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Abstract

The characteristics and dynamics of exoplanets are broad and diverse. Detailed
analysis of the systems can shed light on the history of their formation and evolution. This
thesis presents the discovery and analysis of a range of exoplanets. The evaporating planet
WASP-12 b was studied to understand the evolution of its atmosphere. Further, the inves-
tigation of a new planet detection method through measuring the stellar activity index is
presented.

Three gas giant planets were detected by SuperWASP. The inflated Neptune WASP-
127 b is one of the least dense planets detected to date. It has a striking atmospheric scale
height of 2500 km, which provides an optimal target for atmospheric studies with the James
Webb Space Telescope. The hot Jupiter WASP-136 b was found to be in a re-inflation
phase as its host star is evolving, and the planet is predicted to have an age of 0.420 Gyr.
The detection of WASP-138 b around a slightly metal-poor host weakens the correlation
between formation of planets and the metallicity of stars. In addition to ground-based
discoveries, the super-Earth EPIC 206011496 b was detected with the K2 mission. The
mass of EPIC 206011496 b was determined with HARPS RV with a precision of 13%. The
bulk density of the planet implies an Earth-like composition which has a predominantly
rocky interior. EPIC 206011496 b lies at the lower limit of the photoevaporation gap, which
suggests its atmosphere may have been eroded away in the past.

The variability of the evaporating hot Jupiter WASP-12 b was investigated using
archival KECK/HIRES spectra. Enhanced absorption in the cores of both Ca ii H and K
and Na i D lines were detected throughout the planetary orbit, supporting the presence of a
circumstellar gas disc formed by the evaporated planet material. The mean column density
of Ca ii was measured as 6×1014 cm−2, which indicates an overall circumstellar gas density
of 5.83 × 10−14 g cm−3.

Inspired by the anomalously low activity index of a number of planet hosting stars,
a survey was conducted to test a new detection technique which measures the activity index
of stars in open clusters. An activity-age relation was determined for young mid-A to F
type stars. Although no planet hosting candidate was identified, a significant increase in the
sample size can ascertain the feasibility of this detection method.
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Chapter 1

Introduction

1.1 Exoplanets: The Story So Far...

Astronomers have wondered for many years whether there are planets beyond our Solar

System. Yet, technical challenge of detecting a low-mass, low-luminosity object in very

close proximity to a star have been the barrier in the race to hunt for exoplanets. The first

breakthrough came about in 1992 when Wolszczan and Frail (1992) confirmed the first de-

tection of exoplanets around the millisecond pulsar PSR1257 + 12 with radio pulsar timing.

A few years later, 51 Peg b (Mayor and Queloz, 1995) was discovered with the radial veloc-

ity (Doppler) method using high precision fibre-fed spectrograph ELODIE (Baranne et al.,

1996). 51 Peg b has a mass of 0.5 MJup and an orbital period of 4.2 days, and is the first

exoplanet known to orbit a main sequence star. What was surprising, of course, was the

period and mass of the object - a hot Jupiter. The detection of such an unusual exoplanetary

body had sparked great interest in astronomy, and by the end of the decade, a dozen exo-

planets were discovered. Most notably, the first transiting hot Jupiter HD 209458 b (Henry

et al., 2000; Charbonneau et al., 2000) was found, confirming the capability of the transit

technique (Borucki and Summers, 1984; Borucki et al., 1985) in exoplanet searches. HD

209458 b went on to become the first planet to have its atmosphere detected and charac-

terised with modern spectroscopic techniques (Charbonneau et al., 2002).

With the advancement of technologies and detection methods, much progress has

been made over the past two decades. Multiple detection techniques are well established for

efficient searches of planets: radial velocity measurements (Section 1.2.1), photometry and

transit observations (Section 1.2.2), microlensing (Section 1.2.3), astrometry (Section 1.2.4)

and direct imaging (Section 1.2.5). At the time of writing, 3706 validated exoplanets were

discovered (Figure 1.2). The radial velocity and transit detection methods are responsible

for majority of detections. Transit photometry makes use of orbital properties of a planet to
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Figure 1.1: Artist’s impression of 51 Peg b (left), the first hot Jupiter around a main se-
quence star (right). (Image credit: ESO/M. Kornmesser/Nick Risinger (skysurvey.org))

find periodic fractional changes in the flux of a star, and to determine the size of a planet.

Both space (e.g. Kepler; Borucki et al. 2010 and K2 missions; Howell et al. 2014) and

ground-based (e.g. HATNet; Bakos et al. 2002, SuperWASP; Pollacco et al. 2006, KELT;

Pepper et al. 2007, HATSouth; Bakos et al. 2013, NGTS; Wheatley et al. 2013) transit

surveys have provided a huge sample of exoplanets for statistical studies and detailed char-

acterisations. On the other hand, the radial velocity technique relies on the orbital reflex

motion of the star-planet pair to constrain the planetary mass. The precision of this method

depends heavily on the stability and resolution of spectrographs. From ELODIE (Baranne

et al., 1996), to CORALIE (Queloz et al., 2000; Pepe et al., 2002a), and HARPS (Queloz

et al., 2001b; Pepe et al., 2002b), the advances in instruments throughout the years have

improved precisions of measurements down to below 1 m s−1.

The radial velocity and transit observations are often made to compliment each other

in planet detections. Detailed analyses of these observations have revealed a diverse range

of exoplanets, many of which have characteristics that are unobserved in our Solar Sys-

tem. New theoretical challenges have emerged, and formation and evolution mechanisms

of different types of planet populations are yet to be understood.

Hot Jupiters are gas giants which orbit their host stars with periods of ≤ 10 days,

and orbital separations of ≤ 0.1AU (Wang et al., 2015). These Jupiter-mass planets can

2
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Figure 1.2: Cumulative detections of exoplanets in the past decades. (Source: NASA Exo-
planet Archive)
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range in radii from 0.775 RJ (WASP-59b; Hébrard et al. 2013) to 1.932 RJ (WASP-17b;

Anderson et al. 2010; Southworth et al. 2012). Many of these hot Jupiters were found to

have radii larger than predicted from standard coreless models (e.g. Fortney et al. 2007).

Several theories were proposed to explain the observed inflated radii. These include stellar

irradiation (Guillot et al., 1996), tidal heating (Bodenheimer et al., 2001, 2003), enhanced

atmospheric opacity (Burrows et al., 2007), and Ohmic heating (Batygin et al., 2011).

On the opposite end of the spectrum, super-Earths are planets with sizes between

the Earth and Neptune. From what we know from discoveries to date, they appear to be the

most abundant type of exoplanet in our galaxy. Statistical studies have shown that 13% of

main sequence GK stars host a super-Earth with orbital period < 50 days (Howard et al.,

2012). Theoretical predictions showed differing evolution mechanisms can lead to a tran-

sition region among super-Earths, which separates the two distinct families with differing

radii and compositions (e.g. Lopez et al. 2012; Lopez and Fortney 2013; Owen and Wu

2013). Planets with radii RP ≤ 1.6 R⊕ (e.g. Kepler-10 b; Batalha et al. 2011, LHS1140 b;

Dittmann et al. 2017) have higher bulk densities, and would possess a predominantly rocky

interior. Whereas planets with lower densities (e.g. GJ 1214 b; Charbonneau et al. 2009,

Kepler-11 system; Lissauer et al. 2011a) are more likely to bear solid cores and substantial

gaseous envelopes.

Meanwhile, there is also a number of short-period sub-Saturn and super-Neptune

mass planets such as WASP-39b (Mp = 0.28 MJ; Faedi et al. 2011), HAT-P-11b (Mp =

0.081 MJ; Bakos et al. 2010), and HAT-P-26b (Mp = 0.059 MJ; Hartman et al. 2011).

In the short-period planet population, there is a significant lack of detected planets with

sizes between Jupiter and the Earth, giving rise to the so-called ‘Neptune desert’ (Mazeh

et al., 2016). The presence of these intermediate planets are test beds for theories as to

differentiates the formation and evolution histories of planet populations.

With the expanding number of exoplanets, it appears more questions emerged than

are answered. However, future missions such as CHEOPS (Broeg et al., 2013), TESS

(Ricker et al., 2014), PLATO (Rauer et al., 2014), along with future generations of spectro-

graphs and near-infrared instruments, e.g. ESPRESSO (Pepe et al., 2014) and CARMENES

Quirrenbach et al. 2012, we can obtain exceptional precision in radial velocity and transit

measurements to aid our understanding in the present structures and dynamics of planets

beyond our Solar system.

1.2 Detection Methods

This section reviews the different ways of exoplanet detection: radial velocity, transit obser-

vations, microlensing, astrometry, and direct imaging. The methodology, dedicated surveys,
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notable discoveries and their detection parameter spaces are discussed.

1.2.1 Radial Velocity

The radial velocity (RV) detection technique first revealed the existence of planets around

sun-like stars beyond our Solar System (Mayor and Queloz, 1995). It relies on the mea-

surement of a star’s reflex motion. In the presence of a planetary companion, the star orbits

about the system’s barycentre due to the planet’s gravity. This results in a RV variation of

the star, i.e. the change in velocity of the star towards and away from the observer (Mayor

et al., 2014). Radial velocities can be measured using the Doppler shift of stellar absorption

lines. Lines are redshifted (resulting in positive RV signals) if the distance between the star

and the observer is increases. Meanwhile, lines are blueshifted (giving negative RV signals)

when the distance between the star and the observer is reduced.

For a planet of mass Mp in an orbit with semi-major axis, a, eccentricity, e, and a

period, P, the radial velocity signal of the star is (Wright and Howard, 2009; Perryman,

2014):

νr(t) = K[cos (ω + ν(t)) + e cosω] + γ + d(t − t0) (1.1)

where γ is the time-independent velocity offset, and d is the linear trend parameter which

accounts for the instrumental drift and/or contribution from a massive companion. The

argument of pericentre ω is the angular coordinate of the orbiting body’s pericentre relative

to the orbital plane and direction of motion. The true anomaly ν(t) measures the angle

between the pericentre and the current position of the body. K is the radial velocity semi-
amplitude, which is expressed as:

K =
(2πG

P
) 1

3
Mp sin i

(Ms + Mp)2/3(1 − e2)1/2 (1.2)

The orbital inclination is denoted by i, G is the Gravitational constant, Ms and Mp are the

masses of the star and planet, respectively. The semi-amplitude K is dominated by the term

Mp sin i, meaning the radial velocity method is more sensitive to massive planets.

The star’s motion about the barycentre can be measured using the Doppler shift of

stellar absorption lines. The shift in wavelength is:

∆λ =
λobs − λrest

λrest
(1.3)

In the Solar System, the RV semi-amplitude of the Sun due to Jupiter’s gravity is

12 m s−1 (Mayor et al., 2014). A precise measurement of the RV amplitude of the star can

give constraint on the minimum mass, Mp sin i, of the planet. A more massive planet will
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Figure 1.3: Radial velocity measurements of 51 Peg (phased at P = 4.5 d) show a semi-
amplitude of 0.059±0.003 ms−1 (from Mayor and Queloz (1995) reprinted with permission
of Nature Publishing Group).
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result in a larger RV variation. In a system where a 10 Jupiter-mass (MJ) planet orbits a

solar-mass star, the corresponding RV semi-amplitude is 1.0 km s−1 (Bouchy et al., 2009b).

A brown dwarf can have a mass as low as 30 MJ . Hence, a RV amplitude of larger than a

few km s−1 indicates the likelihood of a stellar companion instead of a planet.

Giant planets shift the velocities of the host star by tens of m s−1, therefore high

precision spectrographs are necessary to reveal the accurate masses of exoplanets. The use

of CORAVEL (Baranne et al., 1979) showed that Doppler motions of stars can be derived

using the cross-correlation method. This knowledge was applied for the development of

ELODIE (Baranne et al., 1996), a fibre-fed cross-dispersion spectrograph located on the

1.93 m telescope at the Observatoire de Haute-Provence (OHP). The instrument was able to

achieve a radial velocity precision of ∼ 15 m s−1, and 51 Peg b was soon discovered (Mayor

and Queloz, 1995).

The SOPHIE spectrograph (Bouchy et al., 2009a) has replaced ELODIE since 2006.

The spectrograph operates with a spectral resolution of 75, 000 and a coverage between 387

- 694 nm. It can derive RV measurements with a precision between 1 and 2 m s−1.

The CORALIE spectrograph (Queloz et al., 2000; Pepe et al., 2002a) was installed

at the 1.2 m Euler-Swiss Telescope at the ESO La Silla Observatory, Chile, following the

success of ELODIE. With a resolving power of 50, 000, the instrument can obtain RV mea-

surements with a precision of ∼few m s−1. SOPHIE and CORALIE spectrographs were

instrumental in the follow-up effort for exoplanet detection in the past decade. Coupled

with ground-based transiting surveys such as SuperWASP (to be discussed in detail in Sec-

tion 1.2.2), and NGTS, accurate mass estimates of Jupiter and sub-Saturn mass planets can

be achieved for detailed system characterisation.

The development of these spectrographs has demonstrated the need for a stable

spectrograph to obtain 1 m s−1 precision RV measurements to constrain masses of Neptune

and Earth mass planets. The HARPS (High Accuracy Radial velocity Planet Searcher)

spectrograph mounted on the 3.6 m Telescope at ESO La Silla Observatory (Mayor et al.,

2003) was designed for this specific purpose. The first HARPS discovery was the hot Jupiter

HD 330075 b with minimum mass of 0.62 MJ (Pepe et al., 2004), where measurements were

reported to have a root-mean-squared (rms) velocity of only 2 m s−1. Further success came

when HARPS reported the discovery of the super-Earth µ Ara b (Santos et al., 2004). The

star was reported to have a semi-amplitude of just 4.1 m s−1, and HARPS was capable of

measuring radial velocities with precision better than 1 m s−1. Early HARPS RV survey

have also shown that low-mass planets are common in multiplanet systems. HARPS-N

(Cosentino et al., 2012) on the 3.5 m Telescopio Nazionale Galileo (TNG) also provided

accurate mass measurements for many Kepler/K2 planetary candidates. The development

of next generation spectrographs such as ESPRESSO (Echelle SPectrograph for Rocky
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Exoplanets and Stable Spectroscopic Observations: Pepe et al. 2014), and near infra-red

spectrographs/spectropolarimeters (e.g. CARMENES: Quirrenbach et al. 2012, SPIRou:

Delfosse et al. 2013), will be able to search for low-mass rocky planets in the habitable

zones of quiet G - M dwarfs.

1.2.2 Transit Detection

The transit detection method remains the only direct route to determine planetary radius.

The STARE telescope produced the first full transit observation of exoplanet (Charbonneau

et al., 2000). From the two transits obtained, Charbonneau et al. were able to infer the

planetary radius (Rp = 1.27± 0.02 RJ), as well as the orbital period (P = 3.52 d) and orbital

separation (a = 0.0467 AU) of the system. Since then, the field of transit photometry

has expanded significantly. The cost and accessibility of the transit detection method is

relatively lower than for RV surveys. Many wide-field transit surveys have been established,

yielding many interesting exoplanets with sizes ranging from Jupiter radii down to super-

Earth radii.

Ground-based Surveys

Ground-based surveys provided a large number of candidates around stars that are suffi-

ciently bright to enable follow up RV measurements, where strong observational constraints

are obtained for theoretical studies.

Most transit detection surveys adopt the following sequence to identify candidate

planets: Detection surveys monitor tens of thousands of bright stars with V < 13 mag

over a long period of time. The photometric data obtained are then reduced with aperture

photometry using custom built pipelines. To correct for trends and systematic errors, the

lightcurves are fitted with trend-removing algorithms to decorrelate systematic errors (e.g.

SysRem: Tamuz et al. 2005, TFA: Kovács et al. 2005, EPD: Bakos et al. 2010). A box-

firring least squares algorithm (BLS: Kovács et al. 2002) is applied to estimate the transit

epoch, period, depth, and duration, such that periodic box-like signals can be identified.

After a series of rigorous elimination of false positives (e.g. eclipsing binaries and giants),

the best planetary candidates are subjected to follow up photometry and radial velocity

observations for further detailed analyses.

SuperWASP (Wide Angle Search for Planets; Pollacco et al. 2006) is one of the

most successful ground-based transit surveys. The WASP-North facility is located at the

Observatorio del Roque de los Muchachos in La Palma, Canary Islands, and the WASP-

South facility is located at the Sutherland Station of the South African Astronomical Ob-

servatory. Each telescope consists of an array of 8 Canon 200mm, f/1.8 telephoto lenses
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Figure 1.4: Phased-folded transit lightcurve of HD209458 b from Charbonneau et al.
(2000), reproduced with permission from The American Astronomical Society.
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coupled with e2v CCDs of 2048× 2048 pixels each. The cameras in each facility provide a

total field of view (FoV) of 8× 64 square degrees and a pixel scale of 13.7”. The telescopes

can survey millions of objects and achieve a photometric precision better than 4 mmag for

stars brighter than V ∼ 9.4 mag, and an accuracy of 1% for starts brighter than V ∼ 11.5

mag.

To date, over 150 exoplanet discoveries have been made with WASP, and a diverse

population of planetary systems has been revealed. The Saturn-mass planet WASP-17 b

(Anderson et al., 2010; Southworth et al., 2012) was found to be an inflated planet due to

tidal heating from the tidal circularisation of its eccentric orbit. The Rossiter-McLaughlin

effect was observed in the WASP-17 system, suggesting the planet is misaligned with a

spin orbit angle of ψ > 91.7◦, hence a retrograde orbit (Triaud et al., 2010). Another low-

density Saturn WASP-39 b was reported by Faedi et al. (2011) and a clear atmosphere was

detected on this inflated planet (Sing et al., 2016; Barstow et al., 2017). WASP-12b is one

of the hottest Jupiter known with an equilibrium temperature of 2516 K (Hebb et al., 2009).

An enhanced transit was detected in the Near-UV (Fossati et al., 2010b). Further spectral

analyses have shown complete absorption in the Mg II h & k and Ca II H & K line cores

(Haswell et al., 2012; Fossati et al., 2013), suggestive of an extended exosphere around the

planet WASP-12 b. The analysis of the time variability of the atmosphere of WASP-12 b

will be discussed in more detail in Chapter 5.

HAT/HATNet (Hungarian Automated Telescope project; Bakos et al. 2004) com-

prises of the HATNorth and the HATSouth network. There are six automated telescopes at

the HATNorth network, four of which are based in the Fred Lawrence Whipple Observatory

(FLWO), a further two at the Submillimeter Array of SAO in the Mauna Kea Observatory.

The HATSouth network is formed of six telescopes in the southern hemisphere. They are

located at the Las Campanas Observatory (LCO), Chile, the High Energy Spectroscopic

Survey (HESS) in Namibia, and the Siding Spring Observatory (SSO) in Australia.

Many interesting planets have been detected by HATNet. HAT-P-11b (Bakos et al.,

2010) was the first transiting Neptune discovered from ground-based surveys. Transmission

spectrum of HAT-P-11b revealed a cloud-free atmosphere on the planet and the presence

of water vapour in its atmosphere. The irradiated massive hot Jupiter HAT-P-7b (Hartman

et al., 2011) is a highly tilted planet with a retrograde orbit (Winn et al., 2009). The opti-

cal phase curve measurement of the system also found the planet’s day-side temperature as

2650 ± 100 K (Borucki et al., 2009).

Ground-based surveys continue to make groundbreaking discoveries. SuperWASP

and HATNet, along with KELT (Pepper et al., 2007), QES (Alsubai et al., 2013), NGTS
(Wheatley et al., 2018), and all-sky surveys such as MASCARA (Snellen et al., 2012),
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Evryscope (Law et al., 2015) and Fly’s Eye Camera (Pál et al., 2016) will be able to push

detection boundaries and search for smaller planets around brighter stars. These targets are

crucial for characterisation with the James Webb Space Telescope in the near future.

Space-based Surveys

While ground-based projects have provided bright targets for follow up characterisations,

the accuracies of transit lightcurves are limited by factors such as atmospheric extinction

and scintillation. The planet detection parameter space is restricted to those with sizes of

Jupiter or Neptune at best. Fortunately, the launch of space-based missions in the past

decade meant that high precision photometry can be obtained, enabling the detection of

sub-Neptune and Earth-sized planets.

The CoRoT satellite (Barge et al., 2008; Auvergne et al., 2009) commissioned be-

tween 2007 and 2012 was the first dedicated mission to search for transiting exoplanets in

space. The telescope observed over 60, 000 stars with a photometric precision of 7×10−4 at

V = 15.5 mag for a one hour integration. With this unprecedented precision, the first tran-

siting super-Earth was discovered by Léger et al. (2009). The transit lightcurve of CoRoT-7

b revealed a planet with a size 1.68 times larger than the Earth and an orbital period of

0.85 d. The mass of the planet, however, has been disputed over the years. Queloz et al.

(2009) determined the planet mass as 4.8 ± 0.8 M⊕ using follow up RV data from HARPS.

Fourier analysis of the HARPS data by Hatzes et al. (2010) argued that the RV signal of

CoRoT-7 b suggested the planet has a mass of 6.9 ± 1.4 M⊕. Further reassessment of the

RV data by Pont et al. (2011), Boisse et al. (2011b), Hatzes et al. (2011), and Ferraz-Mello

et al. (2011) showed a varied mass range of 1 - 8 M⊕. One valuable lesson learnt from this

system was the importance of understanding the role of stellar activity and radial velocity

jitter in the planetary system analysis. Accurate mass derivation is particularly important in

the determination of the interior structure of an Earth-like planet.

Following the launch of the CoRoT satellite, the Kepler mission was launched in

2009 (Borucki et al., 2010; Koch et al., 2010) with a primary goal to determine occurrence

rates, sizes and orbital separations of habitable Earth-sized planets. The telescope com-

prises of a 0.95 m aperture Schmidt telescope with an array of 42 1k × 2k CCDs, giving a

total FoV of 113 square degrees. The instrument can acquire transit lightcurves with a pre-

cision of 10 ppm per 6hours for V= 10 stars. The Kepler mission has thus far detected over

4000 transiting planet candidates, enabling statistical study on planet populations. Not only

did the Kepler studies revealed that most stars have planets, it also found that small planets

with radius RP < 4.0 R⊕ are by far the most common type of planets in the galaxy (e.g.

Borucki et al. 2011; Howard et al. 2012; Batalha et al. 2013; Dressing and Charbonneau

2013; Petigura et al. 2013; Fressin et al. 2013).
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The mission came to an end in 2013 when the second reaction wheel on the satellite

failed, and the extended survey K2 mission (Howell et al., 2014) was adopted to continue

with transiting exoplanet searches. K2 has the ability to obtain a photometric precision of

80 ppm at V = 12 mag in a 6-hour integration. So far, the mission has completed sixteen

observational campaigns, producing over 20, 000 lightcurves per campaign. At the time of

writing, K2 has identified hundreds of candidates (e.g. Vanderburg et al. 2016; Barros et al.

2016; Pope et al. 2016) and over 200 validated planets (e.g. Montet et al. 2015; Barros et al.

2015; Crossfield et al. 2016).

The discoveries made with Kepler/K2 showed a variety of bulk densities in Earth-

mass planets. For example, both Kepler-10 b (RP = 1.42 ± 0.03 R⊕, ρP = 8.8 ± 2.5 g cm−3;

Batalha et al. 2011) and K2-38 b (RP = 1.55 ± 0.02 R⊕, ρP = 17.5 ± 7.35 g cm−3; Sinukoff

et al. 2016) are planets with densities higher than the Earth and internal compositions which

resemble a rocky world. At the same time, there are planets which were found to possess

solid cores and massive gaseous envelopes (e.g. Kepler-11 system: RP = 1.97-4.52R⊕,

ρP = 0.5-3.1 g cm−3; Lissauer et al. 2011a, K2-18 b: RP = 2.28 ± 0.03 R⊕, ρP = 3.3 ± 1.2

g cm−3; Benneke et al. 2017; Cloutier et al. 2017).

Very soon, the next generation of space missions will be commissioned. The Tran-

siting Exoplanet Survey Satellite (TESS: Ricker et al. (2014)) was launched in April 2018.

TESS contains four wide-field optical 4k × 4k CCDs, each providing a 24 × 24 square de-

grees FoV. The mission will monitor 200, 000 bright stars (I ∼ 4 - 15) to obtain lightcurves

with a precision of ∼ 200 ppm per 1 hour for V= 10 stars. The Characterising Exoplanet

Satellite (CHEOPS; Broeg et al. 2013) is set to launch in December 2018. The mission will

provide precision photometry (precision of 20 ppm per 6 hours for bright stars of V = 9

mag) for transit follow up on bright targets. It will be able to provide radii estimates of small

planets with an accuracy of better than 10%. The PLAnetary Transits and Oscillations of

stars mission (PLATO: Rauer et al. (2014)) is a transit survey anticipated to launch in 2026.

The goal of the mission is to detect and characterise habitable zone planets. To fully char-

acterise a system, the planet’s mass and radius, and the stellar age must be derived with a

high accuracy. PLATO will target bright stars with V ≤ 11 mag to obtain high precision

lightcurves, where planetary radii with an accuracy of ∼ 2% can be achieved. Furthermore,

the lightcurves will be analysed with asteroseismology to constrain stellar ages with a pre-

cision of 10%. Bright targets also means that ground-based spectroscopic instruments can

make RV measurements with accuracies of 4 - 10% to achieve the end goal of finding an

Earth analogue.
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Figure 1.5: An almost edge-on view of a transit event (reproduced from Winn (2009) with
permission from International Astronomical Union). When a planetary object orbits around
a star, the planet will block part of the stellar flux when it passes between the observer and
the star. The flux will drop again at the secondary eclipse when the planet is occulted by
the star. Four parameters can be observed during a transit event: the mid-transit time tc, the
transit depth δ, the total transit duration T , and the ingress or egress duration τ.

Interpreting the Transit Lightcurve

A transit lightcurve can provide a wealth of information about an exoplanet system. Here,

the physical parameters that can be inferred from a lightcurve are summarised.

The transit lightcurve in Figure 1.5 shows four of the parameters which can be

measured directly from observations, namely, the mid-transit time tc, the depth δ, the total

duration T , and the ingress or egress duration τ (Winn, 2009).

If a planet with radius Rp orbits a star with radius Rs, the star-planet size ratio can

be measured approximately by the depth of the transit:

δ =
∆F
F

=
R2

P

R2
S

(1.4)

where F is the flux of the star and ∆F is the fraction of flux blocked by the planet. The

scaled stellar radius Rs/a is:
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Rs

a
=
π
√

Tτ
δ1/4P

(1 + e sinω√
1 − e2

)
(1.5)

where ω is the argument of pericentre, which can be obtained from RV measurements. The

mass Ms and radius Rs of a star can be estimated from spectral analysis. Using Kepler’s

third law, the semi-major axis, a, can be inferred:

a3

P2 =
G(Ms + Mp)

4π2 (1.6)

For a planet moving in a circular orbit, the orbital velocity is v = 2πa/P. The

impact parameter b is defined as the vertical distance between the centre of the stellar disc

and the centre of the planet:

b ≡
a
Rs

cos i = 1 −
√
δ

T
τ

(1.7)

where i is the orbital inclination. Furthermore, Kepler’s third law can be applied to deter-

mine the stellar mean density ρs:

ρs ≈
3P
π2G

( √δ
Tτ

)3/2[ 1 − e2

(1 + e sinω)2

]3/2 (1.8)

and the planet surface gravity gp is:

gp ≈
2πK

P

√
1 − e2

δ(Rs/a)2 sin i
(1.9)

Whether a transit can be detected depends on the geometry of the system. The

probability Ptran of detecting a transiting planet on a circular orbit is:

Ptran =
Rs + Rp

a
≈

Rs

a
(1.10)

Thus the transit method is highly biased towards systems with close-in orbits, which partly

explains the abundance of short period planets discovered via transit photometry.

Further details on transit lightcurve model fitting and characterisation of planetary

systems will be discussed in Chapter 2, 3, and 4.

1.2.3 Microlensing

Gravitational lensing is the effect when a massive object (the lens) bends the path of light

from a background source (Einstein, 1936). Under special circumstances, multiple distorted

images are formed milliarcseconds apart. Although lensing events are difficult to resolve,

the images would have a greater combined apparent brightness which would result in an
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observable magnification event. Microlensing survey began to take form when Paczynski

(1986) presented the possibility of detecting dark matter in the halo of our Galaxy. Later,

Mao and Paczynski (1991) showed that the microlensing technique may also be applied to

binaries and planetary companion. If a lensing star has a planetary companion which also

aligns with the primary lensing event along our line-of-sight, it would perturb the image and

produce a sharp spike in the microlensing lightcurve. Mao and Paczynski (1991) predicted

the probability of microlensing event by planetary systems to be 0.03, assuming the star-to-

planet mass ratio as 103.

Figure 1.6: Microlensing lightcurve of OGLE 2003-BLG-235/MOA 2003-BLG-53 b. The
blue open circles and red filled circles shows the OGLE and MOA measurements respec-
tively. The best-fit binary microlensing model is plotted as the black solid line, and the
single-lens model is plotted in cyan. (Figure reproduced from Bond et al. (2004) with per-
mission by The American Astronomical Society.)

Microlensing planet surveys launched in 1995, e.g. Udalski et al. (1994), but the
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first microlensing planet detection only came about in 2004 (Bond et al., 2004). Information

such as the mass ratio of the star planet system, mass of the primary lens (i.e. the star), and

the orbital separation of the pair can be derived. Figure 1.6 shows the discovery data from

OGLE (Optical Gravitational Lensing Experiment; Udalski (2003)) and MOA (Microlens-

ing Observations in Astrophysics; Bond et al. (2001)), a mass ratio of q = 0.0039 was

found, and OGLE 2003-BLG-235/MoA 2003-BLG-53 b was determined to have a mass of

1.5 MJ and an orbital separation of ∼ 3 AU.

Multi-planet systems are also detectable using the microlensing method. Gaudi

et al. (2008) discovered the planetary system OGLE- 2006-BLG-109L which consists of

two Jupiter and Saturn-like planets. The planets were determined to have masses of ∼

0.71 MJ and ∼ 0.27 MJ, respectively. Furthermore, these planets have orbital separations of

∼ 2.3 AU and ∼ 4.6 AU, which makes them comparable to planets within the Solar System.

Over 50 exoplanets have been detected by the microlensing method today. Although

the detection probability of this technique is relatively low as it is more sensitive to planets

near the Einstein ring radius of the lens, the microlensing method have weaker selection

biases compared to other detection methods. Microlensing discoveries have proved that the

method is sensitive to long period, low-mass planets orbiting beyond the snow line. It can

therefore probe regions of the mass-radius parameter space which are otherwise challenging

for transit and radial velocity methods. Many microlensing discoveries resemble planets in

our solar system. They can provide important constraints on the occurrence of solar system

analogues.

1.2.4 Astrometry

Bodies in a planetary system orbit around a common centre of mass (i.e. the barycentre of

the system). Similar to the radial velocity method, astrometry quantifies the gravitational

perturbation of the host star due to its companion by measuring the relative position of the

star (Perryman, 2014). The elliptical motion of the star has a semi-major axis as of

as =

(
Mp

Ms

)
a (1.11)

The observable astrometric signature in the astrometry method is therefore the an-

gular displacement α of the stellar orbit

α =

(
Mp

M∗

) ( a
1AU

) ( d
1pc

)−1

arcsec (1.12)

where d is the distance of the object from the observer. As seen in Equation 1.12, the ampli-

tude of the astrometric signature increases with the orbital separation, hence the astrometry

16



technique is more sensitive to long period systems. However, this method is severely lim-

ited by the accuracy of the positional measurement of a star. At a distance of 100 pc, a

Jupiter analogue would have a signature α = 50 µas, and an Earth analogue would have

α = 0.03 µas. The astrometry method thus requires a precision of sub-mas for planet detec-

tions.

Space astrometry is able to measure trigonometric parallaxes of objects. The Hip-

parcos mission provided measurements of positions, proper motions, and parallaxes of

120, 000 stars with a 1 mas accuracy between 1989 and 1993 (Perryman et al., 1997). The

Fine Guidance Sensor (Benedict et al., 1998) on the Hubble Space Telescope can measure

parallaxes at ∼ 1-2 mas precision. Gaia (Perryman et al., 2001) is the successor of the

Hipparcos mission. It surveys ∼ 1 billion stars to determine the positions of the Galactic

stellar populations. With an accuracy of ∼ 10 µas, it is expected to yield approximately

21, 000 exoplanets out to a distance of ∼ 500 pc, including low-mass planets with masses

of ∼ 10 M⊕ (Perryman et al., 2014), for a 5 year mission.

Radial velocity can only provide the Mp sin i estimate and give a minimum mass

limit of the planetary companion since the orbital inclination i is undefined. Astrometric

measurements, however, can determine the precise value of i. The combined analysis of the

two methods will place constraints on the companion mass, thus reveal the true mass of the

planet. Using the true planet mass and a well constraint planet radius, one can determine

the planet bulk density precisely, hence infer the interior composition of the planet. In

particular, the ice-mass fraction of a planetary core allows us to determine if a planet was

formed beyond the snowline or assembled locally (Jin and Mordasini, 2018), the formation

and evolution history of a planetary systems can then be inferred (e.g. GJ 317; Anglada-

Escudé et al. (2012)).

1.2.5 Direct Imaging

Most of the exoplanets known to date were discovered by making measurements of systems

indirectly. Only a handful of objects were confirmed with direct imaging. The main ob-

stacles encountered in this method are the extreme star-to-planet contrast ratio, the angular

separation of the planet, and the quasi-static speckle noise.

A planet with radius Rp and orbital separation a can reflect a fraction (Rp/2a)2 of

the star’s luminosity at wavelength λ. The observed planet-to-star flux ratio is therefore

fp(α, λ)
fs(λ)

= p(λ)
(
Rp

a

)2

g(α) (1.13)

where the geometric albedo is p(λ), and g(α) is a phase-dependent function (Collier Cameron

et al., 1999). If a Jupiter analogue around a Sun-like star is observed at a distance of 10 pc

17



from the Earth, the contrast ratio fp/ fs would be ∼ 10−9, and the system would have an

angular separation of 0.5 arcsec. To image the planetary companion, the contrast ratio and

the angular resolution must be significantly improved. This can be done by making ob-

servations in the infrared to limit stellar emission while increasing thermal emission from

the planet. Again for a Jupiter analogue around a Sun-like star, this contrast ratio can be

improved to ∼ 10−4. Another way to increase the contrast ratio is to apply a coronagraph

to the telescope which masks the flux of the on-axis star, the flux and structure from the

off-axis companion would remain (Lyot, 1939). Meanwhile, the angular resolution of the

observations can be enhanced through adaptive optics (AO) on ground-based instruments

or by making observations from space.

The contrast ratio detection limit in direct imaging is ultimately determined by

speckle noise. Speckle noise can arise due to instrumental flaws and atmospheric turbu-

lence, which can produce interference patterns and hide planetary signals in images (Racine

et al., 1999). A number of post-processing techniques have been developed to suppress

speckle noise. The most widely adapted technique is Angular Difference Imaging (ADI:

Marois et al. 2006), where the FoV is allowed to rotate around the star while the telescope

rotator is fixed. The speckle pattern correlated to the instrument is then subtracted from

images to remove the noise.

Many of the present day direct imaging surveys are ground-based. To optimise

the sensitivity, a Lyot coronagraph is combined with an AO system for wavefront correc-

tion (Malbet, 1996; Sivaramakrishnan et al., 2001), e.g. VLT/NACO (Rousset et al., 2000;

Chauvin et al., 2015), Keck-AO/NIRC21, Gemini South/NICI (Chun et al., 2008; Liu et al.,

2010), and Subaru-CIAO (Tamura et al., 2001; Murakawa et al., 2004). The first directly

imaged exoplanet was discovered using this combined technique. The 5 MJ planet 2M1207

b was detected by VLT/NACO (Chauvin et al., 2004). It was found to orbit a brown dwarf

with a separation of ∼ 55 AU. High contrast AO observations with Keck and Gemini have

confirmed a multiplanetary system around the A5V star HR8799 (Marois et al., 2008). The

planets HR8799 b, HR8799 c, and HR8799 d were determined to have masses of 7 MJ ,

10 MJ , and 10 MJ , respectively, each with orbital separations of 68 AU, 38 AU, and 24 AU,

from the host star. A forth planet HR8799 e orbiting interior to the other at ∼ 14.5 AU was

reported by Marois et al. (2010) (see Figure 1.7). Another remarkable discovery of a gas

giant planet was imaged in the disk of β Pictoris (Lagrange et al., 2009, 2010). β Pictoris b

is at a separation of ∼ 8 AU from the star, and was found to be responsible for clearing the

gap inside the disc.

With the development of extreme AO systems such as VLT/SPHERE (Spectro-

Polarimetric High-contrast Exoplanet Research: Beuzit et al. (2008)) and the Gemini Planet

1http://www2.keck.hawaii.edu/inst/nirc2/
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Figure 1.7: Keck-AO/NIRC2 discovery image of HR8799 e (Marois et al., 2010), repro-
duced with permission from Macmillan Publishers Limited.
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Imager (GPI: Macintosh et al. (2014)), it is possible to extend planet searches down to an an-

gular scale of ∼ 0.1 arcsec. These instruments are coupled with integral field spectrograph,

such that low resolution (R ∼ 30 spectroscopy is made available to study exoplanet atmo-

spheres. The first low-resolution near-infrared spectra of β Pictoris b obtained from GPI

have shown water absorption features in the planet atmosphere (Bonnefoy et al., 2014), a

prominent characteristic for an early L dwarf.

The launch of the James Webb Space Telescope (JWST; Gardner et al. 2006) is im-

minent. The coronagraphs (MIRI; Boccaletti et al. 2015, TFI; Doyon et al. 2010) on board

the telescope will be able to reach a contrast ratio of 104-105 at 0.5-1.0 arcsec separations.

The detection of super-Earths around M dwarfs would be possible (Deming et al., 2009).

WFIRST-AFTA (Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope

Assets) will contain a coronograph instrument targeted for the imaging and spectroscopy of

exoplanets in the solar neighbourhood (Noecker et al., 2016).

1.3 Hot Jupiter and Super-Earth Planets

New classes of planets have been discovered since the first detection of exoplanets. The

detailed analyses of exoplanets have shown systems with properties that are different from

our own Solar system. In this section, properties and characteristics of hot Jupiters and

super-Earths are presented. Some interesting questions and key findings are discussed.

1.3.1 Hot Jupiters

Hot Jupiters are Jupiters which orbit close to their host stars with orbital separations of

a < 0.1 AU, periods P ≤ 10 days (Udry and Santos, 2007). This type of planet receives

strong stellar irradiation, leading to a high equilibrium temperature. Hot Jupiters are the

easiest exoplanet to find via transits and RV because they are more massive, hence they are

more sensitive to the RV detection method. Indeed, the first exoplanet discovered around

a solar-type star is the hot Jupiter 51 Peg b. This astonishing find challenged formation

theories at the time since gas giants were thought to be forms at wider orbits of several

AUs.

How Were Hot Jupiters Formed?

Multiple formation mechanisms were proposed to explain the short orbital periods of hot

Jupiters. Hot Jupiters could have migrated via gas disc migration or through high-eccentricity
migration. In gas disc migration, planets exchange angular momentum with the gas disc,

resulting in the shrinkage of the planetary orbit (e.g. Goldreich and Tremaine 1980; Ida and
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Lin 2008). Another type of migration is the high-eccentricity migration. The eccentricity

of a hot Jupiter on a wide orbit is first excited by some physical processes. This could

be planet-planet scattering (Rasio and Ford, 1996; Weidenschilling and Marzari, 1996):

In a system with multiple protoplanets, one of the planets could become sufficiently large

and perturb its smaller rival counterparts. These smaller planets are eventually expelled,

while the largest planet would gain eccentricity in the process; or Secular perturbation:

The Kozai-Lidov mechanism (Kozai, 1962; Lidov, 1962) can drive the angular momentum

exchange between the hot Jupiter and an eccentric outer planet body or a star, resulting in

the excitation of the hot Jupiter’s eccentricity. When the orbit of a hot Jupiter becomes

eccentric, the planet would lose orbital energy through tidal dissipation (i.e. tides raised on

the planet by the star), the planet orbit is consequently circularised. Although the forma-

tion mechanisms of hot Jupiters is still unclear, a more complete study of the hot Jupiter

population may shed some light on their origins.

Hot Jupiter Occurrence and Some Distinct Characteristics

The radial velocity survey by Mayor et al. (2011) reported an occurrence of 0.89% for hot

Jupiters around main-sequence stars. The California Planet Survey (Wright et al., 2012)

found a rate of 1.2%, while Batalha et al. (2013) estimated a rate of 0.5% for hot Jupiters

in the Kepler sample. These surveys showed that hot Jupiters are intrinsically rare, despite

being the easiest to find. At the same time, hot Jupiter systems are one of best characterised

systems. Studying correlations between the variety of observed system properties and the

planet population could allow one to distinguish the origins of exoplanets.

The hot Jupiter occurrence rate is highly dependent on the host star metallicity

(Gonzalez, 1997; Santos et al., 2001; Fischer and Valenti, 2005). Metal-rich stars are more

likely to host a gas giant planet. Fischer and Valenti (2005) found that 25% of stars with

[Fe/H] > +0.3 dex have giant planets, whereas only < 3% of metal-poor stars have gaseous

planets. Johnson et al. (2010) showed that this rate is further reduced among less massive

M dwarfs. The host star metallicity might link to the amount of disc material available for

giant planet formation. The more disc mass, the higher the solid surface density for the

build up of planets via core accretion (Johnson et al., 2010). Meanwhile, a more massive

disc could also mean that more planets can be formed at multiple locations, triggering high-

eccentricity migration via secular perturbation.

Hot Jupiters are found to be less massive than their long period counterparts. Daw-

son and Johnson (2018) showed a paucity of massive giant planets (Mp ≥ 3 MJ) with

separations between the Roche Limit and twice the Roche limit. This could be explained

by tidal evolution where the decay in the hot Jupiter orbit leads to eventual tidal disruption.

Another possibility is the in situ formation of planets through a narrow feeding zone (Baty-
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Figure 1.8: The masses and orbital periods of currently known exoplanets. Data obtained
from NASA Exoplanet Archive: http://exoplanetarchive.ipac.caltech.edu ac-
cessed on 2018 March 24.
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gin et al., 2016). Migration could also lead to lower mass hot Jupiters as they are less likely

to open gaps in the gas disc, which can slow down migration through the disc (Masset and

Papaloizou, 2003).

Detailed characterisations of hot Jupiter systems showed that Jupiter-mass planets

can have a variety of radii. In many cases, radii of hot Jupiters are larger than standard

coreless models (e.g. Fortney et al. 2007; Baraffe et al. 2008). One property that was obvi-

ous in these systems is the correlation between the planet radius and the planet equilibrium

temperature (Bodenheimer et al., 2003). Planets with higher equilibrium temperatures have

larger radii, so certain heating mechanism might be in place to inflate the planetary radii.

For example, stellar irradiation could deposit heat in the planet atmosphere which causes

inflation (Weiss et al., 2013). Tidal circularisation of a planet’s orbit could also heat the

interior of the planet (Bodenheimer et al., 2001). Several alternative mechanisms will be

discussed in Chapter 3.

Transmission Spectroscopy

When the atmospheric scale height H of inflated hot Jupiters becomes substantial enough,

their atmospheric properties can be studied in detail via transmission spectroscopy (Char-

bonneau et al., 2002; Vidal-Madjar et al., 2003).

A transmission spectrum is the measure of transit depth as a function of wavelength.

At certain wavelengths, the planetary atmosphere can be more opaque so the transit depth

becomes deeper due to absorption by atoms or molecules. In the event where haze is absent

in the atmosphere, the expected transit depth is:

S tr ≈
(Rp + 10H

Rs

)2 (1.14)

the atmospheric scale height H is defined as:

H =
kTeq

µgp
(1.15)

where k = 1.38×10−23 J K−1 is the Boltzmann constant, Teq is the equilibrium temperature,

µ is the mean molecular mass, and gp is the planet surface gravity. Studying the spectrum

can provide information on the absorption features of the planet’s atmosphere. For example,

sodium and potassium absorption lines are found in the visible spectrum. H2O, CH4, CO

and CO2 produce broader molecular bands, and are visible at near-infrared.
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Evaporating Hot Jupiters

For both sun-like stars and M dwarfs, the stellar X-ray and ultraviolet (XUV; λ ∼ 1-1800 Å)

flux remains substantial for ∼ 100 Myr, after which the flux and stellar activity (measured

from Ca iiH & K lines) begin to decrease (Findeisen and Hillenbrand, 2010; Gondoin, 2012;

Shkolnik and Barman, 2014). Exoplanets with close-in orbits are susceptible to stellar

irradiation. Under extreme circumstances, the incident XUV flux could deposit enough

energy in the planetary atmospheres to cause atmospheric escape (Vidal-Madjar et al., 2003;

Erkaev et al., 2007).

The extent of atmospheric escape is determined predominantly by properties of the

thermosphere (the region which can be heated by XUV) and the exosphere (the loosely

bound outer layer where gas density and pressure is low). Under the thermal regime, high

temperatures drive the increase in particle velocities. When the particle velocities in the

atmosphere exceed the atmospheric escape velocity, the atmosphere enters the hydrody-

namic (‘blow off’) regime where mass loss occurs (e.g. Lammer et al. (2003); Lecavelier

des Etangs et al. (2004); Erkaev et al. (2007); Murray-Clay et al. (2009)).

The escaping atmosphere of a planet would lead to an extended atmosphere. This

property can be observed during a planetary transit. If column density of the gas is high

enough, it would block out part of the stellar flux and enhance the transit depth.

The first exoplanet observed with an extended exosphere was HD209458 b. Vidal-

Madjar et al. (2003) measured in-transit Lyman-α absorption lines using the Space Tele-

scope Imaging Spectrograph (STIS) on the HST. Their results revealed a 15% deep transit,

indicative of the evaporation of neutral hydrogen. They have further showed that gas is

moving away from the star beyond the Roche lobe at a Doppler velocity of ±100 km s−1,

which leads to Roche lobe overflow (Erkaev et al., 2007). O i and C ii absorptions were

also observed from transits of HD209458 b (Vidal-Madjar et al., 2004; Linsky et al., 2010),

strengthening the detection of an evaporating atmosphere.

Similar effects were also observed in the Neptune-mass planet GJ 436 b (Butler

et al., 2004). Kulow et al. (2014) have measured a transit depth of 8.8% in the Lyman-α,

as well as an extended egress with a striking depth of 23.7%. The observation suggested

that there may be a tail of neutral hydrogen trailing the planet, giving an appearance similar

to a comet tail. Further observations were made by Ehrenreich et al. (2015) where they

have measured a UV transit depth of 56.3% (see Figure 1.9). Ehrenreich et al. performed

numerical simulations to show that low stellar radiation pressure of GJ 436 could offset the

gravitational pull on the escaping hydrogen atoms from the star. Under this mechanism,

not only would the escaping atoms form a comet-like tail, they also co-move with GJ 436

b to form an envelop. This result showed remarkable agreement with the HST observation

where early ingress and extended egress were detected.
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Figure 1.9: The Lyman-α transit observations of GJ 436. A transit depth of 56.3% was
observed, significantly deeper than the optical transit. This is an indication of an extended
atmoshpere around GJ 436 b. (Figure 2 of Ehrenreich et al. (2015), reproduced with per-
mission from Macmillan Publishers Limited).
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Very often, absorption lines of heavier elements are also used in addition to Lyman-

α to characterise evaporating exosphere. Examples of these species are O i, C ii, Mg ii, and

Fe ii. Some of these species are reportedly detected in hot Jupiter HD189733 b (Ben-Jaffel

and Ballester, 2013), and WASP-12 b (Fossati et al., 2010b; Haswell et al., 2012), as well

as the rocky super-Earth 55 Cancri e (Ridden-Harper et al., 2016). Detailed analysis of the

evaporating atmosphere could reveal the physics underlying the interactions between stars

and close-in planets.

1.3.2 Super-Earths

The discoveries from the Kepler mission showed that planets with sizes between the Earth

and Neptune are by far the most abundant in our Galaxy (Borucki et al., 2010; Batalha et al.,

2013). This type of planets are known as super-Earths. About 50% of solar-type stars host

at least one planet smaller than the size of Neptune (Howard et al., 2012; Fressin et al.,

2013). This type of planet is not observed in our solar system, and it is of particular interest

to study their formation and evolution paths.

Super-Earths display a more varied bulk density distribution than hot Jupiters (Lopez

and Fortney, 2013; Weiss and Marcy, 2014), which implies a diversity in their interior com-

positions. Contrary to hot Jupiters, super-Earths are commonly found in multi-planetary

systems (Lissauer et al., 2011b; Fabrycky et al., 2014). The recent California-Kepler Sur-

vey also found that 93% of these systems are tightly packed (Weiss et al., 2018).

Formation of Super-Earths

Many super-Earths are known to have short orbital periods, some of which have low bulk

densities and are believed to possess substantial atmospheres. Assuming they were formed

in a way similar to terrestrial planets in our solar system, a significant amount of solids

are required at < 0.1 AU for super-Earths to form near their present locations (Schlichting,

2014). Instead, the more plausible scenario is the formation of a protoplanet by accretion

of solids beyond several AU. This is followed by migration through the gas disc, in which

gas is accreted onto the rocky core as the planet reaches its current orbit (e.g. Ginzburg

et al. 2016; Lee and Chiang 2015). Ginzburg et al. noted that self-gravity of the atmosphere

becomes critical when the gas mass fraction reaches ∼ 20%. This condition would set off

runaway gas accretion and gas giants could be formed. The sweet spot for the formation

of super-Earths is when planets are massive and cool enough to accrete and retain their

atmospheres, but not too massive so that runaway gas accretion is triggered (shaded-region

of Figure 1.10).

Super-Earths continue to evolve under several mechanisms after gas disc dispersal
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Figure 1.10: The masses of super-Earths as a function of their equilibrium temperature.
Their gas mass fractions f are indicated by shape of the markers. The lines plotted are
boundaries of triggering their respectively physical processes. The shaded region is the
the optimal condition for which a super-Earth can form. Figure reproduced from Ginzburg
et al. (2016) with permissions from The American Astronomical Society.
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which will determine their final masses. The planet enters a cooling (or shrinking) phase

as the surrounding gas disc disperses (Ginzburg et al., 2016). If gas disperses quicker than

the envelope cools, the envelope will begin to lose mass until it reaches the ‘thin’ regime,

where the radius of the planet atmosphere is comparable to the core of the planet. At this

point, the core-powered mass loss may take over. Planets with heavy atmospheres will

continue to cool without losing mass, while ones with lighter atmospheres will lose mass as

thermal energy from the core heats the atmosphere. Finally, when the planet reaches a close

orbit, its atmosphere begins to erode due to photoevaporation (Lopez et al., 2012; Owen

and Jackson, 2012), a process where high energy stellar radiation (UV or X-ray) heats the

planetary atmosphere, leading to evaporation.

The super-Earth migration scenario may also explain the apparent lack of Neptune-

mass planets with a period of 2 - 4 days. Mazeh et al. (2016) established the so-called ‘short-

period Neptune desert’ which may be an indication of two unique formation processes for

the hot Jupiter and super-Earth populations. Hot Jupiters can survive migrating close to

the star whereas intermediate mass planets would be eventually destroyed. Similarly, the

formation process of short period low mass planets would cease as gas discs deplete. Thus

the final mass of a planet would not reach that of Neptune’s.

The Photoevaporation Gap

Recent efforts by the California-Kepler Survey(CKS) (Johnson et al. 2017; Fulton et al.

2017) have observed and derived the precise physical characteristics of short-period Kepler

planets (P < 100 d), and their host stars for an in-depth study of the planet size distribution.

Fulton et al. observed a significant lack of planets with sizes between 1.5 R⊕ and 2.0 R⊕
(see Figure 1.11). The gap in the radius distribution could be explained by mechanisms

which drive atmospheric mass loss. The photoevaporation model is capable of generat-

ing the observed bimodal distribution. Simultations by Owen and Wu (2017) showed that

the evaporation mass loss timescale is the longest when the radius of the H/He envelop is

twice that of the planetary core. The mass loss timescale decreases towards either side of

this radius. This is because the planet’s overall radius is dominated by the core when its

atmosphere becomes thinner. Meanwhile, the addition of the smallest amount of mass to

the planet would significantly expand the planetary radius. However, the photoevaporation

case cannot account for the bare planets at longer periods (P > 30 d). Alternatively, the

core-powered mass loss mechanism could also drive the evaporation of the atmosphere.

Ginzburg et al. (2018) showed that the evaporation gap can be developed naturally during

the planet cooling phase. A planet with a heavier envelope would cool slowly and maintain

its radius, whereas a planet with a lighter envelop would cool rapidly to leave a smaller

radius. Core-powered mass loss, however, could enhance the effect and deepen the radius
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gap.
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Figure 1.11: Distribution of planet radii of planets with P < 100d. A bimodal distribution is
observed with peaks at ∼ 1.3R⊕ and ∼ 2.4R⊕. Figure reproduced from Fulton et al. (2017)
with permissions from The American Astronomical Society.
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1.4 Stellar Activity in Exoplanetary Science

Stellar magnetic activity is ubiquitous in stars with convective envelopes. Although the

physical processes governing the magnetic activity is yet to be established, it is broadly

believed that stars operate a magnetic dynamo which generates magnetic fields Moffatt

(1978); Parker (1979). These magnetic fields drive the interaction between differential ro-

tation and convection in the rotating, convecting, electrically conducting fluid in the stars

outer convective layers. The resulting stellar activity is manifested by a number of physical

phenomena, including starspots coverage, and chromospheric and coronal emission (Schri-

jver and Zwaan, 2008).

The presence of stellar activity in sunlike stars can give rise to noise in both time-

series photometric and RV observations. In photometry, activity-related noise can affect

accurate characterisation of transiting planets (e.g. Czesla et al. 2009, Oshagh et al. 2013,

Barros et al. 2014). On the other hand, activity-induced RV jitter can hamper the detection

and mass measurements of low-mass exoplanets (e.g. Santos et al. 2010, Boisse et al.

2011a). RV jitter can also mimic planetary signals which lead to false detections (e.g.

Queloz et al. 2001a, Huélamo et al. 2008, Figueira et al. 2010). It is therefore crucial to

consider the impact stellar activity has on photometric and RV observations in the detection

and characterisation of exoplanets.

1.4.1 Stellar Activity, Rotation and Age

Stellar rotation is strongly correlated to the chromospheric activity level in cool stars (Kraft,

1967). In stellar dynamo theory, the strength of magnetic field and Ca ii emission increases

with stellar rotation (Moffatt, 1978). Wilson (1978) began the Mount Wilson survey to

study the chromospheric variation in main-sequence stars in 1966. The survey monitored

the Ca ii H & K emission in sunlike stars to show that stellar activity modulate on both a

short-term and long-term timescales (Vaughan and Preston, 1980; Vaughan et al., 1981).

Such modulation of activity was also observed in our Sun, where sunspot number was

recorded since 1800s to find a 11-year solar cycle (Clette et al., 2014).

In addition, stars of different spectral types hence different convection zone depths

(or convective turnover time) also contributes to the formation of magnetic fields (Vaiana

et al., 1981; Vaughan et al., 1981). Noyes et al. (1984a) used results from the Mount Wilson

survey to find that chromospheric emission RHK as a fraction of the bolometric luminosity

can be approximated by the Rossby number Ro:

Ro =
Prot

τc
(1.16)
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where Prot is the stellar rotation period and τc is the convective turnover time which depends

on the spectral type.

As stars age, their rotation rates decrease. This is because magnetic fields that rotate

with the star interact with stellar winds to create a magnetic torque that transfers angular

momentum from the star to the winds (Weber and Davis, 1967). The chromospheric activity

is subsequently reduced. The measure of stellar activity and the spin rate are therefore good

estimates of the ages of stars (Barnes, 2003, 2007, 2010).

1.4.2 Stellar Activity in Photometry

When magnetic field lines pierces through the highly ionised stellar photospheric gas, they

inhibit the convection of hot plasma (Thomas and Weiss, 2012). This leads to the formation

of cool starspots which appear darker than the surrounding photospheric layer. The pres-

ence of a starspot or a group of starspots decreases the amount of observable photospheric

flux. As starspots rotate into and out of the line of sight of an observer, the modulation of

optical flux depends on the size and latitude of the starspot, the inclination of the stellar

rotation axis, the stellar rotation period, and the spot lifetime. In photometric observations,

starspots are fitted as part of the transit-search algorithm to effectively identify transiting

planet candidates (e.g. Aigrain and Irwin 2004).

In a photometric observations, the presence of a starspot can bring great challenges

in the characterisation of the planet. During a transit event, starspots that are not occulted by

a transiting planet can reduce the out-of-transit flux measured by an observer, leading to er-

roneous radius estimate of the planet (Pont et al., 2008). If a planet occults starspots during

transit (Figure 1.12), it can also cause problems in planet characterisation. In particular, the

determination of the planet radius and the limb-darkening coefficients of the host star can

affected (e.g. Pont et al. 2007, Czesla et al. 2009). Therefore, the spot area, temperature,

and limb-darkening coefficients need to be accounted for during a transit fitting process to

generate accurate planet radius estimation.

1.4.3 Stellar Activity in Spectroscopy

Radial velocity is an integral part of the exoplanet validation process. Accurate measure-

ment of the Doppler motion of a star is necessary to confirm presence of a planet and

estimate a planets mass. However, starspots and plages on the photosphere which arise due

to stellar activity rotate with the star. Light along the line-of-sight is block by these dark

features, resulting in the RV shift due to distortion in the spectral line absorption features.

The stellar v sin i, resolution of the spectrograph, and the size and temperature of a spot

determine the RV semi-amplitude (Saar and Donahue, 1997; Hatzes, 1999; Desort et al.,
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Figure 1.12: Transit lightcurve of Kepler-30 c reproduced from Sanchis-Ojeda et al. (2012)
with permission from Springer Nature. The Kepler data are denoted by black dots. The
flux anomaly observe at transit phase φ = 15◦ was attributed to the occultation of a starspot.
The black line is a model without starspots and the red line is a model with one spot.
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2007). Stellar activity can introduce RV jitters which can affect the Doppler measurements

of stars.

Queloz et al. (2001a) detected the 3.7987 days RV variations in the sunlike star HD

166435 which they initially thought to be caused by a planet companion. Follow-up RV

measurements and bisector analysis (method to be explained in details in Chapter 2) showed

a strong correlation which was interpreted as variation originated in the stellar atmosphere.

They concluded that the growth and decay of starspots with lifetime longer than the rotation

period of the star can affect the RV semi-amplitude, the stellar chromospheric activity level

and its photometric brightness.

In slowly rotating stars like our Sun, the dominant contribution to the RV signal is

not starspot-induced variation, but the inhibition of granular convection by magnetic fields

(Meunier et al., 2010). Granules are the convective elements in stellar photospheres. The

upward motions of hot materials spread out over a large surface area, which then cools and

sinks into dark intergranular lanes (Dravins et al., 1981; Dravins, 1987). The net upward

motions lead to blueshifts with amplitudes of 8-10 m s−1 and asymmetry in line profiles

and the long term variation in the Ca index and RV (Meunier et al., 2010), which can lead

to false planet detections and inaccurate mass determination.

Stellar magnetic activity can produce starspot modulation and convection blueshift.

The resulting distortion in spectral line profiles will cause RV variations which can mimic

the reflex motion due to a planetary companion. Various approaches are used in modern

planet modelling pipelines to account for stellar activity. For example, the anti-correlation

between RV and bisector velocity span arise due to stellar activity is used to correct RV

jitters and derive accurate system parameters (e.g. Boisse et al. 2009). Using high precision

photometry and properties of dark starspots, Aigrain et al. (2012) devised the FF’ method

which predicts activity-induced RV variations from the product the flux variation F and its

first derivative F’. Haywood et al. (2014) found that the residual activity signal of CoRoT-7

can be approximated by a Gaussian process regression using a quasi-periodic covariance

model, and Faria et al. (2016) recovered the planetary orbits of the CoRoT-7 system with

the RV data alone. Overall, if a planet candidate with orbital period similar to the stellar

rotation period, it is thus important to identify the origin of RV variations to help disentangle

stellar activity from planetary signals.

1.5 Thesis Outline

This thesis is outlined in the following manner: Chapter 2 describes and summarises meth-

ods used in this thesis. Chapter 3 presents the discovery of three gas giants from the WASP

survey, and discusses their possible origin and prospects of follow up scientific studies. The
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discovery of a super-Earth and the detailed analysis of the system is laid out in Chapter

4. Chapter 5 presents the investigation of the time variability of the evaporating planet

WASP-12. Chapter 6 investigates a detection technique by targeting stars in open clusters

and measuring the stellar activity indicator log R′HK . Finally, the outlook and future work is

concluded in Chapter 7.
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Chapter 2

Methods

The characterisation of a transiting exoplanet system requires both high precision spec-

tra and transit lightcurves. This chapter outlines the general spectroscopic and photomet-

ric reduction processes which are implemented to extract spectra and lightcurves for data

analyses. From here, the methods used to derive certain parameters for star-planet system

characterisation are described.

2.1 Spectroscopy

Spectroscopy is the measure of radiation intensity as a function of wavelength. High reso-

lution spectra can be used to study spectral line profiles, where the RV of a system can be

extracted. This section summarises the spectroscopy reduction process and the determina-

tion of certain stellar parameters.

2.1.1 Echelle Spectrograph

Most modern high-dispersion spectrographs use echelle gratings (e.g. HARPS; Queloz

et al. 2001b; Pepe et al. 2002b, HIRES Vogt et al. 1994, CORALIE Queloz et al. 2000;

Pepe et al. 2002a). The echelle grating gives high spectral resolution while the prism acts

as a cross dispenser so that multi orders can be recorded in a single exposure. The advantage

of an echelle spectrograph is the wide wavelength coverage it can produce. As an example,

HARPS, a fibre-fed, cross-dispersed echelle spectrograph has a resolution of R = 115, 000.

It can produce echelle spectra of 72 orders which covers a wavelength range from 380 nm

to 690 nm. The precision of the echelle spectrum, however, is compromised as the blaze

function give rise to variations in the stellar continuum. The wide wavelength coverage

also means that images are contaminated with scattered light. Higher orders align closer

together, this may also lead to contamination from the extended light in adjacent orders.
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One must take these problems into account in the spectral reduction process.

2.1.2 Data Reduction and Spectra Extration

Spectral data were obtained from multiple instruments in this thesis. In Chapter 3, CORALIE

and SOPHIE spectra are used to perform host star analysis and make RV measurements. In

Chapter 4, HARPS data is used to characterise the host star and measure RVs to derive the

mass of the super-Earth. In chapter 5, HIRES data is used to find time-series variation in the

activity-sensitive Ca ii H & K lines. In Chapter 6, the FLAMES-GIRAFFE spectrograph

was used to obtain spectra centred at Ca ii H & K to survey the chromospheric activity of

stars in open clusters. The spectra extraction pipelines of data obtained from these instru-

ments generally follow similar reduction procedures as described in (Appenzeller, 2013),

and are outlined here. HIRES data are used as examples where necessary.

Standard calibration frame reduction is first carried out on the raw images using

standard IRAF1 routines: (1) Bias subtraction - an overscan section is identified and sub-

tracted from the object and arc exposures; (2) Dark current removal; (3) Flat-field correction

- a normalised flat is created by taking the quotient of a flat image and a median-filtered flat.

The target spectra are then divided by the normalised flat to produce flat-corrected spectra.

In this step, the blaze function can also be removed; (4) Cosmic ray removal; (5) Sky sub-

traction - scattered light is removed by fitting the flux level outside aperture.

One-dimensional spectra are extracted from the object and arc images by adding

pixels in the corresponding wavelength bin. Arc images obtained from exposures of a

calibration lamp (in HIRES, a Thorium-Argon lamp is used) are used to evaluate the wave-

length scale. In this step, the wavelength of each line is identified by comparing the line

coordinates against the ThAr line lists. The wavelength scale solution is subsequently ap-

plied, and the extracted spectra are dispersion corrected by fitting the wavelength scale with

a low-order polynomial. Finally, the orders of the dispersion corrected spectra are merged

and normalised. Figure 2.1 shows the flow of the reduction procedure.

2.1.3 Cross-correlation

A star’s RV about the system’s barycentre is measured by the Doppler shift in wavelength

of the stellar spectrum. The shift in wavelength is

∆λ = λobs − λem (2.1)
1IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Associa-

tion of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science
Foundation.
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Figure 2.1: General reduction procedures implemented to extract echelle spectra.
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where the λobs is the observed wavelength and λem is the emitted wavelength. ∆λ is related

to the velocity by

νR =

(
∆λ

λem

)
c. (2.2)

A stellar spectrum contains many absorption lines, and to compute the RV from the spec-

trum, the cross-correlation method is employed. The use of a physical mask in the cross-

correlation method was first applied to echelle spectroscopy using CORAVEL by Baranne

et al. (1979). The numerical cross-correlation technique is detailed in Queloz (1995) and

Baranne et al. (1996), and is summarised below.

In a numerical mask, the template spectrum is comprised of box-shaped lines, i.e. 1

and 0 zones, where 1 corresponds to the position of stellar absorption lines. The numerical

mask M(λνR) is correlated to the observed spectrum S (λ) as the mask shifts. The cross-

correlations function (CCF) is computed as a function of the Doppler velocity (νR):

CCF(νR) =

∫
S (λ)M(λνR)dλ (2.3)

where

λνR = λ

√
1 − νR

c

1 +
νR
c

(2.4)

The numerical mask M(λνR) is the sum of masks Mi, each corresponds to an ab-

sorption line i. Equ. 2.3 can be rewritten as

CCF(νR) =

∫
S (λ)

∑
i

Mi(λνR)dλ (2.5)

=
∑

i

∫
S (λ)Mi(λνR)dλ (2.6)

=
∑

i

CCFi(νR) (2.7)

The resulting CCF describes a mean profile of the absorption lines in the template.

This is approximated with a Gaussian function, and the RV value is determined. The

Doppler shift of the spectrum is corrected with respect to the Solar System’s barycentric

frame of reference to account for the Earth’s orbital and rotational motion. To improve the

signal-to-noise, each spectral line is weighted when building the CCF. Pepe et al. (2002a)

showed that a weighted CCF can reduce the noise resulting from telluric lines. The cross-

correlation method is used in Chapter 3 and 4 to derive RVs of the host stars.
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2.1.4 Stellar Noise and Radial Velocity ‘Jitter’

The shape of stellar absorption lines can be affected by stellar activity, stellar oscillations

and surface granulation. They can introduce ‘jitter’ in RV measurements which affects the

accuracy, and could lead to false positives in planet detection.

The stellar dynamo is responsible for generating magnetic fields on the stellar sur-

face. Stellar magnetic fields can in turn give rise to spots, plages and faculaes, causing inho-

mogeneities in the stellar atmosphere. This effect will introduce asymmetry in the spectral

line profile, and can perturb the RV amplitude by ∼5 m s−1 for a solar-age G-type star

(Saar and Donahue, 1997). The magnetic fields, however, interact strongly with the stellar

wind, which can slow down stellar rotation as the star loses angular momentum. Therefore,

young stars are more severely affected by activity-induced jitter than older stars. To reduce

activity-induced jitter, it is important to distinguish between the RV variations due to the

stellar centre-of-mass motion and variations due to changes in the stellar atmosphere.

Bisector Analysis

The origins of RV variations can be studied using spectral line profiles, which are approxi-

mated by the CCF. If RV variations of a star are caused by changes in the star’s centre-of-

mass, the line profiles are preserved. On the other hand, line profiles change if RV variations

are caused by changes in the stellar atmosphere.

The change in the shape of the CCF can be quantified using the spectral line bisector

analysis. A line bisector traces the centre of a CCF as a function of the depth below the

continuum. An example is shown in Figure 2.2. The velocity of the upper and lower

regions of the line profile are calculated as Vt and Vb respectively. The bisector velocity

span (BIS) (Queloz et al., 2001a; Boisse et al., 2011a) is defined as

BIS = Vt − Vb (2.8)

If a correlation is found between the RV and BIS, it is could be an indication of jitter,

or even blending from an unresolved second source. Bisector analysis was performed in

Chapter 3 and 4 on all host star to determine the effect of stellar activity on the validation

and characterisation of the planetary systems.

Stellar activity

RV variations can be caused by rotationally modulated of spots or the stellar magnetic

activity cycle. These effects are identified by measuring the variations in stellar activity.

