

The University of Manchester

Plasma basics: instabilities, magnetic reconnection and particle acceleration

Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester

- Plasma instabilities and ideal MHD instabilities
- Resistive instabilities and "classical" reconnection models
- Some developments in reconnection modelling
 - Beyond MHD
- 3D reconnection
- Reconnection in the corona and coronal heating **Relaxation and helicity** •
- Reconnection, solar flares and particle acceleration

 $\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla (\frac{P}{\rho^{\gamma}}) = -\nabla \cdot (\kappa \cdot \nabla T) - \rho^2 Q(T) + \frac{J^2}{\sigma} + H$ The MHD equations $(\mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \mathbf{j}X\mathbf{B} + \rho \mathbf{g} + \mathbf{F},$ $\mu_0\sigma$ $\mathbf{P} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}, \quad \eta =$ $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0},$ $= (k_B/m)T$, AC)O ∂t $\partial \mathbf{B}$ NO. ∂t ∂t d

MHD timescales

- Resistive (Ohmic) dissipation alone leads to a time-scale for resistive diffusion $\frac{1}{L_{c}} = \frac{L^{2}}{n}$ $t_D = L^2/\eta$
- The timescale for propagation of Alfven waves

 $P_A = \sqrt{\mu_0 \rho}$

B

is $t_A = L/V_A$

This is the natural dynamic scale

- S is very large in solar atmosphere (hence resistive diffusion is very slow and ineffective!) The ratio of the two timescales is the Lundquist number (\mathcal{S}) --
- $S = t_a / t_A = L v_A / \eta$ $\approx 10^{12} - 10^{13} \text{ in solar corona}$
- "Ideal MHD" is limit of infinite S

and ideal MHD stability Plasma instabilities

Linear stability theory: normal modes

- Consider background static equilibrium (\mathbf{B}_0, p_0) with small fluid displacement ξ
 - $\frac{\partial \xi}{\partial t} = \mathbf{v}_1$
- Linearise momentum equation (small disturbances) and combine with induction equation:

 $\rho_{0} \frac{\partial^{2} \xi}{\partial t^{2}} = \mathbf{F}(\xi) \equiv \frac{1}{\mu_{0}} \left[\left(\nabla \times \left(\nabla \times \left(\xi \times \mathbf{B}_{0} \right) \right) \right) \times \mathbf{B}_{0} + \left(\nabla \times \mathbf{B}_{0} \right) \times \left(\nabla \times \left(\xi \times \mathbf{B}_{0} \right) \right) \right] + \nabla \left[\xi \cdot \nabla p_{0} + \gamma p_{0} \left(\nabla \cdot \xi \right) \right]$

- dependence $e^{i\omega t}$ where imaginary $oldsymbol{\omega}$ corresponds to Assume all perturbed quantities have harmonic instability (exponential growth)
 - Find (real) eigenvalues ω² of

• Unstable if $\omega^2 < 0$

- $\delta W if \, \delta W$ can be negative for some ξ , field is unstable functions (obeying boundary conditions) and minimising Can demonstrate **instability** by using class of trial
- By manipulation of integral, perturbed potential energy can be written (in case of perfectly conducting walls) as MQ

 $\frac{1}{\mu_0} \left| \nabla \times \left(\boldsymbol{\xi} \times \mathbf{B}_0 \right) \right|^2 + \gamma p_0 \left| \nabla \cdot \boldsymbol{\xi} \right|^2 - \boldsymbol{\xi}^* \cdot \mathbf{j}_0 \times \left\{ \nabla \times \left(\boldsymbol{\xi} \times \mathbf{B}_0 \right) \right\} - \boldsymbol{\xi}^* \cdot \nabla \left(\boldsymbol{\xi} \cdot \nabla p_0 \right) \right| dV$ <mark>- | 7</mark>

- First two terms (+) are stabilising
- Field line bending (term 1) and compression (term 2)
- Second two terms (possibly -) can be destabilising due to sources of free energy
 - Equilibrium current (term $3) \rightarrow$ kink instability
- Pressure gradients (term 4) → ballooning/interchange instabilities

