Anatomy of a slow wave in a coronal loop

Tom Van Doorsselaere

t.van-doorsselaere@warwick.ac.uk

Thanks to Nick Wardle, Giulio Del Zanna, Kishan Jansari

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 220555.

March 12, 2010
Hinode/EIS

Observations of waves with EIS

- Van Doorsselaere et al. (2008)
- Erdélyi & Taroyan (2008)
- Wang et al. (2009a,b)

![Graph showing time vs. velocity (km/s)]
Hinode/EIS Observations

- Van Doorsselaere et al. (2008)
- Erdélyi & Taroyan (2008)
- Wang et al. (2009a,b)
Hinode/EIS

- Van Doorsselaere et al. (2008)
- Erdélyi & Taroyan (2008)
- Wang et al. (2009a,b)

Anatomy of a slow wave in a coronal loop
EIS observation

Overlay of EIS observing slit (vertical white line) on top of TRACE 195Å observation on the same day. The black diamond indicates the studied pixel.

- Hinode/EIS observations on 07/02/2008
- active region on the limb
- 4 spectral windows
- 1” slit
- cadence time 6.4s

Anatomy of a slow wave in a coronal loop
Velocity and intensity in FeXII 195Å

Left: Velocity + periodogram, Right: Intensity + periodogram

Period: period 314 ± 84 s, period 344 ± 61 s
Good correlation between the velocity and intensity perturbations leads to an interpretation in terms of running slow waves. This compatible with the orientation of the observed loop and earlier detections of this mode.
Intensity oscillations in other lines

Top panels: Intensity in different spectral windows (FeXII 195Å, FeXIII 203Å, CaXVII 192Å), Bottom panels: periodogram of intensity signal
→ Use for spectroscopy with CHIANTI (Dere et al. 1997)
Density

Use CHIANTI to derive the electron density from the line ratio of the FeXIII spectral lines at 202Å and 203Å.
Use CHIANTI to derive the electron temperature from the line ratio of the FeXII 195Å and FeXIII 202Å spectral lines.
Seismology

From linear theory for 1D sound waves we know:

\[
\frac{\rho'}{\rho_0} = \frac{\nu_{LOS}}{C_{LOS}} \quad (1)
\]

\[
\frac{T'}{T_0} = (\gamma - 1)\frac{\rho'}{\rho_0} \quad (2)
\]

Scatterplot and principle component analysis allows for seismological estimate of \(C_{LOS} \) and \(\gamma \):

\[C_{LOS} = 14 \text{km/s} \quad \alpha = 85^\circ \quad \gamma = 0.9 \]
Use EIS to observe velocity and intensity oscillations across multiple spectral lines.
Conclusion

- Use EIS to observe velocity and intensity oscillations across multiple spectral lines
- Velocity and intensity are in phase, with a period of 300s
Use EIS to observe velocity and intensity oscillations across multiple spectral lines

Velocity and intensity are in phase, with a period of 300s

Interpretation in terms of running slow waves
Conclusion

- Use EIS to observe velocity and intensity oscillations across multiple spectral lines
- Velocity and intensity are in phase, with a period of 300s
- Interpretation in terms of running slow waves
- Use multiple spectral lines as density and temperature diagnostics
Use EIS to observe velocity and intensity oscillations across multiple spectral lines

Velocity and intensity are in phase, with a period of 300s

Interpretation in terms of running slow waves

Use multiple spectral lines as density and temperature diagnostics

Oscillation also observed in density (in phase) and temperature (in anti-phase)
Conclusion

- Use EIS to observe velocity and intensity oscillations across multiple spectral lines
- Velocity and intensity are in phase, with a period of 300s
- Interpretation in terms of running slow waves
- Use multiple spectral lines as density and temperature diagnostics
- Oscillation also observed in density (in phase) and temperature (in anti-phase)
- Seismological estimate of the line-of-sight propagation speed, the inclination angle and \(\gamma \)
Conclusion

- Use EIS to observe velocity and intensity oscillations across multiple spectral lines
- Velocity and intensity are in phase, with a period of 300s
- Interpretation in terms of running slow waves
- Use multiple spectral lines as density and temperature diagnostics
- Oscillation also observed in density (in phase) and temperature (in anti-phase)
- Seismological estimate of the line-of-sight propagation speed, the inclination angle and γ
- To do: error analysis