Stellar magnetic activity in the atmosphere can heat the gas and generate a temper-
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Figure 2.2: An example of a CCF profile (right panel) and the corresponding line bisector
(left panel) of the profile (reproduced from (Queloz et al., 2001a) with permission from
ESO). Vt and Vb are the bisector velocities in the upper and lower regions respectively. BIS
is defined as Vt − Vb.
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ature inversion in the stellar chromosphere. This cools via radiation in strong resonance

lines, such as the Ca ii H & K lines (Deeg and Belmonte, 2017). The spectroscopic mea-

surements of the Ca ii H & K lines is therefore is a good indicator for the stellar surface

activity. The chromospheric emission parameter R′HK is commonly used as a measure of

stellar activity. This is derived from the ratio between the emission in the Ca ii H & K

line cores and the total bolometric emission of the star (Noyes et al., 1984a; Staab et al.,

2017). The parameter R′HK has also been shown to depend on both rotational modulations

and long-term activity cycles in the past (e.g. Vaughan et al. 1981; Baliunas et al. 1995).

The detailed derivations of R′HK are described in Chapter 5 and 6.

Main-sequence cool stars with convective envelopes generate magnetic fields from

a magnetic dynamo (Moffatt, 1978). Magnetic fields interact with highly ionised gas in

the stellar atmosphere to form starspots or inhibit granular convection to cause convective

blueshift (refer to Section 1.4 for more detail). In both cases, the shapes of the spectral

absorption lines are distorted due to the inhomogeneity on the stellar surface (Queloz et al.,

2001a; Meunier et al., 2010). Activity-induced RV variations resembles signal from a plan-

etary companion.

Queloz et al. (2001a) performed a number of rigorous checks to find that the RV

variations observed in HD 166435 were due to presence of starspots on the stellar surface.

In addition to bisector analysis, where they found a negative correlation between the RVs

and BIS, Queloz et al. (2001a) analysed the photometry of HD 166435 to find a sinusoidal

lightcurve with a period that is consistent with the RV period. The S index measures of the

flux centred on the H & K emission line cores evaluates the chromosphere emission of the

star. Queloz et al. (2001a) utilised the Ca ii H & K measurements from the Mount Wilson

HK survey (Wilson, 1978) and found strong periodic variation consistent with the RV and

photometric observations.

Simultaneous observations of the RV, photometry and S index of HD 166435 showed

that these variations are phase-shifted with respect to one another (Figure 2.3, Queloz et al.

2001a). This can be explained by the visibility of starspots along the line of sight. As seen

on the top two panels of Figure 2.3, the photometric variation has a 1/4 phase shift with

respect to the RVs. When a starspot rotate into our line of sight and lie on the centre of

the stellar disc, the starspot covers both the approaching and receding part of the star. This

result in maximum brightness depression and the RV variation is zero. When the starspot

rotate out of view, the stellar brightness increases and the spot covers more of the receding

part of the star, leading to maximum blueshift and RV minimum. Queloz et al. (2001a) also

found a 1/8 phase-shift between the brightness variation and the S index of the star (second

and third panels of Figure 2.3). This arise due to the displacement of the photocentres of

darkspots and bright plages.
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Figure 2.3: Simultaneous RV observations (top panel), S index (second panel), y magni-
tude (third panel), and delta (b − y) colour of HD 166435 (reproduced from Queloz et al.
2001a with permission from Astronomy & Astrophysics, c©ESO). Left: Each data set are
fitted with a 3.798-day sinusoid. The vertical line is plotted to show the phase shift of the
observations. Right: Phase-folded observation of the same data set as the right.

Queloz et al. 2001a showed that follow-up long term monitoring are required to dis-

entangle stellar activity from planetary signals. In Chapter 4, the time-series photometric,

RV and chromospheric observations of the host star are analysed to show that the measured

Rv variation is due to gravitational interaction of a planet.

43



2.2 Photometry

Photometry is the technique used to measure the flux of a star. A lightcurve is constructed by

making many photometric measurements over time, so the variations of an object’s bright-

ness can be analysed. Several independent photometry pipelines were used in Chapter 3

and 4 because the data were obtained with different instruments. In this section, the general

photometry technique (Warner, 2006) used to extract a lightcurve is outlined. The model

used to analyse transit lightcurves is also describe.

Aperture Photometry

Before carrying out a photometry observation, a suitable field must be selected such that

multiple comparison stars, along with the target star is placed inside the Field of View

(FoV). The pre-reduction procedures are first carried out in the raw images: (1) Bias sub-

traction; (2) Dark current subtraction; (3) Flat-field correction. The accuracy of flat-fielding

represents the limit in photometry, except when stars are kept on the same pixel. In which

case, the flat-fielding errors are minimised. The brightness of the stars are then determined

by performing aperture photometry. In aperture photometry, an aperture and an outer an-

nulus are defined to measure the star and the sky background respectively. The total signal

contributed from the star is calculated by taking the difference between the total pixel value

within the aperture and total pixel value in the annulus. Once the brightness of each star is

obtained as a function of time, differential photometry is carried out.

Differential Photometry

Stars usually have constant luminosity, hence constant apparent brightness. However, this

can be affected by atmospheric extinction when measurements are made from ground-based

instruments. If the target and comparison stars are observed in the same field all the time,

they are affected by atmospheric extinctions to the same extent. Differential photometry

compares the relative difference between the target and comparison stars. A differential

lightcurve is produced by dividing the lightcurve of the target star by the lightcurves of the

comparison stars. This procedure should eliminate first order atmospheric extinctions. Very

often, the target and comparison stars are not of similar spectral type, so airmass-colour

terms would remain. This trend can be removed by fitting a first or second order polynomial

to the normalised region (i.e. the out-of-transit region) of the differential lightcurve.
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Figure 2.4: Standard lightcurve extraction procedure using aperture photometry and differ-
ential photometry.
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2.2.1 Transit Lightcurve Model

The characteristics of a star-planet system can be inferred from the shape of a transit

lightcurve. Some of the basic parameters which can be derived from the lightcurve are

described in Chapter 1. The geometry of the transit and the limb darkening effect of the

star must be taken into account in deriving the physical parameters. The analytical equa-

tions and limb darkening coefficients required to derive physical parameters of the planetary

systems in Chapter 3 and 4 are described here.

Limb Darkening Effect

The intensity of stellar radiation depends on the optical depth in the stellar atmosphere.

Photons in the stellar atmosphere emit radially outwards. If a photon emerges from the

centre of the disc, it will travel directly towards the observer along the line-of-sight. Moving

closer to the limb, a photon emitted at a depth h would travel at an angle θ along a path length

s = h/cos θ (Figure 2.6(a)). The optical depth increases towards the stellar limb, hence a

reduced number of photons is emitted from the limb and fewer photons would reach the

observer. As a result, the stellar limb appears dimmer than the centre of the centre of the

stellar disc. This optical effect is called the limb darkening effect. Limb darkening is a

function of the optical depth, which is wavelength-dependent. Consequently, the spectral

type of the star can also affect the limb darking effect.

Limb darkening is a non-linear effect, Claret (2000, 2004) proposed the non-linear

limb darkening function which can describe the intensity variation I(r) of the stellar disc:

I(r) = 1 −
4∑

n=1

cn(1 − µn/2) (2.9)

where µ = cos θ = (1 − r2)1/2, 0 ≤ r ≤ 1, and cn are the coefficients which depends on the

temperature, spectral type and metallicity of the star. Figure 2.5 shows the transit shape for

various limb darkening law.
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Figure 2.5: Transit lightcurves described by the non-linear limb darkening laws in Equation
2.9 for p = 0.1. (reproduced from Mandel and Agol (2002) with permissions from The
American Astronomical Society). The shape of the transit lightcurve depends on the values
of limb darkening coefficients. Solid line: c1 = c2 = c3 = c4 = 0. Dotted line: all
coefficients equals to zero but c˙1 = 1. Dashed line: all coefficients equals to zero but c˙2 =

1. Dash-dotted line: all coefficients equals to zero but c˙3 = 1. Dash-triple-dotted line: all
coefficients equals to zero but c˙4 = 1.
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Transit Geometry

A transit lightcurve model determines the area of star that is occulted by the planet during

a transit event. Mandel and Agol (2002) has prescribed a set of analytical functions which

details the geometry of a transit event. Assuming a circular orbit, the orbital speed of a

planet is

ω =
2π
P

(2.10)

where the orbital phase angle ωt is related to the orbital phase by

φ =
ωt
2π
. (2.11)

At phase φ = 0, the planet is at the inferior conjunction (i.e. mid-transit) where the projected

separation d between the centres of the planet and the star is b = a cos i. At other instances,

the projected separation d along the line of sight is a vector addition of the displacement

component a sinωt in the plane of the sky, and an orthogonal component a cosωt. At an

orbital inclination i, the full displacement in the plane of the sky is observed, while the ob-

served orthogonal component is foreshortened as a cos i cosωt. Hence the time-dependent

projected separation can be derived using Pythagorass theorem

d = a(sin2 ωt + cos2 i cos2 ωt)1/2. (2.12)

There are three cases which are considered in deriving the general expression for

the occulted stellar area. First, we consider the case where the disc of the planet covers

part of the stellar limb (as shown in Figure 2.6(b)). The angle between the stellar radius

extending from the centre of the star to the intersection of the planet and the star, and the

projected separation d is α2. The angle between the planet radius extending from the centre

of the planet to the intersection of the planet and the star is α1. The projected separation d

is parameterised in terms of the stellar radius as d = zrs. The ratio between the radii of the

planet disc and the stellar disc is p = rp/rs. When the stellar disc is partially occulted by

the planet, the occulted area Ae is

Ae =2 × (area of the sector of the planets disc + area of the sector of the stellar disc

− area of triangle formed by an extension of the stellar sector),
(2.13)

where

area of the sector of the planets disc = πr2
P ×

α1

2π
=

p2r2
sα1

2
(2.14)

area of the sector of the stellar disc = πr2
s ×

α2

2π
=

r2
sα2

2
(2.15)
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Figure 2.6: (a) Edge-on view of the star with radius rs showing geometry of the limb darking
effect. The angle between the observer and the normal to the stellar surface is defined by
θ, and µ = cos θ. (b) Geometry of a transit event along the line of sight. The projected
separation between the centres of the stellar disc and the planet’s disc is denoted by d, and
d is parameterised in terms of stellar radius as d = zrs. The ratio between the radii of
the stellar and planet discs is defined by p. r is the normalised axial coordinate, which is
defined as 0 at the centre of the star and 1 at the stellar limb. Figure reproduced and adapted
from Mandel and Agol (2002) with permissions from The American Astronomical Society.
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area of triangle formed by an extension of the stellar sector =
rs × zrs sinα2

2

=
zr2

s

2
sinα2

(2.16)

Using the cosine rule, the angles α1 and α2 can be expressed as

cosα1 =
p2 + z2 − 1

2zp
(2.17)

cosα2 =
1 + z2 − p2

2z
. (2.18)

From the identity sin2 α2 + cos2 α2 = 1, we get

sinα2 =

√
4z2 − (1 + z2 − p2)

2z
. (2.19)

Combining the equations above, the occulted area Ae is

Ae = 2 ×

 p2r2
sα1

2
+

r2
sα2

2
−

zr2
s

√
4z2 − (1 + z2 − p2)2

4z


= r2

s

p2α1 + α2 −

√
4z2 − (1 + z2 − p2)2

2


(2.20)

The second case we consider in a transit event is when the planet falls entirely

outside of the stellar disc. This occurs when the distance between the centres of the star and

the planet is greater than the sum of their radii (i.e. 1 + p < z). At this instance, Ae = 0.

The third case is when the planet falls entirely within the disc of the star. This happens if

the distance between the centres of the star and the planet is smaller than the difference of

their radii (i.e. 1− p ≥ z). The occulted area becomes Ae = πp2r2
s . The occulted area of the

star is thus a function of rs, p and z, i.e. Ae = Ae(rs, p, z).

The total observed flux from the stellar disc can be determined from the stellar

intensity I integrated over the surface of the stellar disc. In an axially symmetric stellar

disc, the stellar intensity is I = I(r′), where r′ is the radial distance measured from the

centre of the stellar disc. The total flux from the stellar disc then becomes

F =

∫
disc

I(r′)dA =

∫ r′=rs

r′=0
I(r′)2πr′dr′. (2.21)

The flux occulted by the planet’s disc is therefore the intensity integrated over the occulted
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area of the stellar disc

δF =

∫
occulted area

I(r′)dA. (2.22)

The normalised axial coordinate r is defined such that r = 0 is at the centre of the star, and

r = 1 is at the stellar limb. Explicitly, r = r′/rs. The increment area dA(r) is equal to the

difference between Ae for a star of radius rs = r′ and for a star of radius rs = r′ + dr′:

dA(r) =
dAe

dr′
dr′. (2.23)

The occulted area becomes ∫ r′=rrs

0

dAe

dr
dr = Ae

(
rrs,

p
r
,

z
r

)
= r2Ae

(
rs,

p
r
,

z
r

)
.

(2.24)

Finally, the flux occulted by the planet’s disc is expressed as

δF =

∫ r′=rrs

r′=0
I(r′)dA =

∫ r=1

r=0
I(r)dA(r)

=

∫ r=1

r=0
I(r)

d
dr

[
r2Ae

(
rs,

p
r
,

z
r

)]
dr.

(2.25)

In the limb darkened case, the stellar intensity is defined by the limb darkening law which

is described in Equation 2.9.

Under the small planet approximation, p ≤ 0.1, the case where the planet falls

entirely within the disc of the star (z < 1 − p) is approximated by assuming a constant

stellar surface brightness under the disk of the planet. The occulted flux becomes F(p, z) =

p2I∗(z)/4Ω, where Ω is defined as
∑4

n=0 cn(n + 4)−1, and the intensity becomes I∗(z) =

(4zp)−1
∫ z+p

z−p I(r)2rdr. In the case where the disc of the planet occults part of the stellar

limb, 1 − p < z < 1 + p, the occulted stellar flux is re-evaluated as

F(p, z) = 1 −
I∗(z)
4Ω

[
p2 cos−1

(
z − 1

p

)
− (z − 1)

√
p2 − (z − 1)2

]
(2.26)

where I∗(z) = (1 − m)−1
∫ 1

z−p I(r)2rdr, and m is defined as m ≡ (z − p)2.

2.3 Markov Chain Monte Carlo

From the RV measurements and transit lightcurves, we want to estimate a set of system

parameters (the model) which best describe the observed data. The Markov Chain Monte
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Carlo (MCMC) is a powerful method which can determine a solution by sampling from

a complicated parameter space. This method is applied in Section 3.3.3 of Chapter 3 and

Section 4.3.3 of Chapter 4 to derive best-fit models to characterise the system parameters

of planetary systems.

Given a set of observable data, d, a Bayesian approach is used to constraint the

model parameters, θ. Bayes’ theorem is defined such that the posterior probability for hy-

pothesis θ given data d, P(θ|d), is proportional to the prior probability distribution, P(θ), and

the likelihood function, P(d|θ), and is inversely proportional to the evidence, P(d) (Beving-

ton, 1969):

P(θ|d) =
P(θ)P(d|θ)

P(d)
. (2.27)

The likelihood of getting d given the model θ and a set of parameters is

P(d|θ) =
∏

i

P(di|θ) =
∏

i

1
√

2πσi
exp

[
−
χ2

2

]
(2.28)

and

χ2 =

∑
i

(di − θ)2

σ2
i

(2.29)

where the standard deviation (uncertainty) of the ith observation is σi, di is the ith observed

data and the model parameter θ would provide a fit to the data set.

At the beginning of an MCMC run, a model θold is generated as a starting point

from its corresponding parameters and the posterior probability, P(θold |d), is calculated

(Tegmark et al., 2004). A random step is taken from θold to a new model θnew, and its poste-

rior probability P(θnew|d) is deduced. At this stage, the Metropolis-Hastings (M-H) method

(Metropolis et al., 1953; Hastings, 1970) is used as a test to accept or reject θnew. θnew is

accepted if its posterior probability P(θnew|d) is greater than P(θold |d) and it will be used as

a foundation for the next random step. However, if P(θold |d) > P(θnew|d), the new state will

only be accepted with a probability of P(θnew|d)/P(θold |d). This procedure repeats until a

chain of models (or states) is formed. Multiple chains are computed at the same time in the

‘burn-in’ process to increase efficiency of the method. It also provides convergence tests to

all the chains and make sure they reach the global minima. The median posterior probability

of the beginning of all chains is used as the first step such that the M-H method can accept

or reject the new proposals of all the chains. Any chains that do not converge to global

minima will be discarded so the final result after the burn-in process is not affected by the

failed chains. Using the chain with the best-fit model, the exoplanet system parameters can

be inferred. The Markov character of the MCMC method is preserved in the process since
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the chains are independent of each other and the random steps taken during burn-in relies

on the current new model only.

The full characterisation of a planetary system requires a combination of different

methods. The methods described in this chapter will be utilised in the following chapters

in order to study newly discovered planets, and investigate the variability of evaporating

planets.
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Chapter 3

From Dense Hot Jupiter to
Low-density Neptune: The Discovery
of WASP-127b, WASP-136b and
WASP-138b

Thousands of transiting exoplanets are known since the discovery of HD209458 b, and

hundreds of these discoveries were made via ground-based transit surveys. Planets detected

with ground-based surveys usually orbit around stars which are bright enough for precise

follow up RV observations to fully characterise the planetary system. SuperWASP (See

Chapter 1 - Section 1.2.2 for details on facilities and instruments) remains one of the most

successful ground-based transit surveys. In this chapter, the discovery of three new planets

from the WASP survey is presented. These planets show that gas giant planets come in a

wide variety of different sizes. The diversity of densities and compositions of these plan-

ets could arise from different formation and evolution paths. Part of the work presented

here were done by the wider collaboration, including the WASP photometry reduction and

candidate identification process, observations and reduction of follow up photometry and

spectroscopy, and host star spectral analysis. I have estimated the stellar ages from stellar

evolutionary models, performed joint lightcurve and RV analysis to derive system charac-

teristics to constrain possible evolution histories of the three systems. This work was also

published in Lam et al. (2017).
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3.1 Candidate Identification in the WASP Survey

The WASP photometry of WASP-127, WASP-136 and WASP-138 were obtained between

2008 February and 2013 January. A total of 24, 523, 32, 842 and 21, 004 photometric data

points were obtained for WASP-127, WASP-136 and WASP-138, respectively. The pho-

tometric data were reduced with the pipeline described in Pollacco et al. (2006) (see also

Methods - Section 2.2). Systematic errors in the reduced data were decorrelated using the

SysRem detrending algorithm (Tamuz et al., 2005), and the Box-fitting Least-Squares al-

gorithm (BLS; Kovács et al. 2002) was used to search for planet transit signals (Collier

Cameron et al., 2006). After planet candidates were identified, multi-seasonal lightcurves

were analysed using the transit search algorithm described in Collier Cameron et al. (2007)

to calculate orbital parameters of planet candidates. For WASP-127, a period of P = 4.18

days, transit duration between the first and fourth contact is T14 ≈ 3.6 hours and a depth

of ∼ 5.8 mmag was found. The lightcurve of WASP-136 showed a periodicity of P = 5.22

days, a transit duration of T14 ≈ 5.2 hours, and a transit depth of ∼ 2.9 mmag. In the

WASP-138 data, a depth of ∼ 8.2 mmag was detected, with a period of P = 3.6 days, and a

transit duration of T14 ≈ 4.1 hours. Once false positives, such as variable stars and eclips-

ing binaries, were rejected, WASP-127, WASP-136 and WASP-138 were flagged as high

priority candidates in 2014.

We searched for rotational modulation of the WASP photometry using the method

of Maxted et al. (2011). In summary, a periodogram was computed for each target, and the

distribution of peak power values are fitted to find the false alarm probability for the highest

peak. No rotational modulation was found above 2 mmag, suggesting that the host stars are

inactive.

3.2 Follow Up Observations

3.2.1 Photometry Follow Up

Additional follow up photometric observations were made to verify the planet candidates.

They can also put constraints on the system parameters in the lightcurve modelling process.

Lightcurves were obtained with EulerCam at the 1.2 m Euler-Swiss telescopes (Lendl et al.,

2012) and TRAPPIST (Jehin et al., 2011; Gillon et al., 2011), which are both situated at

ESO’s La Silla Observatory in Chile, the RISE camera on the Liverpool Telescope at the

Observatorio del Roque de los Muchachos on La Palma (Steele et al., 2008) and the Zeiss

1.23m telescope at the German-Spanish Astronomical Center at Calar Alto in Spain. A

summary of the follow up photometry can be found in Table 3.2. The phase-folded best-fit

lightcurves using results obtained from the MCMC analysis (Section 3.3.3) are shown in
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Table 3.1: Photometric properties of the three host stars WASP-127, WASP-136 and WASP-138.
Parameter WASP-127 WASP-136 WASP-138
Identifier 1SWASP J104214.08−035006.3 1SWASP J000118.17−085534.6 1SWASP J024633.37−002750.0

RA(J2000) 10:42:14.08 00:01:18.17 02:46:33.37
Dec(J2000) −03:50:06.3 −08:55:34.6 −00:27:50.0

B 10.79 10.39 12.28
V 10.15 9.98 11.81
R 9.74 9.71 11.40
H 8.74 8.79 10.54
K 8.64 8.81 10.49



Figures 3.1, 3.2 and 3.3.

TRAPPIST: The 0.6m TRAPPIST (TRAnsiting Planets and PlanetesImals Small

Telescope; Gillon et al. 2011 and Jehin et al. 2011) robotic telescope was used to ob-

tain lightcurves for both WASP-127 and WASP-136. The telescope is equipped with a

thermoelectrically-cooled 2k × 2k CCD camera. It has a pixel scale of 0.65”, giving a

field-of-view of 22’ × 22’.

A partial transit of WASP-127 b was observed on 2014 March 18. A Sloan-z filter

(effective wavelength = 896.3 ± 0.8 nm) and an exposure time of 9 seconds was used. On

2014 November 24, the partial transit of WASP-136 b was observed using the same filter

with an exposure time of 7 seconds. For both transits, the telescope was kept in focus

thoughout the observations. The stars were kept within a few pixels on the detector using a

software guiding system which calculates the astrometric solution for the images regularly.

This is used to correct the pointing on the mount.

The data were reduced using the pipeline of Gillon et al. (2013), which follows

procedures similar to those described in Chapter 2. Different sets of reduction parameters

were tested to find the most precise photometry for the stars. Differential photometry was

performed to obtain the final lightcurves.

EulerCam: EulerCam was used to obtain lightcurves of all three targets. The

camera is an e2v 4k × 4k back-illuminated deep-depletion silicon CCD detector. It has a

field-of-view of 15.68 × 15.73 and a pixel scale of 0.23′′/pixel.

A full transit of WASP-127 was observed on 2014 April 28 with a Gunn r filter.

The telescope was defocused throughout the observation with Full Width at Half Maxi-

mum (FWHM) between 1.6 and 2.5 arcsec. The lightcurve was extracted with aperture

photometry, where a circular aperture of radius 4.7 arcsec and one reference star was used.

A partial and a full transit of WASP-136 were observed on 2014 August 21 and 2015

August 21 respectively. The events were observed using a Gunn z filter and an exposure

time of 50 seconds. The telescope was kept defocused throughout both nights. On the first

night, the FWHM was between 1.5 and 2.3 arcsec. The lightcurve was extracted using four

reference stars and a circular aperture with a radius of 2.7 arcsec. For the second night, the

FWHM was between 1.9 and 3.0 arcsec. A circular aperture of radius 4.5 arcsec, and five

reference stars were used for the photometry reduction.

One full transit of WASP-138 was observed on 2015 December 17 with an NGTS

filter (with a custom wavelength of 550 - 900 nm), using exposure times between 50 and 85

seconds. The telescope was substantially defocused and the FWHM was between 1.3 and

2.5 arcsec. To extract the lightcurve, one reference star was used, along with a photometric

aperture of 5.6 arcsec radius.

RISE: A full transit of WASP-127 was observed using the RISE camera (Steele
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Table 3.2: Follow up photometric observations of WASP-127, WASP-136 and WASP-138.
Planet Date Instrument Filter Comment

WASP-127b

17/03/2014 TRAPPIST z partial transit
28/04/2014 EulerCam Gunn r partial transit
13/02/2016 LT RISE V + R full transit
18/04/2016 Zeiss 1.23m Cousins-I full transit

WASP-136b
21/08/2014 EulerCam z partial transit
23/11/2014 TRAPPIST z partial transit
21/08/2015 EulerCam z full transit

WASP-138b 09/12/2015 EulerCam NGTS partial transit

et al., 2008). The camera has a back illuminated, frame transfer CCD of 1k × 1k pixels. A

”V+R” filter and 2 × 2 binning of the detector were used for the observation, which gives

a pixel scale of 1.08 arcsec/pixel. The telescope was defocused by 0.5 mm throughout the

observations, and an exposure time of 1.5 seconds was used. The RISE pipeline was used

to reduce the raw images and aperture photometry was carried out using four comparison

stars and an aperture of 4.86 arcsec radius. The increased scatter around mid-transit (see

Figure 3.1) is attributed to thin clouds.

Zeiss: The Zeiss 1.23m telescope has a focal length of 9857.1mm and is equipped

with the DLR-MKIII camera, which has 4k × 4k pixels of size 15 micron. It has a pixel

scale of 0.32 arcsec/pixel and a field-of-view of 21.5 × 21.5 arcmin.

This instrument was used to observe a full transit of WASP-127. Throughout the

observation, the telescope was kept defocused and an exposure time between 65 and 105

seconds was used. The CCD was windowed to decrease the readout time and speed up

the cadence of the observations. Aperture photometry was performed to obtained the final

lightcurve using a revised version of the defot code (Southworth et al., 2014). The night

was not photometric and several clouds disturbed the observations, resulting in increased

scatter in the lightcurve.
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Figure 3.1: The binned WASP lightcurve (blue) of WASP-127, along with follow up
lightcurves obtained from EulerCam (red), TRAPPIST (green), RISE (magenta) and Zeiss
(cyan). The lightcurves are phase-folded using the ephemeris from the MCMC analysis. For
clarity, arbitrary offsets from the zero-magnitute are assigned to the follow up lightcurves.
The black solid lines are the best-fit transit model and the residuals are plotted under each
lightcurve.
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Figure 3.2: Lightcurves of WASP-136 observed from WASP (blue), EulerCam (red) and
TRAPPIST (green). The data are phase-folded with the ephemeris derived from the anal-
ysis. For clarity, arbitrary offsets from the zero-magnitute are assigned to the follow up
lightcurves.The black solid lines are the best-fit transit model and the residuals are plotted
under each lightcurve.
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Figure 3.3: Lightcurves of WASP-138 observed from WASP (blue), and EulerCam (red).
The data are phase-folded with the ephemeris from our analysis. The EulerCam lightcurve
is assigned an arbitrary offset from the zero-magnitude for clarity. The black solid lines are
the best-fit transit model and the residuals are plotted under each lightcurve.
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3.2.2 Radial Velocity Follow Up

Spectroscopic observations of WASP-127, WASP-136 and WASP-138 were obtained with

the SOPHIE and CORALIE spectrographs, using high-efficiency mode with resolutions of

R= 40, 000 and R= 55, 000 respectively.

A total of 28 spectral measurements of WASP-127 were taken between 2013 April

18 and 2015 April 9 using CORALIE. 6 of these measurements were taken after the instru-

mental upgrade in November 2014, hence the data are affected by a zero-point offset of the

instrument. In the MCMC analysis, these data were treated as if they were obtained using

different instruments. In addition, 13 SOPHIE measurements of WASP-127 were obtained

between 2013 April 18 and 2014 December 31. For WASP-136, 23 CORALIE spectra

were taken between 2014 June 24 and 2014 October 28. 10 SOPHIE and 10 CORALIE

spectra were obtained for WASP-138 between 2014 October 20 and 2015 January 25. All

WASP-136 CORALIE spectra were obtained before the instrumental upgrade, whereas all

WASP-138 CORALIE spectra were obtain after the upgrade. Therefore the data were not

affected by the zero-point offset.

All SOPHIE and CORALIE data were reduced with their respective standard re-

duction pipelines, using similar procedures to those outlined in Chapter 2. The RV of each

system was derived using the weighted cross-correlation method. Figures 3.4 and 3.5 show

the phase-folded RV measurements of WASP-127 from two different MCMC analyses (see

Section 3.3.3). Figures 3.6 and 3.7 show the phase-folded RV measurements of WASP-136

and WASP-138, respectively.

WASP-127 has a visual companion located at a separation of 41”. Spectral line bi-

sector analysis was performed to check for RV variations due to stellar activity or a blended

binary system. The result of the analysis is shown in Figure 3.8, where no correlation is

found between the bisector velocity span (Vspan) and the RV measurements. Thus the RV

variations are of genuine planetary origin. The bisector analyses of WASP-136 and WASP-

138 also show no correlation between Vspan and RV.
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Figure 3.4: Upper panel: Phase-folded radial velocity measurements of WASP-127 as
a function of orbital phase. The best-fit RV curve (obtained from the analysis using
CORALIE RVs only) is plotted as a black solid line. CORALIE data observed before
the instrumental upgrade are denoted by red circles while data taken after the upgrade is
denoted by blue triangles. Lower panel: Residuals from the RV fit as a function of orbital
phase.
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Figure 3.5: As Figure 3.4 with SOPHIE data denoted as black open squares. The SOPHIE
error bars are inflated by a multiplication factor of 2. The best-fit RV curve is obtained from
the analysis with both CORALIE and SOPHIE RVs.

64



0.6 0.8 1.0 1.2 1.4
0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

R
e
l 
V

e
lo

ci
ty

/k
m

s−
1

0.6 0.8 1.0 1.2 1.4
Orbital Phase

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

R
e
si

d
u
a
l

Figure 3.6: Upper panel: Phase-folded CORALIE radial velocity measurements (red cir-
cles) of WASP-136, as a function of the orbital phase. The best-fit RV curve is plotted as a
black solid line. Lower panel: Residuals from the RV fit as a function of orbital phase.
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Figure 3.7: Upper panel: Phase-folded CORALIE (red circles) and SOPHIE (black open
circles) radial velocity measurements of WASP-138 as a function of the orbital phase. The
best-fit RV curve is plotted as a black solid line. Lower panel: Residuals from the RV fit as
a function of orbital phase.
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Figure 3.8: The bisector velocity span of WASP-127 as a function of the relative radial
velocity. CORALIE data before and after the instrumental upgrade is represented by red
circles and blue triangles, respectively. SOPHIE data is denoted by open black squares. The
line of best-fit is shown in grey and no correlation is found.
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Figure 3.9: The bisector velocity span of WASP-136 as a function of the relative radial
velocity. The line of best-fit is shown in grey and no correlation is found.
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Figure 3.10: The bisector velocity span of WASP-138 as a function of the relative radial
velocity. CORALIE data is denoted by red circles and SOPHIE data is represented by open
black squares. The line of best-fit is shown in grey and no correlation is found.
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Table 3.3: Gaia observations of WASP-127, WASP-136 and WASP-138. The G-band line-
of-sight extinction is denoted by Ag, and E(B − V) is the reddening.

Parameters WASP-127 WASP-136 WASP-138
Gmag 10.05 9.81 11.69
Parallax (mas) 6.24 ± 0.04 3.60 ± 0.06 2.39 ± 0.04
Distance (pc) 160 ± 1 278 ± 5 419 ± 8
µra (mas yr−1) 19.22 ± 0.08 2.47 ± 0.09 11.25 ± 0.07
µdec (mas yr−1) 17.03 ± 0.07 9.65 ± 0.06 −34.46 ± 0.07
RV (km s−1) −8.25 ± 0.89 11.64 ± 0.38 -
Teff (K) 5858+134

−85 6400+368
−96 6139+371

−221
Ag 0.33+0.13

−0.06 - 0.42+0.26
−0.19

E(BP−RP) 0.16+0.05
−0.03 - 0.19+0.14

−0.07
Rs (R�) 1.30+0.04

−0.06 - 1.46+0.11
−0.16

3.2.3 Gaia astrometry

The precise astrometric solutions of WASP-127, WASP-136 and WASP-138 were measured

by the recent Gaia Data Release 2 (DR2) (Gaia Collaboration et al., 2016b, 2018b; Linde-

gren et al., 2018). The parallaxes of WASP-127, WASP-136 and WASP-138 are 6.24±0.04

mas, 3.60 ± 0.06 mas and 2.39 ± 0.04 mas, respectively. These correspond to distances of

160 ± 1 pc, 278 ± 5 pc and 419 ± 8 pc, respectively. The effective temperatures and stellar

radius of the host stars were derived from the three Gaia photometric bands (Andrae et al.,

2018). The results of the derivations are summarised in Table 3.3. The parameters derived

from the Gaia observations are generally consistent with the results of the joint Bayesian

analysis in Section 3.3.3. In Section 3.3.1, the distances of WASP-127, WASP-136 and

WASP-138 were found to be 102± 12 pc, 164± 18 pc, and 308± 51 pc, respectively. These

estimates are inconsistent with the distance measurements derived from Gaia parallax. The

Gaia distance measurements show that WASP-127, WASP-136, WASP-138 are 58 ± 12 pc,

114 ± 19 pc, and 111 ± 52 pc further away than previously estimated. This is because the

distance-modulus was used to estimate the host star distances in Section 3.3.1, and the red-

dening E(B − V) was assumed to be 0. Hence the distances measured by Gaia are more

reliable.

3.3 Results

3.3.1 Host Star Spectral Analysis

The CORALIE spectra of the individual host stars were co-added to generate spectra for

analysis using the methods described in Doyle et al. (2013). The Hα line was used to esti-

mated the effective temperature (Teff), and the pressure-sensitive lines, Na i D and Mg i b
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lines, were used to measure the stellar surface gravity. Multiple clean and unblended Fe i

lines were used to estimate the iron abundance of the star relative to the Solar value (As-

plund et al., 2009). This was done by measuring the equivalent width of the Fe i lines. The

error of the abundance was derived from the uncertainty in the atomic data measurements,

and uncertainties in Teff and log g. The macroturbulent velocities (νmac) of the stars were

calculated using calibrations of Doyle et al. (2014). The νmac of each star was then used

to calculate their respective projected rotation velocities (v sin i) by fitting the profiles of

the Fe i lines after convolving with the CORALIE instrumental resolution (R = 55,000). A

summary of the results can be found in Table 3.4.

Table 3.4: Stellar parameters of WASP-127, WASP-136 and WASP-138 derived from spec-
tral analysis in Section 3.3.1.

Parameter WASP-127 WASP-136 WASP-138
Teff (K) 5750 ± 100 6250 ± 100 6300 ± 100

log g 3.9 ± 0.1 3.9 ± 0.1 4.1 ± 0.1
v sin i (km s−1) 0.3 ± 0.2 13.1 ± 0.8 7.7 ± 1.1

[Fe/H] −0.18 ± 0.06 −0.18 ± 0.10 −0.09 ± 0.10
log A(Li) 1.97 ± 0.09 2.50 ± 0.08 2.20 ± 0.08

Mass (M�) 1.31 ± 0.05 1.38 ± 0.08 1.20 ± 0.03
Radius (R�) 1.33 ± 0.03 2.07 ± 0.24 1.43 ± 0.02

Sp. Type G5 F5 F9
Distance (pc) 102 ± 12 164 ± 18 308 ± 51

3.3.2 Host Star Age Estimates

The masses and ages of the three host stars were derived using the open source BAGEMASS1

code (Maxted et al., 2015a), and the method is summarised as follow. For each star, a stel-

lar model grid was generated from the GARSTEC stellar evolution code (Weiss and Schlattl,

2008) where a mixing length parameter αMLT = 1.78 was assumed to calculate the grid. A

Bayesian method was applied to derive the stellar mass and age, where the effective temper-

ature Teff , stellar metallicity [Fe/H], observed stellar luminosity Ls, and stellar density ρs,

were used as input parameters to calculate the probability distribution functions of a stars

mass and age. Teff and [Fe/H] were obtained from spectral analysis in section 3.3.1. Since

this work was prepared prior to the Gaia data release, there were no accurately measured

trigonometric parallax for WASP-127, WASP-136 and WASP-138. Hence the input stellar

luminosity was set as log(Ls/L�) = 0 ± 5 to minimise the influence of this term has on the

results. The stellar density ρs of a planet host can be derived from the corresponding transit

lightcurve using Equ. 1.8 for a known eccentricity. The results of the analysis are shown
1https://sourceforge.net/projects/bagemass/
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in Table 3.5. Figure 3.11 shows the probability distributions of each system and the best-fit

evolutionary tracks.

The isochrone age of WASP-127 is 11.4 Gyr. Its rotational velocity derived from

the CORALIE spectra is too low for an age estimate from gyrochronology. However, an

old star is expected to be slowly rotating. The F-type star WASP-136 has an isochronal age

(τiso) of 3.62± 0.70 Gyr, and a surface gravity estimated as log g = 3.9± 0.1. This suggests

that the star could be a subgiant that is evolving off the main-sequence. The isochronal

age of WASP-138 is 3.44 ± 0.93 Gyr. In gyrochronology, the surface rotation rate of a star

is used to estimate the stellar age. Barnes (2007, 2010) developed an analytical function

which uses the rotation periods and colours of a star to derive its age:

τgyro =
τ

kc
ln

(
P
P0

)
+

kI

2τ
(P2 − P2

0) (3.1)

where τgyro is the gyrochronological age measured in Myr. τ is the convection turnover

time which is taken from Barnes and Kim (2010), and the constants kc = 0.646 d Myr−1

and kI = 452 d Myr−1. P is the rotation period in days, P0 ≈ 1.1 d is the rotation period

on the zero age main sequence (ZAMS). The τgyro of WASP-136 and WASP-138 were

calculated as 1.3+1.2
−0.6 Gyr and 2.7+2.5

−1.3 Gyr respectively. The v sin i value of WASP-127 is

too low for a sensible estimate. Note that the v sin i values derived from spectral analyses

can only provide upper limits on the rotation rates of the stars. The τgyro of WASP-136 and

WASP-138 are therefore lower limits only. The τiso of WASP-136 and WASP-138 do not

agree with their respective τgyro. This discrepancy could be attributed to tidal interactions

between the stars and the planets. Gyrochronology derives a star’s age from its rotation

period, but the current models do not adequately describe the relation between the stellar

rotation rate and age of intermediate-age and older stars. For older stars, their rotation rates

could have been spun up by the tidal forces of the planets, so they could disguise as young

stars (Maxted et al., 2015b; van Saders et al., 2016). This means that gyrochronology is

a less suitable way to estimate the stellar ages in the case of WASP-136 and WASP-138.

Rotational modulation in a lightcurve could provide information on the stellar activity but,

as mentioned in Section 3.1, no significant modulations were found, implying that the stars

are inactive. This is a characteristic of an old field star. Consequently, the isochronal ages

of the stars are adopted.

3.3.3 MCMC Analysis

The MCMC method describe in Chapter 2 was used to derive the physical parameters of

each system. The lightcurves and RV measurements were analysed simultaneously follow-

ing Collier Cameron et al. (2007) and Pollacco et al. (2008). In short, the analytical func-
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Figure 3.11: The posterior distribution of the stellar masses and ages of WASP-127 (up-
per panel), WASP-136 (middle panel) and WASP-138 (lower panel). The Zero Age Main
Sequence (ZAMS) is plotted as a dotted black line. The solid blue lines denote the evo-
lution tracks of the stars and the blue dashed tracks on either side are the 1-σ error on the
mass. The stellar age isochrone is plotted as solid orange lines, and the orange dashed lines
represents the 1-σ error.
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Table 3.5: Stellar mass and age estimates of WASP-127, WASP-136 and WASP-138. The
first column presents the isochronal ages, second column shows the gyrochronological ages.

Star Mass [M�] τiso [Gyr] τgyro [Gyr]
WASP-127 0.93 ± 0.04 11.41 ± 1.80 v sin i too low
WASP-136 1.29 ± 0.08 3.62 ± 0.70 > 1.3+1.2

−0.6
WASP-138 1.17 ± 0.06 3.44 ± 0.93 > 2.7+2.5

−1.3

tions of Mandel and Agol (2002) were used to model the transit lightcurves. The stellar

limb darkening effect was accounted for using the non-linear limb darkening law developed

by Claret (2000, 2004). The parameters used in the MCMC algorithm were: the mid-transit

epoch T0; the period P; the planet to stellar size ratio (a proxy for the transit depth) ∆F; the

transit duration T14; the impact parameter b; the stellar metallicity [Fe/H], the stellar effec-

tive temperature Te f f ; the stellar reflex velocity K, and the Lagrangian elements
√

e cos(ω)

and
√

e sin(ω) (where e is the eccentricity and ω is the longitude of periastron) which were

used to define the star’s RV orbit, and the system’s centre-of-mass velocity γ. The median

of the posterior distribution and the 1-σ uncertainties were adopted as the final solution.

The MCMC solutions of each system are presented in Table 3.6 and 3.7. The phase-folded

best-fit RVs and lightcurves are shown in Figures 3.4, 3.5, 3.6, 3.7 and Figures 3.1, 3.2, 3.3

respectively.

WASP-127: A main-sequence mass-radius constraint was initially placed on the

MCMC analysis of WASP-127. The solution gave unrealistic posterior stellar parameters

which disagreed with those derived from spectral analysis in Section 3.3.1. Hence the main-

sequence constraint was relaxed in the final MCMC analysis.

(Lucy and Sweeney, 1971) argued that majority of spectroscopic binaries with de-

rived small eccentricities (e ≤ 0.05) are consequences of observational errors. They devised

the Lucy & Sweeney F-test (LS test) to determine the statistical significance of small eccen-

tricities in binaries. In essence, the LS test tests the hypothesis that the orbital eccentricity

is zero. If the hypothesis is rejected at the 5% significance level, the non-zero eccentricity is

regarded as significant. On the other hand, if the hypothesis is not rejected, a circular orbit

(i.e. e = 0) is adopted.

The criterion deciding whether a circular orbit is rejected is based on results of the

least-squares analysis and the F-distribution:

F =
N − M

2
·
χ2

circ − χ
2
ecc

χ2
ecc

(3.2)

where N and M are the number of observations and number of elements for the elliptical

orbit, respectively. χ2
circ and χ2

ecc are the weighted least-squares residuals. If the hypothesis
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of a circular orbit is correct, then F is distributed as Fν1,ν2 where ν1 = 2 and ν2 = N − M.

The probability density function of F is:

φ(F) =

(
1 +

F
β

)−(1+β)

(3.3)

where β = 1/2 (N − M). Assuming a circular orbit and F = F̂, the probability of F could

have exceeded F̂ is

p =

∫ ∞

F̂
φ(F)dF =

(
1 +

F
β

)−β
(3.4)

Following the 5% significance level as described above, the criterion used to decide the

significance of a non-zero eccentricity is

e =

ê, if p < 0.05,

0, if p ≥ 0.05.
(3.5)

The MCMC solution for WASP-127 does not provide convincing evidence for an eccentric

orbit (χ2
circ = 37.2 ± 8.6 and χ2

ecc = 37.3 ± 8.6). The LS test gave p = 1.0, thus a circular

orbit is adopted.

As seen in Figure 3.5, measurements from both CORALIE and SOPHIE appear to

be dispersed from the best-fit Keplerian model. The FWHM of WASP-127 spectra changed

during one of the observing seasons. This could be explained by the change in the magnetic

activity of the star, which could contribute to the observed scatter around the fit. However,

there is no evidence in the bisector analysis (see Figure 3.8) that the Vspan is correlated to the

RV measurements. An in-phase variation is observed with the CORALIE data nonetheless.

We performed joint MCMC analysis for two cases where: (1) all RV data was included, and;

(2) only CORALIE RV data was included. In case (1), the preliminary analysis resulted

in a best-fit solution with the planet’s mass being 0.13 ± 0.02 MJ and the planet’s radius

1.41 ± 0.05 RJ. The reduced chi-square statistics (χ2
reduced) were used to check for the

goodness-of-fit, and the χ2
reduced was evaluated as 1.31± 0.25 for case (1). The reduced chi-

square statistics of case (2) suggests that the RV variation without SOPHIE RV data is better

described by a Keplerian orbit. The mass of WASP-127 b is small, thus the RV variation is

in the order of a few m s−1 which exceeds the sensitivity of both SOPHIE and CORALIE.

Hence stability of the instrument could affect the RV measurements. In addition, there could

be a third stellar body in the system which could offset the RV variation of the star. However,

there is no evidence that such a star is bound to the system. It is unclear why SOPHIE error

bars were underestimated, and that the instrument did not reach the sensitivity required

to detect RV signals from WASP-127 when the RV variation is clearly manifested in the

CORALIE data. We reduced the weighting of the SOPHIE RVs to improve the Keplerian
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fit by inflating the error bars of SOPHIE RVs by a multiplication factor of 2. The resulting

fit was improved with a χ2
reduced value of 0.91 ± 0.21.

In the CORALIE-only case, a best-fit RV amplitude of 21.4 ± 2.8 m s−1 was found,

corresponding to a minimum mass of 0.18 ± 0.02MJ (Figure 3.4). In the case where

CORALIE and SOPHIE (with inflated error bars) RV measurements were used in the

MCMC analysis, the best-fit RV amplitude was 18.7 ± 2.7 m s−1, which corresponds to

a minimum mass of 0.16 ± 0.02MJ (Figure 3.5). The RV amplitude from both solutions

agree within 1-σ uncertainty. The full sets of solutions from both analyses are shown in

Table 3.6. WASP-127 has a RV semi-amplitude of around 20 m s−1. RV measurements

with precisions better than a few m s−1 are required to characterise lower mass objects to

the same fractional precision in mass. The instruments used to measure the RV variations

have achieved a precision of 5 m s−1 at best. Therefore, the dispersion of the RV residuals

is attributed to the stability of spectrographs.

WASP-136: Isochrone fitting suggested that WASP-136 is a evolving star, there-

fore the main-sequence constraint was relaxed in the analysis. The χ2 statistics was used to

determine the goodness-of-fit of the model. There was no significant evidence that supports

an eccentric orbit for this system (χ2
circ = 46.6 ± 9.7 and χ2

ecc = 43.5 ± 9.3). The LS test

showed p = 0.55, hence the non-zero eccentricity is not significant and a circular orbit was

adopted in the final analysis.

WASP-138: No main-sequence constraint was placed in the analysis, and the

statistics of the solution found no evidence for an eccentric orbit (χ2
circ = 11.2 ± 4.7 and

χ2
ecc = 10.4 ± 4.6). The LS test gives p = 1.0. Therefore, the non-zero eccentricity is

insignificant and a circular orbit was adopted for WASP-138 b.

3.4 Discussion and Conclusion

3.4.1 WASP-127 b

WASP-127 b has a mass of 0.18 ± 0.02 MJ and a radius of 1.37 ± 0.04 RJ (Mpl = 0.16 ±

0.02 MJ and Rpl = 1.41±0.06 RJ in the case where RVs from both CORALIE and SOPHIE

were included for analysis). This translates to a bulk density of 0.07+0.01
−0.01 ρJ , hence WASP-

127 b is one of the least dense planets ever discovered. At the time these results were

published, it was also the second lightest planet found by the WASP survey (the only lighter

planet was WASP-139 b (Hellier et al., 2017)).

Comparing to standard coreless models from Fortney et al. (2007), WASP-127 b is

found to have a radius over 30% larger then predicted. Some inflation mechanism must be

in place to give WASP-127 b an anomalously large radius. WASP-127 b has a small orbital

separation of 0.052 AU, and could be subjected to strong irradiation, so the inflation could
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Table 3.6: MCMC solutions of WASP-127. The first column shows values derived with
SOPHIE RV measurements. The values in the second column are derived using both
CORALIE and SOPHIE RVs in the analysis. The final RV fits of the two solutions agree
within 1-σ uncertainty.

Parameter (Unit) Solution without SOPHIE Solution with SOPHIE
P (d) 4.178062 ± 0.000002 4.178062 ± 0.000002

T0 (BJD) 2457248.74131 ± 0.000160 2457248.74126 ± 0.000184
∆F = R2

pl/R
2
∗ 0.01037 ± 0.00015 0.01050 ± 0.00017

T14 (d) 0.1795 ± 0.0007 0.1802 ± 0.0009
b 0.15+0.09

−0.11 0.25+0.08
−0.16

i (◦) 88.7+0.8
−0.6 88.1+1.2

−0.7
M∗(M�) 1.08 ± 0.03 1.08 ± 0.03
R∗(R�) 1.39 ± 0.03 1.42 ± 0.05

log g∗ (cgs) 4.18 ± 0.01 4.17 ± 0.0.02
ρ∗(ρ�) 0.404 ± 0.015 0.380 ± 0.031

Teff (K) 5620 ± 85 5639 ± 90
Mpl(MJ) 0.18 ± 0.02 0.16 ± 0.02
Rpl(RJ) 1.37 ± 0.04 1.41 ± 0.06

log gpl (cgs) 2.33 ± 0.06 2.25 ± 0.7
ρpl(ρJ) 0.068+0.010

−0.010 0.055+0.011
−0.009

a (au) 0.0520 ± 0.0005 0.0522 ± 0.0005
Tpl,A=0 (K) 1400 ± 24 1417 ± 32

Table 3.7: System parameters of WASP-136 and WASP-138 from MCMC analysis.
Parameter (Unit) WASP-136b WASP-138b

P (d) 5.215357 ± 0.000006 3.634433 ± 0.000005
T0 (BJD) 2456776.90615 ± 0.00109 2457326.62183 ± 0.000319

∆F = R2
pl/R

2
∗ 0.00411 ± 0.00015 0.00683 ± 0.00013

T14 (d) 0.2272 ± 0.0033 0.1572 ± 0.0012
b 0.59+0.08

−0.14 0.19+0.12
−0.15

i (◦) 84.7+1.6
−1.3 88.5+0.9

−1.2
M∗(M�) 1.41 ± 0.07 1.22 ± 0.05
R∗(R�) 2.21 ± 0.22 1.36 ± 0.05

log g∗ (cgs) 3.90 ± 0.06 4.25 ± 0.02
ρ∗(ρ�) 0.132 ± 0.030 0.488 ± 0.044

Teff (K) 6260 ± 100 6272 ± 96
Mpl(MJ) 1.51 ± 0.08 1.22 ± 0.08
Rpl(RJ) 1.38 ± 0.16 1.09 ± 0.05

log gpl (cgs) 3.26 ± 0.09 3.36 ± 0.04
ρpl(ρJ) 0.581+0.230

−0.148 0.92+0.097
−0.146

a (AU) 0.0661 ± 0.0012 0.0494 ± 0.0007
Tpl,A=0 (K) 1742 ± 82 1590 ± 31
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be caused by energy from the star being deposited in the planet’s atmosphere (Weiss et al.,

2013).

Another possible inflation mechanism is tidal heating (Bodenheimer et al., 2001,

2003). Short period giant planets could have formed at wider eccentric orbits via planet-

planet scattering (Ford and Rasio, 2008) or the Kozai-Lidov mechanism (Kozai, 1962; Li-

dov, 1962; Fabrycky and Tremaine, 2007). The planet’s orbital energy would dissipate as

tidal heat in the interior of the planet, which drives the planet migration inwards and circu-

larises the orbit (Wu and Lithwick, 2011). During this process, tidal heating could inflate

the planet. While the anomalously large radius of WASP-127 b may have been caused by

external heating mechanisms, enhanced opacity of the planet’s atmosphere could also lead

to a similar result (Burrows et al., 2007). If the atmosphere of WASP-127 b has enhanced

metallicity, it could retain the planet’s internal heat and delay the cooling effect during

formation. Thus the planet would remain inflated for a longer period of time.

Batygin et al. (2011) argued that the Ohmic heating mechanism could lead to an in-

creased planetary radius. Close-in planets tend to have higher effective temperatures, such

that alkali metals in the atmosphere could be ionised, which induces electrical conductiv-

ity. When these ions interact with the planet’s magnetic field, an electromotive force is

developed. This can in turn heat up the interior and the atmosphere of the planet. The

efficiency of the Ohmic heating mechanism relies heavily on the depth of the dissipation

(Huang and Cumming, 2012). The boundary of the convective zone would move deeper

towards the planet interior if Ohmic dissipation occurs between the atmosphere and the

convective boundary. This can reduce the planet cooling time and Ohmic heating would

become inefficient.

Planets could re-inflate if their host stars enter the red giant branch (RGB) (Lopez

and Fortney, 2016). Evolving stars have increased luminosities, hence higher irradiation.

This could deposit heat in the planet and expand its atmosphere again. This process is also

more likely to occur for less massive planets with short periods (Lopez and Fortney, 2016).

WASP-127 has an estimated main-sequence lifetime of tMS = t�(Ms/M�)−2.5 ≈ 8 Gyr,

where t� is the solar main-sequence lifetime, M� is the Solar mass and Ms is the stellar

mass. The age of WASP-127 is 11.41 ± 1.80 Gyr, which means the star is evolving off the

main sequence. Consequently, WASP-127 b may be re-inflating as its host star evolves into

a subgiant.

WASP-127 b shares similar characteristics with a number of low density planets,

e.g. WASP-39b (Faedi et al., 2011), HAT-P-8b (Bayliss et al., 2015), HAT-P-11b (Bakos

et al., 2010), HAT-P-47b and HAT-P-48b (Bakos et al., 2016). If the atmosphere of WASP-

127 b is assumed to be similar to that of Jupiter’s (µ = 2.2u, where the atomic mass unit

is u = 1.66 × 10−27 kg), it would have an atmospheric scale height of H ≈ 2500 ± 400
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km. WASP-127 is a bright G-type star with Vmag = 10.172. The combination of large

scale height and brightness makes the system an exceptional target for atmospheric studies.

In fact, follow up transmission spectroscopy by Palle et al. (2017) revealed that the planet

atmosphere is likely cloud-free, and hints of Na, TiO and VO absorptions were also found.

Mazeh et al. (2005) studied properties of transiting giant planets to find that planet

masses are negatively correlated to the orbital distance. With an increasing number of

smaller planets being discovered, further studies showed a paucity of Neptune-mass planets

at short orbital periods (e.g. Szabó and Kiss 2011). Mazeh et al. (2016) used a more up-

to-date sample of transiting planets to study the location and shape of the ’Neptune desert’.

They found clear upper and lower boundaries in both the period-mass and period-radius

planes.

Kurokawa and Nakamoto (2014) performed numerical simulations to determine the

mass loss and thermal evolution of planets. They showed that planetary atmospheres are

thermally evaporated as they are exposed to X-ray and extreme ultraviolet (XUV) radiation

(Jackson et al., 2012). The atmospheric escape induces Roche lobe overflow which leads

to further evaporation (Kurokawa and Kaltenegger, 2013). The results of Kurokawa and

Nakamoto (2014) suggests that more massive planets remain substantially intact, whereas

less massive planets would be completely evaporated and leave behind a naked core. Fur-

thermore, final planet sizes show a strong dependence on their core masses and only weakly

influenced by migration processes.

Figure 3.12 plots the planet masses as a function of their orbital periods. Clearly,

WASP-127 b sits inside the short-period Neptune desert (Mazeh et al., 2016) which divides

the hot Jupiter and super-Earth populations. Kurokawa and Nakamoto (2014) proposed

that interplanetary interactions can induce migration of sub-Jovian planets after ∼0.1 - 1.0

Gyr. XUV radiation decays after this time hence these planets receive less radiation and

atmospheric escape is not as effective. WASP-127 b could have retained its atmosphere

because it did not receive intense stellar radiation during its youth.

3.4.2 WASP-136 b

WASP-136 b is an inflated hot Jupiter which orbits a bright (Vmag = 9.928) F5 star with a

period of 5.21 days. The planet has a mass of 1.51±0.08 MJ and a radius of 1.38±0.16 RJ.

This corresponds to a density of 0.58+0.23
−0.15 ρJ . WASP-136 is estimated to have a main-

sequence lifetime of tMS ≈ 4 Gyr. The adopted age for WASP-136 is 3.6± 0.7 Gyr (derived

in 3.3.1), implying the star is at the end of its main-sequence lifetime. The density and

surface gravity of WASP-136 is comparable to a subgiant, which is also consistent with

the age analysis. Using the planet evolution model of Fortney et al. (2007), the observed

radius of WASP-136 is found to be 25% larger than the theoretical prediction. As with
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Figure 3.12: Plot of planet mass against orbital period (Data obtained from NASA
Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu/). Grey dots are
known exoplanets as of July 2016. WASP-127b, WASP-136b and WASP-138b are plotted
as green, red and cyan circles respectively. The upper and lower boundaries of the Neptune
desert are plotted in black dashed lines, using analytical functions of Mazeh et al. (2016).
The inflated Neptune-mass planet WASP-127 b is located inside the Neptune desert which
divides the Jovian and super-Earth populations.
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many inflated hot Jupiters (e.g. WASP-54b: Faedi et al. 2013; WASP-78b and WASP-79b:

Smalley et al. 2012), this planet is exposed to strong irradiation from its F-type host star,

which could lead to inflation of the planetary radius.

The spectral analysis and age estimate of WASP-136 reveal that the star is old and

is evolving off the main-sequence. As WASP-136 enters the subgiant branch, its luminosity

is increasing. Consequently, WASP-136 b could be receiving an increased amount of stellar

irradiation as it evolves. This excess heat is deposited in the planet’s interior, which could

result in the re-inflation of the planetary radius. This is the class I inflation model of Lopez

and Fortney (2016).

It is uncommon to find hot Jupiters around subgiant stars; tidal disruption could be

the mechanism responsible for this (Schlaufman and Winn, 2013). In a star-planet system,

tide is raised on the planet by the star. The force exerted on the side of the planet facing the

star is stronger than the force exerted on the side facing away from the star. The differential

gravitational force which is known as tidal force. This force leads to tidal bulges which

can distort the planetary body. Tidal interaction between two bodies allow the exchange

of angular momentum. In a system where the planet sits inside the co-rotation radius (i.e.

when the planets orbital period is shorter than its rotation period), tidal bulge raised on

the planet by the star lags behind the star. This results in the deceleration of the planets

orbit which leads to orbital decay (Rasio et al., 1996; Jackson et al., 2008). The planet

then spirals inwards and eventually crosses the Roche limit (a critical distance where tidal

force on the planet overcomes the gravitational force which holds the material of the planet)

where the planet would be tidally destroyed.

The radius of the host star increases as it evolves off the main sequence. WASP-136

could move from a stable orbit to within the co-rotation radius, resulting in orbital decay.

WASP-136 b is observed to orbit the star at an orbital separation of 0.0661AU, which is

equivalent to ∼ 46 times the Roche limit. Brown et al. (2011) showed the remaining lifetime

τremain of a planet can be expressed as

τremain =
2Q′s
117n

Ms

Mp

( a
Rs

)5 (3.6)

where Q′s is the tidal quality factor of the star, n =

√
G(Ms + Mp)/a3 is the orbital

frequency of the planet. Assuming Q′s = 106 for the case of WASP-136, the estimated

time before WASP-136 b spirals towards the star is ∼ 0.420 Gyr. In addition, the radius of

WASP-136 b would expand as it enters the post main-sequence phase, which can lead to

the engulfment of the planet (Villaver and Livio, 2009).
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3.4.3 WASP-138 b

WASP-138 b is found to have a mass of 1.22 ± 0.08 MJ and a radius of 1.09 ± 0.05 RJ,

giving a density of 0.92+0.10
−0.15 ρJ . The planet orbits a slightly metal-poor F9 star which has

a metallicity of [Fe/H] = −0.09 dex. Fortney et al. (2007) incorporated the effect of stellar

irradiation and planet core masses in their model to computed accurate radii of planets over

a wide range of masses and mixed compositions. They assumed that planets are made up

of an inert core, an adiabatic convective envelope, and a model atmosphere. The presence

of heavy elements in the planet’s core or its convective envelope controls the cooling and

contraction of the interior (Hubbard, 1977). Planets with more heavy elements have smaller

radii. By comparing the observed planet radius, age and incident flux to the planet evolution

model, one can determine the amount of heavy element present in the core or the convective

envelope. In general, Fortney et al. (2007) found that planets with larger core have small

radii, planets with smaller orbital separation have larger radii than planets at larger distances

due to stellar irradiation. At an isochronal age of 3.4 ± 0.9 Gyr and orbital separation of

0.0494 ± 0.0007 AU, WASP-138 b is expected to have a core mass of ∼ 10 M⊕ of heavy

elements (derived from Fortney et al. 2007).

Hot Jupiters were thought to be rare around metal-poor stars (Fischer and Valenti,

2005). The theoretical study by Mordasini et al. (2012) suggested that the core of hot

Jupiters around metal-poor star is likely to have formed in a gas rich disc, and beyond the

ice line.

3.4.4 Conclusion

This chapter has presented the discovery of three exoplanets from the SuperWASP survey.

WASP-127 b is one of the least dense planets ever known, with an enormous atmospheric

scale height of ≈ 2500±400 km. The planet could serve as an exceptional target for detailed

atmospheric studies using JWST in the future. Meanwhile, WASP-136 b adds to the small

sample of exoplanets orbiting evolved host stars which can be used to test the evolution of

planets around subgiants. The detection of WASP-138 b around a slightly metal-poor host

weakens the correlation between host star metallicity and hot Jupiter occurrence. Theoret-

ical study proposed that hot Jupiters around metal-poor stars can be formed in a gas rich

disc.

Ground-based transit surveys provide a large number of unique exoplanets around

bright stars. Detailed follow up observations and analysis of gas giants showed that the

planet population have a wide range of radii, hence bulk densities. The variety of exoplanets

found can also improve our understanding on the mass-radius relations of different planet
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populations. As demonstrated in this chapter, the formation and evolution paths of the

planets may be constrained from their inferred densities. The presence of the Neptune

desert implies that the two distinct planet population - hot Jupiters and super-Earths, have

different formation histories. In the following chapter, the characteristics of a super-Earth

will be explored.
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Chapter 4

EPIC 206011496 b: A Transiting
Rocky Super-Earth

The space-based transit survey - Kepler mission (Borucki et al., 2010, 2011; Koch et al.,

2010), has discovered over 2,000 confirmed planets and a further 2,000 candidates. This

sample of planets revealed that by far the most common type of planets in our Galaxy

are small planets with Rp < 4.0 R⊕ (Howard et al., 2012; Batalha et al., 2013; Dressing

and Charbonneau, 2013; Petigura et al., 2013). However, many planet candidates in the

Kepler sample are faint, which make follow up observations difficult. Only dozens of Kepler

planets have precisely determined masses so far. K2 is the extension of the Kepler transit

survey which targets brighter stars. TO date, the mission yielded over 300 confirmed planets

(e.g. Montet et al. 2015; Barros et al. 2015; Crossfield et al. 2016).

In our Solar System, no Super-Earths are known. It is therefore interesting to de-

termine the underlying mechanisms that are responsible for their formation and evolution,

and find out how that may be different from the Solar System. However, to determine the

origins of small planets, accurate masses and radii are necessary to infer their bulk densities,

hence internal compositions. In this chapter, the detection and analysis of a transiting super-

Earth EPIC 206011496 b is presented. Part of the analysis in this work were performed by

a wider collaboration, including follow up observations (RV and direct imaging), stellar

spectral analysis, and joint RV and lightcurve analysis. I have contributed to the planet

detection, follow up observations (RV), stellar rotation analysis using the auto-correlation

function, age estimates, planet internal composition analysis, and leading the publication of

this work.
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4.1 Candidate Detection - K2 Photometry

K2 is an extension to the Kepler space mission. It is a multi-field, ecliptic-pointed mission

which targets approximately 10,000 targets per field (Howell et al., 2014). To minimise

the drifting motion of the spacecraft due to the loss of its two reaction wheels, it needs to

fire thrusters to offset the solar radiation pressure every 6 hours. The pointing stability of

the spacecraft is compromised due to this motion, which resulted in the drifting of targets

across the detector pixels and hence a 6h dominate systematic in the K2 photometry.

EPIC 206011496 was observed during K2 Campaign 3 in long cadence mode. The

photometry was obtained between November 2014 and January 2015. The target was in-

dependently flagged as a candidate from two transit searches. The K2 raw pixel data was

reduced using the adapted CoRoT alarm pipeline (Barros et al., 2016). A second reduc-

tion pipeline was used following methods of Armstrong et al. (2015a) and Armstrong et al.

(2015b), along with human input (eyeballing individual lightcurves) to eliminate false pos-

itives, and identify high priority candidates (Armstrong et al., 2015a,b). This target was

also independently identified as a candidate by other search algorithms (Vanderburg et al.,

2016; Crossfield et al., 2016; Mayo et al., 2018). The K2 lightcurve generated from the

adapted CoRoT pipeline has less noise than that of Armstrong et al., hence the former

was used for the planetary system analysis later. The adapted CoRoT reduction pipeline

(Barros et al., 2016) is summarised as follows: The K2 pixel data was downloaded from

the Mikulski Archive for Space Telescopes (MAST)1. The photometric data was extracted

using the adapted CoRoT imagette pipeline. The optimal aperture size equivalent to the

size of an imagette (i.e. 15 × 10 pixels) was chosen for the target, taking into account the

signal-to-noise ratio (SNR) of the pixels before aperture photometry was performed. Fur-

thermore, the Modified Moment Method developed by Stone (1989) was used to determine

the centroid positions for systematic corrections. Flux and position variations of the star on

the CCD can lead to systematics in the data. These were corrected following the self-flat-

fielding methods of Vanderburg and Johnson (2014). Figure 4.1 shows the final extracted

lightcurve, and Table 4.1 gives the photometric properties of EPIC 206011496.

4.2 Follow up Observations

4.2.1 Radial Velocity Follow Up - HARPS

Follow up RV measurements were obtained with the HARPS spectrograph (R∼ 110, 000;

Mayor et al. 2003. A total of 153 observations were obtained between 2016 October 29

and 2017 November 22. The data were reduced using the HARPS online pipeline which

1http://archive.stsci.edu/kepler/data_search/search.php
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Figure 4.1: The detrended K2 transit lightcurve of EPIC 206011496. Positions of transit
signals are marked with blue dashed lines.
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Figure 4.2: Top panel: Phase-folded K2 lightcurve of EPIC 206011496 with the ephemeris
from our analysis. The red solid line is the best-fit transit model. Bottom panel: Residuals
as a function of orbital phase.
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Table 4.1: Properties of EPIC 206011496. EPIC 206011496
has a nearby bound companion (see text for detailed descrip-
tion), hence values presented in this table are for the blended
photometry. The photometric magnitudes listed were used
in deriving the SED as described in Section 4.3.3.

Parameter Value and uncertainty Source

K2 campaign 3 a
EPIC 206011496 a
2MASS ID 2MASS J22480755−1429407 b
RA(J2000) 22:48:07.56 c
Dec(J2000) −14:29:40.84 c
µRA (mas/yr) 30.20 ± 0.09 c
µDEC (mas/yr) −23.34 ± 0.06 c
Parallax (mas) 7.18 ± 0.05 c
Photometric magnitudes
Kp 10.92 a
Gaia G 10.928 c
Johnson B 11.845 ± 0.029 d
Johnson V 11.102 ± 0.037 d
Sloan g′ 11.419 ± 0.042 d
Sloan r′ 10.879 ± 0.047 d
Sloan i′ 10.689 ± 0.084 d
2-MASS J 9.726 ± 0.026 b
2-MASS H 9.312 ± 0.022 b
2-MASS Ks 9.259 ± 0.027 b
WISE W1 9.178 ± 0.022 e
WISE W2 9.213 ± 0.020 e
WISE W3 9.162 ± 0.040 e

a. EXOFOP-K2: https://exofop.ipac.caltech.edu/k2/
b. Two Micron All Sky Survey (2MASS)
c. Gaia DR2
d. AAVSO Photometric All-Sky Survey (APASS)
e. AllWISE
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follows similar procedures described in Chapter 2. Spectral analysis, which is described in

a later section, revealed the target host is of spectral type G. The RV measurements were

derived from the CCF using the weighted cross-correlation method with a G2V numerical

template. The bisector velocity span (BIS), and the full width at half maximum (FWHM)

were measured from the CCF profile. The RV measurements and their corresponding un-

certainties are listed in Appendix Table A.2. The time-series RVs and the phase-folded RVs

of EPIC 206011496 are shown in the top and bottom panels of Figure 4.3 respectively.
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Figure 4.3: Upper Panel: Time-series HARPS RV measurements (red circles) of EPIC
206011496. The best-fit Keplerian orbit of EPIC 206011496 b is plotted in black. The
stellar activity is fitted with a GP. The grey region show the 1σ confidence interval of the
GP. Lower Panel: Phase-folded, stellar activity removed HARPS RV measurements (black
circles) of EPIC 206011496 as a function of the orbital phase. The black solid line is the
best-fit RV curve. The binned RV measurements are denoted as red open circles.
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4.2.2 Direct Imaging Observations

Shallow imaging observations were obtained with the NIRC2 instrument at Keck on 2015

August 04 in the narrow-band Brγ filter at 2.169 µm (Programme N151N2, PI: Ciardi).

Multiple images were obtained with a dithering pattern on-sky. These were realigned and

median-combined, and a candidate companion star (star B) was found. To determine the

relative astrometry of the companion, a Gaussian fit was performed on both the star and

the candidate. The estimated uncertainty of the measurement is ∼0.5 pixel, i.e. ∼5 mas.

Following the methods of Vigan et al. (2016), a 2D Gaussian fit was used on the pre-reduced

data to determine the relative Keck astrometry: ∆α = −910 ± 5 mas, ∆δ = −363 ± 5 mas,

separation = 979 ± 5 mas, and position angle = 248.27 ± 0.29 deg. The K-band Keck AO

image and the resulting fit is shown in Figure 4.4. The characterisation of the companion

star is described in a later section in order to determine the contamination it has on the

lightcurve of the target host star.

Figure 4.4: K-band Keck AO image shows a companion at a separation of = 979 ± 5 mas,
and the contrast of the objects is measured to be ∆mag = 8.12.
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4.2.3 Gaia astrometry

The Gaia Data Release 2 (DR2) has surveyed over one billion stars in the Galaxy (Gaia Col-

laboration et al., 2016b, 2018b; Lindegren et al., 2018) and provided precise measurements

of the parallaxes and proper motions for the sources. EPIC 206011496 has a measured

parallax of 7.18 ± 0.05 mas, corresponding to a distance of 139 ± 1 pc. The proper motion

of EPIC 206011496 is µRA = 30.20 ± 0.09 mas, µDEC = −23.34 ± 0.06 mas. As part of

the Gaia DR2, the stellar effective temperature of EPIC 206011496 was derived from the

three photometric bands (Andrae et al., 2018) as Teff = 5390+194
−53 K. The G-band extinction

Ag = 0.101 and the reddening E(BP − RP) = 0.065 estimated from the parallax and mag-

nitudes were used to determine the stellar luminosity, which in turn provides an estimate of

the stellar radius as Rs = 0.914+0.02
−0.06 R� (Andrae et al., 2018). The stellar parameters from

the results of Gaia DR2 are consistent with the distance estimate, effective temperature,

and stellar radius, which are derived in the joint Bayesian analysis in section 4.3.3. How-

ever, Gaia DR2 does not detect the companion star in the system and EPIC 206011496 is

registered as a single object.

4.3 Results

4.3.1 Spectral Analysis

The HARPS spectra were co-added with IRAF to perform spectral analysis of the host star.

The stellar parameters were determined following the methods of Sousa et al. (2008), where

the equivalent widths (EW) of Fe i and Fe ii lines were measured using the ARES code2

(Sousa et al., 2015). The stellar parameters derived are as follow: Teff = 5457 ± 29 K,

log g = 4.42 ± 0.05 dex, [Fe/H] = 0.08 ± 0.02 dex, ξt = 0.81 ± 0.05 km s−1. The chemical

abundances were derived with a standard LTE analysis using the 2014 version of the code

MOOG (Sneden, 1973) which utilised the abfind driver with the EW derived with ARES.

The derived chemical abundances can be found in Appendix Table A.1.

The characterisation of star B was performed following the method of Santerne

et al. (2016). The SPHERE IFS+IRDIS data (A. Vigan, priv. comm.) was fitted with the

spectral energy distribution (SED) of both stars, which were modelled using the BT-SETTL

atmosphere models (Allard, 2014). Star B was assumed to have the same age, metallicity,

and distance as star A, hence they also have the same interstellar extinction and iron abun-

dance. By fitting the difference in the SED models of star A and star B with a Markov Chain

Monte Carlo algorithm, the derived parameters of star B are as follow: Teff = 3428 ± 22 K,

log g = 4.870 ± 0.017 [cgs], MstarB = 0.40 ± 0.01 M�, RstarB = 0.391+0.006
−0.010 R�, correspond-

2The ARES code can be downloaded at http://www.astro.up.pt/ sousasag/ares/
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ing to a star of spectral type M2 (Cox, 2000). From the derived fits, the SED models in the

Kepler band were integrated to compute the the flux contamination contributed from star B

in the K2 lightcurve of star A. The contamination was found to be 0.952 ± 0.024 %.

4.3.2 Stellar Rotation

Periodic variation can be seen in the K2 lightcurve (see Figure 4.1). The variability can

arise due to the presence of starspots which change visibility as the host star rotates. The

rotation period of the host is examined below.

To measure the rotational modulation in the K2 lightcurve, the auto-correlation

function (ACF) technique described by McQuillan et al. (2013, 2014) and Armstrong et al.

(2016) was implemented to derive the stellar rotation period. This technique measures the

self-similarity of a lightcurve by building a correlation function over a range of time lags.

Before the ACF was computed, the lightcurve was median normalised and transit signals

were masked. The ACF is calculated as:

rk =

∑N−k
i=1 (xi − x)(xi+k − x)∑N

i=1(xi − x)2
(4.1)

where rk is the auto-correlation coefficient at lag k, k is the integer multiple of the cadence,

the time-series is xi(i = 1, ...,N) and the mean is x. Only periods of less than half the

length of the time-series data are considered. The rotation period of the host was found to

be 15.14±0.38 d, and the second harmonic was found at 30.48±0.28 d. The resulting ACF

is shown in Figure 4.5.

The periodicity in the RV data was examined using the Lomb-Scargle (LS) peri-

odogram (Lomb, 1976; Scargle, 1982) analysis, which calculates the frequency spectrum

of the time-series lightcurve data. The LS periodograms of BIS, FWHM, RV, and the S

index are plotted in Figure 4.6. A clear peak is observed at 32.2 ± 0.6 d across all peri-

odograms. This is larger than but marginally consistent with the ACF period of 30.48 d at a

2σ level. The planet signal at 2.37 d is significant in the RV periodogram at 1% false alarm

probability level only.

The average FWHM of HARPS spectra was used to derive an upper limit of the

sky-projected stellar rotational velocity, where v sin i < 1.9 ± 0.2 km s−1. Using the stellar

radius in Table 4.2, the rotation period was found to be Prot > 26.02 ± 3.08 d (assuming

an aligned system, i = 90◦). This value agrees with the ∼ 30 d period derived from the

photometry and the RV data.

The rotational period was also examined using the methods of Mamajek and Hil-

lenbrand (2008). In short, the convective turnover time τc of the star was determined using

91



Figure 4.5: The auto-correlation function of EPIC 206011496 from the K2 lightcurve. The
red dashed line marks the rotation period at 15.14 d. The green dashed lines mark the
harmonics of the rotation period.

its B − V colour from APASS3, and the calibrations from Noyes et al. (1984b). The Mount

Wilson index S MW was measured as 0.195 ± 0.025, hence the corresponding log R′HK was

−4.90 ± 0.12. This value was used to calculate the Rossby number Ro using calibrations

from Mamajek and Hillenbrand (2008). The rotational period was finally derived from the

relation Prot = Ro × τc = 32.8 ± 10.0 d.

3https://www.aavso.org/apass
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(a) (b)

(c) (d)

Figure 4.6: Lomb-Scargle periodogram of (a) Bisector Span; (b) Full Width Half Maximum; (c) Radial velocity; (d) S index. The peak
position is marked by the purple line and corresponds to a period of 32.2± 0.6 d. The orbital period of EPIC 206011496 b is indicated by the
yellow line, and the planet signal is only significant in the RV at the 1% FAP level.
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4.3.3 Joint Bayesian Analysis with PASTIS

The K2 photometry, the HARPS RV measurements and the SED observed by the APASS,

2-MASS, and WISE surveys (Munari et al., 2014; Cutri et al., 2014) were analysed simul-

taneously with the PASTIS software (Dı́az et al., 2014; Santerne et al., 2015). The jktebop

package (Southworth, 2008) was used to model the K2 lightcurve, and an oversampling fac-

tor of 30 was used to account for the long integration time of the K2 data (Kipping, 2010).

The RVs were modelled with Keplerian orbits and the effects of stellar activity was mod-

elled using a Gaussian process (GP) with a quasi periodic kernel (Haywood et al., 2014).

The BT-Settl library of stellar atmospheres (Allard et al., 2012) was used to model the SED.

The system parameters and the 1-σ uncertainties are reported in Table 4.2.

The MCMC method described in Chapter 2 was used to derive the system parame-

ters. The physical stellar parameters were computed from spectroscopic parameters using

the Dartmouth evolution tracks (Dotter et al., 2008) at each step of the chain. Using these

stellar parameters and tables of Claret and Bloemen (2011), the limb darkening coefficients

were also derived.

For the stellar parameters, normal distribution priors centred on the values derived

in Section 4.3.1 were used. The normal prior for the orbital ephemeris centred on the values

found by the detection pipeline was chosen. In addition, a uniform distribution in sin i for

the planet inclination was adopted as a prior. For the remaining parameters, uninformative

priors were used. The full list of fitted parameters and the priors used in the model is shown

in Appendix Table A.3.

Twenty MCMC chains of 3 × 105 iterations were run during the MCMC analysis,

where a randomly drawn joint prior distribution was chosen as a starting point. The non-

converging chains were rejected following the Kolmogorov-Smirnov test, which measures

the similarity of the empirical distribution between the start and the end of the chain. The

burn-in phase were then removed and the converged chains were merged to compute the

posterior distribution. The median of this distribution was derived to obtain the system

parameters.

4.3.4 Stellar Age

The RV measurements and K2 lightcurve were analysed simultaneously with the Dartmouth

stellar evolution tracks (Dotter et al., 2008) to derive an age of τiso = 9.7 ± 3.0 Gyr for the

host star. Rotational modulation was detected in the K2 lightcurve, and analysis in Section

4.3.2 suggested that the host star has a rotation period of ∼ 30 d. Following methods by

Barnes (2010) and adopting the rotational period as 32.8 d, the gyrochronological age of
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Table 4.2: System parameters of EPIC 206011496 derived from joint lightcurve and RV
analysis using PASTIS.

Parameter Value and uncertainty
Stellar Parameters
Effective temperature Teff [K] 5477 ± 27
Surface gravity log g [cgs] 4.419 ± 0.053
Iron abundance [Fe/H] [dex] 0.078 ± 0.020
Distance to Earth D [pc] 145 ± 8
Interstellar extinction E(B − V) [mag] 0.009+0.011

−0.007

Systemic radial velocity γ [km s−1] −18.186 ± 0.002
Stellar density ρ?/ρ� 0.98 ± 0.19
Stellar mass M? [M�] 0.915 ± 0.017
Stellar radius R? [R�] 0.977 ± 0.053
Stellar age τ [Gyr] 9.7 ± 3.0

Planet Parameters
Orbital Period P [d] 2.369172 ± 8.9 × 10−5

Transit epoch T0 [BJD - 2456000] 981.6431 ± 1.6 × 10−3

Radial velocity semi-amplitude K [m s−1] 3.34 ± 0.43
Orbital inclination i [◦] 87.7 ± 1.6
Planet-to-star radius ratio k 0.01604 ± 0.00041
Orbital eccentricity e 0.084 ± 0.079
Impact parameter b 0.30 ± 0.20
Transit duration T14 [h] 2.266 ± 0.050
Semi-major axis a [AU] 0.03376 ± 0.00021
Planet mass Mp [M⊕] 6.54 ± 0.84
Planet radius Rp [R⊕] 1.71 ± 0.11
Planet bulk density ρp [g cm−3] 7.1 ± 1.8

EPIC 206011496 was found to be τgyro = 6.11 ± 4.16 Gyr which agrees with τiso within

error.

Tucci Maia et al. (2016) and Nissen (2015) studied a sample of solar-twins to derive

the relation between the [Y/Mg] abundance ratio and the stellar age. Explicitly, the relation

is expressed as:

[Y/Mg] = 0.186(±0.008) − 0.041(±0.001) × τ[Y/Mg] (4.2)

Following this relation, the age of EPIC 206011496 was determined as τ[Y/Mg] = 3.97 ±

2.59 Gyr. τ[Y/Mg] implies the host is slightly younger than the gyrochronological age and

isochronal age. However, EPIC 206011496 has a main sequence lifetime of 12.5 Gyr, and

its low lithium abundance A(Li ii)< 0.45 obtained in Section 4.3.1 suggests that the host is
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not young. Hence it is likely that the host is of at least an intermediate age.

4.4 Discussion and Conclusion

EPIC 206011496 b is a super-Earth with a mass of 6.54 ± 0.84 M⊕ and radius of 1.71 ±

0.11 R⊕, and an orbital period of P = 2.37 d. It has a bulk density of 7.1±1.8 g cm−3, which

is comparable to the Earth’s density. Several analytical models were applied to determine

the composition and mass fraction of EPIC 206011496 b.

Fortney et al. (2007) computed radii of planets with different internal composition

across different planet masses and orbital separations. The planet radii were fitted to deter-

mine an analytical function for rock/iron planets:

R = (0.0592 rm f +0.0975)(log M)2 + (0.2337 rm f +0.4938) log M + (0.3102 rm f +0.7932)

(4.3)

where R is in R⊕, M is in M⊕, rm f is the rock mass fraction (rm f = 1.0 for a pure rock

planet, and rm f = 0.0 for a pure iron planet). The rock mass fraction of EPIC 206011496

b was determined to be 0.84, so the composition of the planet is likely to be dominated

by rock. Seager et al. (2007) also independently derived the mass-radius relation of solid

exoplanets in an analytical form:

log10 R = k1 +
1
3

log10 M − k2Mk3 (4.4)

where R = Rp/r1 and M = Mp/m1 are the scaled radius and mass of the planet, and the

values of r1 and m1 depends on the composition of the planet, k1 = −0.20945, k2 = 0.0804,

and k3 = 0.394. The composition of EPIC 206011496 b was determined to be mostly rocky

using this relation, where the planet was found to have > 70% of silicate mantle by mass.

A more detailed in investigation of the composition of EPIC 206011496 b was per-

formed using interior model of Brugger et al. (2017). This model considers planets com-

posed of three differentiated layers: core (metals), mantle (rocks), and a liquid water enve-

lope. Figure 4.7 shows the possible compositions of EPIC 206011496 b inferred from the

1σ uncertainties on the mass and radius of the planet. In the case where the planet is as-

sumed to have terrestrial compositions (i.e. without any water), the central mass and radius

of the planet are best fitted with a rock mass fraction of 81%, which is consistent with other

theoretical predictions. The rmf of the planet is poorly constrained (within the 44100%

range) due to the uncertainties on the planet’s fundamental parameters. Assuming that the

stellar Fe/Si ratio (here 0.90 ± 0.41) can be used as a proxy for the bulk planetary value

(Dorn et al., 2015; Brugger et al., 2017), the uncertainty range can be reduced to 6083%.
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In the case of a water-rich EPIC 206011496 b, the interior model derives an upper limit on

the water mass fraction (wmf) of the planet. Assuming an Earth-like albedo, the planet is

estimated to have a high equilibrium temperature of ∼ 1300 K, where water would be in

the gaseous and supercritical phases, which are less dense than the liquid phase. From the

uncertainties on the mass, radius, and bulk Fe/Si ratio of EPIC 206011496 b, we infer that

this planet cannot present a wmf larger than 31%.
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Figure 4.7: Ternary diagram showing the possible composition of EPIC 206011496 b. The
thick black line indicates the allowed composition of the planet inferred from the central
values of the mass and radius of the planet, and the dashed lines denote the deviations from
this line allowed by the 1σ uncertainties on the fundamental parameters. The red line and
area show the compositions compatible with the planetary bulk Fe/Si ratio derived for EPIC
206011496 b from the stellar value. Compositions of the Earth and Mercury are shown for
reference.

Recently, the California-Kepler Survey (CKS) (Johnson et al., 2017; Fulton et al.,

2017) revealed a bimodal radius distribution in the Kepler sample of small planets (Rp <

4 R⊕). The CKS has confirmed a deficit of planets with radii of ∼ 1.8 R⊕ (the ‘Evaporation

Gap’; Owen and Wu 2013). These planets are most susceptible to photoevaporation where

their atmospheres can be eroded away. Alternatively, EPIC 206011496 b could have lost its
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atmosphere via core-powered mass loss mechanism (Ginzburg et al., 2016, 2018). In this

scenario, EPIC 206011496 b may have formed with a light envelope which was removed

rapidly due to the planet’s cooling luminosity.

EPIC 206011496 b is exposed to an enormous amount of irradiation because of

its proximity to the star. The irradiance received by a planet can be estimated using F =

L/4πr2, where L = 4πRsσT4
eff

is the stellar luminosity, σ = 5.67 × 10−8 W m−2 K−4 is the

Stefan-Boltzmann constant, and r is the distance between the star and the planet. In the case

of EPIC 206011496 b, the planet is estimated to receive an irradiance of 9.32 × 105 Wm−2,

over 680 times greater than the Solar irradiance received at the Earth. The equilibrium

temperature of the EPIC 206011496 b can be estimated using Equ. 1 of López-Morales and

Seager (2007): Teq = Teff(Rs/a)1/2[f(1 − AB)], where f and AB are the reradiation factor

and the Bond albedo of the planet. Assuming an Earth-like Bond albedo AB = 0.3 and that

the incident radiation is redistributed around the atmosphere (i.e. f = 1/4), the equilibrium

temperature of EPIC 206011496 b is Teff ≈ 1300 K.

Figure 4.8: Planet radius distribution as a function of orbital period. The grey circles
denote the planet sample obtained from the CKS sample (Fulton et al., 2017). The blue
dot-dashed line and the green dashed line indicate the peak of the bimodal distribution of
the planet radius distribution, where planets tend to favour radii of ∼ 1.3 R⊕ and ∼ 2.4 R⊕
due to the photoevaporation mechanism. The red dotted line indicates the lower limit of the
photoevaporation valley derived from Owen and Wu (2017).
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Indeed, this planet is found at the lower limit of the evaporation gap as shown in the

2D radius distribution plot in Figure 4.8. This implies the gas envelope of EPIC 206011496

b was probably eroded due to photoevaporation. It is likely that the photoevaporation pro-

cess occurred within the first ≈ 100 Myr after the planet was formed when when X-ray

emission is saturated (Jackson et al., 2012). After ≈ 100 Myr, the X-ray emission decays.

Using the X-ray-age relation of Jackson et al. (2012), the total X-ray luminosity of

EPIC 206011496 over its lifetime, Etot
x was estimated. Using the results of section 4.3.4,

we adopted a mean age of 6.32 Gyr for the host star. The X-ray-to-bolometric luminosity

ratio in the saturated regime for a B−V = 0.743 star is log (Lx/Lbol) = −3.71± 0.05± 0.47.

The corresponding turn-off age is log τsat = 8.03 ± 0.06 ± 0.31, where the decrease in X-

ray emission follows a power law (α = 1.28 ± 0.17). Over the lifetime of the star, Etot
x =

6.70 × 1045 ergs (assuming efficiency factor η = 0.25) and EPIC 206011496 b is expected

to have lost 2.7% of its mass under the constant-density assumption. The predominantly

rocky composition of EPIC 206011496 b indicates that the planet was likely formed inside

the ice line. It could have migrated towards its current orbital separation well before ≈ 100

Myr and subject to intense photoevaporation, or accreted its mass locally (Owen and Wu,

2017).

A surprisingly diverse range of small planets are known to date. Super-Earths with

the same masses could hold a wide range of radii, which corresponds to different planet bulk

densities. Precise RV measurements are necessary to determine the accurate planetary mass.

This would place strong theoretical constraints on the formation and evolutionary paths of

the planet. The increasing sample of small planets will help distinguish planet origins,

identify the types of mass loss mechanism, and the efficiency of atmospheric evaporation

processes.

5https://exoplanetarchive.ipac.caltech.edu/index.html
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Figure 4.9: A mass-radius diagram of confirmed exoplanets with masses up to 20 M⊕. Data
taken from NASA Exoplanet archive 5. The mass-radius relations were taken from Zeng
et al. (2016). From top to bottom, the black solid lines denotes a pure water, pure rock
and pure iron composition. The grey dashed lines between the solid lines are mass-radius
relations for water-rock and rock-iron composites. The red solid line is the lower limit of a
planet radius as a result of collisional stripping (Marcus et al., 2010). EPIC 206011496 b
has a composition consistent with a rocky terrestrial planet.
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Chapter 5

The Evaporating Planet WASP-12 b

5.1 Motivation

Hot Jupiters orbit at close proximities to their host stars. Consequently, they are exposed

to enormous amounts of stellar irradiation. The planets’ atmospheres are highly irradi-

ated, leading to inflation. Under extreme circumstances, high temperatures can drive the

increase in particle velocities above the atmospheric escape velocity (Lammer et al., 2003;

Lecavelier des Etangs et al., 2004). The upper atmosphere of the planet therefore evapo-

rates. This is the case for HD 209458 b where an extended exosphere was observed via

the enhanced transit in the Lyman-α absorption lines Vidal-Madjar et al. (2003). Similar

feature was also observed in HD 189733 b (Lecavelier Des Etangs et al., 2010) and GJ436

b (Kulow et al., 2014). In addition to Lyman-α lines, strong resonance lines such as Na i

D doublets and Ca ii H & K lines are also used as proxies to detect absorption by the plan-

etary atmosphere. Redfield et al. (2008) and Vidal-Madjar et al. (2011) detected Na i D

absorption lines and constrained atmospheric properties of HD 189733b and HD 209458 b

respectively. Similarly, Ca ii H & K lines were also used to search for extended exospheres

around the evaporating planets WASP-12 b (Fossati et al., 2013; Haswell et al., 2012) and

55 Cnc e (Ridden-Harper et al., 2016).

5.1.1 The Curious Case of WASP-12 b

WASP-12 b orbits a late-F star with an ultra-short period of P = 1.09 days (Hebb et al.,

2009). At an orbital separation of just 0.023 AU, it is one of the hottest Jupiters known to

date. The inflated exosphere of WASP-12 b implies that its Roche lobe (a region dominated

by gravitational forces of an object) is overfilled, resulting in the mass loss from the planet.

Table 5.1 summarises the system parameters of WASP-12.
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Table 5.1: System parameter of WASP-12 obtained from Hebb et al. (2009)(H09) and Knut-
son et al. (2010)(K10).

Parameters Values Reference
V 11.96 ± 0.08 H09
Teff (K) 6300+200

−100 H09
[M/H] 0.30+0.05

−0.15 H09
log g 4.38 ± 0.10 H09
v sin i (km s−1) < 2.2 ± 1.5 H09
Ms (M�) 1.35 ± 0.14 H09
Rs (R�) 1.57 ± 0.07 H09
log R′HK −5.500 K10
Age (Gyr) 2 ± 1 H09
P (days) 1.091423 ± 0.000003 H09
a (AU) 0.0229 ± 0.0008 H09
Mp (MJ) 1.41 ± 0.10 H09
Rp (RJ) 1.79 ± 0.09 H09
Teq (K) 2516 ± 36 H09

Fossati et al. (2010b) and Haswell et al. (2012) used the Cosmic Origins Spec-

trograph (COS) on the Hubble Space Telescope (HST) to obtain near-UV (NUV) spectra

centred on the transit of WASP-12, where enhanced transit depths were observed. This in-

creased absorption was also observed at resonance lines. In particular, Haswell et al. (2012)

found absorption in the Fe ii 2586 Å, as well as the complete absorption in the Mg ii h

& k line cores. Their analysis showed that high Mg ii column density is required for the

observed line profile, and the source which could cause the absorption is gas lost from the

WASP-12 b.

Ca ii H & K lines are commonly used as stellar activity indicators. A survey con-

ducted by Knutson et al. (2010) measured the activities of planet hosting stars. Among the

sample, WASP-12 was measured to have an extremely low log R′HK index of −5.5, far be-

low the basal level (log R′HK = −5.1 for late-type main-sequence stars (Wright et al., 2004)).

Fossati et al. (2013) compared the Ca ii H & K line profiles against stars with similar ef-

fective temperatures and ages to reveal an enhanced absorption in the WASP-12 spectrum,

which is similar to the complete absorption in Mg ii lines observed with NUV spectra. This

observation was interpreted as due to the extra absorption by gas lost from WASP-12 b,

where evaporated planet material diffuses into the planet orbit and covers the entire system.

This chapter presents an investigation in the variability of the atmosphere of WASP-

12 b. The data selection and reduction processes will be outlined. The methods used to

analyse absorption features in Ca ii H & K and Na i D line profiles will be discussed, and

the implications will be explored.
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5.2 Data Selection and Reduction

Figure 1 of Fossati et al. (2013) showed that the anomalously deep absorptions in the Ca ii

H & K cores extents a region that is ∼ 4 Å wide. Variability in the Ca ii H & K core fluxes

is expected to be small and subtle. Consequently, spectra of moderate resolution and high

signal-to-noise ratio (SNR) is required for an in-depth study of the system.

A total of 58 archival spectroscopic data of WASP-12 were obtained from the High

Resolution Echelle Spectrometer (HIRES; Vogt (1992)). The data covers the period be-

tween 2009 December 22 and 2013 December 11, providing both in and out-of-transit cov-

erage of the system. These observations cover the spectral range of 3360-8100 Å across

three CCDs, and have a resolving power R = 72, 000, with the exception of one spectrum

obtained on 2010 January 02 where R = 48, 000. At the Ca ii H & K wavelength ranges,

the spectra have signal-to-noise ratios (SNR) of ≈ 30-40. The list of archive observations

is listed in Table 5.2.

The HIRES data were reduced with IRAF following procedures outlined in Chapter

2. Spectral region centred around Ca ii H & K is faint hence scatter light removal is impor-

tant. For each spectrum, scatter light subtraction was performed using the iraf/echelle.apscatter

task, where regions between adjacent spectral orders were used to define the scatter light

surface and fitted with a cubic spline function.

The Ca ii H & K line cores are centred at 3968.5 Å and 3933.7 Å, respectively,

which lies in the HIRES echelle orders 90 and 91. The Na i D1 and D2 lines are centred at

5889.95 Å and 5895.92 Å, respectively, corresponding to the HIRES echelle orders 60 and

61. Using the online HIRES ThAr arc-line plots1, wavelength calibration was performed

with the Th-Ar lamp comparison spectra. The wavelength solution was applied to obtain

dispersion corrected spectra. For orders 90 and 91 (which contains the Ca ii H & K lines),

the wide absorption regions were masked before a 2nd order cubic spline was fitted to the

continuum for normalisation. Similar procedures were performed on orders 60 and 61

(which contains the Na i D1 and D2 lines), where a 1st order cubic spline was fitted. The

final step involves merging the adjacent orders to produce the Ca ii spectrum (covers a

wavelength range of 3950-3995Å) and a Na i spectrum (covers a wavelength range of 5790-

5990Å).

1https://www2.keck.hawaii.edu/inst/hires/ThAr_atlas.html
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Table 5.2: List of archival Keck/HIRES observations used in anal-

ysis. The aperture column provides the decker name and slit num-

ber. The filter column provides the detail on the filters used in

wheel 1 and 2.

KOA ID Observation Date (UT) Observation Time (UT) Exposure Time (s) Aperturea Filterb SNRc

HI.20091222.45029 2009-12-22 12:30:29 500 C2 kv370; clear 27.00

HI.20091224.39756 2009-12-24 11:02:36 600 C2 kv370; clear 32.00

HI.20091231.29162 2009-12-31 08:06:02 500 C2 kv370; clear 39.00

HI.20100101.36355 2010-01-01 10:05:55 500 C2 kv370; clear 24.00

HI.20100102.39073 2010-01-02 10:51:13 500 C2 kv370; clear 34.00

HI.20100102.48380 2010-01-02 13:26:20 750 B3 kv370; clear 43.00

HI.20100223.31093 2010-02-23 08:38:13 600 C2 kv370; clear 42.00

HI.20100228.26010 2010-02-28 07:13:30 600 C2 kv370; clear 49.00

HI.20100301.33603 2010-03-01 09:20:03 600 C2 kv370; clear 45.00

HI.20100305.26680 2010-03-05 07:24:40 600 C2 kv370; clear 45.00

HI.20100329.24426 2010-03-29 06:47:06 600 C2 kv370; clear 32.00

HI.20100330.26780 2010-03-30 07:26:20 600 C2 kv370; clear 22.00

HI.20100403.24623 2010-04-03 06:50:23 600 C2 kv370; clear 45.00

HI.20100426.20953 2010-04-26 05:49:13 600 C2 kv370; clear 37.00

HI.20100829.54161 2010-08-29 15:02:41 600 C2 kv370; clear 40.00

HI.20101121.38938 2010-11-21 10:48:58 600 C2 kv370; clear 40.00

HI.20101212.50135 2010-12-12 13:55:35 600 C2 kv370; clear 42.00

Continued on next page

104



Table 5.2 – continued from previous page
KOA ID Observation Date (UT) Observation Time (UT) Exposure Time (s) Aperturea Filterb SNRc

HI.20101215.40967 2010-12-15 11:22:47 600 C2 kv370; clear 35.00

HI.20101229.34137 2010-12-29 09:28:57 900 C2 kv370; clear 45.00

HI.20101229.35081 2010-12-29 09:44:41 900 C2 kv370; clear 40.00

HI.20101229.36025 2010-12-29 10:00:25 900 C2 kv370; clear 30.00

HI.20111017.43906 2011-10-17 12:11:46 345 C2 clear; clear 33.00

HI.20111113.42340 2011-11-13 11:45:40 600 C2 clear; clear 29.00

HI.20111206.39159 2011-12-06 10:52:39 272 C2 clear; clear 35.00

HI.20120102.23765 2012-01-02 06:36:05 391 C2 clear; clear 39.00

HI.20120102.24200 2012-01-02 06:43:20 398 C2 clear; clear 39.00

HI.20120102.24642 2012-01-02 06:50:42 393 C2 clear; clear 40.00

HI.20120102.27103 2012-01-02 07:31:43 467 C2 clear; clear 44.00

HI.20120102.27614 2012-01-02 07:40:14 484 C2 clear; clear 44.00

HI.20120102.28143 2012-01-02 07:49:03 481 C2 clear; clear 44.00

HI.20120102.28669 2012-01-02 07:57:49 494 C2 clear; clear 44.00

HI.20120102.29207 2012-01-02 08:06:47 494 C2 clear; clear 44.00

HI.20120102.29745 2012-01-02 08:15:45 456 C2 clear; clear 44.00

HI.20120102.30245 2012-01-02 08:24:05 467 C2 clear; clear 44.00

HI.20120102.30756 2012-01-02 08:32:36 452 C2 clear; clear 44.00

HI.20120102.31253 2012-01-02 08:40:53 455 C2 clear; clear 44.00

HI.20120102.32256 2012-01-02 08:57:36 456 C2 clear; clear 45.00

HI.20120102.32757 2012-01-02 09:05:57 450 C2 clear; clear 45.00

Continued on next page
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Table 5.2 – continued from previous page
KOA ID Observation Date (UT) Observation Time (UT) Exposure Time (s) Aperturea Filterb SNRc

HI.20120102.35360 2012-01-02 09:49:20 489 C2 clear; clear 43.00

HI.20120102.35893 2012-01-02 09:58:13 461 C2 clear; clear 45.00

HI.20120102.36398 2012-01-02 10:06:38 468 C2 clear; clear 44.00

HI.20120102.36911 2012-01-02 10:15:11 438 C2 clear; clear 44.00

HI.20120102.37394 2012-01-02 10:23:14 438 C2 clear; clear 41.00

HI.20120102.37877 2012-01-02 10:31:17 451 C2 clear; clear 46.00

HI.20120102.38373 2012-01-02 10:39:33 444 C2 clear; clear 45.00

HI.20120102.38862 2012-01-02 10:47:42 442 C2 clear; clear 45.00

HI.20120102.39348 2012-01-02 10:55:48 437 C2 clear; clear 45.00

HI.20120102.39830 2012-01-02 11:03:50 434 C2 clear; clear 45.00

HI.20120102.40309 2012-01-02 11:11:49 453 C2 clear; clear 44.00

HI.20120102.40806 2012-01-02 11:20:06 432 C2 clear; clear 45.00

HI.20120102.41282 2012-01-02 11:28:02 454 C2 clear; clear 44.00

HI.20120102.41780 2012-01-02 11:36:20 452 C2 clear; clear 44.00

HI.20120102.42276 2012-01-02 11:44:36 488 C2 clear; clear 44.00

HI.20120102.42809 2012-01-02 11:53:29 515 C2 clear; clear 44.00

HI.20120102.43369 2012-01-02 12:02:49 504 C2 clear; clear 43.00

HI.20120102.43918 2012-01-02 12:11:58 563 C2 clear; clear 42.00

HI.20120102.44525 2012-01-02 12:22:05 536 C2 clear; clear 43.00

HI.20131211.37740 2013-12-11 10:29:00 392 C2 clear; clear 31.00

Continued on next page
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Table 5.2 – continued from previous page
KOA ID Observation Date (UT) Observation Time (UT) Exposure Time (s) Aperturea Filterb SNRc

a C2 = slit size 14.0” (length), 0.861” (width), R= 48, 000; B3 = slit size 14.0” (length), 0.574” (width), R= 72, 000.
b Filter wheels 1 & 2: clear is empty; kv370 covers a wavelength range of 0.35 - 1.1 microns.
c Estimated signal-to-noise of the spectrum near the image center.
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5.3 Analysis and Results

The spectra were required to be aligned to the same velocity reference frame, and their

fluxes standardised to the same level in order to investigate the possible variability in the

line profiles effectively.

5.3.1 Standardise HIRES Spectra

The iSpec2 software tool (Blanco-Cuaresma et al., 2014) was used to generate a synthetic

WASP-12 spectrum (hereafter referred to as the template spectrum) using the SYNTHE

radiative transfer code and the ATLAS9 atmosphere model (Kurucz, 2005). Stellar pa-

rameters derived in the discovery paper (Hebb et al., 2009) were used to define the model

grid. The HIRES spectra (hereafter referred to as the observed spectra) were RV corrected

to the same velocity frame as the template spectrum using the cross-correlation method.

The next step was to standardise the observed spectra. First, the ratio between the ob-

served and template spectrum was calculated. A mask was applied to the deep absorption

features, and a median filter was applied to create a smoothed continuum. In the case

of the Ca ii spectrum, the H & K broad absorption regions (λH = 3962.00 - 3975.50

Å and λK = 3926.50 - 3940.00 Å, respectively) were masked and a 20 Å window was

used to smooth the continuum. For the Na i spectrum, the deep absorption lines centred at

λ = 5857.34 Å, 5889.95 Å, 5895.92 Å, 5914.15 Å were masked and a 5 Å window was used

instead. Once the smooth continuum was obtained, the flux level of the observed spectra

were standardised by taking the product of the observed spectrum and the smooth contin-

uum. An extra step was taken to adjust the fluxes of the far line wings of the Ca ii H &

K profiles. Within the line wings, regions without absorption features (red shaded regions

in Figure 5.1) were selected to compute the observed-to-template spectrum ratio. A 0.5 Å

median filter was applied, and a second order polynomial was fitted to match the fluxes in

the line wings. An example of the standardised spectrum is shown in Figure 5.2.

5.3.2 Residual Analysis

The goal of the investigation was to establish if there are orbit-dependent variabilities in

the line profiles. The orbital phases of the spectra were calculated from their corresponding

epoch, with phase 0 fixed at mid-transit. To search for variability in the lines, we compared

the relative fluxes of the observed and the template spectra. A residual spectrum is defined

as:

S (λ) = fobs − ftemp (5.1)

2The code is available via http://www.blancocuaresma.com/s/
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Figure 5.1: WASP-12 template spectrum centred on the Ca ii K (left) and Ca ii H (right).
Red vertical bands show the wavelength regions used to match fluxes at the line wings.
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Figure 5.2: top panel: The extracted HIRES spectrum (red) before the standardise treat-
ment (see text for detail) with the WASP-12 template spectrum (black). bottom panel: A
standardised HIRES spectrum (red) generated for the time-series analysis.
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where fobs is the observed spectrum and ftemp is the template spectrum. To measure the

absorption/emission across the core of the line profiles, the integrated residual fluxes were

computed using the trapezoidal rule: ∫ λ2

λ1

S (λ)dλ (5.2)

where λ1 and λ2 are the wavelengths of lower and upper bound of the core region of interest.

Ca ii H & K Profiles

The trace plots of the residual spectra centred at Ca ii K (3928.0 Å - 3938.0 Å) and Ca ii

H (3963.5 Å - 3973.5 Å) are shown in Figures 5.3 and 5.4, respectively. Each pixel colour

corresponds to the residual flux intensity according to the scale shown in the colour bar. On

inspection, enhanced absorption relative to the template spectrum is seen in both Ca ii H

& K line cores across most orbital phases, with the exception of three residual spectra at

phases 0.243, 0.250, and 0.261 where emission relative to the template spectrum is seen.

The three spectra showing emissions were obtained separately on 2010 January 01, 2009

December 31, and 2011 November 13, so the effect was measured repeatedly on a night-to-

night and yearly basis. The integrated residual flux across the central 1 Å regions at the Ca ii

H & K cores were computed according to Equation 5.2. The measured absorption is plotted

as a function of orbital phase in Figure 5.5. The uncertainties of the computed integrated

flux residuals were propagated from the flux error of the spectra, which was approximated

from the SNR of the spectra (δ(flux) ∼ 1/(SNR)). Enhanced absorption throughout the

planetary orbit is attributed to the circumstellar material from the evaporating planet. This

is in agreement with the interpretation of Haswell et al. (2012) from the Mg ii h and k lines

in the NUV wavelength range. The fluctuation measured in the residual flux of Ca ii H & K

cores could be an indication of non-uniform absorbing material around the orbit.
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Na i D Doublets

Similar analyses were performed in the Na i D doublets. The residual spectra centred at

the Na i D Doublets were computed, followed by measurements of the narrow absorption

features centred at the 1.5 Å line cores. The trace of the residual fluxes centred at the Na i

doublet (5883.2 Å - 5902.9 Å) is shown in Figure 5.6. The integrated residual flux in the Na i

D1 and D2 line cores as a function of the planet orbital phase is shown in Figure 5.7. The

error bars of the integrated flux residuals of the Na i D1 and D2 estimated from the SNR

of the spectra centred around Na i doublet underestimated the uncertainty of the residual

fluxes. We empirically determine the uncertainties of the measured spectral fluxes to obtain

realistic error bars for each data. The amount of evaporated material present along the line-

of-sight during transit (phase∼0.9441-1.0559) of WASP-12 b was assumed to be constant.

Therefore the spectral fluxes at in-transit phases are constant. The standard deviation (σ)

associated to the in-transit fluxes was calculated using

σ =

∑
( fint,i − ¯fint)

N − 1
(5.3)

where N is the number of in-transit spectra (16 in the archival data), fint,i is the ith inte-

grated flux residual and ¯fint is the mean in-transit integrated flux residual. The error bars

propagated from the SNR of the spectrum is then re-scaled using the calculated standard

deviation. For both D1 and D2 lines, strong absorption relative to the template spectrum is

observed throughout the orbit, with fluctuations of ∼ 0.01 in the D1 core and ∼ 0.015 in the

D2 core.
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Figure 5.3: Residual WASP-12 spectra centred at Ca iiK (3928.0 Å - 3938.0 Å) is plotted as
a trace map. The colour of the trace show the residual flux intensity according to the scale
shown in the colour bar on the right. Bluer pixels indicate higher residual flux intensity in
the observed spectrum compared to the template, whereas whiter pixels indicate a lower
residual flux intensity. Note that the phase axis is not in-scale. The WASP-12 template
spectrum is plotted under the trace as a reference. The vertical grey dashed lines indicate
the approximate 4Å bandwidth where enhanced absorption is expected to be seen.
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Figure 5.4: Trace plot as described in Figure. 5.3 but centred at Ca ii H (3963.5 Å - 3973.5
Å).
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Figure 5.5: Measured absorption in the Ca ii H & K line cores as a function of planet orbital
phase. (a) Integrated flux in the normalised Ca ii K residuals; (b) Integrated flux in the
normalised Ca ii H residuals.
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Figure 5.6: Trace of residual spectra centred at the Na i D doublet, notations as describe in
Figure. 5.3.
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Figure 5.7: Measured absorption in the Na i D doublets according to Equation 5.2. Note
the integrated flux scale is different to Figure 5.5. (a) Integrated flux in the normalised Na i
D1 residuals; (b) Integrated flux in the normalised Na i D2 residuals.
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5.4 Discussion and Conclusion

Using archival HIRES data, the variability of the evaporating atmosphere of WASP-12 b

was investigated. The residual analysis showed enhanced absorptions in both the Ca ii H

& K and Na i D doublet line profiles, as well as hints of varying flux intensities in the line

cores.

The cores of the Ca ii H & K and Na i D doublet line profiles all showed strong

absorptions compared to the template spectrum over all orbital phases. During transit, the

absorption feature is expected for an evaporating planet. As previously noted by Fossati

et al. (2010b), Haswell et al. (2012), and Fossati et al. (2013), the extended atmosphere of

WASP-12 b overfills its Roche lobe and enters the blow-off phase. Gas lost from the planet

diffuses into the circumstellar disc, forming a comet-like tail. The complete absorption

observed in the Ca ii and Na i lines is only possible if the absorbing material disperses to

a considerable extent as to cover the chromospherically emitting stellar disc in its entirety

(Haswell et al., 2012).

Enhanced absorption compared to the stellar template was further observed through-

out the out-of-transit phases, implying the presence of an optically thick cloud of material

around the system at all times. Thus suggesting the entire system is indeed shrouded by the

diffused gas.

The intensities of the integrated flux residuals vary in both the Ca iiH & K cores and

the Na i D1 and D2 line cores. The measured fluctuation could suggest a varying opacity

in the centres of these strong resonance lines. In fact, HST/COS NUV observations of

Haswell et al. (2012) and Nichols et al. (2015) could not reproduced early ingress observed

by Fossati et al. (2010b). This may imply an uneven distribution of absorbing gas around

the system. This effect may be associated to the stellar radiation pressure, stellar wind,

magnetic fields of the star and the planet, or a combination of all mechanisms.

5.4.1 Column Density of the Line Profiles

The density of the circumstellar gas disc required to produce the enhanced absorption can

be inferred from the column density of the material. The column density N quantifies the

number of particles in a unit area. This can be determined from the equivalent width W of

the absorption line, and the theoretical curvature of growth (COG).

W is a measure of the strength of the spectral line, and is defined as the width of a

rectangular box reaching up to the continuum of the spectrum which has the same area as

the spectral line (Carroll and Ostlie, 2006):

W =

∫
Fc − Fλ

Fc
dλ, (5.4)
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where Fc is the flux from the continuum spectrum outside the spectral line and Fλ is the

flux of the absorption line. W is measured in angstrom Å. The COG is a logarithmic graph

of W as a function of N. It describes the optical depth and the line broadening processes of

a spectral line.

Column Density of Na

In the case of the Na i D lines, the absorption excess in the spectral lines were measured

from the residual spectra. W of the residual Na i D lines were measured using the splot

function of IRAF, which derives the width by fitting a Gaussian profile centred at the line

core. Using the COG plot from Carroll and Ostlie (2006), the number density of Na i is

derived, adopting the oscillating strength of f = 0.645 (Carroll and Ostlie, 2006) for Na i.

The W and N of the Na i D lines are summarised in Table 5.3. The mean column density

required to reproduce the observed absorption depth is around 5×1014 cm−2. Bottom panel

of Figure 5.8 shows the column density of Na i measured at respective orbital phases.
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Figure 5.8: The measured column densities Na of Ca ii (top) and Na i (bottom) around the
planetary orbit.
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Column Density of Ca

To estimate the column density of Ca ii is less straightforward. While it is believed that

the activity of WASP-12 is hidden by a dense circumstellar material, the intrinsic chro-

mospheric emission of the star is unknown. The stellar atmospheric model produced in

Section 5.3.1 can only model the photospheric contribution of the star. Fossati et al. (2015),

and subsequently Fossati et al. (2017), have reconstructed the Ca ii H & K emission using

the correlations between the intrinsic Lyα flux and the flux in Ca ii H & K lines determined

by Linsky et al. (2013). Unfortunately the Lyα emission of WASP-12 was not measured,

thus the intrinsic chromospheric activity of WASP-12 used in this work was estimated from

its age. Using the activity-age calibration of Mamajek and Hillenbrand (2008) and adopting

the age of WASP-12 as 2 ± 1 Gyr from Table 5.1, the activity index log R′HK of WASP-12

was determined to be -4.71.

The log R′HK index is commonly derived from the S-index (S HIRES ) (Vaughan et al.,

1978; Noyes et al., 1984a), and is a measure of the flux ratio between the H and K band-

passes centred at the Ca ii H & K cores (3968.470Å and 3933.664Å with bandwidths of

1.09Å and 1.09Å, respectively), and the V and R continuum regions (centred at 3901.07Å

and 4001.07Å with bandwidths of 10.0Å and 10.0Å, respectively) on either side of the line

profiles:

S HIRES =
H + K
V + R

. (5.5)

The values of H, K, V , and R in this work were calculated from the mean fluxes of the

corresponding bandpass which are shown in Figure 5.9. The wavelength windows used to

measure the mean H and K fluxes are denoted by the black dashed lines. The wavelength

windows used to measure the mean V and R fluxes are indicated by the shaded grey regions.

Using the calculated S HIRES index, the total emission in the H and K passbands can

be obtained:

RHK = 1.340 × 10−4Cc f S HIRES , (5.6)

where Cc f is the conversion factor (Middelkoop, 1982; Rutten, 1984) which is parame-

terised as:

log Cc f = 0.25(B − V)3 − 1.33(B − V)2 + 0.43(B − V) + 0.24. (5.7)

B − V is the colour of the star, which is 0.50 for WASP-12.

The photospheric contribution to the H and K emission must be subtracted from

RHK in order to obtain the true chromospheric emission of the star. Noyes et al. (1984a)

119



Figure 5.9: Spectrum centred at the Ca ii H & K emission cores showing the wave-
length windows used to calculate the S-index (Reproduced from Figure 2 of Staab et al.
(2017) with permission from Oxford University Press). The black dashed lines indicate
the 1.09Åwide bandpasses used to calculate the mean fluxes of H (3968.47Å) and K
(3933.66Å). The shaded grey regions are the 20Åwide continuum windows used to measure
the mean fluxes of V and R centred on 3901.07Åand 4001.07Å, repectively. The S-index is
the ratio between the core fluxes H and K, and the continuum fluxes V and R.

derived a relation which estimates the photospheric emission using the B − V colour:

log Rphot = −4.02 − 1.40(B − V). (5.8)

The true chromospheric emission R′HK is obtained by R′HK = Rphot − RHK , and the activity

index log R′HK can be determined.

Using the derived activity index log R′HK of WASP-12, the corresponding S MW was

determined as 0.2019. The chromospheric emission in the WASP-12 spectrum can be re-

constructed using the definition of S MW in Equation 5.5. The Ca ii H & K emission profiles

were modelled using a Gaussian profile with a width of ≈ 1Å. The flux ratio of the H and

K passbands was fixed such that at the line centres f (K)/ f (H) = 1.048 (Linsky and Avrett,

1970). The Gaussian profile was then added to the photospheric model described in Section

5.3.1. In order to obtain an emission profile with a strength equivalent to that of WASP-

12’s, a range of rescaling factors were used to adjust the size of the Gaussian profile. The

S MW index was iteratively calculated until the value matches the S MW index of WASP-12.
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Figure 5.10: Reconstructed WASP-12 model spectrum. The model photosphere (blue solid
line) of WASP-12 was generated using the SYNTHE radiative transfer code and the AT-
LAS9 atmospheric model. The chromospheric emission (red dashed-dot line) of WASP-12
was estimated using a Gaussian profile, and by assuming a flux equivalent to an activity
index of log R′HK = −4.71 which was derived using the activity-age relations of Mamajek
and Hillenbrand (2008). The reconstructed WASP-12 spectrum (green dashed line) is the
sum of the photospheric model and the chromospheric emission.

The reconstructed WASP-12 spectrum is shown in Figure 5.10.

The residual spectra at all orbital phases were re-evaluated using the reconstructed

model (see Figure 5.11 as an example). The column density of Ca ii was derived following

the method described in Section 5.4.1, and the oscillator strength f = 0.66 (Gallagher,

1967) was adopted. The mean column density of Ca ii is around 6 × 1014 cm−2, and the

measured column densities are reported in Table 5.3. The top panel of Figure 5.8 shows the

column density of Ca ii measured at respective orbital phases.

Mura et al. (2011) modelled the exospheric tails and distribution of neutral sodium,

ionised calcium and magnesium of close-in exoplanets. Na i atoms were found to be

strongly influenced by stellar radiation pressure, forming a sodium neutral atom tail which

extends in the anti-sun direction. On the other hand, photo-ionised Ca ii and Mg ii atoms

could be influenced by the planet’s magnetic fields and carried away by stellar wind to

form an ion tail. More recent work by Carroll-Nellenback et al. (2017) investigated the

interaction between gas lost from giant planets and stellar wind. Their simulations have

demonstrated that absorbing material could disperse into up-orbit and down-orbit streams

as a consequence of tidal and Coriolis forces. The streams of material would extend around

the entire orbit over the star, and that the density of absorbing material appears to be non-

uniformly distributed.

In Figure 5.5, a hint of emission is recorded in the Ca ii H & K profiles at phase

φ ∼ 0.250 and, to a lesser extent, just before phase φ ∼ 0.800. The change in residual
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Figure 5.11: Residual analysis of WASP-12 centered at Ca ii K, using the reconstructed
WASP-12 model. The residual spectrum is offset by 0.15 for clarity.

flux intensity could be attributed to a change in the column density of the absorbing gas.

However, such a reduction in density was not observed at the same orbital phases in the nar-

row Na i profiles. As discussed earlier, neutral and ionised atoms interact differently with

stellar radiation, stellar winds, and magnetic fields, and the different properties of Na i and

Ca iimay result in different distributions hence optical thickness of absorbing material. The

reduced Ca ii column density may be linked to an increase in stellar wind at those phases.

Overall Gas Density of the Circumstellar Disc

The gas density of the circumstellar disc can be estimated using the mean column density of

Ca ii, which was measured to be NCa ii = 6 × 1014 cm−2. Assuming the gas disc extends to

twice the planet orbital radius, the mass density of Ca ii is ρCa II = (NCa II/2a)× (M/NA) =

5.83 × 10−20 g cm−3, where M/NA is the mass of a single Ca atom ((M/NA)Ca II = 6.65 ×

10−23 g). Fossati et al. (2010a) measured the Ca ii abundance of WASP-12 as log(N/Ntot) =

−5.41 ± 0.06. If we further assume that Ca ii constitutes around 10−6 of the circumstellar

gas disc, the overall gas density would be ρdisc = ρCa II/10−6 = 5.83 × 10−14 g cm−3.

Carroll-Nellenback et al. (2017) simulated the evolution of evaporating hot Jupiters

leading to a circumstellar environment, and more recently, Debrecht et al. (2018) propa-

gated the same method to simulate the evolution of the WASP-12 system. In both works,

the circumstellar disc presented a ‘doughnut’ shape. Suppose the gas disc is a simple hollow

cylinder which extends from the radius of WASP-12 to twice the orbital distance of WASP-
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12 b, and has a height of Rs such that the star is entirely covered by the gas disc along the

line of sight. The volume of this doughnut shaped disc is πRs × [(2a)2 − (Rs)2]. Therefore

the overall gas mass of the circumstellar disc, assuming uniform density, is 9.14 × 1021 g.

Following the method of Lecavelier Des Etangs (2007), the present atmospheric escape rate

of WASP-12 b is 1.79 × 1011 g s−1. Consequently, it would take over 1600 years to build

up the measured gas density.

It is important to note that the work presented here did not account for the ISM

column density in the direction of WASP-12. At a distance of 439 pc, the ISM Ca ii column

density was estimated as log NCa II ≈ 13.50 (Fossati et al., 2017), which is an order or

magnitude lower than our measured mean log NCa II ≈ 14.78. Thus the density of the

circumstellar disc is likely lower than what was derived.

5.4.2 Conclusion

A number of planet-hosting stars showed anomalously low stellar activity. Staab et al.

(2017) found that 24% of their sample of planet host stars have a log R′HK index below the

basal level. Some of these systems, such as WASP-12, have an apparently low activity due

to the presence of a circumstellar material. WASP-18, for instance, was shown to have

an intrinsically low activity (Fossati et al., 2018). In order to identify the mechanism re-

sponsible for the anomalously low activity of these planet host stars, periodic spectroscopic

observations centred at the Ca ii H and K wavelength range are required.

The work presented here showed that enhanced absorption in the Ca ii H and K and

Na i D is observed across all orbital phases of the WASP-12 system, and that circumstellar

material from the evaporating planet is responsible for the absence of an emission core.

This effect is not unique to WASP-12 (e.g. Fossati et al. (2015)). One could take advantage

of this intriguing property to investigate the feasibility to detect planets by searching for

stars with anomalously low activity, as is demonstrated in the following chapter.
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Table 5.3: Measured column densities of Ca ii and Na i

Phase W Ca ii K W Ca ii H N(Ca ii K) N(Ca ii H) W Na i D1 W Na i D2 N(Na i D1) N(Na i D2)

Å Å cm−2 cm−2 Å Å cm−2 cm−2

0.000 0.3217 0.3669 5.18E+14 6.62E+14 0.6247 0.7970 5.89E+14 9.37E+14

0.005 0.3132 0.3635 4.84E+14 6.32E+14 0.3673 0.3572 2.09E+14 1.97E+14

0.011 0.3434 0.3722 5.82E+14 6.62E+14 0.6209 0.6834 5.76E+14 6.96E+14

0.016 0.2985 0.3686 4.41E+14 6.62E+14 0.3927 0.3642 2.36E+14 2.05E+14

0.021 0.3263 0.3698 5.43E+14 6.62E+14 0.6277 0.6775 5.97E+14 6.87E+14

0.026 0.3609 0.3570 6.38E+14 6.04E+14 0.6214 0.6522 5.76E+14 6.37E+14

0.032 0.3390 0.3632 5.82E+14 6.32E+14 0.6221 0.6294 5.76E+14 5.75E+14

0.037 0.3558 0.3504 6.38E+14 6.04E+14 0.4060 0.3478 2.54E+14 1.87E+14

0.042 0.3665 0.3731 6.68E+14 6.62E+14 0.6250 0.6559 5.91E+14 6.40E+14

0.047 0.3409 0.3781 5.82E+14 6.93E+14 0.6135 0.6281 5.68E+14 5.95E+14

0.052 0.3464 0.3636 5.82E+14 6.32E+14 0.6661 0.8915 6.60E+14 1.17E+15

0.057 0.3558 0.3795 6.38E+14 6.93E+14 0.3420 0.6205 1.81E+14 5.78E+14

0.062 0.3466 0.3748 6.09E+14 6.93E+14 0.6167 0.3737 5.73E+14 2.16E+14

0.068 0.3495 0.3727 6.09E+14 6.62E+14 0.6416 0.3697 6.17E+14 2.10E+12

0.073 0.3423 0.3580 5.82E+14 6.32E+14 0.6155 0.7849 5.71E+14 9.10E+14

0.079 0.3649 0.3822 6.68E+14 6.93E+14 0.6139 0.6412 5.68E+14 6.15E+14

0.085 0.3345 0.3781 5.55E+14 6.93E+14 0.3925 0.3216 2.38E+14 1.61E+14

0.091 0.3621 0.3761 6.38E+14 6.93E+14 0.3880 0.6676 2.33E+14 6.62E+14

0.097 0.3412 0.3612 5.82E+14 6.32E+14 0.6161 0.8212 5.73E+14 9.88E+14

Continued on next page
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Table 5.3 – continued from previous page
Phase W Ca ii K W Ca ii H N(Ca ii K) N(Ca ii H) W Na i D1 W Na i D2 N(Na i D1) N(Na i D2)

Å Å cm−2 cm−2 Å Å cm−2 cm−2

0.130 0.3413 0.3574 5.82E+14 6.04E+14 0.3333 0.2133 1.72E+14 6.29E+13

0.142 0.3409 0.3504 5.82E+14 6.04E+14 0.5862 0.3892 5.18E+14 2.34E+14

0.172 0.3445 0.3396 5.82E+14 5.51E+14 0.5632 0.446 4.79E+14 3.03E+14

0.188 0.3530 0.3361 6.09E+14 5.51E+14 0.3874 0.8912 2.33E+14 1.16E+15

0.243 0.3037 0.3098 4.62E+14 4.58E+14 0.6122 0.6743 5.65E+14 6.74E+14

0.250 0.2875 0.2714 4.12E+14 3.55E+14 0.7113 0.5312 7.54E+14 4.26E+14

0.261 0.3070 0.3275 4.62E+14 5.38E+14 0.3395 0.1125 1.78E+14 4.10E+12

0.269 0.3439 0.3644 5.82E+14 6.32E+14 0.5410 0.7525 4.41E+14 8.39E+14

0.272 0.3471 0.3671 6.09E+14 6.62E+14 0.7549 0.7575 8.46E+14 8.51E+14

0.288 0.3440 0.3686 5.82E+14 6.62E+14 0.3335 0.3231 1.72E+14 1.62E+14

0.300 0.3563 0.3703 6.38E+14 6.62E+14 0.4353 0.5951 2.92E+14 5.36E+14

0.321 0.3532 0.3621 6.09E+14 6.32E+14 0.3357 0.3453 1.74E+14 1.84E+14

0.407 0.3699 0.3673 6.68E+14 6.62E+14 0.5401 0.7298 4.39E+14 7.90E+14

0.439 0.3452 0.3648 5.82E+14 6.32E+14 0.3613 0.5820 2.02E+14 5.08E+14

0.490 0.3516 0.3659 6.09E+14 6.32E+14 0.6773 0.3735 6.84E+14 2.16E+14

0.536 0.3291 0.3335 5.43E+14 5.38E+14 0.7854 0.3538 9.13E+14 1.92E+14

0.635 0.3470 0.3582 6.09E+14 6.32E+14 0.6588 0.3806 6.48E+14 2.23E+14

0.745 0.3421 0.3709 5.82E+14 6.62E+14 0.5738 0.7812 4.96E+14 9.01E+14

0.765 0.3305 0.3476 5.37E+14 5.77E+14 0.5574 0.7307 4.68E+14 7.92E+14

0.824 0.3392 0.3574 5.82E+14 6.04E+14 0.5578 0.7510 4.68E+14 8.35E+14

Continued on next page
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Table 5.3 – continued from previous page
Phase W Ca ii K W Ca ii H N(Ca ii K) N(Ca ii H) W Na i D1 W Na i D2 N(Na i D1) N(Na i D2)

Å Å cm−2 cm−2 Å Å cm−2 cm−2

0.860 0.3374 0.3482 5.55E+14 5.77E+14 0.5582 0.7799 4.69E+14 9.01E+14

0.876 0.3483 0.3583 6.09E+14 6.32E+14 0.3669 0.9234 1.32E+14 1.25E+15

0.881 0.3499 0.3702 6.09E+14 6.62E+14 0.3731 0.3981 2.16E+14 2.43E+14

0.886 0.3457 0.3656 5.82E+14 6.32E+14 0.3460 0.4148 1.85E+14 2.65E+14

0.898 0.3413 0.3666 5.82E+14 6.62E+14 0.5836 0.7215 5.13E+14 7.76E+14

0.908 0.3448 0.3661 5.82E+14 6.32E+14 0.3659 0.4174 2.07E+14 2.68E+14

0.912 0.3325 0.3538 5.55E+14 6.04E+14 0.3640 0.3668 2.05E+14 2.07E+14

0.918 0.3390 0.3774 5.82E+14 6.93E+14 0.6085 0.7907 5.58E+14 9.22E+14

0.923 0.3636 0.3725 6.68E+14 6.62E+14 0.6151 0.6933 5.71E+14 7.11E+14

0.929 0.3426 0.3806 5.82E+14 6.93E+14 0.3581 0.8457 1.98E+14 1.05E+15

0.935 0.3244 0.3725 5.43E+14 6.62E+14 0.3771 0.3609 2.20E+14 2.00E+14

0.940 0.3449 0.3711 5.82E+14 6.62E+14 0.6092 0.8076 5.60E+14 9.61E+14

0.946 0.3528 0.3806 6.09E+14 6.93E+14 0.3740 0.3860 2.16E+14 2.30E+14

0.951 0.3185 0.3904 5.18E+14 7.26E+14 0.3539 0.9272 1.93E+14 1.26E+15

0.956 0.3453 0.3705 5.82E+14 6.62E+14 0.4024 0.3906 2.50E+14 2.35E+14

0.967 0.3183 0.3613 5.18E+14 6.32E+14 0.3773 0.9396 2.20E+14 1.29E+15

0.972 0.3489 0.3472 6.09E+14 5.77E+14 0.3273 0.8084 1.66E+14 9.61E+14
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Chapter 6

Open Cluster Exoplanet Detection
Survey

6.1 Advantages and Challenges in the Search for Exoplanets in
Open Clusters

Most stars are believed to have formed in open clusters. The advantages of studying planets

in open clusters have inspired a number of RV and transit surveys. In comparison to field

stars, stars in open clusters are chemically and spatially homogeneous. This enables precise

determination of stellar ages, distances, hence masses, radii, and temperatures using stellar

evolutionary models. Precise measurements of a star’s physical properties are required to

infer planetary parameters. Therefore, open clusters offer ideal environments to examine

planet occurrences. In addition, planets with well determined parameters could provide

valuable constraints on the formation and migration paths of different systems.

Despite the thousands of exoplanets discovered to date, only a small fraction were

found in open clusters. In RV surveys, stellar activity could hamper the derivation of precise

RVs. This could be problematic for open clusters since young stars tend to rotate more

rapidly and are more active. The first planets discovered in open clusters were ε Tauri b

in the Hyades (Mp = 7.6 MJ; Sato et al. 2007), and TYC 5409-2156-1 b in NGC2423

(Mp = 10.6 MJ; Lovis and Mayor 2007) via the RV method. Subsequent discoveries by

Quinn et al. (2012, 2014) showed that hot Jupiters do exist around Sun-like stars in open

clusters, and that the hot Jupiter occurrence rate in open clusters (0.99+0.96
−0.54%) is consistent

with what was found in field stars (1.20 ± 0.38 %, Wright et al. 2012). The discoveries

further demonstrated that the tidal circularisation timescales of hot Jupiters are comparable

to the young ages of open clusters. Hence knowing the orbital properties of these hot

Jupiters could help distinguish the migration mechanisms responsible for the systems.
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Planets discovered via the transit method can provide physical characteristics of

the systems. However, many transit surveys dedicated to the search for planets in clusters

did not have the required sensitivity to acquire high precision photometry. High precision

photometry became available when the Kepler mission came online. The quality of the

data made the discoveries of small planets possible in open clusters. Meibom et al. (2013)

reported the discoveries of two super-Earth sized planets, Kepler-66 b and Kepler-67 b, in

the 1 Gyr old cluster NGC6811, which showed that planets can form in dense clusters and

that the occurrence of small planets in open clusters is consistent with that for field stars.

While both the RV and transit surveys are beginning to produce fruitful results, these

methods still require a significant amount of telescope time to monitor targets continuously

for planet validation. In this chapter, a pilot study of a new detection technique is presented.

The motivation, data acquisition, and reduction will be outlined, followed by the analysis,

results and prospects for furture work.

6.2 Motivation

The hot Jupiter WASP-12 b presented in Chapter 5 is an example of a irradiated planet.

This could trigger the blow-off phase where gas lost from the planet would diffuse into the

planet orbit and form a circumstellar disc. Near-UV observations of the WASP-12 system

showed enhanced absorption in the strong Mg ii h & k resonance line cores. This effect

was attributed to the presence of the circumstellar cloud which shrouds the entire system

(Haswell et al., 2012).

The strength of the stellar chromospheric Ca ii H & K emission cores is a useful

measure of stellar magnetic activity. Fossati et al. (2013) examined the Ca ii H & K lines

of WASP-12 and found that the line cores are significantly depressed compared to HAT-P-7

and WASP-1, both of which have similar effective temperatures and ages to WASP-12. The

apparently low chromospheric activity in WASP-12 was measured by Knutson et al. (2010),

where its log R′HK value was measured to be −5.500. The activity of WASP-12 falls well

below the basal level (log R′HK = −5.1; Henry et al. 1996; Wright 2004) for solar metallicity

dwarfs, indicative of extrinsic absorption. In fact, all six extreme low-activity outliers in the

log R′HK-(B−V) plane presented by Fossati et al. (2013) are exclusively planet hosting stars.

This observation was also echoed by Staab et al. (2017). Their extended study on

the chromospheric activities of planet host stars (Knutson et al. 2010; Figueira et al. 2014)

found that 24% of the sample have anomalously low log R′HK . They have interpreted this

as an indication of gas lost from planets, where chromospheric emission in the Ca ii H

& K lines is hidden by the evaporated material. Staab et al. have further identified two

low-mass short period planet hosts (Kepler-25 and Kepler-68), which also showed unusally
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low activities. This suggested that the effect is not limited to inflated hot Jupiters. Any

enhanced absorption, hence anomalously low log R′HK value, could imply the presence of

an evaporating planet.

In this pilot planet detection survey, the multi-object spectrograph FLAMES-GIRAFFE

was used to observe stars in open clusters. Stars in open clusters are young, active and

plentiful. The identification of low-activity young stars in the sample indicates the likely

presence of a planet in orbit around the stars. Large number of high-resolution spectra cen-

tred on the Ca ii H & K doublet can be collected at the same time on the same instrument.

Thus reducing valuable telescope times to survey large number of stars.

6.3 Observations

6.3.1 Multi-Object Spectrograph FLAMES-GIRAFFE

The targets selected in this work were observed with FLAMES (Fibre Large Array Multi

Element Spectrograph; Pasquini et al. (2002)), a multi-object spectrograph mounted on

Unit 2 (Kueyen Telescope) of the ESO VLT (Very Large Telescope). FLAMES can access

targets over a large FoV of 25 arcmin in diameter. Observations were obtained using the

medium-high (R=5,500-65,100) resolution optical spectrograph, GIRAFFE, which has a

2 × 4 k EEV CCD (15 micron pixels). Using the MEDUSA fibre mode, the instrument can

provide a pixel scale of 0.3”/pixel, and up to 132 separate objects (including sky fibres) can

be observed at once. During a science exposure, the sky continuum is sampled simultane-

ously with the object using a sky fibre associated to the object fibre. The sky continuum is

subsequently subtracted from the object spectrum during data reduction. To access the Ca ii

H and K lines, the HR02 (high resolution mode with filter number 2) setting with a resolv-

ing power of 22,700 was selected, which provided a wavelength coverage of 3854-4049

Å. The data were obtained in service mode, and subsequent data reduction was performed

using the ESO GIRAFFE pipeline1. The procedures included standard calibration frame

corrections, sky background subtraction, and wavelength calibration. The target selection

is described below, and the observation details are listed in Table 6.1.

6.3.2 Open Clusters and Target Stars Selection

Targeting open clusters can allow a large number of stars to be observed at the same time.

Planets could be detected around a large range of stellar masses. In addition, planets around

stars in open clusters will also have a wide range of well determined ages. The open clusters

selected in this work have a range of ages and distances in order to test this detection

1http://girbldrs.sourceforge.net/
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method. The basic parameters of the clusters, including ages and distances, are listed in

Table 6.1.

For each cluster, an input catalogue was generated with a list of target stars de-

pending on a number of factors. Firstly, a list of targets was created using the Tycho-1

and Tycho-2 Catalog (Hoeg et al., 1997; Høg et al., 2000) centred around the centre of the

cluster (see Table 6.1 for cluster positions). The stars in each cluster were selected based on

their brightness and colours. Only bright stars with Vmag < 14.0 and 0.2 < B−V < 0.5 were

chosen, such that follow up photometry and RV are possible at ground-based facilities. The

cluster membership of each star were also taken into consideration using criteria from the

CSOCA catalogue (Kharchenko et al., 2005), which was based on the All-sky Compiled

Catalogue of 2.5 Million Stars (ASCC-2.5; Kharchenko (2001)). The CSOCA catalogue

provides cluster membership probability based on a star’s proper motions (Pµ), photometry

(Pph) and position (Ps). To account for all aspects of the membership selection procedure,

the combined probability Pc is defined as:

Pc = Ps × min{Pµ, Pph} (6.1)

Using equation 6.1, stars were ranked by their respective membership probability

in the input catalogue. The FLAMES fibre configuration program - Fibre Positioner Obser-

vation Support Software (FPOSS), was used with the list of targets as the input catalogue.

FPOSS then generated favourable fibre configurations which allocates fibres to as many

targets as possible for observations.
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Table 6.1: Basic properties of open clusters selected in the survey. Values were obtained from Kharchenko et al. (2005). The proper motions
(µRA and µDEC) of the clusters were taken from Loktin and Beshenov (2003). E(B−V) is the reddening, and Nstars is the number of stars
monitors in this survey.

Cluster Observation Date EXPTIME(s) RA(J2000) DEC(J2000) µRA (mas/yr) µDEC (mas/yr) Distance (pc) E(B−V) Age (log t) Nstars

NGC 5138 2015-07-26 2400 13h27m16.0s -59d02m00s -3.30 ± 0.30 -0.27 ± 0.25 1986 0.26 7.55 23
NCG 5460 2015-09-21 2400 14h07m27.0s -48d20m36s -5.96 ± 0.30 -2.35 ± 0.36 673 0.09 8.31 18
NGC 6067 2015-07-16 2400 16h13m11.0s -54d13m06s -0.98 ± 0.11 -4.86 ± 0.13 1417 0.4 8.01 43
NGC 6087 2015-08-06 2400 16h18m50.0s -57d56m06s -1.25 ± 0.14 -2.12 ± 0.14 901 0.18 7.93 35
NGC 6134 2015-08-06 2400 16h27m46.0s -49d09m06s 0.48 ± 0.14 -3.13 ± 0.16 913 0.38 8.53 10
NGC 6281 2015-08-06 2400 17h04m41.0s -37d59m06s -3.25 ± 0.15 -5.03 ± 0.14 494 0.15 8.51 96
NGC 6405 2015-08-06 2400 17h40m20.0s -32d15m12s -2.38 ± 0.15 -7.19 ± 0.16 487 0.14 7.91 62
NGC 6494 2015-10-12 2400 17h57m04.0s -18d59m06s 1.18 ± 0.16 -1.39 ± 0.14 628 0.36 8.52 125
NGC 6716 2015-10-12 2400 18h54m34.0s -19d54m06s -0.80 ± 0.24 -4.94 ± 0.25 789 0.2 7.47 11
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6.4 Analysis

The Mount-Wilson method (Vaughan et al., 1978) is commonly used to measure chromo-

spheric activity in a star. It measures the S-index, which is the flux ratio between the sum

of the fluxes in the Ca ii H & K line cores, and the sum of the fluxes in the nearby contin-

uum window. This dimensionless S-index is then required to be calibrated to the Mount-

Wilson scale using standard stars. However, the VLT/FLAMES-GIRAFFE spectrograph

did not observe standard stars alongside open cluster targets. Hence, the method described

by Linsky et al. (1979), which is described later, was applied in this survey to measure

chromospheric emission in the open cluster samples.

6.4.1 Spectral Type Identification

The photometric data of individual targets were taken from the Tycho-2 catalogue (Høg

et al., 2000). Some of these were measured to a relatively poor precision, with uncertainty

as large as ∆(B−V) ∼ 0.3. The B−V colour is an important ingredient in the determination

of a star’s chromospheric emission. Prior to measuring the log R′HK values of the targets,

the spectral types of the observed spectra were first classified by visual inspection. This was

performed through comparing the library of stellar spectra taken from Pickles (1998), and

the extinction corrected (B − V)0 value of each object and the corresponding uncertainty

were used as a guide.

The spectra of early-type stars are dominated by H-Balmer lines. The Ca ii H and

K lines are only visible from A-type stars onwards. In early A-type stars (A0 to ∼A5), the

Ca iiH line is also heavily blended by the Hε λ3970 absorption line. The Ca iiH and K lines

grow to become the dominant absorption features in mid-A to later type spectra. For this

reason, targets earlier than the A5 spectral types were removed from the sample, leaving

35 target spectra in total. A spectral type fitting procedure was carried out to accurately

identify the spectral type of the remaining tagets. For each cluster, model spectra of type

A5 to early G were generated using the SYNTHE radiative transfer code (Kurucz, 2005);

the ATLAS9 (Kurucz, 2005) atmospheric model and the VALD line list database (Kupka

et al., 2011) were used. The best-fit spectral type of each target was detemined using the

reduced χ2 goodness-of-fit test. The adopted B−V colour of each target was converted from

their corresponding fitted spectral type, using the table from Pecaut and Mamajek (2013).

The list of surviving targets and their corresponding fitted spectral types are listed in Table

6.2. The plots of the individual spectrum of each target can be found in Appendix B.
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Table 6.2: Parameters of targets with spectral type later than A5.

The proper motions and parallax of the targets were obtained from

(Gaia Collaboration et al., 2016a), and the B − V were obtained

from (Høg et al., 2000). Column 7 gives the fitted spectral type of

each target and the corresponding fitted B− V colours are given in

column 8.

Identifier RA (J2000) DEC (J2000) µRA (mas/yr) µDEC (mas/yr) Parallax (mas) SpT Fitted (B − V) Cluster

TYC 8674-741-1 13h27m12.48s -59d00m47.1s -14.09 -9.42 2.40 F7 0.51 NGC5138

TYC 8674-1572-1 13h26m01.83s -58d55m16.2s 6.50 -3.67 1.34 F5 0.44 NGC5138

TYC 8674-993-1 13h26m31.14s -59d02m26.6s -3.07 -9.51 1.35 F4 0.41 NGC5138

TYC 8674-1821-1 13h27m53.82s -59d02m49.4s -18.60 -2.60 ... F7 0.51 NGC5138

TYC 8268-660-1 14h06m23.94s -48d18m18.7s -17.58 -5.15 2.03 F8 0.53 NGC5460

TYC 8268-1748-1 14h06m46.3s -48d12m57.4s -5.71 -4.34 1.55 A7 0.21 NGC5460

TYC 8710-108-1 16h12m27.18s -54d04m45.6s -6.63 -14.61 0.77 F5 0.44 NGC6067

TYC 8710-249-1 16h13m02.79s -54d21m36.9s -1.88 -2.88 0.42 A9 0.26 NGC6067

TYC 8719-960-1 16h19m22.83s -57d59m45.9s -5.10 8.10 ... F4 0.41 NGC6087

TYC 8719-402-1 16h20m00.97s -57d52m02.5s -1.13 -2.34 2.45 F5 0.44 NGC6087

TYC 8719-2598-1 16h17m48.82s -57d48m04.4s -4.15 2.99 1.45 F9 0.55 NGC6087

TYC 8719-1382-1 16h19m34.54s -58d06m33.2s 3.08 6.50 1.90 F9 0.55 NGC6087

TYC 8719-899-1 16h18m02.55s -58d01m38.1s 2.60 -7.55 2.07 F9 0.55 NGC6087

TYC 8719-890-1 16h20m10.1s -57d55m54.5s -5.51 -12.76 1.16 F0 0.29 NGC6087

TYC 8320-1143-1 16h27m32.2s -49d06m46s 1.78 -4.88 1.01 F5 0.44 NGC6134

Continued on next page
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Table 6.2 – continued from previous page
Identifier RA (J2000) DEC (J2000) µRA (mas/yr) µDEC (mas/yr) Parallax (mas) SpT Fitted (B − V) Cluster

TYC 8320-1879-1 16h27m40.41s -49d11m38.9s 4.16 -3.11 1.00 F5 0.44 NGC6134

TYC 8320-1491-1 16h27m36.27s -49d13m04s -1.94 -6.99 1.39 F5 0.44 NGC6134

TYC 8320-1394-1 16h27m38.32s -49d12m06.5s 1.59 0.01 1.31 F4 0.41 NGC6134

TYC 8320-1695-1 16h28m00.18s -49d09m06.3s 0.56 -5.10 0.77 F2 0.37 NGC6134

TYC 8320-1410-1 16h27m30.61s -49d10m31.6s 2.04 -4.83 1.00 F3 0.39 NGC6134

TYC 7869-2283-1 17h04m31.74s -37d55m24.7s -2.10 -8.70 ... F0 0.29 NGC6281

TYC 7869-1925-1 17h05m07.11s -37d51m56.8s 1.05 -2.74 1.76 F4 0.41 NGC6281

TYC 7869-2107-1 17h04m51.43s -37d50m17.3s -3.00 -4.66 1.81 F4 0.41 NGC6281

TYC 7869-856-1 17h04m48.45s -37d50m05s -1.66 -4.26 2.22 F0 0.29 NGC6281

TYC 7869-947-1 17h04m08.22s -37d50m21.5s 2.20 -4.80 ... F1 0.33 NGC6281

TYC 7869-1257-1 17h05m32.16s -37d56m52.4s -0.41 -3.26 1.74 F5 0.44 NGC6281

TYC 7380-529-1 17h39m51.32s -32d01m54.2s -3.04 -5.23 2.09 A8 0.25 NGC6405

TYC 7380-363-1 17h40m10.97s -32d00m19.1s -3.40 -13.50 ... F0 0.29 NGC6405

TYC 7380-282-1 17h39m38.82s -32d03m48.3s 6.90 -11.80 ... F0 0.29 NGC6405

TYC 7380-435-1 17h40m23.77s -32d23m24.2s 1.50 3.50 ... A6 0.17 NGC6405

TYC 6258-518-1 17h57m41.71s -19d04m48.4s 2.24 -3.76 1.32 F8 0.25 NGC6494

TYC 6258-685-1 17h56m21.94s -18d52m31s -5.64 1.61 3.06 F7 0.51 NGC6494

TYC 6289-1490-1 18h54m20.97s -19d55m47.9s -9.35 -35.43 3.07 F9 0.55 NGC6716

TYC 6289-1445-1 18h54m50.81s -19d47m15.7s 5.30 0.16 1.33 F0 0.29 NGC6716

TYC 6289-1938-1 18h54m36.01s -19d46m43.1s -0.11 0.50 1.62 G0 0.60 NGC6716
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6.4.2 The Chromospheric Emission of a star

The method developed by Linsky et al. (1979) measures the relative fluxes of the spectra and

converts them to absolute surface fluxes. The observed absolute fluxes are then compared

to theoretical models to derive the chromospheric emission. The details of the calibration

method is described below.

Firstly, the stellar surface flux in a ∆λ = 50 Å bandpass between 3925-3975 Å was

computed using the V − R colour of a star:

log F (∆λ) = 8.264 − 3.076(V − R) for V − R < 1.30 (6.2)

log F (∆λ) = 5.500 − 0.944(V − R) for V − R > 1.30. (6.3)

Very often, the V − R colours are not available from literature so these values were derived

from the B − V colours. In this work, the B − V colour were derived from the spectral type

fitting process described earlier. The B − V colour was then converted to V − R using the

table of Pecaut and Mamajek (2013).

The total surface flux above the zero flux level between the K1 or H1 minimum

features is defined in Linsky and Ayres (1978) and Strassmeier et al. (2000) as:

F (H1) =
f (H1)

f50
× (50F (∆λ))

F (K1) =
f (K1)

f50
× (50F (∆λ)).

(6.4)

Here, f50 is the relative flux in a ∆λ = 50 Å band (between 3925 and 3975 Å). f (H1)

and f (K1) are the relative fluxes between the minimums in the H and K emission cores,

which are defined as the fluxes in a ∆λ = 1 Å band centred at 3968.47Å and 3933.66Å

respectively. The relative fluxes were determined by the integration of the corresponding

bandpasses between the spectrum and zero intensity. Figure 6.1 shows the spectral range

used to calculate the total surface flux.

Once the total surface flux was derived, the underlying photospheric flux contribu-

tion must be subtracted to obtain the pure choromospheric emission. The net cooling rate

in the chromosphere due to the H and K lines are defined as:

F ′(H1) = F (H1) −FRE(H1)

F ′(K1) = F (K1) −FRE(K1).
(6.5)

where FRE(H1) and FRE(K1) are the H1 and K1 indices for radiative equilibrium (RE)

model atmospheres with no chromospheres. Linsky et al. (1979) fitted the H1 and K1 indices
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using the FRE(H1) and FRE(K1) values for 13 main-sequence stars computed by Kelch

et al. (1979). From their fit, Linsky et al. (1979) further derived the FRE(H1) and FRE(K1)

values for a number of dwarf stars. Figure 6.2 shows the FRE(H1) and FRE(K1) values

of dwarf stars in the Linsky et al. (1979) sample. The sample was fitted with a quadratic

function, and was used to determine the FRE(H1) and FRE(K1) values for the targets in this

work.

The chromospheric radiative loss in the H and K lines normalised to the total surface

luminosity of the star is:

R′HK =
F ′(H1) + F ′(K1)

σT 4
e f f

(6.6)

where σ = 5.6704 × 10−5 ergs cm−2 s−1 K−4 is the Stefan-Boltzmann constant. Te f f is

the effective temperature, estimated from the B − V colour of the star and conversion table

of Pecaut and Mamajek (2013). Figure 6.3 shows the conversion between the effective

temperatures Teff , the V − R colours, and the B − V colours. The derived chromospheric

radiative loss R′HK and the activity index log R′HK of the each target are reported in Table

6.3.
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Figure 6.1: The observed spectrum of TYC6289-1938-1. Spectral range centred at the Ca ii
H and K (between 3925 and 3975 Å) was used to calculate the total surface flux.
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Figure 6.2: The H1 (green circles) and K1 (blue circles) indices for radiative equilibrium
(RE) model atmospheres with no chromospheres. The values were taken from Table 1A of
Linsky et al. (1979). The green and blue dashed lines are the quadratic fits for the H1 and
K1 indices respectively. The green and blue triangles are the interpolated H1 and K1 indices
of TYC6289-1938-1, respectively.
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Figure 6.3: The effective temperature Teff (top panel) and the V−R colour (bottom panel) of
a star was interpolated from the B − V colour of a star, using the conversion table of Pecaut
and Mamajek (2013). The red triangles are the interpolated Teff and the V − R colour of
TYC6289-1938-1.
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Table 6.3: Chromospheric activity measurements of stars in open clus-
ters. The B − V values were adopted from the target’s best-fit spectral
type described in Section 6.4.1. The V −R values were interpolated from
the conversion table of Pecaut and Mamajek (2013). Column 5 shows
the flux ratio between the relative fluxes at the minimums in the H and
K emission cores. The chromospheric radiative loss in the H and K lines
R′HK are reports in column 6. The derived activity index log R′HK is in col-
umn 7. Column 8 and 9 gives the derived age t/yr from the activity-age
relation described in Section 6.5.1 and the mean age τcl/yr of the Clus-
ters respectively. The signal-to-noise ratio (SNR) of at the Ca ii spectral
range is given in column 10.

Identifier Cluster B − V V − R fH/ fK R′HK log R′HK log(t) log(τcl) SNR

TYC 8674-741-1 NGC 5138 0.51 0.29 0.9173 9.08E-05 -4.04 8.42 7.55 55.76

TYC 8674-1572-1 NGC 5138 0.44 0.25 1.0313 9.74E-05 -4.01 8.38 ... 59.45

TYC 8674-993-1 NGC 5138 0.41 0.23 1.0328 9.84E-05 -4.01 8.37 ... 85.08

TYC 8674-1821-1 NGC 5138 0.51 0.29 0.9137 9.42E-05 -4.03 8.40 ... 60.96

TYC 8268-660-1 NGC 5460 0.53 0.30 0.9084 1.02E-04 -3.99 8.35 8.31 50.33

TYC 8268-1748-1 NGC 5460 0.21 0.12 0.6529 2.56E-04 -3.59 7.84 ... 83.27

TYC 8710-108-1 NGC 6067 0.44 0.25 0.7376 3.04E-04 -3.52 7.75 8.01 45.61

TYC 8710-249-1 NGC 6067 0.26 0.14 0.8186 4.24E-05 -4.37 8.84 ... 211.49

TYC 8719-960-1 NGC 6087 0.41 0.23 0.9060 2.46E-04 -3.61 7.86 7.93 18.12

TYC 8719-402-1 NGC 6087 0.44 0.25 0.9052 2.09E-04 -3.68 7.96 ... 36.63

TYC 8719-2598-1 NGC 6087 0.55 0.32 0.8032 2.24E-04 -3.65 7.92 ... 35.55

Continued on next page
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Table 6.3 – continued from previous page
Identifier Cluster B − V V − R fH/ fK R′HK log R′HK log(t) log(τ) SNR

TYC 8719-1382-1 NGC 6087 0.55 0.32 0.8484 1.61E-04 -3.79 8.10 7.93 22.22

TYC 8719-899-1 NGC 6087 0.55 0.32 0.8198 2.11E-04 -3.68 7.95 ... 21.85

TYC 8719-890-1 NGC 6087 0.29 0.16 0.9442 2.75E-04 -3.56 7.80 ... 25.59

TYC 8320-1143-1 NGC 6134 0.44 0.25 1.0751 5.32E-05 -4.27 8.71 8.53 29.95

TYC 8320-1879-1 NGC 6134 0.44 0.25 0.9287 1.54E-04 -3.81 8.13 ... 31.89

TYC 8320-1491-1 NGC 6134 0.44 0.25 0.9579 5.40E-04 -3.27 7.43 ... 39.02

TYC 8320-1394-1 NGC 6134 0.41 0.23 1.0213 9.89E-05 -4.00 8.37 ... 69.85

TYC 8320-1695-1 NGC 6134 0.37 0.21 1.0520 9.52E-05 -4.02 8.39 ... 44.36

TYC 8320-1410-1 NGC 6134 0.39 0.22 1.1843 5.88E-05 -4.23 8.66 ... 64.69

TYC 7869-2283-1 NGC 6281 0.29 0.16 0.7776 2.27E-04 -3.64 7.91 8.51 77.03

TYC 7869-1925-1 NGC 6281 0.41 0.23 0.7551 3.35E-04 -3.48 7.69 ... 47.91

TYC 7869-2107-1 NGC 6281 0.41 0.23 0.8714 1.48E-04 -3.83 8.14 ... 95.77

TYC 7869-856-1 NGC 6281 0.29 0.16 0.8091 2.18E-04 -3.66 7.93 ... 96.37

TYC 7869-947-1 NGC 6281 0.33 0.19 0.9415 1.06E-04 -3.97 8.33 ... 114.26

TYC 7869-1257-1 NGC 6281 0.44 0.25 0.9801 1.66E-04 -3.78 8.08 ... 79.36

TYC 7380-529-1 NGC 6405 0.25 0.14 0.9346 1.08E-04 -3.97 8.32 7.91 256.60

TYC 7380-363-1 NGC 6405 0.29 0.16 0.9593 1.96E-04 -3.71 7.99 ... 154.63

TYC 7380-282-1 NGC 6405 0.29 0.16 0.8535 2.26E-04 -3.65 7.91 ... 102.02

TYC 7380-435-1 NGC 6405 0.17 0.10 0.8331 1.65E-04 -3.78 8.09 ... 135.61

TYC 6258-518-1 NGC 6494 0.25 0.14 0.7935 4.59E-04 -3.34 7.52 8.52 31.10

TYC 6258-685-1 NGC 6494 0.51 0.29 1.0093 8.25E-05 -4.08 8.47 ... 64.19

Continued on next page
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Table 6.3 – continued from previous page
Identifier Cluster B − V V − R fH/ fK R′HK log R′HK log(t) log(τ) SNR

TYC 6289-1490-1 NGC 6716 0.55 0.32 0.8596 1.18E-04 -3.93 8.27 7.47 26.95

TYC 6289-1445-1 NGC 6716 0.29 0.16 0.7513 1.98E-04 -3.70 7.99 ... 99.56

TYC 6289-1938-1 NGC 6716 0.60 0.34 0.8790 1.82E-04 -3.74 8.03 ... 53.05
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6.5 Discussion

The chromospheric activity of a star can be measured in the Ca ii H and K cores. In the

presence of a close-in evaporating planet, the chromospheric emission could be masked by

the evaporated material, leading to an anomalously low activity index. The stellar activities

of the open cluster samples were derived using the method prescribed by Linsky et al.

(1979), which measures the chromospheric contribution to the stellar surface fluxes from

the relative fluxes of the H and K cores. Figure 6.4 shows the activity index log R′HK of each

target as a function of B − V .

Vaughan and Preston (1980) presented the chromospheric emission of F to G type

northern stars in an attempt to elucidate the relation between chromospheric activity and

age. The result of the survey showed a bimodal distribution in the stellar chromospheric

emission, which could indicate the fluctuation of star formation rates in the past, or that the

relation between activity and age is not linear across different stages of stellar ages. To ver-

ify this observation, Henry et al. (1996) conducted a survey to measure the chromospheric

activity of southern solar-type stars (0.50 < B − V < 1.00). Not only did the two samples

agreed in terms of the distribution of stellar activity, Henry et al. also found an overabun-

dance of very inactive stars with log R′HK < −5.10. The presence of very inactive stars

were attributed to the Maunder Minimum phase, in which the stars have entered a phase

of temporary inactivity. Wright (2004) analysed activity catalogues from multiple surveys

and found that nearly all of the very inactive stars in the Henry et al. sample are evolved or

subgiant stars instead. The lack of main-sequence stars with log R′HK < −5.10 may imply a

minimum activity that must be present in main-sequence stars.

Using activity measurements from multiple surveys, Fossati et al. (2013) showed

that main-sequence stars with anomalously low activity indices are almost exclusively hot

Jupiter hosts, and that the apparent flux suppression in the Ca ii H and K cores is a result of

the presence of an evaporating planet. Observations by Staab et al. (2017) further depicted

the anomalously low activity of a star can be observed in multiplanet systems with low

mass, short period planets. As seen in Figure 6.4, the analysis of the cluster samples found

no candidates below the basal level (log R′HK = −5.10). However, only middle to late-

type stars 0.4 < B − V < 1.0 were used to determine this basal level in literatures. The

chromospheric activity in earlier type stars are not as well understood, thus the basal activity

level may be different.

6.5.1 Chromospheric Activity and Age of Open Clusters

Chromospheric activity is strongly correlated to the stellar rotation rate. A star spins down

as it ages, the chromospheric emission also decreases (Wilson, 1963; Kraft, 1967; Noyes
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Figure 6.4: Chromospheric activity index log R′HK as a function of B−V of the open cluster
samples listed in Table 6.3.
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et al., 1984a). For this reason, the measurement of chromospheric emission via the activity

index log R′HK is a common practice to estimate stellar ages. Mamajek and Hillenbrand

(2008) analysed the R′HK measurements of young stellar clusters to constrain the activity-

age relation for solar type dwarfs (0.5 < B − V < 0.9). By fitting the mean log R′HK of each

cluster as a function of their ages, Mamajek and Hillenbrand parametrised the activity-age

relation as:

log τ = −38.053 − 17.912 log R′HK − 1.6675(log R′HK)2 (6.7)

where τ is the stellar age in years, and this relation can be approximately applied to stars

with −5.1 < log R′HK < −4.0 and 6.7 < log τ < 9.9. Mamajek and Hillenbrand noted in

their study that stellar activity is correlated to the colour of a star. Moreover, stars with high

cluster membership probabilities have log R′HK values close to the mean log R′HK value of

the cluster, which is not a surprise as cluster members should have similar ages.

Following similar philosophy, an effort was made to derive an activity-age relation

for earlier type stars using the cluster samples in this survey. If a target has an age signifi-

cantly older than the mean age of the cluster, it implies that the star has a significantly lower

chromospheric activity than expected. For each cluster, the slope m = ∆ log R′HK/∆(B − V)

was calculated. The mean log R′HK value of each cluster was then evaluated for a hypothet-

ical cluster member at B − V = 0.4. The mean log R′HK value of the hypothetical cluster

member is plotted as a function of the cluster age in Figure 6.5. Due to limited sample size

in the clusters, we only fit the mean activity of clusters with more than 3 members in our

sample. Similar to Soderblom et al. (1991), a linear fit to the data set gives:

log τ = 3.27 − 1.27 log R′HK . (6.8)

The mean log R′HK of NGC5138 appears to be an outlier, and the removal of this value from

the entire data set improves the standard deviation from 0.42 to 0.40. Therefore, the final

adopted fit does not contain the mean log R′HK of NGC5138. However, the unexpectedly

low mean activity of the NGC5138 may imply that the activity-age relation of late A to

F stars may not be a simple linear correlation. Using Equation 6.8, the ages of individual

targets were evaluated and listed in Table 6.3. To 3-σ confidence, we do not find any stars

with an age significantly older than the age of the cluster.

6.5.2 Outlook

The occurrence rate of hot Jupiters in open clusters is ∼ 0.99% (Quinn et al., 2014), which

is comparable to what is expected in field stars. The sample size of our targets is too small to

determine whether probing the stellar chromospheric activity of members in open clusters

is a feasible way for planet detection.
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as a function of the cluster ages. The filled points were used to fit the activity-age relation.
The best-fit linear relation is denoted as the black dashed line.
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A number of improvements are required to further investigate the feasibility of this

method:

1. Increase sample size significantly - Our initial selection process selected targets

based on membership probability and the visual magnitude of the stars only. This

proved to be problematic as open clusters are, on average, several hundreds parsecs

away. Hence, only early type stars would be bright enough for spectroscopic obser-

vations. The large distances of the clusters also mean that the photometric precision

of individual targets can be somewhat inaccurate. This can lead to erroneous activ-

ity measurements and target selection. Although the spectral type of the star can be

correctly classified by spectral type fitting (see Section 6.4.1), an initial sample of the

order 1000 is required such that a final sample of at least several hundreds of stars

can be drawn. In our sample, ∼ 30% of the stars have a B − V uncertainty of > 0.25,

corresponding to a difference of several sub-spectral types.

2. Select nearby open clusters - Because of the large distances of open clusters, the

majority of bright targets are early type stars. To overcome this, targets should be

selected in nearby clusters. At ∼ 500 pc, a G0 type star would have Vmag ≈ 12.0.

With similar set up as this work, a spectrum with SNR ∼ 30 can be acheived. The

data would provide reasonable quality for activity measurements. Furthermore, the

recent GAIA data release (Gaia Collaboration et al., 2018a) contains improved mea-

surements of the astrometry, photometry and radial velocities of stars which can be

used in the selection of high probablity cluster members.

Some positive outcomes can be drawn from this experiment. Firstly, the quality of

the spectra observed showed that high SNR data can be achieved which enables flux mea-

surements at the H and K cores (see Table 6.3 for SNR of individual spectra and Appendix B

for plots of each spectra). Secondly, the technique employed in this work demonstrated that

the chromospheric activity of multiple targets can be studied at the same time. Although

inconclusive at this stage, the methods described in this work place target stars on the same

log R′HK - B − V scale such that activities of young stars can be analysed, and hence stars

with anomalously low activity can be efficiently identified.
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Chapter 7

Conclusion

7.1 Summary

A majority of the currently known exoplanetary systems have physical properties and con-

figurations that are remarkably different from our own solar system. In this thesis, the

characteristics of a diverse range of newly discovered planets were explored. The variabil-

ity of a planet’s evaporating atmosphere was examined. This work also investigated a novel

planet detection method in an attempt to reduce precious telescope time that is normally

required to identify planet host stars.

Using the ground-based transit survey SuperWASP, three new exoplanets were dis-

covered, and the analyses of the systems were presented in Chapter 3. Because of the limit

in the precision of ground-based photometry, the detection of Neptunes or super-Earths has

always been a challenge. The discovery of WASP-127 b demonstrated the capability of the

detection of Neptunes from ground-based facilities. Combined with follow up RV obser-

vations, WASP-127 b was validated to be a highly inflated Neptune mass planet which has

a radius as large as the radius of the Jupiter, making it one of the least dense planets ever

known. By inferring the bulk density of the planet, we found a number of planet evolution

theories that could explain the unusually inflated radius of WASP-127 b. These included

increased stellar irradiation, tidal heating, Ohmic heating, and increased atmospheric opac-

ity of the planet. WASP-127 b also lies inside the short-period Neptune desert, where a

lack of intermediate-mass planets is believed to be a consequence of the distinct formation

mechanisms of two different planet populations. To have found WASP-127 b inside this

region may imply that the Neptune desert is smaller than previously thought.

In addition to an inflated Neptune, two other hot Jupiters were also detected. WASP-

136 b is an inflated hot Jupiter which orbits a slightly evolved star. Finding planets around

evolved stars is rare since the star’s corotation radius increases with the increasing radius
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of an evolving star. The planet would experience orbital decay and eventually reach the

Roche limit and be tidally destroyed. An estimated remaining lifetime of ∼ 0.420 Gyr is

predicted before WASP-136 b is engulfed by its host. The inferred bulk density of WASP-

138 b suggests that the planet has ∼ 10 M⊕ of heavy elements in the core. The detection

of WASP-138 b around a slightly metal poor star, however, weakens the planet discovery

dependence on stellar metallicity. The discovery of such a system implies that WASP-138

b may have accreted its mass from a gas rich disc in the past.

It is best to utilise space missions to detect small planets. The K2 mission succeeded

Kepler in the search for transiting planets. The data obtained with Kepler/K2 provided

exceptional photometric precision which have a significant increase in the number of known

Neptunes and super-Earths. Small planets have a wide range of radii and hence a range of

bulk compositions. Their internal compositions can be deduced if their masses are known.

A large planetary mass uncertainty can lead to a poorly constrained planet composition.

The exact mass of CoRoT-7 b, for example, has been disputed in the past, and consequently

its inferred internal structure could vary from a pure rocky planet to a pure water planet. In

Chapter 4, the detection and validation of the super-Earth EPIC 206011496 b was presented.

Thanks to the high precision radial velocity measurements with HARPS, the mass of EPIC

206011496 b was constrained with a precision of 13%. This in turns provided clues on

the evolution history of the planetary system. Theoretical models predict the planet to be

predominantly rocky with over 70% of silicate mantle by mass. Moreover, we noticed that

the planet lies on the lower limit of the photoevaporation gap, where a paucity of planets

was observed. EPIC 206011496 b has a short orbital period, thus the planet is susceptible

to strong irradiation which could have seen the atmosphere of the planet completely eroded

away after it was formed.

Finding planets beyond our Solar System is only the first hurdle. Additional analysis

must be performed to understand the features and star-planet interaction in extreme envi-

ronments. Exoplanets discovered from ground-based surveys usually provide bright enough

targets which can be subjected to follow up observations. One of many interesting phenom-

ena observed in exoplanetary systems was the evaporating atmospheres of hot Jupiters. This

particular characteristic was observed in the system WASP-12, where in-transit NUV ob-

servations of the system showed enhanced transit depths, as well as the complete absorption

in the Mg ii doublet. This lead to speculations that the system is shrouded by evaporated

planet material.

Chapter 5 presented the investigation of the variability of the evaporating atmo-

sphere of WASP-12 b. Using archival HIRES spectra centred on the Ca ii H and K and the

Na i D lines, the correlation between the planet’s orbital period and its evaporating atmo-

sphere was explored. Enhanced absorptions were measured in the cores of the Ca ii H and
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K and the Na iD lines across most orbital phases, supporting the presence of a circumstellar

material. Furthermore, a varying flux intensity was seen in the line cores, indicating the cir-

cumstellar material has a non-uniform density. The chromospheric emission of WASP-12 b

was reconstructed such that the column density NCa II of Ca ii can be measured. The result

showed that NCa II = 6 × 1014 cm−2 is required to produce the observed absorption in the

Ca ii H and K lines. Similar result was obtained for Na i, where NNa I = 5 × 1014 cm−2.

Using the Ca ii abundance measured by Fossati et al. (2010a), the overall gas density of this

circumstellar disc was determined to be 5.38 × 10−14 g cm−3.

The most widely used planet detection methods are transit photometry and the radial

velocity method. While both methods are successfully producing statistically validated

planets and candidates, they still require a significant amount of dedicated telescope time to

identify planet host stars. Building on the established results of WASP-12 b and a number of

chromospheric activity surveys of planet host stars, Chapter 6 investigated a novel method

which aimed to provide an efficient, alternative way for planet detection.

Approximately 24% of planet host stars were confirmed to have anomalously low

activity index in previous literatures. The result was attributed to the presence of an evapo-

rating planet, where out-flowing atmospheric material suppresses the intrinsic activity of the

host star. In the pilot detection survey, the multi-object spectrograph FLAMES-GIRAFFE

was used to observe stars in open clusters, where a large number of high resolution, high

SNR spectra centred at the Ca ii H and K cores can be obtained at once. Stars in open clus-

ters are young and hence have an active chromosphere. Finding a star with an anomalously

low activity in the cluster survey is an indication of the presence of an evaporating planet.

Due to the large distances of open clusters, only mid-A to F type stars (0.2 < B − V < 0.6)

are bright enough to be observed, which resulted in a small sample size. Using this sam-

ple, the activity-age relation was derived based on the mean activity and the age of each

cluster. Stars with unexpectedly low chromospheric activity may be identified using this

relation. No anomalously low activity stars were identified in our sample. Although further

improvement is necessary, the survey showed that the technique can obtain a large number

of good quality spectra where stellar activity of the targets can be measured from the Ca ii

H and K cores. Any stars with anomalously low log R′HK can be identified quickly.

7.2 Future work

The discoveries of new planets provide exceptional targets for follow up observations and

characterisations in the future. WASP-127 b has a massive atmospheric scale height of

2500 km, and orbits a bright star of Vmag = 10.17, which makes the planet one of the

best for atmospheric characterisation. Recent follow up transmission spectroscopy have
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indeed showed that the planet is cloud free, and have hints of metal elements (TiO, VO

and Na) in its atmosphere. The launch of JWST is highly anticipated as it can constrain

bulk atmospheric properties (e.g. Greene et al. (2016)) of highly inflated planets such as

WASP-127 b.

On the other hand, the slightly evolved system WASP-136 is a great example to

explore the tidal interaction between a close-in planet and an evolving star. Along with the

sample of other evolved systems (e.g. HD 192699, HD 210702 and HD 175541; Johnson

et al. (2007), HIP 105854; Jones et al. (2014)), it is possible to put theoretical constraints on

the eventual fate of hot Jupiters. With the detection of WASP-138 b, the correlation between

stellar metallicity and hot Jupiter occurrence is somewhat weakened. One can investigate a

revised metallicity dependence on the formation of planets, which could improve observing

strategy to be employed in future planet detection surveys.

The photoevaporation valley/gap was first predicted by Owen and Wu (2013) and

Lopez and Fortney (2013). Recent observational evidence presented by the California-

Kepler Survey has confirmed the paucity of planets in the valley, which sparked great in-

terests in the community. There are two interesting planet size distribution dependency that

are still rather uncertain. The first is the evaporating efficiency η of planets. Owen and Wu

(2017) pointed out that η may not be constant for all planets, and that the value depends on

the planet’s atmospheric scale height and the planetary mass. With a varying η, Owen and

Wu showed that the radius of the most massive planet which can be stripped by evaporation

has a shallower dependence on the orbital period. To distinguish the different evaporation

efficiencies and the planet core compositions requires a planetary radius uncertainty below

10%. This precision can be achieved by the recently launched TESS satellite, and the up-

and-coming space missions CHEOPS and PLATO. The mission will further increase the

sample size of small planets, and address the second uncertainty of the planet size distribu-

tion, where the presence of small planets at large distances could not be explained by the

photoevaporation mechanism, and that these bare planets may be primordial.

The TESS mission (Ricker et al., 2014) has a primary goal of finding small planets

that are suitable for precise follow-up radial velocity measurements. The satellite employs

four wide-field optical CCD cameras, which provide a combined FoV of 24◦ × 96◦. During

two years of the mission, the north and south ecliptic hemisphere are divided into partially

overlapping sectors, where each sector will be observed continuously for 27.4 days. The

overlapping sectors are observed for at least 27 days, with regions surrounding the ecliptic

poles being monitored for more than 300 days. Over the course of the mission, 85% of the

sky will be observed. TESS will target over 200,000 main-sequence dwarfs with spectral

types F5 to M5 with IC ≈ 4-13 (Ricker et al., 2014). The targets monitored through the

TESS mission will be brighter than those observed by the Kepler mission, therefore transit

151



planet candidates will be easier for follow-up characterisation.

A number of simulations were performed to predict the planet yield of TESS (e.g.

Sullivan et al. 2015, Bouma et al. 2017, Barclay et al. 2018, Huang et al. 2018) which

helps planning resources for follow-up observations and prioritise targets. Sullivan et al.

(2015) estimated the properties of TESS transiting planets using simulation of nearby stel-

lar populations. Based on the Kepler occurrence rates (Fressin et al., 2013; Dressing and

Charbonneau, 2015), the sky coverage of TESS and the expected SNR of the transit events,

Sullivan et al. (2015) predicted that 1700 transiting planets will be found. 556 of these

transiting planets are predicted to have sizes two times smaller than the size of the Earth.

More recently, Barclay et al. (2018) adopted different selection strategies to provide a re-

vised planet yield from TESS. They reported that a total of 4373 planets would be found

from the TESS Candidate Target List (CTL). Among these planets, 41 will be smaller than

1.25 R⊕, 238 will have Rp = 1.25−2.0 R⊕, 1872 will have Rp = 2.0−4.0 R⊕, and 2222 will

be gas giants with radii larger than 4 R⊕. Barclay et al. (2018) further predicted that TESS

will find 69 habitable zone-planets orbiting around M dwarfs.

Planets around stars fainter than V = 12 are challenging for RV follow-up. Barclay

et al. (2018) predicted that TESS will find 1300 planets with Rp < R⊕ around V < 12

stars which will allow precise RV observations for mass determination. The number of

small planets with measured density uncertainty smaller than 20% will increase signifi-

cantly. This will help us to understand the mechanisms responsible for the formation and

evolution of small planets. In addition, Barclay et al. (2018) predicted 70 planets which

would be bright targets for atmospheric studies using JWST. 10 habitable-zone planets in

their simulated sample have radii between 1.25 R⊕ and 2.5 R⊕ could potentially hold an

inflated atmosphere. For the simulated giant planets, it was predicted that TESS would find

45 over-inflated planets. Some of these inflated planets may have evaporating atmospheres

which make interesting targets to study their extended atmospheres and planet-tails using

methods in Chapter 6.

Photoevaporation is not limited to small planets, it is also experienced in hot Jupiters.

Detailed analysis of archival WASP-12 spectra revealed enhanced absorptions in both the

Ca ii H and K and the Na i D lines. This was observed both in- and out-of-transit to a

varying extent, confirming the hypothesis of Haswell et al. (2012) and Fossati et al. (2013)

in which the entire system is shrouded by evaporated planet material. WASP-12 was not

the only system which has an anomalously low log R′HK index. Staab et al. (2017) gathered

data from chromospheric activity surveys and showed that 24% of the 22 planet host sam-

ple have apparently low activities. Fossati et al. (2015) demonstrated that a low log R′HK

index could arise from ISM absorption, as in the case of WASP-13. Moreover, Fossati et al.
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(2018) studied the massive hot Jupiter WASP-18 b and showed that the host has an intrin-

sically low activity which could have caused by tidal interaction between the bodies. To

differentiate whether the anomalously low log R′HK of a star is caused by the intrinsically

low stellar activity, extrinsic absorption by ISM, or by circumstellar absorption, extended

observational programme is needed to monitor individual system.

The apparently low stellar activity in planet host stars also inspired the open cluster

survey presented in this thesis. Clearly, improvements are required in order to assess the

feasibility of the planet detection method. An increased sample size with a carefully se-

lected set of targets is recommended to proceed with this work, such that a large number of

stars with well determined ages, distances and metallicities can be analysed.
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Appendix A

Supplementary Tables of Chapter 4

A.1 Spectral Analysis of EPIC 206011496
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Table A.1: Chemical abundances of the host star, relative to the Sun.

Element Abundance Lines number
[X/H] [dex]
C i 0.01 ± 0.05 2
O i 0.14 ± 0.10 2
Na i 0.059 ± 0.023 2
Mg i 0.068 ± 0.068 3
Al i 0.012 ± 0.023 2
Si i 0.053 ± 0.037 11
Ca i 0.102 ± 0.051 9
Sc i 0.081 ± 0.053 3
Sc ii 0.099 ± 0.026 6
Ti i 0.117 ± 0.045 18
Ti ii 0.064 ± 0.034 5
Cr i 0.088 ± 0.036 17
Co i 0.130 ± 0.04 7
Ni i 0.069 ± 0.023 40
Cu i 0.10 ± 0.04 4
Zn i 0.00 ± 0.02 3
Sr i 0.17 ± 0.08 1
Y ii 0.09 ± 0.04 6
Zr ii 0.13 ± 0.04 4
Ba ii 0.07 ± 0.04 3
Ce ii 0.13 ± 0.07 4
Nd ii 0.11 ± 0.03 2
A(Li ii)∗ < 0.45 1
∗A(Li) = log[N(Li)/N(H)] + 12
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A.2 Radial Velocity Measurements of EPIC 206011496 b

Table A.2: Radial velocity data. Signal-to-noise ratio (S/N) is

given per CCD pixel at 550nm.

Time RV σRV FWHM σFWHM BIS σBIS SMW σSMW S/N

[BJD] [km s−1] [m s−1] [km s−1] [m s−1] [m s−1] [m s−1]

57690.54527 -18.19493 2.01 6.9428 4.0 -27.1 4.0 0.1820 0.0064 46.8

57690.65420 -18.19306 1.70 6.9393 3.4 -24.5 3.4 0.1826 0.0056 57.3

57691.52542 -18.18932 1.84 6.9423 3.7 -27.3 3.7 0.1755 0.0056 51.0

57691.64089 -18.18784 1.57 6.9380 3.1 -19.0 3.1 0.1789 0.0052 62.8

57692.54337 -18.19043 1.82 6.9336 3.6 -17.0 3.6 0.1799 0.0057 52.2

57692.66890 -18.19007 2.03 6.9400 4.1 -18.4 4.1 0.1868 0.0082 48.1

57694.55555 -18.18570 1.90 6.9404 3.8 -30.9 3.8 0.1873 0.0061 50.0

57694.65367 -18.18799 1.89 6.9472 3.8 -17.4 3.8 0.1825 0.0071 51.6

57695.53842 -18.19169 2.29 6.9375 4.6 -34.0 4.6 0.1877 0.0077 40.8

57695.55993 -18.19412 2.09 6.9479 4.2 -24.2 4.2 0.1730 0.0065 44.5

57696.54203 -18.19052 2.05 6.9560 4.1 -26.0 4.1 0.1857 0.0068 45.8

57696.67629 -18.19411 1.94 6.9507 3.9 -22.7 3.9 0.1817 0.0075 50.1

57697.56269 -18.19541 1.90 6.9536 3.8 -29.4 3.8 0.1788 0.0061 49.7

57697.64405 -18.19883 1.74 6.9470 3.5 -26.9 3.5 0.1855 0.0058 55.5

57699.51415 -18.18805 1.53 6.9476 3.1 -24.6 3.1 0.2188 0.0041 62.7

57699.56041 -18.18795 1.56 6.9584 3.1 -18.3 3.1 0.2205 0.0048 62.6
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Time RV σRV FWHM σFWHM BIS σBIS S˙MW σS˙MW S/N

57701.53183 -18.18327 2.03 6.9532 4.1 -26.0 4.1 0.2197 0.0061 45.9

57701.57985 -18.18358 2.01 6.9494 4.0 -26.0 4.0 0.2343 0.0061 46.5

57703.53660 -18.18968 1.74 6.9375 3.5 -15.2 3.5 0.2164 0.0054 55.2

57703.57238 -18.18313 1.78 6.9565 3.6 -15.9 3.6 0.2190 0.0055 53.8

57705.53138 -18.19312 1.53 6.9390 3.1 -12.6 3.1 0.2031 0.0045 64.9

57705.57766 -18.19513 1.76 6.9337 3.5 -16.9 3.5 0.2142 0.0060 55.6

57714.60057 -18.19074 2.33 6.9600 4.7 -13.1 4.7 0.2277 0.0086 41.2

57714.62010 -18.19333 2.37 6.9489 4.7 -12.6 4.7 0.2225 0.0099 41.4

57717.55993 -18.19042 2.01 6.9418 4.0 -17.8 4.0 0.1746 0.0073 48.1

57717.58112 -18.18483 2.13 6.9487 4.3 -17.2 4.3 0.1940 0.0079 45.2

57718.53008 -18.19030 1.78 6.9488 3.6 -17.7 3.6 0.1990 0.0061 54.1

57718.55149 -18.18923 1.73 6.9507 3.5 -12.9 3.5 0.2019 0.0060 56.2

57719.55290 -18.19238 1.71 6.9511 3.4 -22.8 3.4 0.1884 0.0056 56.5

57719.57368 -18.19477 1.71 6.9425 3.4 -18.4 3.4 0.1994 0.0057 56.7

57720.53108 -18.18721 1.45 6.9469 2.9 -14.2 2.9 0.1922 0.0046 70.4

57720.55102 -18.18671 1.52 6.9397 3.0 -17.1 3.0 0.1968 0.0051 65.7

57721.53077 -18.19020 2.01 6.9556 4.0 -24.1 4.0 0.1938 0.0070 47.5

57721.55300 -18.18965 2.09 6.9408 4.2 -14.9 4.2 0.1838 0.0076 45.7

57935.79544 -18.17258 2.34 6.9898 4.7 -7.0 4.7 0.2700 0.0091 42.0

57935.81684 -18.17136 2.21 6.9761 4.4 -5.1 4.4 0.2564 0.0084 44.2

57936.84590 -18.17932 2.48 6.9803 5.0 -15.5 5.0 0.2820 0.0100 39.7

Continued on next page

157



Table A.2 – continued from previous page
Time RV σRV FWHM σFWHM BIS σBIS S˙MW σS˙MW S/N

57936.86711 -18.18014 2.53 6.9722 5.1 1.8 5.1 0.2668 0.0104 39.1

57937.77515 -18.17689 2.58 6.9604 5.2 -6.9 5.2 0.2415 0.0105 38.3

57937.82206 -18.17986 2.30 6.9765 4.6 -15.1 4.6 0.2444 0.0088 42.4

57942.77873 -18.18570 1.58 6.9310 3.2 -19.1 3.2 0.2124 0.0046 61.4

57942.88776 -18.19012 1.65 6.9373 3.3 -15.1 3.3 0.2270 0.0066 61.1

57943.75116 -18.18923 1.62 6.9337 3.2 -13.2 3.2 0.1961 0.0048 60.4

57943.86160 -18.19289 2.46 6.9371 4.9 -21.2 4.9 0.1863 0.0097 39.7

57944.77832 -18.19228 2.24 6.9244 4.5 -15.5 4.5 0.1864 0.0082 42.9

57944.86188 -18.19112 1.99 6.9344 4.0 -25.0 4.0 0.1829 0.0075 48.7

57945.75844 -18.18714 1.79 6.9247 3.6 -23.8 3.6 0.1759 0.0057 53.7

57946.77897 -18.19034 2.30 6.9292 4.6 -25.4 4.6 0.1791 0.0080 42.0

57948.80722 -18.18963 2.00 6.9241 4.0 -25.8 4.0 0.1690 0.0069 48.4

57948.86573 -18.19051 2.09 6.9274 4.2 -21.6 4.2 0.1760 0.0080 46.5

57949.84184 -18.18010 5.61 6.9040 11.2 -11.5 11.2 0.1322 0.0280 20.3

57951.76491 -18.19084 4.40 6.9380 8.8 -23.9 8.8 0.2072 0.0226 24.4

57951.85922 -18.17271 3.38 6.9374 6.8 -17.4 6.8 0.1802 0.0169 30.3

57952.73957 -18.17978 3.26 6.9507 6.5 -13.5 6.5 0.1720 0.0148 31.2

57952.86046 -18.17574 2.49 6.9466 5.0 -27.4 5.0 0.1881 0.0111 39.7

57953.85555 -18.18618 2.46 6.9581 4.9 -19.0 4.9 0.1945 0.0105 40.1

57954.82099 -18.17750 3.16 6.9479 6.3 -23.7 6.3 0.1541 0.0150 32.5

57955.75309 -18.17132 2.30 6.9634 4.6 -16.6 4.6 0.1838 0.0080 41.8
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Table A.2 – continued from previous page
Time RV σRV FWHM σFWHM BIS σBIS S˙MW σS˙MW S/N

57955.91602 -18.17448 1.72 6.9752 3.4 -26.9 3.4 0.1939 0.0077 59.6

57956.72888 -18.17041 2.32 6.9676 4.6 -25.0 4.6 0.2022 0.0082 41.8

57956.91804 -18.17142 2.42 6.9667 4.8 -33.5 4.8 0.2255 0.0106 41.0

57957.89416 -18.17995 4.32 6.9690 8.6 -10.7 8.6 0.1634 0.0218 25.0

57959.78548 -18.17701 2.51 6.9612 5.0 -15.7 5.0 0.2194 0.0103 39.4

57959.90585 -18.17966 1.91 6.9555 3.8 -16.3 3.8 0.2075 0.0084 52.1

57960.74725 -18.18476 2.68 6.9651 5.4 -20.1 5.4 0.2090 0.0104 36.9

57960.84628 -18.18490 2.65 6.9605 5.3 -12.9 5.3 0.1981 0.0108 37.4

57961.76442 -18.17957 2.22 6.9582 4.4 -7.1 4.4 0.2149 0.0087 44.4

57961.83425 -18.18436 2.41 6.9526 4.8 -16.7 4.8 0.2094 0.0171 43.3

57962.78393 -18.17748 1.96 6.9541 3.9 -2.2 3.9 0.2119 0.0081 51.1

57962.87271 -18.19164 5.55 6.9251 11.1 -18.0 11.1 0.2266 0.0438 21.7

57964.74231 -18.17793 1.84 6.9650 3.7 -11.6 3.7 0.2149 0.0061 52.7

57964.83225 -18.18182 1.94 6.9492 3.9 -20.0 3.9 0.2078 0.0089 51.7

57965.73570 -18.19438 5.34 6.9277 10.7 -25.5 10.7 0.1945 0.0308 21.4

57965.83742 -18.18131 5.94 6.9409 11.9 -8.8 11.9 0.2740 0.0440 20.4

57993.66968 -18.18228 2.03 6.9482 4.1 -22.7 4.1 0.2104 0.0075 47.0

57993.78491 -18.17993 2.08 6.9523 4.2 -18.3 4.2 0.1954 0.0086 46.3

57993.84799 -18.18314 1.83 6.9520 3.7 -27.1 3.7 0.1934 0.0088 53.9

57994.63060 -18.17385 1.98 6.9446 4.0 -22.7 4.0 0.1980 0.0070 47.8

57994.74383 -18.17639 2.22 6.9466 4.4 -16.1 4.4 0.1864 0.0091 43.3
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Time RV σRV FWHM σFWHM BIS σBIS S˙MW σS˙MW S/N

57994.82005 -18.17586 2.19 6.9553 4.4 -23.9 4.4 0.2004 0.0102 44.6

57995.63098 -18.17764 3.46 6.9558 6.9 -23.8 6.9 0.1701 0.0174 29.9

57998.62754 -18.19046 1.56 6.9459 3.1 -15.7 3.1 0.1987 0.0046 61.3

57998.71879 -18.19124 2.02 6.9506 4.0 -14.9 4.0 0.1797 0.0087 48.3

57998.81073 -18.18741 2.21 6.9488 4.4 -17.8 4.4 0.1645 0.0116 45.0

58008.66469 -18.18777 3.48 6.9314 7.0 -7.3 7.0 0.1958 0.0153 29.0

58010.65231 -18.19970 2.19 6.9277 4.4 -28.0 4.4 0.1689 0.0085 43.3

58010.77942 -18.19305 2.25 6.9234 4.5 -26.8 4.5 0.1921 0.0107 43.3

58010.83344 -18.19911 2.07 6.9391 4.1 -28.7 4.1 0.1985 0.0115 47.9

58011.68577 -18.18190 2.40 6.9283 4.8 -9.4 4.8 0.1728 0.0105 40.2

58011.77789 -18.18417 2.23 6.9321 4.5 -15.3 4.5 0.1739 0.0104 43.6

58011.83205 -18.18652 2.60 6.9261 5.2 -37.8 5.2 0.1888 0.0150 38.6

58012.67262 -18.18860 2.91 6.9347 5.8 -29.1 5.8 0.1680 0.0137 34.0

58012.75336 -18.19386 2.31 6.9312 4.6 -35.4 4.6 0.1780 0.0106 42.0

58012.82174 -18.18669 2.43 6.9230 4.9 -17.5 4.9 0.1579 0.0132 40.9

58013.67492 -18.18197 3.38 6.9334 6.8 -28.1 6.8 0.1733 0.0158 30.1

58013.74342 -18.18162 2.52 6.9295 5.0 -21.7 5.0 0.1862 0.0109 38.5

58013.81433 -18.18331 2.17 6.9467 4.3 -31.5 4.3 0.1964 0.0106 45.2

58014.68555 -18.18273 2.62 6.9207 5.2 -26.3 5.2 0.2481 0.0102 37.1

58014.77534 -18.18936 2.77 6.9302 5.5 -28.6 5.5 0.1661 0.0130 36.0

58018.63224 -18.18640 2.33 6.9479 4.7 -28.0 4.7 0.1890 0.0095 40.9
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Table A.2 – continued from previous page
Time RV σRV FWHM σFWHM BIS σBIS S˙MW σS˙MW S/N

58018.72534 -18.18438 2.52 6.9262 5.0 -23.1 5.0 0.1978 0.0108 38.2

58019.62715 -18.19033 1.99 6.9432 4.0 -20.6 4.0 0.1888 0.0077 47.8

58019.72843 -18.19547 1.92 6.9260 3.8 -25.9 3.8 0.1963 0.0080 49.9

58020.66431 -18.18766 3.01 6.9468 6.0 -5.8 6.0 0.1870 0.0121 32.5

58020.75915 -18.18656 2.21 6.9431 4.4 -19.1 4.4 0.1977 0.0099 43.6

58021.55154 -18.17666 2.55 6.9344 5.1 -19.9 5.1 0.2109 0.0103 37.6

58021.66021 -18.18003 3.07 6.9414 6.1 -35.5 6.1 0.2225 0.0132 32.3

58021.75738 -18.18448 2.24 6.9325 4.5 -15.9 4.5 0.1845 0.0100 43.1

58022.53363 -18.18830 2.59 6.9472 5.2 -24.9 5.2 0.1947 0.0103 37.1

58022.59935 -18.18210 3.26 6.9427 6.5 -17.1 6.5 0.1937 0.0128 30.2

58022.74556 -18.19200 2.80 6.9414 5.6 -22.3 5.6 0.2040 0.0124 35.0

58023.53440 -18.17930 1.81 6.9489 3.6 -32.0 3.6 0.2030 0.0058 51.1

58023.63020 -18.17708 2.62 6.9523 5.2 -19.1 5.2 0.1963 0.0106 36.7

58023.75632 -18.18220 2.00 6.9325 4.0 -24.1 4.0 0.1824 0.0092 48.3

58025.54957 -18.17300 1.67 6.9443 3.3 -17.9 3.3 0.2031 0.0055 56.1

58025.64932 -18.17642 1.82 6.9560 3.6 -19.6 3.6 0.1990 0.0074 52.8

58025.70429 -18.17085 1.93 6.9569 3.9 -4.2 3.9 0.2057 0.0089 50.3

58026.55716 -18.16496 4.02 6.9580 8.0 -8.4 8.0 0.2396 0.0170 25.7

58026.65617 -18.17836 2.73 6.9569 5.5 -22.0 5.5 0.2263 0.0112 35.7

58026.74871 -18.18277 2.88 6.9711 5.8 -22.1 5.8 0.1771 0.0154 35.2

58027.56593 -18.15614 5.14 6.9831 10.3 -11.8 10.3 0.2023 0.0274 21.8
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Time RV σRV FWHM σFWHM BIS σBIS S˙MW σS˙MW S/N

58027.67900 -18.16790 4.30 7.0036 8.6 -8.0 8.6 0.1720 0.0246 25.4

58027.74799 -18.15559 5.45 6.9669 10.9 28.2 10.9 0.1827 0.0322 21.1

58041.54788 -18.19556 2.00 6.9314 4.0 -31.2 4.0 0.1730 0.0067 47.1

58043.56762 -18.18878 1.35 6.9287 2.7 -24.3 2.7 0.2094 0.0039 73.6

58043.72519 -18.18693 1.89 6.9299 3.8 -25.9 3.8 0.2145 0.0086 52.1

58052.55248 -18.18881 1.46 6.9380 2.9 -22.7 2.9 0.2180 0.0046 66.9

58052.61595 -18.19051 1.95 6.9391 3.9 -27.6 3.9 0.2350 0.0085 50.3

58053.56897 -18.18273 1.70 6.9377 3.4 -27.6 3.4 0.2239 0.0060 56.8

58053.64640 -18.18326 1.80 6.9436 3.6 -23.4 3.6 0.2202 0.0074 54.6

58054.52491 -18.18453 2.44 6.9497 4.9 -36.6 4.9 0.2112 0.0083 39.1

58054.67331 -18.18235 2.09 6.9612 4.2 -21.0 4.2 0.2261 0.0086 46.9

58056.53663 -18.18039 1.35 6.9497 2.7 -23.1 2.7 0.2132 0.0039 74.8

58056.62290 -18.18640 1.60 6.9600 3.2 -33.6 3.2 0.2198 0.0064 62.6

58057.53537 -18.18602 1.32 6.9511 2.6 -28.4 2.6 0.2202 0.0038 76.5

58057.59482 -18.18711 1.41 6.9528 2.8 -29.3 2.8 0.2291 0.0049 71.7

58068.58875 -18.18136 1.63 6.9330 3.3 -14.5 3.3 0.1845 0.0055 59.0

58069.65402 -18.19329 1.90 6.9399 3.8 -17.5 3.8 0.1783 0.0062 49.6

58070.66278 -18.19205 1.93 6.9408 3.9 -20.7 3.9 0.1868 0.0086 50.8

58071.54887 -18.18911 1.69 6.9187 3.4 -23.1 3.4 0.1924 0.0061 56.8

58074.55346 -18.18790 1.55 6.9236 3.1 -18.4 3.1 0.1788 0.0060 62.4

58075.53852 -18.18124 1.76 6.9243 3.5 -18.9 3.5 0.1630 0.0069 54.5
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Time RV σRV FWHM σFWHM BIS σBIS S˙MW σS˙MW S/N

58077.54947 -18.18492 1.60 6.9297 3.2 -23.9 3.2 0.1872 0.0063 61.9

58079.61835 -18.19371 1.94 6.9281 3.9 -21.6 3.9 0.1803 0.0084 49.5
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A.3 Joint Bayesian Analysis of EPIC 206011496 b

Table A.3: List of parameters used in the analysis. The respective

priors are provided together with the posteriors for both the Dart-

mouth and PARSEC stellar evolution tracks. The posterior val-

ues represent the median and 68.3% credible interval. Fixed and

derived values that might be useful for follow-up work are also

reported.

Parameter Prior Posterior

Dartmouth PARSEC

(adopted)

Stellar Parameters

Effective temperature Te f f [K] N(5457, 29) 5477 ± 27 5480 ± 24

Surface gravity log g [cgs] N(4.42, 0.10) 4.419 ± 0.053 4.429 ± 0.045

Iron abundance [Fe/H] [dex] N(0.08, 0.02) 0.078 ± 0.020 0.079 ± 0.020

Distance to Earth D [pc] N(143.5, 10.9) 145 ± 8 141 ± 6

Interstellar extinction E(B − V) [mag] U(0, 1) 0.009+0.011
−0.007 0.009+0.011

−0.007

Systemic radial velocity γ [km s−1] U(−20,−15) −18.186 ± 0.002 −18.186 ± 0.002

Linear limb-darkening coefficient ua (derived) 0.4631 ± 0.0061 0.4625 ± 0.0057

Quadratic limb-darkening coefficient ub (derived) 0.2270 ± 0.0041 0.2273 ± 0.0037

Stellar density ρ?/ρ� (derived) 0.98 ± 0.19 1.03 ± 0.16

Stellar mass M? [M�] (derived) 0.915 ± 0.017 0.884 ± 0.018

Continued on next page
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Table A.3 – continued from previous page
Parameter Prior Posterior

Dartmouth PARSEC

Stellar radius R? [R�] (derived) 0.977 ± 0.053 0.950 ± 0.040

Stellar age τ [Gyr] (derived) 9.7 ± 3.0 10.8 ± 2.8

Planet b Parameters

Orbital Period P [d] N(2.369193, 0.01) 2.369172 ± 8.9 × 10−5 2.369173 ± 9.0 × 10−5

Transit epoch T0 [BJD - 2456000] N(981.6425, 0.1) 981.6431 ± 1.6 × 10−3 981.6431 ± 1.6 × 10−3

Radial velocity semi-amplitude K [m s−1] U(0, 102) 3.34 ± 0.43 3.33 ± 0.43

Orbital inclination i [◦] S(70, 90) 87.7 ± 1.6 88.1 ± 1.4

Planet-to-star radius ratio k U(0, 1) 0.01604 ± 0.00041 0.01599 ± 0.00035

Orbital eccentricity e U(0, 1) 0.084 ± 0.079 0.080 ± 0.068

Argument of periastron ω [◦] U(0, 360) 99+220
−77 94+220

−71

System scale a/R? (derived) 7.43 ± 0.45 7.56 ± 3.8

Impact parameter b (derived) 0.30 ± 0.20 0.25 ± 0.19

Transit duration T14 [h] (derived) 2.266 ± 0.050 2.264 ± 0.049

Semi-major axis a [AU] (derived) 0.03376 ± 0.00021 0.03337 ± 0.00023

Planet mass Mp [M⊕] (derived) 6.54 ± 0.84 6.38 ± 0.83

Planet radius Rp [R⊕] (derived) 1.71 ± 0.11 1.654 ± 0.84

Planet bulk density ρp [g cm−3] (derived) 7.1 ± 1.8 7.7 ± 1.7

Gaussian Process Hyperparameters
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Table A.3 – continued from previous page
Parameter Prior Posterior

Dartmouth PARSEC

A [m s−1] U(0, 100) 6.0+1.3
−0.8 5.96 ± 1.2

λ1 [d] U(0, 100) 34 ± 12 34 ± 12

λ2 U(0, 10) 0.46 ± 0.12 0.46 ± 0.12

Prot [d] N(32.2, 0.6) 32.2 ± 0.5 32.2 ± 0.5

Instrument-related Parameters

HARPS jitter [m s−1] U(0, 102) 1.9 ± 0.4 1.9 ± 0.4

K2 contamination [%] NU(0.952, 0.024, 0, 100) 0.952 ± 0.024 0.952 ± 0.024

K2 jitter [ppm] U(0, 105) 59 ± 1 59 ± 1

K2 out-of-transit flux U(0.99, 1.01) 1.000006 ± 2 × 10−6 1.000006 ± 2 × 10−6

SED jitter [mag] U(0, 0.1) 0.054 ± 0.021 0.054 ± 0.022

Notes:

• N(µ, σ2): normal distribution with mean µ and width σ2

• U(a, b): uniform distribution between a and b

• NU(µ, σ2, a, b): normal distribution with mean µ and width σ2 multiplied with a uniform distribution between a and b

• S(a, b): sine distribution between a and b

• β(a, b): Beta distribution with parameters a and b
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Appendix B

Supplementary Figures of Chapter 6

B.1 Spectra of Surviving Targets in the Cluster Survey
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ADP.2015-­07-­26T14:06:32.503.fits:  (B-­V)0=0.51   log  R’HK=-­4.04 
 

ADP.2015-­07-­26T14:06:32.657.fits:  (B-­V)0=0.44   logR’HK=-­4.01 
 

ADP.2015-­07-­26T14:06:32.860.fits:  (B-­V)0=0.41   log  R’HK=-­4.01 
 

ADP.2015-­07-­26T14:06:32.110.fits:  (B-­V)0=0.26   log  R’HK=-­4.03 
 

ADP.2015-­09-­21T13:47:55.737.fits:  (B-­V)0=0.53   log  R’HK=-­3.99 
 

ADP.2015-­09-­21T13:47:55.737.fits:  (B-­V)0=0.21   log  R’HK=-­3.59 
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ADP.2015-­07-­26T13:19:54.303.fits:  (B-­V)0=0.44   log  R’HK=-­3.52 
 

ADP.2015-­07-­26T13:19:54.417.fits:  (B-­V)0=0.26   log  R’HK=-­4.37 
 

ADP.2015-­08-­06T02:46:38.860.fits:  (B-­V)0=0.41   log  R’HK=-­3.61 
 

ADP.2015-­08-­06T02:46:40.213.fits:  (B-­V)0=0.44   log  R’HK=-­3.68 
 

ADP.2015-­08-­06T02:46:40.347.fits:  (B-­V)0=0.55   log  R’HK=-­3.65 
 

ADP.2015-­08-­06T02:46:40.553.fits:  (B-­V)0=0.55   log  R’HK=-­3.79 
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ADP.2015-­08-­06T02:46:46.493.fits:  (B-­V)0=0.55   log  R’HK=-­3.68 
 

ADP.2015-­08-­06T02:46:48.980.fits:  (B-­V)0=0.29   log  R’HK=-­3.56 
 

ADP.2015-­08-­06T10:28:02.360.fits:  (B-­V)0=0.44   log  R’HK=-­4.27 
 

ADP.2015-­08-­06T10:28:03.160.fits:  (B-­V)0=0.44   log  R’HK=-­3.81 
 

ADP.2015-­08-­06T10:28:04.900.fits:  (B-­V)0=0.44   log  R’HK=-­3.26 
 

ADP.2015-­08-­06T10:28:05.950.fits:  (B-­V)0=0.41   log  R’HK=-­4.00 
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ADP.2015-­08-­06T10:28:07.440.fits:  (B-­V)0=0.37   log  R’HK=-­4.02 
 

ADP.2015-­08-­06T10:28:09.483.fits:  (B-­V)0=0.39   log  R’HK=-­4.23 
 

ADP.2015-­08-­06T01:30:04.343.fits:  (B-­V)0=0.29   log  R’HK=-­3.64 
 

ADP.2015-­08-­06T01:30:04.930.fits:  (B-­V)0=0.41   log  R’HK=-­3.48 
 

ADP.2015-­08-­06T01:30:04.977.fits:  (B-­V)0=0.41   log  R’HK=-­3.83 
 

ADP.2015-­08-­06T01:30:06.373.fits:  (B-­V)0=0.294   log  R’HK=-­3.66 
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ADP.2015-­08-­06T01:30:11.627.fits:  (B-­V)0=0.334   log  R’HK=-­3.97 
 

ADP.2015-­08-­06T01:30:15.360.fits:  (B-­V)0=0.438   log  R’HK=-­3.78 
 

ADP.2015-­07-­26T13:19:53.083.fits:  (B-­V)0=0.25   log  R’HK=-­3.97 
 

ADP.2015-­07-­26T13:19:53.703.fits:  (B-­V)0=0.29   log  R’HK=-­3.71 
 

ADP.2015-­07-­26T13:19:53.757.fits:  (B-­V)0=0.29   log  R’HK=-­3.65 
 

ADP.2015-­08-­06T10:28:11.060.fits:  (B-­V)0=0.17   log  R’HK=-­3.78 
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ADP.2015-­07-­26T06:58:10.173.fits:  (B-­V)0=0.25   log  R’HK=-­3.34 
 

ADP.2015-­10-­12T17:08:24.320.fits:  (B-­V)0=0.51   log  R’HK=-­4.08 
 

ADP.2015-­10-­12T17:08:19.100.fits:  (B-­V)0=0.55   log  R’HK=-­3.92 
 

ADP.2015-­10-­12T17:08:26.960.fits:  (B-­V)0=0.294   log  R’HK=-­3.70 
 

ADP.2015-­10-­12T17:08:29.860.fits:  (B-­V)0=0.60   log  R’HK=-­3.74 
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Hartman, J. D., Bakos, G. Á., Kipping, D. M. et al. HAT-P-26b: A Low-density Neptune-

mass Planet Transiting a K Star. ApJ, 728:138, Feb. 2011.

Hastings, W. K. Monte Carlo Sampling Methods using Markov Chains and their Applica-

tions. Biometrika, Vol. 57, No. 1, p. 97-109, 1970, 57:97–109, Apr. 1970.

Haswell, C. A., Fossati, L., Ayres, T. et al. Near-ultraviolet Absorption, Chromospheric

Activity, and Star-Planet Interactions in the WASP-12 system. ApJ, 760:79, Nov. 2012.

Hatzes, A. P. Radial-Velocity Variations from Starspots. In Hearnshaw, J. B. and Scarfe,

C. D., editors, IAU Colloq. 170: Precise Stellar Radial Velocities, volume 185 of Astro-

nomical Society of the Pacific Conference Series, page 259, 1999.

184



Hatzes, A. P., Dvorak, R., Wuchterl, G. et al. An investigation into the radial velocity

variations of CoRoT-7. A&A, 520:A93, Sept. 2010.

Hatzes, A. P., Fridlund, M., Nachmani, G. et al. The Mass of CoRoT-7b. ApJ, 743:75, Dec.

2011.

Haywood, R. D., Collier Cameron, A., Queloz, D. et al. Planets and stellar activity: hide

and seek in the CoRoT-7 system. MNRAS, 443:2517–2531, Sept. 2014.

Hebb, L., Collier-Cameron, A., Loeillet, B. et al. WASP-12b: The Hottest Transiting

Extrasolar Planet Yet Discovered. ApJ, 693:1920–1928, Mar. 2009.
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