 Make small displacement or interchange Magnetic field energy unchanged, plasma potential energy decreases – hence unstable (perturbation will grow

Rayleigh-Taylor instability

- Requires gravity (or accelerating reference frame) Heavy fluid suspended over
- Heavy fluid suspended over light fluid is unstable – similarly stratified fluid is unstable if dp/dz > 0

Similar instability if fluid is supported against gravity by horizontal magnetic field (aka Kruskal-Schwartzschild instability/Parker instability/gravitational instability) – or accelerating transverse to interface

Buoyancy and Parker instability

Magnetic buoyancy – consider an isothermal horizontal magnetic flux tube in local force balance with surroundings. Tube has lower thermal pressure due to magnetic pressure, hence it is lighter than surroundings

$$+\frac{B^2}{2\mu_0}=p_e \Longrightarrow \rho_i-\rho_e=-\frac{m_pB^2}{4\mu_0kT}$$

• Upwards buoyancy force $(\rho_i - \rho_e)g$

 $p_{_i}$

- Causes new magnetic flux to emerge at solar surface, sunspot formation - also important in galactic magnetic field
- Horizontal field is unstable to Parker instability when buoyancy overcomes magnetic tension, if *dB/dz* <0 – requires wavelength greater than critical wavelength \bullet

R-T instability creates filamentation – leads to reconnection and enhanced plasma heating

 Instability is stabilised by field line bending

•Hence perturbations have k [⊥] B₀ constant along field lines Sometimes called "flute mode"
 C.f. Fluted Greek column

Sausage and kink instability

- An ideal MHD instability driven by current (twisted magnetic fields)
- Kink increased magnetic pressure on "inside of bend" drives further displacment - creates helical distortion
 - Stabilised by axial field (B_z) field line bending (tension)
- Coronal loops with "line-tying" at dense photospheric footpoints are unstable if a critical twist (φ =
 - *LB₆/rB₂)* is exceeded (*Hood and Priest 1979*)
 May create current sheets in the state of the state
 - nonlinear phase leading to reconnection and energy dissipation (see later)

- Consider background steady flow u₀
- Flow shear provides free energy for instability

Kelvin-Helmholtz instability at flank Coronal Mass Ejec observed by SDO Foullon et al 2011

"classical" reconnection models Resistive instabilities and

Magnetic reconnection

- In a current sheet there is a strong current j in a thin region where the magnetic field B changes direction
- Oppositely-directed fields are pushed together by plasma flows
 – fieldlines "break" and "reconnect" in due to localised dissipative effects
- Changes magnetic topology
- (which is conserved in an ideal perfectly conducting – plasma)
- Converts magnetic energy into thermal energy and kinetic energy (bulk flows or nonthermal particles)

 Outer "ideal" region in which fieldlines are frozen to the plasma

- Localised inner "resistive" or "dissipative" region in which field
 - topology can change • Much more rapid than Ohmic
 - Nucit Inore rapid unan Unitili dissipation

 Flow field interacts with dissipation - non-ideal effects are locally significant even in a highly conducting (large S) plasmas Associated with reversals in magnetic field (or strong gradients)
 – occurs at current sheets or null points or other singular layers

"Classical" modes of reconnection

- on linear instabilities of resistive plasma - tearing instability and variants cti ous reconn pont
- Steady-state reconnection continual steady inflow, Sweet-Parker and Petschek models and variants
- Forced reconnection triggered by external disturbance – Hahm and Kulsrud

Tearing mode II

- Consider small perturbations, assume time dependence e^{vt}
- Linearise MHD equations

Inner "resistive" layer – inertia balances resistive diffusion

- where δ is transverse scale of resistive layer
- Match inner solution to outer solution using continuity of Δ' (jump in perturbed flux derivative across resistive layer)

Tearing mode III

 Δ' from outer "ideal" region – resistivity neglected, inertia insignificant e.g. for simple field reversal (current sheet)

- Instability if $\Delta' > 0$
- In slab geometry, the most unstable mode has growth rate

occurring at long wavelengths

Tearing instability growth time is much faster than global resistive diffusion time – intermediate between Alfven and diffusion timescales - but still slow in the solar corona, where S is very large •

Steady state reconnection – Sweet-Parker

- Steady inflow driven into current sheet oppositely-directed fields reconnect in current sheets, reconnected fields emerge in outflow region \bullet
 - Classic Sweet-Parker reconnection has outflow speed ~ v_A , inflow speed ~ $S^{1/2}v_A$
 - Reconnection timescale

Much faster than resistive dissipation – but much slower than Alfven time

Derivation of Sweet-Parker scalings

Mass continuity: $v_{out}l = v_{in}L$ Ohm's Law (ideal region): $E = v_{in}B$ Ohm's Law +Ampere's Law (inside sheet): $E = j/\sigma \approx B/\mu_0 \sigma l = \eta B/l$.

$$\Rightarrow v_{in} = \frac{\eta}{l}.$$

Transverse force balance (neglecting velocity since $v_i \square v_A$):

$$\frac{\mathbf{D}}{2\mu_0} = p_c - p_e$$

 $(p_{c,e}$ are pressures at sheet centre/in external region).

Force balance along sheet:
$$\rho v_y \frac{\partial v_y}{\partial y} = -\frac{\partial p}{\partial y}$$

$$\Rightarrow \frac{1}{2} \rho v_{out}^2 = p_c - p_e \Rightarrow v_{out} = \frac{B}{\sqrt{\mu_0 \rho}} = v_{A}.$$

Combining above equations:

$$v_i = v_A S^{-1/2}$$
$$I = L S^{-1/2}.$$

Hence the reconnection timescale $\equiv L/v_i$ is

$$t_r = t_A S^{1/2} = t_d S^{-1/2} = (t_d t_A)^{1/2}$$

- es in Even faster steady reconnection is possible e.g. Petschek reconnection which has <mark>standing slow mode MHD shock wav</mark> the inflow region \bullet
- Shorter current sheet allows for faster reconnection Reconnection rate Ó

•

 $8 \ln S$ $M_e^* = \frac{v_i}{m} \approx \frac{\pi}{m}$ u_A

Forced reconnection

- A transient external disturbance of the boundary creates a current sheet which subsequently reconnects, dissipating magnetic energy
- Consider a sinusoidal perturbation to the boundary of a 1D slab field with a reversal (*Hahm and Kulsrud*, *1985*); or a sheared force-free field (*Vekstein and Jain*, *1998*)
- In latter case, a current sheet forms at a resonant surface where $\mathbf{k} \cdot \mathbf{B}_0 = 0$
 - Energy may be released even if initial field is STABLE to tearing
- external disturbance such as displacement of photospheric e.g. Reconnection in a solar coronal loop may be triggered by footpoints

reconnection modelling Collisionless reconnection Developments in 3D reconnection

Beyond MHD....

Typical length of coronal loop $10^7 - 10^8 \text{ m}$ (widths of observed loops $\approx 10^6 \text{ m}$) – the global scale length

$$n = 10^{15} m^{-3}, B = 10^{-2} T, T = 10^{6} K$$

Та

Lundquist number *S* =10¹⁴ Mean free path

$$\lambda_{coll} \approx 10^4 \mu$$

 \mathcal{U}

Current sheet width in classical MHD tearing theory or Sweet Parker reconn

$$I \approx S^{-1/2} L \approx 10 - 100m$$

- reconnection scales since current sheet smaller than mean free MHD valid for global scales but breaks down at local path ۲
 - models to too slow - look to collisionless on is 00 **OHM** \bullet
 - pation" due to effects other than collisions (Ohmic resistivity) Ģ •

Generalised Ohm's Law

From electron equation of motion, derive generalised Ohm's Law

$$(\mathbf{v} + \mathbf{v} \times \mathbf{B} = \frac{1}{ne} \mathbf{j} \times \mathbf{B} - \frac{1}{ne} \nabla \mathbf{p}_e + \frac{m_e}{ne^2} \left[\frac{c \mathbf{J}}{\partial t} + \nabla (\mathbf{v} \mathbf{j} + \mathbf{j} \mathbf{v}) \right] + \eta \mathbf{j}$$

Electron inertia term (*dj/dt*) associated with length-scales of electron skin depth

$$d_{e}=cig/\omega_{pe}=ig(m_{e}/ne^{2}\mu_{0}ig)$$

Hall term (j X B term) significant on length-scales of order of ion skin depth

$$d_i = c/\omega_{pi} = (m_i/ne^2\mu_0)^{1/2} \approx 10 \text{ m in corona}$$

- Electron pressure tensor collisionless dissipation associated with offctron pressure tensor - non-gyrotropic electrons (Hesse et al, 1999) of \bullet
 - Out of plane field $(B_2) guide$ field significantly affects reconnection dynamics •

- ncorporation of Hall term allows for two-fluid effects magnetic field rozen to electron fluid
- Hence Hall term is non-dissipative and cannot drive reconnection directly
- Hall term speeds up rate of reconnection diffusion region develops two-scale structure
- Quadrupolar out-of-plane magnetic fields due to in-plane currents arising from separation of ion and electron flow

Simulation of collisionless reconnection

- 3D kinetic Particle in Cell (PIC) simulation of reconnection (from *Drake et al, 2006*) Doubly periodic Harris current sheets
- Electron out of plane current at two successive times and temperature

Newton challenge

- Typical MHD simulation grid cell ≈ 10⁵ - 10⁶ m , Typical kinetic simulation box size ≈ 10³ m
- reconnection in a 1D current sheet (field reversal) using MHD, Hall, PIC codes (*Birn et al, 2005*) Localised equilibrium current sheet rather than uniform current
- rather than uniform current Final state is close to predicted reconnected equilibrium in all cases Reconnection is slower, and resistivity dependent, for pure MHD Hall model captures most of dynamics

Reconnection in 3D

- Reconnection in 3D differs in significant respects from 2D (e.g. Horning and Priest 2003, Priest et al 2003)
- Reconnection of a pair of flux tubes does not lead to a clearly identified new pair
- Counter-rotating flows in dissipation region
- Apparent flow of fieldlines beyond dissipation region differs from real flow
 - Takes place at nulls, separators, quasi-separatrix layers etc

See review Pontin 2011

Fopology and reconnection sites in 3D

- The "magnetic skeleton" (*Bungey at al, 1996*) comprises: Field sources, **null points** (B = 0), flux domains (bounded
 - by separatrix surfaces) and separator lines (intersections of two seperatrices)
- In 3D (or 2D + guide field), reconnection can occur both with and without nulls
- Regions of large gradients in magnetic field line mapping are called Quasi-Separatrix Layers (QSLs; Titov et al, 2002; DeMoulin 2006)
 - Squashing factor Q quantifies gradient in field line connectivity
- A QSL has Q >> 2 (small change in initial field line position leads to very large change in end point location)
 - **QSLs are also likely sites for current sheet formation**

- Field near a 3D null (B = 0) has a spine line and a fan surface (Lau and Finn, 1990; Priest and Titov, 1996) analogue of separatrix lines in 2D
- Priest and Titov (1996) present a "kinematic" model which represents outer ideal inflow/outflow regions
 - For self-consistent models incorporating inner resistive region see e.g. Craig et al (1997)

Spine and fan reconnection

- Spine reconnection fieldlines based on Craig et al 1997
 - Solution of steady 3D MHD equations
- Compression of spine field lines, bending of fan plane – current sheets of finite length along spine

Reconnection in the corona and coronal heating

Solar coronal heating

- To maintain the coronal plasma at millions of degrees, need heat source to balance conductive and radiative energy losses (up to 10⁴ Wm⁻² in Active Regions)
- Heating is associated with magnetic field – energy input from photospheric motions
- Depending on timescale of driving motions, heating may be associated with damping of waves ("fast") or quasisteady currents ("slow")
 - Slowly twisting or shearing the footpoints of the coronal field stores free magnetic energy (currents) in force-free equilibrium j XB = 0

Coronal energy storage and dissipation

Energy input from photosphere is sufficient

 Magnetic reconnection is a strong candidate for efficient dissipation of the stored energy → coronal heating may be due to combined effect of many small flare-like events "nanoflares"
 Reconnection sites (current sheets) should be common in complex coronal field

Origin of current sheets in the corona

- Simple field, complex footpoint motions
- Parker (1972, 1983) proposed asymmetric <mark>braiding</mark> motions of the photospheric footpoints of straight uniform coronal loop leads to lack of equilibrium
 - → Singularities (current sheets) must form
- equilibria can exist but finite strong currents develop Still controversial – seems more likely that 3D

Current isosurface from numerical simulation of flux tub braiding (*Galsgard and Nordlund*, 1996)

Origin of current sheets in the corona

- Complex field topology, simple motions
- Footpoint displacements in fields with nulls, separatrices, separators, QuasiSeparatrix Layers
 - Coronal field with discrete photospheric flux sources
 - Emerging flux
- Simple fields, simple motions
- Disturbance of resonant surface (forced reconnection)
- Nonlinear kink instability

From Longcope, 2001

Magnetic helicity

Magnetic helicity

$K = \int_{V} \mathbf{A} \cdot \mathbf{B} dV \qquad \left(\nabla \times \mathbf{A} = \mathbf{B} \right)$

Measures degree of self-lirikage or twistedness of the magnetic field

- For two flux tubes K =2φ₁φ₂ if tubes interlink, K = 0 if no interlinkage
 - For twisted flux tube K = Tφ² where T is the twist (=1/q = number ot timed field line turns in one toroidal circuit)
 - Modify in region with flux crossing boundary to ensure gaugeinvariance (*Finn and Antonsen*, 1985)

Fieldline links toroidal flux 5 times From *Berger (2000*)

Helicity and reconnection

Global magnetic helicity conserved during magnetic ection

-Dissipated only on long Ohmic time-scales ($t_{\rm d}$) -much more slowly than magnetic energy - helicity dissipation Helicity may be converted between linkage and twist is very slow in the solar corona (*Berger, 1984*) but created/destroyed (in closed region)

$$\frac{tW}{dt} = -\int_{vol} \eta \mathbf{j} \cdot \mathbf{j} dV \approx -\eta B^2 L^3 / \mu_0^2 l^2, \quad \frac{dK}{dt} = -2 \int_{vol} \eta \mathbf{j} \cdot \mathbf{B} dV \approx -2\eta B^2 L^3 / \frac{1}{(\Lambda W/W)} \approx \frac{(\Lambda W/W)}{T} \approx \frac{1}{T} <<1$$

 n_0l

assuming dissipation occurs in thin current sheets of width I << L (global length scale)

From Pfister and Gekelman, 1991)

Relaxation and minimum energy states

- How can we calculate the energy release due to multiple reconnection events in a complex field?
- subject to the appropriate constraint for a highly conducting plasma: total magnetic helicity is conserved (Taylor, 1974) The field relaxes to a st
- The minimum energy state is a constant- α (linear) force-free field

$$\nabla \times \mathbf{B} = \alpha \mathbf{B}$$

 $\alpha = \mu_0 \mathbf{j} \cdot \mathbf{B} / B^2 = \text{constant}$

This is a special case of a force-free field **j** X**B** = **0** which can be expressed

Relaxation and solar coronal heating

 Helicity is injected by twisting and shearing of photospheric footpoints

- Stressed field relaxes to a constantα state – energy released, helicity conserved
- (Heyvaerts and Priest, 1984; Browning, 1988)
 - Excess energy over minimum energy state dissipated as heat – coronal heating
- Process repeats: stress-relax, stress-relax,....- gives distribution of heating events (Bareford et al 2010, 2012)

How does relaxation work in the corona?

dool tability in cylindrical al 200 Arb E3D cod ō r ng S

- initially in kink linearly-unstable equilibrium with $\alpha(r)$ profile

 $\alpha = \alpha_1, \ r < R_{\rm c}$ $\alpha = \alpha_2, \ r > R_{\rm c}$

Browning and Van der Linden, 2003; Browning et al, 2008; Hood et al 2009

Current sheets develop in nonlinear phase of ideal kink instability →fast reconnection

Emerging flux: 3D reconnection and null points

- emerging flux (*Archontis et al* simulation of **3D MHD** 2004)
- Leads to compex

Magnetic topology

(green) + magnetic Maclean et al 2009 line) + regions of strong electric field separators (black null points (red and blue) - from

Reconnection and particle acceleration in solar flares

Examples of reconnection: flares

- Solar flares are dramatic brightening in soft x-rays period of hours - strong magnetic energy over a events releasing up to 10²⁵ J of stored
- from gamma rays to radio heating and fast particle across the em spectrum Flares generate plasma beams - signatures
 - Primary energy release process believe to be

magnetic reconnection

X class flare from SDO August 9th 2011

High energy particles in flares

- High energy particles detected *in situ* by particle detectors in space and indirectly near Sun through radiation 0
- components (hard x-rays, gamma rays) due to Bremstrahlung of electrons and nuclear reactions/excitations of ions Emission from flares shows both thermal and non-thermal

Particle acceleration mechanisms

- mechanism, it is plausible that electric fields associated with reconnection may accelerate charged particles Since reconnection is primary energy release
- turbulence, plasma waves, shocks, collapsing magnetic traps – also variants of reconnection acceleration (e.g. multiple reconnection sites) and hybrid mechanisms Other acceleration mechanisms are proposed
- Require to explain electron energies of up to \approx 1 MeV, proton energies of up to \approx 1 GeV or higher in gamma ray flares; acceleration times of \approx 1s or less
 - Studying charged particle energy spectra, spatial distribution etc may provide information about reconnection site geometry and parameters

Electric fields in flares

- Flare electric fields can be estimated from flux conservation arguments ($\mathbf{E} = -\mathbf{v} \times \mathbf{B}$), from observed motion of "ribbons" (footpoints of flare loop) estimate electric fields of around 1000 Vm⁻¹
- The Dreicer electric field is the critical value of E above which electrons are freely accelerated as in a vacuum (Coulomb collisions are insignificant) \bullet
 - Coulomb collision rate is a decreasing function of velocity (temperature) fast electrons have few collisions

$$E_d = \frac{e \ln \Lambda}{4\pi\varepsilon_0 \lambda_D^2} \propto \frac{n}{T} \quad \left(\lambda_D = \sqrt{\frac{\varepsilon_0 kT}{ne^2}}, \text{ the Debye length; } \ln\Lambda \approx 20\right)$$

- Typical flare electric fields are super-Dreicer ($E_d \approx 0.01 \text{Vm}^{-1}$) \bullet
- Particles may thus gain significant energies if directly accelerated along the electric field for long enough e.g. acceleration by $E = 1000 \text{ Vm}^{-1}$ over 10,000 km gives energy 10 GeV •

Particle trajectories in reconnecting fields

- Magnetic field inhibits acceleration
 particles drift if E perpendicular to B
- Reconnection electric field transverse to current sheet – may also be magnetic field components perpendicular to sheet (B_{\perp}) , small, and parallel to electric field (B_{\parallel})
 - Particles are brought into current sheet by **E** X **B** drift
 Within sheet they avrate around **B**
- Within sheet they gyrate around B_{ll} and are accelerated along electric field – until ejected from sheet gyromotion associated with B₁
 - Energy gain depends on time spent in sheet (distance travelled along sheet)

geometry

Test particle approach

- Charged particle behaviour in non-uniform electromagnetic fields especially in reconnecting fields with magnetic null points or reversals is far from fully understood!
 - Take magnetic and electric field configuration representative of reconnection e.g. from analytical model
- Veglect the fields generated by the test particles (ok if number of higň energy particľes is few compared with "backĝround" plasma which generates electromagnetic fields)
 - Usually neglect collisions of test particles with the background plasma
- Integrate equations of motion numerically Lorentz equations or guiding-centre

- X-point or current sheet configuration
 - Invariance of all quantities in the 'z' direction
- May include a "guide field" B₂
 - A large number of studies published....

- Efficient acceleration is possible, provided the electric field is strong enough to allow efficient drift towards the null point / current sheet.
- Energy gain strongly dependent on a particle's initial position
- Presence of a guide field results in more efficient acceleration, also separates species

Reconnection in action -3D nulls in the corona

Spine lines and Hard X-ray footpoint sources from 3 flares *Desjardins et al 2009*

Particle acceleration at 3D null points

- Inject test particles into electromagnetic fields representing analytical solutions of MHD equations at 3D reconnecting nulls (*e.g. Priest and Titov 1996, Craig et al 1997*)
- Current sheets may develop at spine line or fan plane – also electric fields associated with inflow – can acccelearte particles to high energy

Stanier et al A & A 2012

See also Dalla and Browning 2005, 2006; Browning et al 2010

Reading list

- "Magnetic reconnection" Priest and Forbes (Cambridge University Press, 2000)
- "Magnetic reconnection in plasmas" Biskamp (CUP,2000)
 - "Reconnection of magnetic fields" eds. Birn and Priest (CUP 2007)
 - "An introduction to plasma astrophysics and MHD" Goossens (Kluwer, 2003)
- astrophysical plasmas" + "Advanced MHD" Goedbloed and Poedts (CUP, 2004, 2010) "Principles of MHD: with applications to laboratory and
- "Physics of space plasma activity" Schindler (CUP 2007)
 - "Heliophysics" Vols 1-3 Shrijver and Siscoe (CUP 2010)

Selected references

Apologies for any omissions – for more complete reference list, see recommended books

- Archontis, V. et al (2004)
- Bareford,M. et al Astron. Astrophys. 521, A70 (2010)
 - Berger,M.A. Geophys. Astr. Fluid Dyn. 30, 79 (1984)
 - Birn,J. et al, *Geophys Res Lett* 32, L016105 (2005)
- Bhattarcharjee,A. *Ann Rev Astron Astrophys* 42, 365 (2004)
- Browning,P.K. et al, Astron. Astrophys. 485, 837 (2008)
 - Browning,P.K. et al Astron. Astrophys 520, A105 (2010)
- Craig, I.J.D. et al, Ap. J, 485, 383 (1997)
- Dalla,S. and Browning,P.K. Ap. J.Lett, 640, L99 (2006)
 - Desjardins, A. et al. Ap.J. 693, 1628 (2009)
 - Drake et al, Nature 443, 553 (2006)
 Figs 1 M and Nature 443, 553 (2006)
- Finn,J.M. and Antonsen,T.A., Comm. Plas. Phys. Cont. Fus. 9, 111 (1985)

- Furth H, Killeen J and Rosenbluth MN, *Phys. Fluids* 6, 459 (1963
 - Gordovskyy,M. And Browning,P.K. *Ap.J.* 729, 101 (2011)
- Gordovskyy,M. & Browning,P.K. *Sol. Phys* 277, 299 (2012)
- Hahm, T.S. and Kulsrud, R.M., *Phys. Fluids*, 28, 2412 (1985)
- Hannah,I.G. and Fletcher,L. *Sol. Phys.* 236, 59 (2006)
 - Hesse,M. et al, *Phys. Plas* 6, 1781 (1999)
- Heyvaerts,J. and Priest,E.R. *Astron. Astrophys.* 137, 63 (1984)
 - Hillier A. et al, Ap. J., 746, 120 (2012)
- Hood, A.W. et al Astron. Astrophys 506, 913 (2009) Hood,A.W. And Priest *Sol. Phys.* 64, 203 (1979)
 - Hood,A.W. et al Astron. Astrophys 5
 Lin,R.P. Ap. J. 595, L69 (2003)
- Linton,M. and Priest,E.R., *Ap. J.* 595, 1259 (2003)
- Longcope, D.W and Cowley, S.C. *Phys Plas. 3, 2885 (1996)*

- Maclean,R. et al *Sol. Phys*. 260, 299 (2009)
 - Oz.E. et al *Phys. Plas.* 18, 102107 (2011)
- Pontin,D. *Geophys. Astr. Fluid. Dyn*.99, 77 (2005) Pontin,D. *Adv. Space. Res.* 47, 1508 (2011)
- