and plate scale of

Kepler and TESS, and are intrinsically limited to the brightest transients owing to the

small aperture sizes involved. Nevertheless, the repurposing of these missions towards

transient science has proven to be fruitful for our understanding of the very early time

light curves of a diverse range of supernovae – probing short-timescale variability on

typical hours–day long timescales. Vallely et al. (2021) studied the very early time light-

curves of a core-collapse supernovae serendipitously observed by the TESS satellite,

achieving precise measurements of the rise times and inferring the presence of shock

breakout. More recent work (Wang et al., 2023a,b) using TESS has unveiled rapid evo-
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lution at early times in stripped envelope supernovae associated with shock breakout

from the progenitor (Waxman & Katz, 2017). Similarly, work using the Kepler and K2

missions have shown hints of short-timescale early-time bumps in the light-curve, a po-

tential signature of the interaction of the supernova blast wave with a nearby companion

star (Shappee et al., 2019; Dimitriadis et al., 2019; Li et al., 2019). Very few studies have

thus far searched for high-cadence optical variability using larger telescopes – enabling

fainter targets in more distant hosts to be characterised, without the significant caveats

involved with stacking shallower data. In the following sections, I summarise some of

the key works.

Fast blue optical transients (see Section 1.2) have proven enigmatic: showing

behaviours completely incompatible with standard supernovae, unclear progenitor sys-

tems, and relative rarity in comparison to other transient families. The recent discovery

of optical flaring in AT 2022tsd (the ‘Tasmanian Devil’; Ho et al. 2022b) has renewed

interest in the prospect of short-timescale variability in transients. Whilst the source of

this variability remains unclear (alongside the progenitors, emission mechanisms, and

other key parameters) of FBOTs, using arguments of causality, the variability must be

occurring on scales of 1012cm (∼ cδ t). There is an emerging evidence for FBOTs being

powered by highly-collimated outflows launched from nascent compact objects –making

engine-driven variability a natural candidate for this. Quite how the engine experiences

factor ∼100 changes in luminosity on such short timescales remains unclear. It should

be noted that short-timescale variability is commonplace in more energetic transients

like GRBs (MacLachlan et al., 2013) (in the high-energy (X-ray – γ- ray) bands), so it is

perhaps not surprising that transients bearing many of the same hallmarks (relativistic

outflows, extreme luminosity, stripped progenitors) also show similar behaviours.

5.1.1 The curious case of SN 2014J

Putting aside exotic transients, one normal supernovae has been claimed to show such

short-timescale variability. Observations of the nearby Type Ia SN 2014J (Bonanos &

Boumis, 2016) at high cadence revealed tentative evidence of short-timescale oscilla-

tions in the light curve, on a typical scale of around 50 mmag. These oscillations were
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consistent across both the Johnson B and V bandpasses, and were seen consistently

across 4 nights of observations, disfavouring any photometric errors or systematic ef-

fects. This remains an unexpected and puzzling observation – as a SN Ia there is

no central engine to provide engine-driven variability and light curves are driven by

largely-predictable 56Ni decay at early times, strongly suggesting the source of vari-

ability must be extrinsic to the remnant itself. Furthermore, deep non-detections in the

radio (Pérez-Torres et al., 2014) and X-ray (Margutti et al., 2014) close to the time of

these optical observations are inconsistent with the presence of a dense CSM around

the SN. Considering the causal timescale c∆t of such variability, the driving mechanism

must operate on scales of ∼ 1012 cm, far smaller than the spatial extent of the super-

nova ejecta (estimated as ve j∆texpl). As the brightest nearby supernova in a decade,

SN 2014J received extensive spectrophotometric coverage (e.g. Cox et al. 2014; Goo-

bar et al. 2014; Patat et al. 2014) – none of these spectra bear the emission lines (e.g.

He II) traditionally seen in transients where CSM interaction is important. Inspired by

this event, further observations were presented of 5 supernovae in Paraskeva et al.

(2020), which showed no evidence of short-timescale variability, although this study

primarily observed fainter targets so is less sensitive than the SN 2014J observations.

Assuming that the variability seen by Bonanos & Boumis (2016) is related to

the circumstellar medium, detections of photometric signatures of circumstellar inter-

action could provide a method to probe the density structure of material surrounding

transients, complementary to the traditional spectroscopic approaches in providing in-

dependent constraints. Regardless of the mechanism powering these observed fluctu-

ations, it is crucial to verify their existence independently. One dataset is not sufficient

evidence, and it is still unclear how this may manifest in other (non- thermonuclear)

types of transients. With the recent discovery of short-timescale variability in FBOTs,

there is now additional motivation to establish rates of occurrence, and further provide

strong upper limits across a diverse range of transient types. The question remains:

is this behaviour not being observed in regular supernovae simply because we aren’t

looking, or is this phenomenon a clue to the origins of FBOTs?

In this chapter, I present the results of a pilot program using the South African
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Large Telescope (SALT; Buckley et al. 2006) and Liverpool Telescope (LT; Steele et al.

2004) building on existing literature studies – by searching for excess short- timescale

variability using high-cadence, single-colour photometry obtained of two bright core-

collapse supernovae in nearby (≲ 100 Mpc) galaxies. Using these datasets, we place

stringent upper limits on the scale of potential variability through the light curves ob-

tained, and develop the techniques necessary to extend this to a larger sample currently

being gathered.

5.2 Targets and observations

SN2021acya (Tonry et al., 2021) was discovered by ATLAS, and later classified by the

ePESSTO+ collaboration (Ragosta et al., 2021) as a SN IIn on account of it’s strong,

narrow metal emission lines. Although distant at 290 Mpc, the strong He II signature,

broad Hα lines, and bright absolute magnitude made this a priority target for high-

cadence follow-up. This target received continued follow-up and was later re-classified

as SLSN IIn, making it an even more compelling target for study. SLSNe II are well-

explained via circumstellar interaction, with the augmented luminosity arising from a

greater CSM mass (e.g. Moriya et al. 2018) – making the prospects of interaction-

induced variability signatures more promising in this target.

SN2022mm was discovered by ATLAS (Smith et al., 2022; Tonry et al., 2022) in

a nearby [] galaxy and showed a rapid rise of ≥ 0.6 mag/day. Of central interest was

the strong explosion constraint, with a non-detection just 24h before. We proactively

triggered LT/RISE on this transient prior to it being spectroscopically classifed to obtain

a high-cadence early-time light curve. On the same night, this transient was classified

by the ePESSTO+ Collaboration (Reguitti et al., 2022) as a normal Type II supernova,

showing very weak Hα emission, and later revealed emerging P-Cygni features.

These two targets provide a direct comparison (albeit at different epochs) – a

transient likely to host dense circumstellar material (in the case of SN 2021acya), and a

transient with very weak/no interaction (in the case of SN 2022mm). If interaction were

to be a dominant mechanism in producing high-cadence variability, we would expect
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Table 5.1: Summary of high-cadence observations

Target Instrument Phase (discovery) Run length (h) Cadence (s)

SN 2021acya SALT/SALTICAM +41.5 1 2
SN 2021acya SALT/SALTICAM +84.4 1 10
SN 2022mm LT/RISE +1.4 1 30
SN 2022mm LT/RISE +25.4 1 45

to see it more strongly in SN 2021acya, with SN 2022mm showing no signatures of

interaction. The details of observations undertaken are summarised in Table 5.1, along

with filters used, cadence, and instrument used.

5.2.1 SALT/SALTICAM observations

We obtained 2 epochs of high-speed photometry on SN 2021acya using the SALTI-

CAM instrument (O’Donoghue et al., 2006) on the South African Large Telescope

(SALT; Buckley et al. 2006). In the first epoch, SALTICAM’s frame transfer mode was

employed to minimise dead time and maximise cadence, yielding a usable (vignetted)

field of view of 4’×8’ using the Sloan i′ band filter. In the second epoch, we obtained

full-frame images using the Sloan g′ filter at 10 second cadence. Raw frames were

processed using the SALT science pipeline (Crawford et al., 2010), with additional cor-

rections performed by the authors to account for additional instrumental systematics.

The most important of these (removing pickup noise) is summarised in Section 5.2.2.

We also apply a two-step flatfielding procedure using calibration screen exposures as

recommended to correct for both the time-varying vignetting pattern induced by SALT’s

tracker-based optical design, and the pixel-to-pixel variations associated with the de-

tector. For each science frame, we compute a ‘low-frequency’ flatfield by estimating

the spatially-varying background across the illuminated portion of the frame with sep.

For the ‘high-frequency’ pixel-to-pixel variation, we divide out the smooth variations in

illumination from the calibration screen images with the same procedure as the science

frames, then compute a median stack of the normalised calibration screen images.

The final science ‘flat field’ is computed as the low-frequency illumination correction

multiplied by the ‘high-frequency’ calibration frame, and is markedly more effective at
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correcting pixel defects.

5.2.2 Pickup noise correction step

The data taken in the Sloan i‘ filter suffer from variable pickup noise, which adds ad-

ditional uncertainty on the background flux measurements, especially paired with the

∼ 20 pixel drift across the window of the observation. Although the photometric preci-

sion we obtain with these data are already more than adequate for our studies, failing to

correct for this adds significant correlated noise which propagates into our light curves.

We apply a simple empirical model to correct for this noise component – this provides a

model-independent correction and significantly improves correlated noise in the images

(and final light-curves). Parametric models fail to fully capture the complex morphology

of this pattern, which seems to have prominent sub-harmonics between the main peaks.

The pattern is also poorly-localised and time-variable in Fourier space limiting the utility

of Fourier- based approaches (e.g. Brault & White 1971)

For each raw frame, we rotate the image to a series of trial angles θi, then av-

erage along image columns, creating an sigma-clipped median profile along the given

θi. We sweep through values of θi, seeking to maximise the chi-squared value to max-

imise the structure present in this estimate of the background. This is equivalent to

accumulating signal along the lines of the pickup noise pattern. An example of this

process is shown in Figure 5.1, along with some examples of the inferred pattern. To

mitigate issues with evaluating a grid of rotation angles, we interpolate the 5 highest

χ2 values with a quadratic, and take the analytic maximum of this polynomial as the

‘optimal’ value θopt . Once this is found, we fit a high-order Chebyshev polynomial to the

column-averaged signal and subtract it, to remove any row-wise variation as a result of

not having flat-fielded yet. This yields a good estimate of the pickup noise, which we

then rotate back into alignment and subtract off. This pickup noise is additive (i.e. as

a result of the detector readout process),therefore we subtract it before applying any

further corrections. This process must be repeated for each individual amplifier, as we

observe each has a slightly different noise pattern. The improvements afforded by each

step are shown in Figure 5.2. This correction step has the potential to significantly im-
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Figure 5.1: Top: Reduced chi-squared of the pickup noise estimator as a function
of rotation angle. The two inset images show the inferred pickup noise pattern prior
to rotation back into the detector frame at θ = 18◦ (left) and the optimal θ = 20.25◦

(right). The structure in the angle with the maximum reduced chi-squared value is
markedly more defined. Bottom: evolution of the optimal rotation angle θopt throughout
the observational series. The smooth variation is unexpected: with the most plausible
explanation being of a cable changing orientation as the telescope tracks.
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Raw Corrected Flat-fielded

Figure 5.2: SALTICAM data in raw, pickup noise corrected, and pickup noise corrected
and flat-fielded form. All frames are plotted with the same scaling to emphasise the
improvements in image quality resulting from these corrective steps. We plot only a
single amplifier here (256 pixels across) for more compact visualisation.
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prove many archival SALTICAM datasets, therefore the method is presented here in

the hope it is useful to the wider community. Accurate flatfielding is currently a signifi-

cant limiting factor in the usage of SALTICAM imaging in general, not just for differential

photometry as we perform here. The resultant light curves are shown in Figure 5.3.

5.2.3 Liverpool Telescope/RISE observations

We also obtained 2 epochs of 30s/45s cadence photometry using RISE (Steele et al.,

2008) on the Liverpool Telescope (Steele et al., 2004). Observations were taken with

permanently-mounted V +R band filter chosen for maximal throughput , with 1x1 bin-

ning in frame-transfer mode. Data are reduced with the standard Liverpool Telescope

reduction pipeline utilising library calibration products,and were retrieved directly from

the LT archive. We use the pipeline products as-is in our analyses, and absorb any addi-

tional systematic effects arising from this choice into our detrending model. Our second

epoch required a longer integration time than the first. The resultant light curves (after

processing) are plotted in Figure 5.4

5.2.4 Common photometry pipeline

To minimise systematic errors and obtain consistent photometry, we use a common set

of techniques between the SALT and LT datasets. Both sensors have unilluminated

patches present that may cause issues if not dealt with – to mitigate this we build a

coverage mask for each image. We first threshold the image based on an empirical

sampling of the residual illumination present in these regions, then apply a binary di-

lation of 30 pixels to ensure we also mask the ‘edges’, regions where the illumination

changes sharply and may cause issues. Aperture photometry with sep (Barbary, 2016)

is used to obtain the raw fluxes of each source included in our ensemble, and we op-

timise the aperture size using a curve-of-growth approach by choosing the aperture

size that maximises the signal-to-noise of each source. Sky background is subtracted

with a sky annulus of inner radius 10 and outer radius 14 pixels. We also obtain a

per-frame estimate of the seeing by computing the half-flux radius of the supernova to

include in latter detrending algorithms, as the amount of flux caught by each aperture
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Figure 5.3: SALTICAM light curves of SN 2021acya
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Figure 5.4: Detrended LT light curves of SN 2022mm
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will change if the seeing does. The first image in each set is solved astrometrically with

astrometry.net (Lang et al., 2010), then track arbitrary drifts in source position across

the detector by centroiding at the location of each aperture. This reliably re-positions

the aperture in each frame and allows measurement of the x-y positions of each source

for diagnostic purposes/detrending.

5.2.5 Detrending instrumental systematics

Despite the use of differential photometry, some of our light curves suffer from residual

systematic effects. We apply two different approaches to this, depending on the number

of stars available. For the Liverpool Telescope data with a wide field of view, we apply

the SYSREM (Tamuz et al., 2005; Mazeh et al., 2007) algorithm to the raw fluxes of

all ensemble stars. This approach iteratively removes correlated trends between stars

in the ensemble, and corrects for effects with polynomial dependence on ‘airmass’ and

‘colour’, removing common-mode systematics. Our SALT data contains less suitable

stars to compare to, so we use simple differential photometry to generate our light

curves. Despite our flat-fielding efforts, stars distant from the supernova on the detector

have significant systematic shifts in flux.

For both datasets, we also apply detrending with a basic linear model using

instrumental vectors. This approach can successfully deal with linear-order effects in

state vectors without overfitting and removing potential variability. We specifically use

x,y,FWHM for the target and comparison stars, and avoid using any flux-based vectors

as these are co-linear with the final flux. We solve the following matrix equation for each

light-curve, and subtract the result from the differential light curve.

Ax = B

where A is the column vector [1,xi,yi,FWHMi] corresponding to the target state vec-

tors and B is the vector of differential fluxes fi. We perform the fit using zero-centred

normalised fluxes for numerical stability. For the SALT/SALTICAM dataset in particular

(which has a small usable field of view and thus few nearby comparison stars), this ap-
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proach bears a significantly lower risk of overfitting than PCA-like approaches that are

commonplace in wide-field variability surveys (Kovács et al., 2005; Waldmann, 2014;

del Ser et al., 2018). Our light curves are then normalised to the median flux for ease

of interpretation, and clearer visualisation.

5.3 Light curve analysis

With calibrated light curves, we can now begin to assess the significance of any poten-

tial variability present, and place upper limits on detectable variability given the noise

present. Temporal correlation and quasi-periodic oscillations (QPOs) may also be in-

structive – with a robust velocity measurement from spectra these can be converted

into length scales in the ejecta, revealing potential mechanisms at play. Simultane-

ously however, we must be cautious, as instrumental systematics often show short-

timescale temporal correlations (red noise) and aliasing on the observation frequency.

This section presents some preliminary analyses. We compute the Lomb-Scargle peri-

odogram (Lomb, 1976; Scargle, 1982; Zechmeister & Kürster, 2009) for all light curves,

to probe for periodic signals in the data – the resultant periodograms are shown in Fig-

ure 5.5. No significant variability aside from instrumental aliases are detected in either

supernova. There is a slight excess of power visible in the Epoch 1 SN 2021acya light

curve that exceeds our chosen false-alarm level of 5%. However, this lies close to half

of the total timespan of our data, making it likely this is a spurious peak caused by

remaining low-order trends in our data – potentially associated with the rising flux of

this object. As a notional measure of the dispersion of the light curve, we quote the

inter-quartile range (IQR) and A90 (the difference between the 5th and 95th percentile)

as robust estimators. These values are tabulated in Table 5.2 for both targets. The

dip in the second epoch of SALTICAM is not thought to be real, and remains as an

artifact of the flat-fielding procedure. All light curves are qualitatively compatible with

non-variability at our photometric precision, with the SALTICAM data providing some

of the strongest constraints. More sophisticated analyses are needed to directly place

constraints on any short-timescale or correlated variability, but this is statistically chal-
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Figure 5.5: Power spectra of the light curves of SN 2021acya and SN 2022mm. The
grey vertical lines correspond to aliases of one and two times the instrumental ca-
dence,where we expect spurious peaks. The horizontal dashed line corresponds to the
5% false alarm level, as estimated by the procedure in Baluev (2008)
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Table 5.2: Table of upper limits on short-timescale supernova variability

Target Instrument Phase (discovery) IQR (%) A90 (%)

SN 2021acya SALT/SALTICAM +41.5 1.65 2.97
SN 2021acya SALT/SALTICAM +84.4 2.34 4.90
SN 2022mm LT/RISE +1.4 2.47 4.51
SN 2022mm LT/RISE +25.4 2.14 4.05

lenging, and likely requires better characterisation of the photometric noise than per-

formed here. Non-parametric approaches such as Gaussian processes (see Gibson

et al. 2012) may have greater success here in extracting variability in the presence of

correlated noise, although such modelling efforts are left to future work as care is re-

quired to avoid overfitting and removing real astrophysical variability. Techniques heavily

utilised in the study of active galactic nuclei (e.g. Kozłowski 2016) may also be of use in

characterising correlated variability, although we note that these are typically used on

longer-timescale data. We leave implementation of these to future work, where a larger

sample of data will be available to investigate the nuances of these approaches.

5.4 Conclusions

Although both the SALT/SALTICAM and LT/RISE datasets present null detections of

short-timescale variability, there is significant red noise present in our data that limits

our sensitivity to variability on timescales of ∼ minutes. Nevertheless, the data ob-

tained rule out variability at the levels presented in Bonanos & Boumis (2016) in both

SN 2021acya and SN 2022mm. The modest sample of supernovae presented here is

not enough to draw a firm conclusion as to the existence of short-timescale variability,

but taken in conjunction with the literature results of Paraskeva et al. (2020) begins to

disfavour the presence of such phenomena (at least of the persistent kind seen in Bo-

nanos & Boumis 2016). Studying this behaviour across a diverse range of supernova

subtypes, each with different explosion mechanisms and environments, will help con-

firm the presence of variability, constrain the source mechanism, and enable robust

measurements of environmental parameters. Even null detections are directly informa-

tive, providing the data required for some population-level estimates of (non-)variability.
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Further, systematic observations of fast blue optical transients are necessary to begin

to assess the prevalence of short-timescale variability going forward.

The numbers of transients being generated by modern transient surveys pro-

vides a rich sample to extend this work to a larger population of bright, local transients,

to provide further number statistics to constrain rates. Using the ZTF Bright Transient

Survey (ZTF-BTS; Perley et al. 2020) sample, roughly 40 transients per semester per

sky have a peak magnitude less than r = 16.5 – this threshold is chosen to facilitate high

signal-to-noise light curves on 2m-class facilities. With the pilot study presented here,

we now have the methodologies required to test for the prevalence of short-timescale

variability at scale.

Postscript

At the time of writing, 9 further transients have been observed as part of a successful

ESO program in P110 using ULTRACAM (Dhillon et al., 2007), a high-speed simultane-

ous tri-colour imager mounted on the ESO 3.6m New Technology Telescope. ULTRA-

CAM delivers zero-readout-time imaging in u′, g′ and r/i′ bands over a ∼ 4 arcminute

field of view, with exquisite calibration and levels of systematics. It is perfectly suited to

the kinds of study discussed in this Chapter and has a rich heritage of galactic time-

domain studies (e.g. Jeffery et al. 2004; Brinkworth et al. 2006; Paice et al. 2018). With

P111 upcoming at the time of writing, we hope to extend this study to a further 6 tran-

sients using a 3 day time allocation. We also obtained a further 3 triggers from the

Liverpool Telescope on young core-collapse supernovae. Analyses of these datasets

are ongoing, although conditions were sub-optimal for these observations. Analysis

of this dataset is ongoing, with focus being placed on developing the robust statistical

methodologies needed to perform a full injection-recovery simulation for each target.
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Chapter 6

Building the next generation of

context-aware source classification

algorithms

Note

This chapter is based on the in-preparation manuscript moriarty: a data-

driven, open source contextual classifier and knowledge store for time-

domain astrophysics. Detailed characterisation, data-driven optimisation,

and implementation of machine-learned transient classification is left to this

manuscript, where here we focus on the construction of the databases and

the underlying algorithms.

6.1 Moving beyond real-bogus classification - multi-class con-

textual classifications

With the successful implementation of deep-learned real-bogus classifiers (Gieseke

et al., 2017; Duev et al., 2019; Killestein et al., 2021), human effort has now shifted from

sifting vast through large quantities of false positives to identifying the most interesting

‘real’ transients to follow up.
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Emerging approaches make use of multi-label classification, aiming to predict

the class of a given candidate from a coarse, high-level taxonomy of sources. Such a

classification task is inherently hierarchical – a SN Ia for example belongs to the family

of SNe, which is in turn a galaxy-associated transient, which is in turn a real source.

The more granular a classification scheme imposed, the harder a given model will be

to train – both from a machine learning (projecting to a high-dimensional output space)

and a data perspective (by taking smaller and smaller subsets of the dataset). The

potential for ‘label noise’ also increases significantly on intrinsically rarer targets. For

this reason, existing efforts (Carrasco-Davis et al., 2020; Duev & van der Walt, 2021)

have focused on classifying into coarse, high-level taxonomies using either ensembles

of binary classifiers, or low- dimensional output multi-class classifiers. In many ways,

this is a more subtle classification task than real-bogus classification – for example,

misclassifying a supernova as a nuclear transient is less problematic than misclassifying

the same supernova as a variable star from the perspective of performing follow-up

observations. Similarly, for some rare sub-classes of transient (e.g. kilonovae) we have

only one, a data volume simply not adequate for training classification algorithms on.

Simulated datasets (e.g. PLAsTiCC; Malz et al. 2019) can mitigate the significant class

imbalances present – although of course come with the caveat that simulated data may

not accurately represent the real world, with errors and subtle systematic effects that

are impossible to model a priori, and a strong reliance on the correctness of the models

being used to derive the synthetic data.

