A kinetic Alfven wave cascade cannot reach the electron gyro-scale in the solar wind at 1 AU

> J. J. Podesta Los Alamos National Laboratory

Royal Astronomical Society Specialist Discussion Meeting Burlington House, Piccadilly, London, 12 March 2010

Energy attenuation in one wave period

The electron gyro-radius scale is $k_{\perp} \rho_e = 1$, or, $k_{\perp} \rho_i = 60$.

Energy attenuation in one wave period

High-Speed Stream: Stereo A 13-18 Feb 2008 (5 days)

High-Speed Stream: Stereo A 13-18 Feb 2008 (5 days)

What does the spectrum look like from 1 Hz to 100 Hz?

Cluster search coil: 450 Hz burst mode data

Cluster search coil: 450 Hz burst mode data

Cluster search coil: 450 Hz burst mode data

Entire spectrum is caused by KAW cascade

KAW wave frequency and damping rate

How do we compute the effect of wave damping on the KAW cascade?

- Assume critical balance holds in KAW regime so that the cascade time equals wave period
- 2. Assume turbulent fluctuations in the KAW cascade obey the linear damping rates of Vlasov-Maxwell theory
- Energy cascades from one k-shell to the next in time $2\pi/\omega_k$
- In this time the energy is damped by the factor

$$\exp(4\pi\gamma_k/\omega_k) < 1$$

• The damping of the KAW cascade is compounded at each stage of the cascade process, like the way compound interest works.

The effect of wave damping on the KAW cascade

• Conservation of energy in wavenumber space

$$\frac{d\varepsilon}{dk} = 2\gamma_k E(k)$$

• ODE for the energy cascade rate

$$\frac{d(\log \varepsilon)}{d(\log k)} = \frac{1}{A} \cdot \frac{4\pi\gamma}{\omega} \exp\left(-\frac{4\pi\gamma}{\omega}\right).$$

- The approximation $\frac{\gamma}{\omega} \approx -const \times k_{\perp} \rho_i, \quad k_{\perp} >> k_{\parallel}$
- yields analytic (closed form) solutions for the energy cascade rate as a function of wavenumber.

Change in energy cascade rate versus wavenumber

With exponential factor on RHS

Without exponential factor on RHS

Conclusions

For typical solar wind parameters at 1 AU, the KAW cascade is almost completely dissipated before reaching the wavenumber $k_{\perp} \rho_i$ =25.

Therefore, it cannot by itself account for the observed spectrum of magnetic field fluctuations between 1 Hz and 100 Hz. Whistler waves likely play a role at these high frequencies.