An important distinction is between ‘ontological’ (actual) and ‘phenomenolog-

ical’ (apparent) classifications for a given object (e.g. van Roestel et al. 2021). The

apparent properties of candidates (is near a galaxy) may not map directly onto their

true nature (is a supernova) – and indeed may be degenerate, with multiple different

‘ontological’ classes being plausible conditioned on the ‘phenomenological’ behaviour.

Splitting these two classes is complex, and as a result we classify with ‘phenomeno-

logical’ classes for the remainder of this Chapter – the difference between ontologi-

cal and phenomenological classes is more important in the study of Galactic variable

sources than for extragalactic transients. Whether a galaxy-associated transient is a
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core-collapse or thermonuclear supernova is largely only something we can tell with

follow-up spectroscopy, and with existing solutions these subtleties are largely out of

reach. Some early works are beginning to be able to make inferences on the ontologi-

cal class of transients through contextual information (Gagliano et al., 2021), but should

be interpreted with caution owing to the limited sample sizes available.

The end goal of multi-class contextual classification is full automation of tran-

sient follow-up – with discovery and vetting of candidates largely automated via high-

performance real-bogus classifiers, a multi-class contextual agent can sift the stream

of candidates for those that meet specific triggering criteria, and automatically submit

observing blocks to appropriate robotic telescope facilities. The issue of remote trigger-

ing itself is largely solved, with multiple facilities now offering programmatic (Hessman,

2006) submission of targets to the telescope queue, and robust automated data reduc-

tion (e.g. Smith et al. 2016; McCully et al. 2018). The critical ‘missing link’ that needs

to be addressed is accurate context-aware classification of candidates – the following

sections detail the issues complicating this, current solutions, and the next-generation

contextual classifier I am leading development of: which aims to address many of the

existing issues.

6.2 Image and catalog-based approaches

6.2.1 Image-level classification

By definition, an image of a given transient candidate is always available at point of

discovery, encoding context on what surrounds the transient. Image-level classification

is naturally limited however, by the quality of the input images. The discovery/reference

image of a transient may not be deep enough to detect the transient host, or suffer from

poor image quality. This can be alleviated with survey data, however this is not always

available across the entire sky /region of interest. Images provide purely phenomeno-

logical classifications – without distance estimates, all ‘alignments’ can only be appar-

ent. Nevertheless, faint hosts may be visible in imaging but missed by source extraction,

and could be recovered by an image-level approach. Perhaps the biggest issue with this
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approach is that Images are also an inefficient representation for contextual information,

with the vast majority of pixels in a given image containing only sky background. Repre-

senting a large region of sky (to enclose potential associated host galaxies in the local

Universe, for example) requires either a prohibitively large, full-resolution stamp (with

the storage cost scaling quadratically with stamp size), or a low resolution downsam-

pled stamp bearing interpolation artifacts. Multi-scale stamps (Reyes-Jainaga et al.,

2023) containing multiple ‘channels’ at varying resolution and field-of-view have been

proposed as a potential solution to this, although as of yet have not seen widescale

adoption. As a test, we trained a multi-class CNN on the training dataset from gotorb

(see Chapter 3), using the meta-labels from the training set generation code to cre-

ate ‘nuclear transient’ (NT), ‘orphan’ (OR), ‘supernova’ (SN), and ‘variable star’ (VS)

positive classes, along with the ‘bogus’ (BS) negative class. OR, SN, and NT are all ex-

tragalactic classes, with the distinction being the presence (and distance) of a host. NT-

class objects are within astrometric uncertainty of the host galaxy’s nucleus, whereas

SNe are near to a galaxy and OR have no host galaxy. The architecture and hyperpa-

rameters were kept entirely the same,with the exception of setting the output layer to

have 5 neurons (for the 5 classes). Figure 6.1 presents the results from the held out test

set. It is clear that images are only partially useful in providing contextual classification,

in part due to their limited context – with significant confusion between the OR and SN

classes, and NT and VS classes owing to their visual similarity.

6.2.2 Catalog-level classification

Astronomical catalogs are a rich source of contextual information for a given part of

the sky. Indeed, as humans vetting transients, we often consult these resources in

deciding if a given transient is worthy of further follow-up. In a real sense, the ‘hard

work’ is done for us in using these data – the salient information about detections has

already been extracted in the form of source photometry/distances/other properties,

and contained in a tabular form well-suited to analysis with existing machine learning

approaches. Despite the distilled information present in astronomical catalogs, many

challenges exist for their usage in machine learning applications.
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Figure 6.1: Confusion matrix based on the test set for the image-only classifier. A
significant proportion of supernova-like transients are mis-classified as orphan sources,
owing to the host galaxy not being present in the image.
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Incomplete Almost all astronomical surveys are magnitude-limited, displaying a sharp

drop in detection efficiency around some characteristic magnitude. One partic-

ularly important example to consider is in local Universe galaxy catalogs, with

completeness1 rapidly dropping beyond ∼ 40 Mpc (Dálya et al., 2018) in the most

up-to-date catalogs. This arises both from photometric non-detection, but also the

limited capability to follow up and obtain redshifts for faint local galaxy candidates.

Inhomogeneous Catalogs do not always have uniform coverage of the sky - whether

observed at all, or varying depth. The PanSTARRS1 survey, for example, is con-

ducted from a single site, and has negligible coverage below declinations of−30◦.

Further, many ‘catalogs’ themselves are composed of data from multiple other

sources, each with their own selection biases, deficiencies, and uncertainties.

Incorrect Many source disposition catalogs carry inherent misclassifications: owing to

both the limited amount of data they make use of, but also the intrinsic similarity in

observables between different source classes. Variable star catalogs quite often

contain active galactic nuclei, and quasar catalogs host many hot white dwarfs.

6.2.3 An optimal fusion?

Ideally, any algorithm should be able to combine both image-level and catalog-level

contextual information in a principled way – being robust to the potential issues asso-

ciated with catalog information, whilst also integrating inferences about context from

the discovery image. As a prototype, we take the multi-class convolutional neural net-

work (CNN) trained in Section 6.2.1, and feed the output probability for each class

alongside the nearest-neighbour contextual source distances into a random forest clas-

sifier (Breiman, 2001) implemented in the sklearn (Pedregosa et al., 2011) package.

The resultant model is a so-called ‘meta-classifier’ – combining predictions from mul-

tiple independently-learned models. Training the model naïvely as-is yields two major

issues:
1This is further complicated by a lack of consensus on how best to determine the completeness of a

given catalog (Kulkarni et al., 2018).
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• With no contextual information, the model fails catastrophically, yielding NaN re-

sults for all output classes.

• Model performance is drastically reduced as the tree classifier does not optimise

well for the missing contextual information.

To mitigate these issues and make a more robust overall classifier, we apply some novel

data augmentation. We know that our contextual features may suffer from the issues

discussed in Section 6.2.2, so we apply ‘contextual censorship’ – that is randomly re-

moving contextual information from training items at train time. As a proof of concept,

this censorship is applied with a fixed uniform probability of 50% for all entries. This can

be thought of as simulating ‘missing’ sources, as a result of catalog incompletenesses.

Furthermore, by tuning the censorship probability between 0% and 100%, we

can directly control the relative importances of the image-level context and catalog-

level context. Figure 6.2 illustrates this by plotting the random forest feature impor-

tances for PSN (the CNN-predicted probability of the example being a supernova), and

the nearest-neighbour GLADE source distance as a function of the censorship proba-

bility they were trained at – as a surrogate for image-level and catalog-level contexts. All

models were trained on and evaluated on the same splits of the dataset between runs,

making changes in feature importance a pure result of the varying censorship. The two

features reach equivalence in importance at around 0.2 (20%) censorship, making this

a natural choice for the probability at train time. Conversely, if image-derived informa-

tion is trusted more, a higher value of censorship could be chosen. For evaluation we

choose 50% censorship, as we want the image-level CNN to be slightly dominant owing

to our incomplete context. Figure 6.3 illustrates the confusion matrix on the held-out test

set. By accounting for the lossy nature of the contextual cross-matches in the training

process, we are not only able to balance the relative importances of image and catalog-

level context, but create a robust model that smoothly interpolates between zero context

and full context. This is a desirable property given the large regions of sky that context

may be unavailable over, owing to the limited coverage of some surveys. A natural

next step is to tune the censorship of individual catalogs as a function of their limiting
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Figure 6.2: Varying contextual censorship and the result on relative importances of
image and catalog-level contexts

magnitudes – for example by assuming a probability of rejection proportional to:

Preject =
1

1+ exp(−σm (m−mlim))

where m is the detection magnitude, σm is a characteristic width over which detection

efficiency drops off, and mlim is a characteristic limiting magnitude (here where 50% of

sources are recovered). Accounting for mis-identifications, or catastrophic redshift fail-

ures (Bernstein & Huterer, 2010) in catalogs with photometric redshifts is also possible

with this approach, but is left to future work as this requires more careful treatment to

avoid biasing the training set. With a principled way to control the trade-off between

image-level and catalog-level context, it now falls to individually optimising classifiers

and algorithms operating on each data modality. The next section details moriarty, a

state-of-the-art contextual agent designed to form the contextual knowledge store for

future multi-class classification algorithms.
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Figure 6.3: Confusion matrix based on the test set for the combined image and context
classifier. We observe excellent performance across the classes, with around 3% of
supernovae being misclassified as orphan transients.
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6.3 moriarty: a data-driven, open source contextual classi-

fier and knowledge store for time- domain astrophysics

moriarty2 is named in homage to the current state-of-the-art in contextual classifica-

tion, the sherlock3 (Smith et al., 2020) algorithm. The frontend code is written entirely

in Python, with the backend being implemented as a PostgreSQL database cluster.

Special attention is given to interoperability of all catalogs – GOTO is distributed across

two hemispheres, unlike some of the catalogs we rely on, and so care is needed to fully

make use of all information available in a principled and predictable way. It is planned

in future to make moriarty available to the community, both as a hosted API where

users can submit requests online, and also as a ‘build-your-own’ solution – so that all

can make use of advanced contextual classifiers. The following subsections outline

some of the key implementation details, with some rationale behind the specific design

choices made.

6.3.1 Catalog selection

Providing a comprehensive contextual coverage of a given patch of sky requires a rich

selection of astronomical catalogs to combine and infer information from. To this end

we construct a database cluster of 15 catalogs, listed in Section 6.3.1. A full description

of the contents of each can be found in the accompanying reference, but at a bare

minimum we ingest the coordinates, magnitude, and corresponding filter of each source

from each catalog into a main context_source base table. At the time of writing, the

only remaining catalogs to add to this list are Gaia DR3 (Gaia Collaboration et al., 2022),

DESI Imaging Legacy Surveys (Dey et al., 2019), and SkyMapper DR3 (Keller et al.,

2007). The latter two are important for deep coverage of the Southern Hemisphere,

filling in for Pan-STARRS both in terms of deep photometry and photometric redshifts.

2The cunning and formidable nemesis of Sherlock Holmes
3https://github.com/thespacedoctor/sherlock
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To provide the deepest source context possible, we create a large derived cat-

alog from multiple different Pan-STARRS data products. We discard most of the PS1

source-level metadata for the purposes of this classifier, to create a lightweight and fast

photometry table tailored exactly to our needs. The Pan-STARRS1 Point Source Cata-

log (PS1-PSC; Tachibana & Miller 2018) provides a ‘star-galaxy score’ between 0 and

1 for 1.5B sources based on a random forest model trained on PS1 photometry. The

Pan-STARRS1 Source Types and Redshifts with Machine learning (PS1-STRM; Beck

et al. 2021) catalog provides source dispositions and photometric redshifts for the ma-

jority of sources detected by Pan-STARRS thus far. Both of these high-level science

products are locally crossmatched against the entire Pan-STARRS1 StackObjectView

photometry table, containing over 2 billion sources. For sources with both PS1-STRM

and PS1-PSC entries, we prefer PS1-STRM-provided probabilities, bagging the galaxy

and AGN probabilities into one to maximise diagnostic power. We adopt the fiducial

pgalaxy≥ 0.65 figure as suggested in Beck et al. (2021) to select galaxies in practice,

with sources less than this being marked ‘unclear’.

To provide a unified set of attributes, we give sources from galaxy catalogs a

star-galaxy score of zero, and sources from known stellar catalogs a star-galaxy score

of one. This has a well-justified probabilistic interpretation for our cross-matching (see

Section 6.3.4), and we set a flag on the source to indicate this is a synthetic star-galaxy

score.

6.3.2 Database design

As new catalogs are released regularly, the database is designed from the ground up

to be modular and support the ingestion (and removal) of catalogs as required, with a

consistent schema and query structure. This further extends to the priorities, dispo-

sitions and astrometric uncertainties associated with each catalog. Extensive use of

table inheritance provides a unified query structure for tables with somewhat disparate

attributes. All sources are ingested into a main context_source table, with galaxy,

varstar, and star_galaxy_score child tables providing additional attributes. The

high-level structure of the database is specified using configurable ‘views’ to present
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a tidy and efficient table structure to the user. For fast spatial queries, we make use

of the q3c PostgreSQL extensions Koposov & Bartunov (2006), by defining spatial in-

dices over each table. Database query times scale with the region of sky searched, as

expected, but for a 10 arcminute search radius, queries take ≲ 400ms on commodity

hardware – with use of composite indices mitigating overheads from the multiple joins

involved.

6.3.3 Source aggregation and voting

To mitigate the previously-discussed issues with catalogs, we aggregate synonymous

sources and employ a voting scheme to robustly determine their properties. We use

a joint astrometric uncertainty for our association criteria, computed by adding the as-

trometric uncertainties of each source in quadrature. Sources within a separation of 3

times the joint astrometric uncertainty are regarded as synonymous, and are passed

into the voting algorithm for de-duplication. For each set of synonymous sources the

following algorithm is applied:

• Sort the sources in order of priority, and then by the quality of redshift estimate.

• Back-fill this source table with the first non-null value (i.e. the highest quality esti-

mate) as an aggregation

• Determine the overall source disposition via a weighted voting scheme.

Future versions will migrate to a fully probabilistic approach to aggregating synonymous

sources, but for now simple cross-matching suffices owing to all catalogs having similar

astrometric uncertainties. Future planned inclusions of radio/X-ray source catalogs

6.3.4 Robust galaxy associations

One significant issue with existing catalog-level host association approaches is the use

of fixed association radii (known as a ‘cone search’). Whilst fast, this approach does

not take into account galaxies as extended objects: bright, local galaxies are extended

on the sky, and thus transients can be produced and found far from the photo- centre of
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the object. Setting the cone search radius too large will lead to spurious associations

with implausible hosts, whereas setting it too small will exclude many matches in the

local Universe from nearby galaxies. It is clear that the association distance scale must

vary with the size/mass/brightness of the putative host to avoid these issues. We seek

an approach that sits somewhere between cone searches and advanced image-level

approaches such as those in Gagliano et al. (2021) in the runtime-accuracy space.

With this in mind, we construct a probabilistic catalog-level approach, making

use of context like potential host magnitudes in our decision making. As a starting point

we adopt the pchance measure (e.g. Bloom et al. 2002) commonly employed in the study

of host galaxies of gamma-ray bursts:

pchance = 1− exp
(
−πθ

2
ρ(m)

)
where θ is the angular distance between transient and putative host, and ρ(m) is the

areal density of sources with m≤ mhost : that is galaxies brighter than the putative host.

For ease of computation and to avoid rounding/truncation errors, we work internally with

the logarithm of these probabilities instead:

log(pchance) =
(
−πθ

2
ρ(m)

)
Not all source catalogs in our ensemble carry a B-band magnitude for each source,

therefore we convert source magnitudes to a ‘pseudo-B’ magnitude using a set of syn-

thetic colours calculated from the galaxy template SEDs in Brown et al. (2014). With

ρ(B) being defined as a rank statistic, pchance is robust to errors in the assumption of av-

erage colour. We deliberately exclude AGN from this association process, which show

markedly different (∼ 2 mag) colours dependent on type. We leave the inclusion of

this class of object into our galaxy association algorithm to future work, noting that the

majority of AGN noted in our chosen catalogs are compact on the sky, and thus any

transients occuring within them will be flagged as ‘synonymous’.

With the inclusion of PanSTARRS sources in the table, the formula for pchance

must be modified to take into account the probabilistic source classifications provided.
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PS1-STRM provides pstar as an entry, and the sgscore in PS1-PSC is effectively (1−
pstar) (putting aside issues of probabilistic calibration in each). Noting that pchance and

pstar are statistically independent, we can simply multiply together to obtain the joint

probability of the transient being associated with the source, and the source being a

galaxy:

passoc = exp
(
−πθ

2
ρ(m)

)
(1−pstar)

Even outside the natural probabilistic interpretation, (1−pstar) can be interpreted as

a penalty term that downweights potential stellar associations. For sources directly

matched to a galaxy catalog (or equivalently a stellar catalog), we can fix pstar to zero or

one respectively, such that this term only operates on star-galaxy scored entities. This is

a simplification, as naturally these catalogs have mis-classifications also – nevertheless

this extension enables us to make use of some of the deepest source context available.

This approach also works for Southern Hemisphere surveys like SkyMapper and the

Legacy Surveys. Figure 6.4 illustrates a typical match resulting from moriarty for the

calcium-rich gap transient SN 2003H listed in the Dong et al. (2022) sample.

6.3.5 Areal associations

Although the ‘source level’ context is the more important aspect of the algorithm, asso-

ciations with galaxy cluster groups can be highly diagnostic for specific classes of tran-

sient, and facilitate large-scale searches – for example finding lensed transients (Goo-

bar et al., 2022; Ryczanowski et al., 2023) of key scientific interest, as well as informing

the search for sub-luminous transients in the local Universe (Kulkarni et al., 2007; Cai

et al., 2021). To enable these key science goals, we build in an ‘areal association’

routine into the contextual classifier.

Clusters from the Abell et al. (1989) and Zwicky et al. (1961) galaxy cluster cat-

alogs are included in the database by default. These two catalogs, although based

on photographic plate observations, provide a relatively comprehensive census of rich,

low- redshift clusters with which to make associations. Both catalogs provide an esti-

mated on-sky ‘cluster radius’ (in arcseconds) with which we define their extent in the
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Figure 6.4: Example of the rich contextual output from moriarty for the gap tran-
sient SN 2003H. Both hosts are associated with the transient, but the correct host has
marginally higher passoc and so is favoured.
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database, and the Abell catalog also provides a cluster redshift estimate. Notably, nei-

ther catalog includes the Virgo Cluster, the closest galaxy cluster to us (∼ 20 Mpc) as

it extends over multiple photographic plates and thus was not recorded. We manually

include this as a high-priority entry, and rename a subset of clusters to correspond to

their common name (e.g. Abell 1060 → Coma Cluster ) for ease of use.

As a deliberate choice to be conservative about associations, as well as to en-

able a unified query structure for more complex regions (e.g. survey footprints, arbitrary

sky regions), we assume each cluster’s area covers a box with side lengths equal to 2

times the cluster radius. These polygons are then queried using the q3c_polyquery

routine. Typical queries of the entire database table for a single source take O(100ms),

which can be executed in parallel with other operations required for the contextual clas-

sification. A natural next step is to extend this framework to include deeper and more

complete galaxy cluster catalogs (e.g. Wen & Han 2022), although this is left to future

work as the majority of transients that GOTO will discover are at low redshift and so

are unlikely to benefit from this. There are also significant completeness issues with

galaxy cluster catalogs, owing to the relative errors on redshift – future catalogs backed

by large-scale spectroscopic surveys may mitigate this to some extent.

6.3.6 Example outputs

The rich context generated by the algorithms discussed above is propagated through

into a human-readable format, presented to the end user as a contextual string. The

two examples below are taken from real transients discovered by GOTO, and focus

primarily on extragalactic transients.

GOTO23fi is likely associated with the B=15.16 mag galaxy HyperLEDA

30974 in the gladeplus_galaxies, ps1_stackobjectview_minimal catalogs

(8.44′′ away). Probability of connection 99.960% – host is at 217.2 Mpc

(z=0.0473+/-0.0014), implying a transient absolute magnitude of -18.60 and

sky-projected offset of 8.89 kpc.

GOTO23fg is likely associated with the B=15.84 mag galaxy HyperLEDA
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139567 in the gladeplus_galaxies, ps1_stackobjectview_minimal catalogs

(12.40′′ away). Probability of connection 99.915% – host is at 276.9 Mpc

(z=0.0598+/-0.0150), implying a transient absolute magnitude of -18.68 and

sky-projected offset of 16.65 kpc. This transient is spatially coincident with

the clusters ACO 1238 (231.0 Mpc), ZwCl 4067

Future work will tie the full contextual information into an easy-to-browse webpage for-

mat, plotting associated sources on the sky and enabling access to the full catalog

information behind each source identified by moriarty.

6.3.7 Performance verification

As an end-to-end test of the performance of moriarty, we evaluate it’s performance on

the Zwicky Transient Facility Bright Transient Survey (ZTF-BTS) sample (Perley et al.,

2020) – specifically all Type Ia supernovae. This numbers 3601 transients in total, 3244

of which are matched to a galaxy with known redshift and redshift error. If moriarty

returns a host compatible with the quoted redshift at 3 sigma confidence, that is

∣∣∣∣zmoriarty− zbts

σz

∣∣∣∣< 3

we mark this as a successful host identification. By this criterion, we identify the correct

host with 90% accuracy. This is shown in Figure 6.5. We note that a number of the su-

pernovae in the sample have had redshifts derived via template matching (e.g. Blondin

& Tonry 2007), rather than via host galaxy lines or manual association by human eye,

and thus have their own (significant) intrinsic error that must be accounted for. There is

no flag present in the ZTF-BTS sample to identify these cases, and inferring based on

the last significant digit is likely to be ‘unfair’ to high-redshift transients. Extreme outliers

in this normalised residual space are likely a result of cases where we have assigned

a host with an extremely low error as a result of a robust spectroscopic redshift. One

immediate outcome of applying moriarty to this sub-sample is the projected offset dis-

tribution of SNe Ia from their identified hosts. We define a ‘gold’ sample, where the

normalised redshift error is less than one, to cut down on the number of misidentifica-
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Figure 6.5: Histogram of normalised redshift error for the full ZTF-BTS Ia sample with
good spectroscopic matches in moriarty. Histogram binning is computed using the
Knuth (2006) rule, and we deliberately truncate the bin at zero error, as this corresponds
to the human-identified host associations in ZTF-BTS. We also compute the histogram
over the range (-5, 5) to remove extreme outliers (see text) and instead focus on the
core of the distribution.
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Figure 6.6: Sky-projected host offset distribution of Type Ia supernovae, using the
distances derived through the moriarty algorithm. At large separations (∼ 90 kpc) the
matches are likely dominated by misidentifications, rather than real hosts.

tions, and plot the resultant distribution in Figure 6.6. We know that some specific types

of transients are more likely found at larger physical separations from their hosts (e.g.

Kasliwal et al. 2012), and thus moriarty is a unique tool for targeting our follow-up ef-

forts – by algorithmically identifying these transients at discovery time, we can in future

find more of them at earlier times.

We also plot a Hubble diagram using both moriarty-derived redshifts, and the

spectroscopic redshifts obtained as part of ZTF-BTS. There is larger dispersion for the

contextual redshifts, as expected, but it is reassuring to see that they track the spec-

troscopic redshifts in bulk as expected. Whilst the contextual classifier is not intended

for cosmology, it is important that these redshifts are accurate – as derived properties

depend on them. All results presented here are prior to fine-tuning of the algorithm

using methods from Section 2.2.5, which can be expected to increase our figures of

merit significantly. Around 5% of the transients in the ZTF-BTS Ia sample are identified

with a host, but lack a redshift estimate for the object so derived properties cannot be

computed. The availability of upcoming large-scale spectroscopic catalogs promises
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Figure 6.7: Hubble diagram constructed with the ZTF-BTS ‘gold sample’ using g′ band
photometry only. The grey lines connect the redshift estimates for each individual event,
to reveal significant outliers.

to be useful for identifications like this, providing redshifts for many faint point sources.

The remaining 5% are not successfully matched to a given source in the moriarty cat-

alogues. This may be due to missing sources from catalogs, the transient being located

at an extreme offset and so failing the passoc cut , or the transient may be intrinsically

hostless (down to the depth of PS1, our faintest catalog). This 5% is the focus of re-

maining optimisation efforts. It is important to acknowledge such algorithms require

extensive testing under real-world conditions to provide empirical validation of their per-

formance and reveal intrinsically rare edge cases – however, the high recovery rate on

a known subset of astrophysical transients shows great promise. may make use of the

algorithm.
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6.4 Future prospects

The moriarty classifier is now running on the live GOTO transient discovery stream,

annotating every target to be inspected by humans. The finalised version of the code

will be made publicly available in future via an easily-queryable REST API so that the

community. Robust contextual classification is both a requirement and significant chal-

lenge for the Vera C Rubin Observatory’s upcoming Legacy Survey of Space and Time

(LSST) - given the depth of single-visit exposures, very few areas of the sky will have

deep enough coverage from other surveys to provide contextual information about the

host of a potential transient, or the faint underlying source associated with a variable

star. Deep stacks will not be available until later in the survey’s lifetime, therefore much

of the context will need to be inferred from the reference template. At the time of writing,

the alert system will generate 5”× 5” cutouts (Ivezić et al., 2019), which are not large

enough to capture nearby sources/potential hosts in the local Universe. Overcoming

these inherent issues will require a fusion of image-level and catalog- level information

as discussed in this chapter, and it is hoped some of the methods introduced here can

help address some of the challenges inherent.
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Chapter 7

Conclusions and future prospects

In this concluding chapter, I summarise the content of this thesis and highlight the most

important findings, with an eye to upcoming future developments in time-domain astro-

physics and future work on each of the projects I have presented.

7.1 Summary of the thesis

The landscape of time-domain astrophysics has changed significantly over the past

10 years, moving from small, single telescope surveys of the local Universe, to vast,

distributed deep optical sky surveys that cover the entire night sky every night – driven

by the need to rapidly survey large areas of sky in response to poorly-localised external

triggers, searching for rapidly decaying sources associated with cataclysmic cosmic

events. Developing the methodologies and algorithms required to rapidly sift the data

volumes associated with such large-scale searches has been (and remains) a central

challenge in the time-domain astrophysics community, along with capitalising on the

discoveries made to advance our understanding of the transient parameter space and

the diverse range of objects that inhabit it. This thesis has straddled the border between

these observational and computational domains, leveraging the connection between

the two in the form of domain-specific knowledge, and application of robust statistical

methodologies, to make novel contributions in both.

The challenge of real-bogus classification continues to remain a signficant bot-
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tleneck in the identification of transients, especially in the context of modular surveys like

GOTO where the PSF, detector quality, and other parameters may be subject to vari-

ance across the individual telescopes. Chapter 3 presented an algorithmic approach to

generating the vast volumes of training data necessary to train a deep-learned source

classifier using minor planets already in the data, as well as a novel data augmenta-

tion scheme to improve the recovery of faint and nuclear transients associated with

host galaxies. Scaling the datasets involved to even larger sizes, and adapting the

techniques to work on multi-class classification tasks (see Section 6.2.1) remains an

important focus of future work – with the number of false positives significantly reduced,

we are likely to instead be swamped with real (but ultimately uninteresting) detections

instead. There is a strong case for introducing datasets generated by citizen science

and large-scale human vetting efforts to fine-tune performance, and performing active

learning leveraging the Bayesian neural network architectures constructed as part of

this work to optimise this allocation process.

Although the predominant focus of this thesis was on transient gravitational-

wave sources and what we can learn about them via optical follow-up, Chapter 4

demonstrates the power of EM observations for the discovery of continous- wave sources.

Through a homogeneous reprocessing of over 20 years of high-resolution optical spec-

troscopy, we derive the most precise ephemeris to date for the Sco X-1 system, the

continuous-wave source with the strongest promise of being detected by LIGO/Virgo.

Whilst also correcting previous errors, through robust Bayesian modelling we minimise

potential systematics arising from calibration uncertainties in the data, and employ

Hamiltonian Monte Carlo for efficient sampling that explores well the posterior land-

scape. We also produce some of the highest signal-to-noise spectral atlases of any

low-mass X- ray binary, revealing many potential lines of interest to the compact ob-

ject community for further follow-up. As part of future work, I have secured 2 years of

monitoring of Sco X-1 to continue to provide high-quality ephemerides in support of the

upcoming LIGO/Virgo/KAGRA O4 observing run – with the hope of the first detection

of continuous waves. The modelling built in this chapter will also be applied to other

LMXB sources of interest to the continuous-wave community.
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Chapter 5 presented the results of a sensitive search for short-timescale vari-

ability in two core-collapse supernovae, conducted with Liverpool Telescope and South

African Large Telescope observations. As part of this I obtained the highest cadence

light curves of any supernova to date in the literature, and probed for potential variabil-

ity at sub-minute timescales for the first time. We successfully rule out the presence of

∼ 1% scale variability in both of the targets studied, and pave the way for a future (on-

going) large, homogeneous census of supernova variability at short timescales across

the transient zoo. The techniques and methodology presented in this Chapter will be

crucial for investigating the recent emergence of flaring in transients of the FBOT family

in future, and this is the focus of future work.

In Chapter 6, I introduced the catalog engine for moriarty, a data-driven con-

textual classifier that aggregates and combines a wide range of astronomical datasets,

with the goal of providing accurate source classifications and contextual information for

transient discoveries based solely on their sky location. As part of this, I implement a

novel extension of the pchance algorithm for host association that shows marked improve-

ments over a naive cross-match, whilst accommodating uncertainties in cross-matching

and enabling the recovery of transients at extreme physical separations from their hosts.

The final algorithm, paired with deep-learned image-level classification introduced in

this Chapter will be released as part of an in-preparation manuscript – with an early

alpha version of moriarty being tested in the GOTO Marshall. Future work hopes to

incorporate the contextual information from moriarty into automated decision- making

frameworks for astronomical follow-up: with the end goal being fully autonomous spec-

troscopic classification on a subset of ‘gold-standard’ sources that are discovered by

GOTO, using RTML and similar frameworks to send the observing blocks to facilities

like Liverpool Telescope with zero human intervention.

7.2 Looking forward: the future of time-domain astrophysics

At the time of submission, the LIGO-Virgo-KAGRA O4 observing run is 1 month under-

way, generating significant numbers of gravitational wave alerts already at the time of
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writing. Lowered signifance thresholds, in addition to the enhanced detector sensitiv-

ity are contributing to this – with prioritisation, ranking, and significance assessment of

events becoming a challenge due to the ∼ 3/d rate. Instrumentation issues at Virgo

mean that it is currently not participating, expected to join late in Summer 2023 at the

time of writing. The lack of a third sensitive detector is currently causing issues, with the

quality of sky localisations being significantly worse than anticipated. Although problem-

atic for galaxy-targeted searches, wide- field surveys such as GOTO are ideally suited

to this challenging task. The current range of KAGRA does not reach outside our own

Milky Way’s satellite galaxies, although towards the latter end of the O4 run this de-

tector may gain diagnostic power in the case of Local Group events, (≲ 20 Mpc). This

observing run is 50% longer than the previous O3 observing run, which combined with

the ∼ 2× greater detector sensitivity promises to deliver a significant yield of EM-bright

gravitational wave triggers to follow up. The time-domain community stands ready to

respond to these events, with both large-scale sky surveys and dedicated follow-up

programs standing by for the next kilonova (or something more interesting!) The rele-

vant lessons have been learned from the detection of GW 170817, and with significant

progress in both modelling and instrumentation the community is well-poised to make

the most of both the GW and EM information provided by these events – making these

months a truly exciting time to be in the field.

GOTO has completed expansion to the second antipodal site in recent months,

with now 32 telescopes across 4 mounts in two hemispheres – providing truly unprece-

dented follow-up capability. With an instantaneous field of view of 80 degrees from

each site, and near-continuous observing capability (barring dusk and dawn at each

site), survey operations can cover the largest localisation regions in ∼ 1 night, with

well-localised events receiving multiple repeat observations. This is crucial for both

validating transient candidates, but also obtaining photometric evolution to rule out con-

taminants in any searches. We have been active since the very beginning of the O4 ob-

serving run, following up significant gravitational-wave events and reporting transients

from the GW error boxes. All the machinery is in place for the next nearby kilonova, and

with 17 months remaining of this observing run, we are ready.
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Looking ahead beyond the O4 run, the recent approval of LIGO-India is a sig-

nificant development in the GW-EM landscape of the coming decade. A five detector

network promises to significantly improve the localisation quality of the highest signal-

to-noise events, a crucial limiting factor for GW-EM searches, as well as dramatically

improving parameter estimation and signal-to-noise for less massive coalescences.

Continuous-wave searches will also benefit from the additional detector, pushing the

GW strain limits into further tension with our existing models of neutron star physics, or

perhaps yielding a significant detection of the elusive gravitational waves from galactic

compact binaries. This expanded network promises to deliver more opportunities for

multi-messenger synergies, ripe for upcoming electromagnetic surveys to make signifi-

cant impacts.

Building on the already explosive rise of the past decade, the future of time-

domain astrophysics looks incredibly promising – with a new generation of upcoming

modular sky surveys are currently in development. Some examples include wFAST (Nir

et al., 2021), LAST (Ben-Ami et al., 2023), and the Argus Optical Array (Law et al.,

2022), each surveying the entire visible sky at high cadence. Existing surveys are

not standing still, expanding to new nodes (like GOTO- South) and migrating to new,

more sensitive hardware. Technologies like complementary metal-oxide semiconductor

(CMOS ) are rapidly becoming popular in professional astronomy (e.g. Alarcon et al.

2023) due to their low noise, high quantum efficiency, and ultra-high-cadence capabil-

ities owing to an electronic shutter. Whether this marks a paradigm shift for wide-field

surveys remains to be seen, but continually evolving instrumentation provides new op-

portunities for novel study– by pushing coverage of transient parameter space to shorter

timescales. With a wealth of optical surveys on sky, combining data from multiple sur-

veys is likely to yield exquisitely-sampled light curves of a range of transient phenomena

even from survey observations alone, further expanding the possibilities for large-scale

population studies. Naturally, bridging the gap from single-object to population studies

is a challenge, likely requiring principled use of Bayesian statistics to draw appropriate

and robust conclusions from challenging datasets.

The prospect of dedicated near-infrared all-sky survey instruments in the near
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future, such as DREAMS (Soon et al., 2020, 2022) and WINTER (Lourie et al., 2020;

Frostig et al., 2022), is exciting both from the perspective of late-time recovery of kilo-

nova counterparts from the next-generation GW detector network, but also from shining

new light on dust-obscured transients and probing the poorly understood near- infrared

evolution of supernovae and other explosive transients. Ultraviolet missions such as

ULTRASAT (Ben-Ami et al., 2022) and UVEX (Kulkarni et al., 2021) promise to de-

liver unprecedented early-time NUV/FUV observations of a range of transients, probing

poorly-understood phenomena such as shock breakout and prompt emission and in

turn delivering insights into massive star evolution, neutron star physics, and more.

The successful fusion of ultraviolet, optical, and near-infrared data at all-sky scale is a

crucial step to beginning robust population-level studies. This level of in-depth charac-

terisation is only achievable with ‘pointed’ observations currently, making its’ extension

to populations of ∼1000s of bright transients a year an exciting step change in capa-

bility. Whether the larger politics of some of these missions will conspire to limit the

correlation of these datastreams remains to be seen, however I hope that the profound

scientific gains possible will be incentive enough to forge new collaborations between

previously isolated groups.

The next generation of spectroscopic follow-up facilities are due to be fully com-

missioned in the mid-2020s: with both multi-object (DESI, 4MOST, and WEAVE) (DESI

Collaboration et al., 2016; de Jong et al., 2012; Dalton et al., 2012) and single-object

(SoXS, NTE, NRT) (Schipani et al., 2016; Fynbo, 2022; Copperwheat et al., 2015) fa-

cilities devoting significant shares of their time towards the classification and follow-up

of transients, with some of the above effectively being earmarked for transients. A par-

ticularly exciting prospect the community is building towards (e.g. Nordin et al. 2019) is

‘fully autonomous’ follow-up using robotic facilities, underpinned by techniques such as

those developed in Chapter 6. Removing the human element of triggering confers two

crucial advantages:

• Minimisation of latency: follow-up can commence in near-real time, providing ac-

cess to both the infant stages of regular supernovae, and timely observations of

fast blue optical transients.
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• Minimisation of biases: defining precise, algorithmic constraints on when to trig-

ger observations minimises human bias (i.e. on bright/nearby/interestingly-named

transients), and so can probe novel regions of parameter space.

Naturally, this is a challenge: telescope time is expensive (both in financial costs and

time), and ensuring that time is not wasted on false positives is crucial for the longevity

of any program doing fully-autonomous observations. As elaborated on in Section 6.4,

significant challenges await in the sheer scale of the LSST alert stream: with the antici-

pated 10 million alerts per night (Hambleton et al., 2022), even with current state-of-the-

art real-bogus performances of 99.5%, thousands of false-positives will be generated.

Further, the majority of transients discovered via the LSST will be too faint to receive

effective follow-up – further straining the finite spectroscopic capability available to the

community. This emphasises the importance of usage of contextual classification to

draw probabilistic inferences about the type of a given transient from existing datasets

available, and the usage of light curve information. It is clear that despite the promises

of Vera Rubin Observatory, ‘local Universe’ transient surveys still have a critical role to

play in time-domain astrophysics going forward – it is only with a better in-depth under-

standing of seemingly ordinary supernovae and their peculiarities that we can begin to

make the most of the unprecedented samples that deeper surveys can deliver.

Regardless, with a diverse range of new facilities on the horizon with dramatically im-

proved survey capabilities, the trend of exponential growth in the discovery of transients

(Figure 1.7) shows little sign of slowing down. If we can keep pace with this deluge,

multi-messenger time-domain astrophysics promises to continue to lead the way to-

wards understanding the cataclysmic fates of stars and stellar remnants, and their role

in shaping the Cosmos we observe today. As we push back the boundaries of transient

parameter space one cosmic explosion at a time, it is truly unclear what new things we

will find1 – it is precisely here, at the edge of humanity’s knowledge, where the joy of

discovery lies.

1In all likelihood, more Type Ia supernovae.
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Aleksić J., et al., 2011, ApJ, 735, L5

Alexander K. D., et al., 2018, ApJ, 863, L18

Althaus L. G., Córsico A. H., Isern J., García-Berro E., 2010, A&A Rev., 18, 471

Anderson J. P., James P. A., Habergham S. M., Galbany L., Kuncarayakti H., 2015, PASA, 32, e019

Andersson N., Kokkotas K. D., Stergioulas N., 1999, ApJ, 516, 307

Andreoni I., Cooke J., 2019, in Griffin R. E., ed., Vol. 339, Southern Horizons in Time-Domain Astronomy.

pp 135–138 (arXiv:1802.01100), doi:10.1017/S1743921318002399

Ansoldi S., et al., 2018, ApJ, 863, L10

Arcavi I., et al., 2017, Nature, 551, 64

Arendt R. G., Dwek E., Bouchet P., John Danziger I., Gehrz R. D., Park S., Woodward C. E., 2020, ApJ,

890, 2

Arnett W. D., 1982, ApJ, 253, 785

Arnett W. D., Bahcall J. N., Kirshner R. P., Woosley S. E., 1989, ARA&A, 27, 629

Asmus D., et al., 2020, MNRAS, 494, 1784

Assef R. J., Stern D., Noirot G., Jun H. D., Cutri R. M., Eisenhardt P. R. M., 2018, ApJS, 234, 23

Astropy Collaboration et al., 2013, A&A, 558, A33

Astropy Collaboration et al., 2018, AJ, 156, 123

Auer P., 2003, J. Mach. Learn. Res., 3, 397–422

Avakyan A., Neumann M., Zainab A., Doroshenko V., Wilms J., Santangelo A., 2023, arXiv e-prints, p.

arXiv:2303.16168

Baade W., Zwicky F., 1934a, Proceedings of the National Academy of Science, 20, 254

Baade W., Zwicky F., 1934b, Proceedings of the National Academy of Science, 20, 259

Bailey S., Aragon C., Romano R., Thomas R. C., Weaver B. A., Wong D., 2007, ApJ, 665, 1246

Baluev R. V., 2008, MNRAS, 385, 1279

Bandyopadhyay R. M., Shahbaz T., Charles P. A., Naylor T., 1999, MNRAS, 306, 417

Barbary K., 2016, Journal of Open Source Software, 1, 58

Barbieri C., Salafia O. S., Perego A., Colpi M., Ghirlanda G., 2019, A&A, 625, A152

Barnes J., Zhu Y. L., Lund K. A., Sprouse T. M., Vassh N., McLaughlin G. C., Mumpower M. R., Surman

R., 2021, ApJ, 918, 44

206

http://dx.doi.org/10.48550/arXiv.2208.09000
https://ui.adsabs.harvard.edu/abs/2022arXiv220809000A
http://dx.doi.org/10.1088/1538-3873/acd04a
https://ui.adsabs.harvard.edu/abs/2023PASP..135e5001A
http://dx.doi.org/10.1086/305984
https://ui.adsabs.harvard.edu/abs/1998ApJ...503..325A
http://dx.doi.org/10.1086/309484
https://ui.adsabs.harvard.edu/abs/2000ApJ...541..734A
http://dx.doi.org/10.1088/2041-8205/735/1/L5
https://ui.adsabs.harvard.edu/abs/2011ApJ...735L...5A
http://dx.doi.org/10.3847/2041-8213/aad637
https://ui.adsabs.harvard.edu/abs/2018ApJ...863L..18A
http://dx.doi.org/10.1007/s00159-010-0033-1
https://ui.adsabs.harvard.edu/abs/2010A&ARv..18..471A
http://dx.doi.org/10.1017/pasa.2015.19
https://ui.adsabs.harvard.edu/abs/2015PASA...32...19A
http://dx.doi.org/10.1086/307082
https://ui.adsabs.harvard.edu/abs/1999ApJ...516..307A
http://arxiv.org/abs/1802.01100
http://dx.doi.org/10.1017/S1743921318002399
http://dx.doi.org/10.3847/2041-8213/aad083
https://ui.adsabs.harvard.edu/abs/2018ApJ...863L..10A
http://dx.doi.org/10.1038/nature24291
https://ui.adsabs.harvard.edu/abs/2017Natur.551...64A
http://dx.doi.org/10.3847/1538-4357/ab660f
https://ui.adsabs.harvard.edu/abs/2020ApJ...890....2A
http://dx.doi.org/10.1086/159681
https://ui.adsabs.harvard.edu/abs/1982ApJ...253..785A
http://dx.doi.org/10.1146/annurev.aa.27.090189.003213
https://ui.adsabs.harvard.edu/abs/1989ARA&A..27..629A
http://dx.doi.org/10.1093/mnras/staa766
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.1784A
http://dx.doi.org/10.3847/1538-4365/aaa00a
https://ui.adsabs.harvard.edu/abs/2018ApJS..234...23A
http://dx.doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A
http://dx.doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A
http://dx.doi.org/10.48550/arXiv.2303.16168
https://ui.adsabs.harvard.edu/abs/2023arXiv230316168A
https://ui.adsabs.harvard.edu/abs/2023arXiv230316168A
http://dx.doi.org/10.1073/pnas.20.5.254
https://ui.adsabs.harvard.edu/abs/1934PNAS...20..254B
http://dx.doi.org/10.1073/pnas.20.5.259
https://ui.adsabs.harvard.edu/abs/1934PNAS...20..259B
http://dx.doi.org/10.1086/519832
https://ui.adsabs.harvard.edu/abs/2007ApJ...665.1246B
http://dx.doi.org/10.1111/j.1365-2966.2008.12689.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.385.1279B
http://dx.doi.org/10.1046/j.1365-8711.1999.02547.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.306..417B
http://dx.doi.org/10.21105/joss.00058
http://dx.doi.org/10.1051/0004-6361/201935443
https://ui.adsabs.harvard.edu/abs/2019A&A...625A.152B
http://dx.doi.org/10.3847/1538-4357/ac0aec
https://ui.adsabs.harvard.edu/abs/2021ApJ...918...44B


Barthelmy S. D., et al., 1998, in Meegan C. A., Preece R. D., Koshut T. M., eds, American Institute

of Physics Conference Series Vol. 428, Gamma-Ray Bursts, 4th Hunstville Symposium. pp 99–103,

doi:10.1063/1.55426

Beasor E. R., Davies B., 2018, MNRAS, 475, 55

Beck R., Dobos L., Budavári T., Szalay A. S., Csabai I., 2016, MNRAS, 460, 1371

Beck R., Szapudi I., Flewelling H., Holmberg C., Magnier E., Chambers K. C., 2021, MNRAS, 500, 1633

Becker A., 2015, HOTPANTS: High Order Transform of PSF ANd Template Subtraction (ascl:1504.004)

Becker A. C., Homrighausen D., Connolly A. J., Genovese C. R., Owen R., Bickerton S. J., Lupton R. H.,

2012, MNRAS, 425, 1341

Bellm E. C., et al., 2019, PASP, 131, 018002

Ben-Ami S., et al., 2022, in den Herder J.-W. A., Nikzad S., Nakazawa K., eds, Society of Photo-Optical In-

strumentation Engineers (SPIE) Conference Series Vol. 12181, Space Telescopes and Instrumentation

2022: Ultraviolet to Gamma Ray. p. 1218105 (arXiv:2208.00159), doi:10.1117/12.2629850

Ben-Ami S., et al., 2023, arXiv e-prints, p. arXiv:2304.02719

Bergstra J., Bengio Y., 2012, J. Mach. Learn. Res., 13, 281–305

Bernstein G., Huterer D., 2010, MNRAS, 401, 1399

Bersten M. C., et al., 2018, Nature, 554, 497

Berthier J., Vachier F., Thuillot W., Fernique P., Ochsenbein F., Genova F., Lainey V., Arlot J. E., 2006,

SkyBoT, a new VO service to identify Solar System objects. , p. 367

Berthier J., Carry B., Vachier F., Eggl S., Santerne A., 2016, MNRAS, 458, 3394

Bertin E., Arnouts S., 1996, A&AS, 117, 393

Betancourt M., 2016, arXiv e-prints, p. arXiv:1604.00695

Betancourt M., 2017, arXiv e-prints, p. arXiv:1701.02434

Bietenholz M. F., Bartel N., Argo M., Dua R., Ryder S., Soderberg A., 2021, ApJ, 908, 75

Bildsten L., 1998, ApJ, 501, L89

Bilicki M., et al., 2016, ApJS, 225, 5

Bingham E., et al., 2019, J. Mach. Learn. Res., 20, 28:1

Bionta R. M., et al., 1987, Phys. Rev. Lett., 58, 1494

Bloemen S., et al., 2016, in Hall H. J., Gilmozzi R., Marshall H. K., eds, Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series Vol. 9906, Ground-based and Airborne Telescopes VI.

p. 990664, doi:10.1117/12.2232522

Blondin S., Tonry J. L., 2007, ApJ, 666, 1024

Bloom J. S., Kulkarni S. R., Djorgovski S. G., 2002, AJ, 123, 1111

Bloom J. S., et al., 2012, PASP, 124, 1175

Blundell C., Cornebise J., Kavukcuoglu K., Wierstra D., 2015, arXiv e-prints, p. arXiv:1505.05424

Bonanos A. Z., Boumis P., 2016, A&A, 585, A19

Borisov G., et al., 2018, MNRAS, 480, L131

207

http://dx.doi.org/10.1063/1.55426
http://dx.doi.org/10.1093/mnras/stx3174
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475...55B
http://dx.doi.org/10.1093/mnras/stw1009
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.1371B
http://dx.doi.org/10.1093/mnras/staa2587
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.1633B
http://dx.doi.org/10.1111/j.1365-2966.2012.21542.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.1341B
http://dx.doi.org/10.1088/1538-3873/aaecbe
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8002B
http://arxiv.org/abs/2208.00159
http://dx.doi.org/10.1117/12.2629850
http://dx.doi.org/10.48550/arXiv.2304.02719
https://ui.adsabs.harvard.edu/abs/2023arXiv230402719B
http://dx.doi.org/10.1111/j.1365-2966.2009.15748.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401.1399B
http://dx.doi.org/10.1038/nature25151
https://ui.adsabs.harvard.edu/abs/2018Natur.554..497B
http://dx.doi.org/10.1093/mnras/stw492
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.3394B
http://dx.doi.org/10.1051/aas:1996164
https://ui.adsabs.harvard.edu/abs/1996A&AS..117..393B
https://ui.adsabs.harvard.edu/abs/2016arXiv160400695B
https://ui.adsabs.harvard.edu/abs/2017arXiv170102434B
http://dx.doi.org/10.3847/1538-4357/abccd9
https://ui.adsabs.harvard.edu/abs/2021ApJ...908...75B
http://dx.doi.org/10.1086/311440
https://ui.adsabs.harvard.edu/abs/1998ApJ...501L..89B
http://dx.doi.org/10.3847/0067-0049/225/1/5
https://ui.adsabs.harvard.edu/abs/2016ApJS..225....5B
http://dx.doi.org/10.1103/PhysRevLett.58.1494
https://ui.adsabs.harvard.edu/abs/1987PhRvL..58.1494B
http://dx.doi.org/10.1117/12.2232522
http://dx.doi.org/10.1086/520494
https://ui.adsabs.harvard.edu/abs/2007ApJ...666.1024B
http://dx.doi.org/10.1086/338893
https://ui.adsabs.harvard.edu/abs/2002AJ....123.1111B
http://dx.doi.org/10.1086/668468
https://ui.adsabs.harvard.edu/abs/2012PASP..124.1175B
https://ui.adsabs.harvard.edu/abs/2015arXiv150505424B
http://dx.doi.org/10.1051/0004-6361/201425412
https://ui.adsabs.harvard.edu/abs/2016A&A...585A..19B
http://dx.doi.org/10.1093/mnrasl/sly140
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480L.131B


Borucki W. J., et al., 2010, Science, 327, 977

Börzsönyi S., Kossmann D., Stocker K., 2001, Proceedings 17th International Conference on Data Engi-

neering, pp 421–430

Boucaud A., Bocchio M., Abergel A., Orieux F., Dole H., Hadj-Youcef M. A., 2016, A&A, 596, A63

Bradbury J., et al., 2018, JAX: composable transformations of Python+NumPy programs, http://github.

com/google/jax

Bradshaw C. F., Fomalont E. B., Geldzahler B. J., 1999, ApJ, 512, L121

Bramich D. M., 2008, MNRAS, 386, L77

Bramich D. M., et al., 2013, MNRAS, 428, 2275

Bramich D. M., Horne K., Alsubai K. A., Bachelet E., Mislis D., Parley N., 2016, MNRAS, 457, 542

Brauer K., Vrtilek S. D., Peris C., McCollough M., 2018, MNRAS, 478, 4894

Brault J. W., White O. R., 1971, A&A, 13, 169

Brazier K. T. S., et al., 1990, A&A, 232, 383

Breiman L., 2001, Machine learning, 45, 5

Breiman L., Friedman J., Stone C., Olshen R., 1984, Classification and Regression Trees. Taylor & Francis

Breneman H. H., Stone E. C., 1985, ApJ, 299, L57

Brink H., Richards J. W., Poznanski D., Bloom J. S., Rice J., Negahban S., Wainwright M., 2013, MNRAS,

435, 1047

Brinkworth C. S., Marsh T. R., Dhillon V. S., Knigge C., 2006, MNRAS, 365, 287

Brout D., et al., 2019, ApJ, 874, 150

Brown M. J. I., et al., 2014, ApJS, 212, 18

Bruch R. J., et al., 2022, arXiv e-prints, p. arXiv:2212.03313

Buckley D. A. H., Swart G. P., Meiring J. G., 2006, in Stepp L. M., ed., Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series Vol. 6267, Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series. p. 62670Z, doi:10.1117/12.673750

Buikema A., et al., 2020, Phys. Rev. D, 102, 062003

Bulla M., 2019, MNRAS, 489, 5037

Bulla M., 2023, MNRAS, 520, 2558

Burrows A., Lattimer J. M., 1987, ApJ, 318, L63

Cabrera-Vives G., Reyes I., Förster F., Estévez P. A., Maureira J.-C., 2017, ApJ, 836, 97

Cai Y. Z., et al., 2021, A&A, 654, A157

Cai Y. Z., et al., 2022, A&A, 667, A4

Carrasco-Davis R., et al., 2020, arXiv e-prints, p. arXiv:2008.03309

Carrasco Kind M., Brunner R. J., 2013, MNRAS, 432, 1483

Casares J., Steeghs D., Hynes R. I., Charles P. A., O’Brien K., 2003, ApJ, 590, 1041

Cerruti M., Zech A., Boisson C., Emery G., Inoue S., Lenain J. P., 2019, MNRAS, 483, L12

208

http://dx.doi.org/10.1126/science.1185402
https://ui.adsabs.harvard.edu/abs/2010Sci...327..977B
http://dx.doi.org/10.1051/0004-6361/201629080
https://ui.adsabs.harvard.edu/abs/2016A&A...596A..63B
http://github.com/google/jax
http://github.com/google/jax
http://dx.doi.org/10.1086/311889
https://ui.adsabs.harvard.edu/abs/1999ApJ...512L.121B
http://dx.doi.org/10.1111/j.1745-3933.2008.00464.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.386L..77B
http://dx.doi.org/10.1093/mnras/sts184
https://ui.adsabs.harvard.edu/abs/2013MNRAS.428.2275B
http://dx.doi.org/10.1093/mnras/stv2910
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457..542B
http://dx.doi.org/10.1093/mnras/sty1429
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.4894B
https://ui.adsabs.harvard.edu/abs/1971A&A....13..169B
https://ui.adsabs.harvard.edu/abs/1990A&A...232..383B
http://dx.doi.org/10.1086/184580
https://ui.adsabs.harvard.edu/abs/1985ApJ...299L..57B
http://dx.doi.org/10.1093/mnras/stt1306
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.1047B
http://dx.doi.org/10.1111/j.1365-2966.2005.09718.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.365..287B
http://dx.doi.org/10.3847/1538-4357/ab08a0
https://ui.adsabs.harvard.edu/abs/2019ApJ...874..150B
http://dx.doi.org/10.1088/0067-0049/212/2/18
https://ui.adsabs.harvard.edu/abs/2014ApJS..212...18B
http://dx.doi.org/10.48550/arXiv.2212.03313
https://ui.adsabs.harvard.edu/abs/2022arXiv221203313B
http://dx.doi.org/10.1117/12.673750
http://dx.doi.org/10.1103/PhysRevD.102.062003
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102f2003B
http://dx.doi.org/10.1093/mnras/stz2495
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.5037B
http://dx.doi.org/10.1093/mnras/stad232
https://ui.adsabs.harvard.edu/abs/2023MNRAS.520.2558B
http://dx.doi.org/10.1086/184938
https://ui.adsabs.harvard.edu/abs/1987ApJ...318L..63B
http://dx.doi.org/10.3847/1538-4357/836/1/97
https://ui.adsabs.harvard.edu/abs/2017ApJ...836...97C
http://dx.doi.org/10.1051/0004-6361/202141078
https://ui.adsabs.harvard.edu/abs/2021A&A...654A.157C
http://dx.doi.org/10.1051/0004-6361/202244393
https://ui.adsabs.harvard.edu/abs/2022A&A...667A...4C
https://ui.adsabs.harvard.edu/abs/2020arXiv200803309C
http://dx.doi.org/10.1093/mnras/stt574
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432.1483C
http://dx.doi.org/10.1086/375055
https://ui.adsabs.harvard.edu/abs/2003ApJ...590.1041C
http://dx.doi.org/10.1093/mnrasl/sly210
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483L..12C


Chakrabarty D., Morgan E. H., Muno M. P., Galloway D. K., Wijnands R., van der Klis M., Markwardt C. B.,

2003, Nature, 424, 42

Chambers K. C., et al., 2016a, arXiv e-prints, p. arXiv:1612.05560

Chambers K. C., et al., 2016b, arXiv e-prints, p. arXiv:1612.05560

Charbonneau D., Brown T. M., Latham D. W., Mayor M., 2000, ApJ, 529, L45

Chase E. A., et al., 2022, ApJ, 927, 163

Chattopadhyay S., Maitra R., 2017, MNRAS, 469, 3374

Chen X., Wang S., Deng L., de Grijs R., Yang M., Tian H., 2020, ApJS, 249, 18

Cheng T.-Y., et al., 2020, MNRAS, 493, 4209

Cherepashchuk A. M., Khruzina T. S., Bogomazov A. I., 2021, MNRAS, 508, 1389

Chetlur S., Woolley C., Vandermersch P., Cohen J., Tran J., Catanzaro B., Shelhamer E., 2014, arXiv

e-prints, p. arXiv:1410.0759

Chevalier R. A., 1982, ApJ, 258, 790

Chevalier R. A., Dwarkadas V. V., 1995, ApJ, 452, L45

Chevalier R. A., Irwin C. M., 2011, ApJ, 729, L6

Chodil G., Jopson R. C., Mark H., Seward F. D., Swift C. D., 1965, Phys. Rev. Lett., 15, 605

Chollet F., et al., 2015, Keras, https://keras.io

Chomiuk L., et al., 2016, ApJ, 821, 119

Christy C. T., et al., 2023, MNRAS, 519, 5271

Chugai N. N., et al., 2004, MNRAS, 352, 1213

Ciardullo R., Tamblyn P., Phillips A. C., 1990, PASP, 102, 1113
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Ivezić Ž., et al., 2019, ApJ, 873, 111

213

http://dx.doi.org/10.48550/arXiv.astro-ph/9705097
https://ui.adsabs.harvard.edu/abs/1997A&A...327..224H
http://dx.doi.org/10.1086/375341
https://ui.adsabs.harvard.edu/abs/2003ApJ...591..288H
http://dx.doi.org/10.3847/1538-3881/aae47f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..241H
http://dx.doi.org/10.1126/science.1123430
https://ui.adsabs.harvard.edu/abs/2006Sci...311.1901H
https://ui.adsabs.harvard.edu/abs/2006Sci...311.1901H
http://dx.doi.org/10.1002/asna.200610626
https://ui.adsabs.harvard.edu/abs/2006AN....327..751H
http://dx.doi.org/10.3847/PSJ/abe3fd
https://ui.adsabs.harvard.edu/abs/2022PSJ.....3...91H
http://dx.doi.org/10.1103/PhysRevLett.58.1490
https://ui.adsabs.harvard.edu/abs/1987PhRvL..58.1490H
http://dx.doi.org/10.1093/mnras/stab1114
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.3561H
http://dx.doi.org/10.3847/2041-8213/aa9110
https://ui.adsabs.harvard.edu/abs/2017ApJ...848L..31H
http://dx.doi.org/10.48550/arXiv.2105.08811
https://ui.adsabs.harvard.edu/abs/2021arXiv210508811H
https://ui.adsabs.harvard.edu/abs/2022TNSAN.267....1H
https://ui.adsabs.harvard.edu/abs/2022TNSAN.267....1H
http://dx.doi.org/10.1093/mnras/stx2351
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.1108H
https://ui.adsabs.harvard.edu/abs/2011arXiv1111.4246H
http://dx.doi.org/10.1093/mnras/sty1690
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480..800H
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://ui.adsabs.harvard.edu/abs/2021arXiv210909743H
https://ui.adsabs.harvard.edu/abs/2021arXiv210909743H
https://ui.adsabs.harvard.edu/abs/2011arXiv1112.5745H
http://dx.doi.org/10.3847/1538-4357/ac7394
https://ui.adsabs.harvard.edu/abs/2022ApJ...936..157H
http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.1086/181708
https://ui.adsabs.harvard.edu/abs/1975ApJ...195L..51H
http://dx.doi.org/10.1051/0004-6361/202346285
https://ui.adsabs.harvard.edu/abs/2023A&A...673A.114H
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/mnras/stw3190
https://ui.adsabs.harvard.edu/abs/2017MNRAS.466.2364H
http://dx.doi.org/10.1093/mnras/stw854
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459.3596H
http://dx.doi.org/10.1126/science.aat2890
https://ui.adsabs.harvard.edu/abs/2018Sci...361..147I
http://dx.doi.org/10.1126/science.aat1378
https://ui.adsabs.harvard.edu/abs/2018Sci...361.1378I
http://dx.doi.org/10.1126/science.abg3395
https://ui.adsabs.harvard.edu/abs/2022Sci...378..538I
http://dx.doi.org/10.1051/0004-6361/202037709
https://ui.adsabs.harvard.edu/abs/2021A&A...650A.195I
http://dx.doi.org/10.3847/2041-8213/ac1120
https://ui.adsabs.harvard.edu/abs/2021ApJ...916L..13I
https://ui.adsabs.harvard.edu/abs/2023TNSTR1158....1I
http://dx.doi.org/10.3847/1538-4357/ab042c
https://ui.adsabs.harvard.edu/abs/2019ApJ...873..111I


Jamieson K., Talwalkar A., 2015, arXiv e-prints, p. arXiv:1502.07943

Jasche J., Kitaura F. S., 2010, MNRAS, 407, 29

Jeffery C. S., Dhillon V. S., Marsh T. R., Ramachandran B., 2004, MNRAS, 352, 699

Jerkstrand A., Fransson C., Kozma C., 2011, A&A, 530, A45

Jones D. O., et al., 2021, ApJ, 908, 143

Kalogera V., et al., 2021, arXiv e-prints, p. arXiv:2111.06990

Kasliwal M. M., et al., 2012, ApJ, 755, 161

Kasliwal M. M., et al., 2017, ApJ, 839, 88

Kastner S. O., Bhatia A. K., 1996, MNRAS, 279, 1137

Kawaguchi K., Kyutoku K., Shibata M., Tanaka M., 2016, ApJ, 825, 52

Kawaguchi K., Shibata M., Tanaka M., 2020, ApJ, 889, 171

Keivani A., et al., 2018, ApJ, 864, 84

Keller S. C., et al., 2007, PASA, 24, 1

Kendall A., Gal Y., 2017, arXiv e-prints, p. arXiv:1703.04977

Khazov D., et al., 2016, ApJ, 818, 3

Kiewe M., et al., 2012, ApJ, 744, 10

Killestein T. L., et al., 2021, MNRAS, 503, 4838

Killestein T. L., Mould M., Steeghs D., Casares J., Galloway D. K., 2023, MNRAS,

Kimura S. S., Murase K., Bartos I., Ioka K., Heng I. S., Mészáros P., 2018, Phys. Rev. D, 98, 043020

King R. D., et al., 2009, Science, 324, 85

Kingma D. P., Ba J., 2014, arXiv e-prints, p. arXiv:1412.6980

Kirshner R. P., Kwan J., 1974, ApJ, 193, 27

Knuth K. H., 2006, arXiv e-prints, p. physics/0605197

Koposov S., Bartunov O., 2006, in Gabriel C., Arviset C., Ponz D., Enrique S., eds, Astronomical Society of

the Pacific Conference Series Vol. 351, Astronomical Data Analysis Software and Systems XV. p. 735

Kovács G., Bakos G., Noyes R. W., 2005, MNRAS, 356, 557

Kozłowski S., 2016, ApJ, 826, 118

Krizhevsky A., Sutskever I., Hinton G. E., 2017, Commun. ACM, 60, 84–90

Kulkarni S. R., 2005, arXiv e-prints, pp astro–ph/0510256

Kulkarni S. R., 2012, arXiv e-prints, p. arXiv:1202.2381

Kulkarni S. R., et al., 2007, Nature, 447, 458

Kulkarni S. R., Perley D. A., Miller A. A., 2018, ApJ, 860, 22

Kulkarni S. R., et al., 2021, arXiv e-prints, p. arXiv:2111.15608

Kunkel W., et al., 1987, IAU Circ., 4316, 1

Kunze S., Speith R., Hessman F. V., 2001, MNRAS, 322, 499

LIGO Scientific Collaboration et al., 2015, Classical and Quantum Gravity, 32, 074001

Lang D., Hogg D. W., Mierle K., Blanton M., Roweis S., 2010, AJ, 139, 1782

214

http://dx.doi.org/10.48550/arXiv.1502.07943
https://ui.adsabs.harvard.edu/abs/2015arXiv150207943J
http://dx.doi.org/10.1111/j.1365-2966.2010.16897.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.407...29J
http://dx.doi.org/10.1111/j.1365-2966.2004.07960.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.352..699J
http://dx.doi.org/10.1051/0004-6361/201015937
https://ui.adsabs.harvard.edu/abs/2011A&A...530A..45J
http://dx.doi.org/10.3847/1538-4357/abd7f5
https://ui.adsabs.harvard.edu/abs/2021ApJ...908..143J
https://ui.adsabs.harvard.edu/abs/2021arXiv211106990K
http://dx.doi.org/10.1088/0004-637X/755/2/161
https://ui.adsabs.harvard.edu/abs/2012ApJ...755..161K
http://dx.doi.org/10.3847/1538-4357/aa6978
https://ui.adsabs.harvard.edu/abs/2017ApJ...839...88K
http://dx.doi.org/10.1093/mnras/279.4.1137
https://ui.adsabs.harvard.edu/abs/1996MNRAS.279.1137K
http://dx.doi.org/10.3847/0004-637X/825/1/52
https://ui.adsabs.harvard.edu/abs/2016ApJ...825...52K
http://dx.doi.org/10.3847/1538-4357/ab61f6
https://ui.adsabs.harvard.edu/abs/2020ApJ...889..171K
http://dx.doi.org/10.3847/1538-4357/aad59a
https://ui.adsabs.harvard.edu/abs/2018ApJ...864...84K
http://dx.doi.org/10.1071/AS07001
https://ui.adsabs.harvard.edu/abs/2007PASA...24....1K
https://ui.adsabs.harvard.edu/abs/2017arXiv170304977K
http://dx.doi.org/10.3847/0004-637X/818/1/3
https://ui.adsabs.harvard.edu/abs/2016ApJ...818....3K
http://dx.doi.org/10.1088/0004-637X/744/1/10
https://ui.adsabs.harvard.edu/abs/2012ApJ...744...10K
http://dx.doi.org/10.1093/mnras/stab633
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503.4838K
http://dx.doi.org/10.1093/mnras/stad366
http://dx.doi.org/10.1103/PhysRevD.98.043020
https://ui.adsabs.harvard.edu/abs/2018PhRvD..98d3020K
http://dx.doi.org/10.1126/science.1165620
https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K
http://dx.doi.org/10.1086/153123
https://ui.adsabs.harvard.edu/abs/1974ApJ...193...27K
http://dx.doi.org/10.48550/arXiv.physics/0605197
https://ui.adsabs.harvard.edu/abs/2006physics...5197K
http://dx.doi.org/10.1111/j.1365-2966.2004.08479.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.356..557K
http://dx.doi.org/10.3847/0004-637X/826/2/118
https://ui.adsabs.harvard.edu/abs/2016ApJ...826..118K
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.48550/arXiv.astro-ph/0510256
https://ui.adsabs.harvard.edu/abs/2005astro.ph.10256K
https://ui.adsabs.harvard.edu/abs/2012arXiv1202.2381K
http://dx.doi.org/10.1038/nature05822
https://ui.adsabs.harvard.edu/abs/2007Natur.447..458K
http://dx.doi.org/10.3847/1538-4357/aabf85
https://ui.adsabs.harvard.edu/abs/2018ApJ...860...22K
http://dx.doi.org/10.48550/arXiv.2111.15608
https://ui.adsabs.harvard.edu/abs/2021arXiv211115608K
https://ui.adsabs.harvard.edu/abs/1987IAUC.4316....1K
http://dx.doi.org/10.1046/j.1365-8711.2001.04057.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.322..499K
http://dx.doi.org/10.1088/0264-9381/32/7/074001
https://ui.adsabs.harvard.edu/abs/2015CQGra..32g4001L
http://dx.doi.org/10.1088/0004-6256/139/5/1782
https://ui.adsabs.harvard.edu/abs/2010AJ....139.1782L


Larsson J., et al., 2023, ApJ, 949, L27

Lasky P. D., 2015, PASA, 32, e034

Law N. M., et al., 2009, PASP, 121, 1395

Law N. M., et al., 2022, PASP, 134, 035003

LeCun Y., Bengio Y., et al., 1995, The handbook of brain theory and neural networks, 3361, 1995

LeCun Y., Bengio Y., Hinton G., 2015, Nature, 521, 436

LeNail A., 2019, The Journal of Open Source Software, 4, 747

Leaci P., Prix R., 2015, Phys. Rev. D, 91, 102003

Leaman J., Li W., Chornock R., Filippenko A. V., 2011, MNRAS, 412, 1419

Leung S.-C., Blinnikov S., Nomoto K., Baklanov P., Sorokina E., Tolstov A., 2020, ApJ, 903, 66

Levenberg K., 1944, Quarterly of Applied Mathematics, 2, 164

Levine J. L., Garwin R. L., 1973, Phys. Rev. Lett., 31, 173
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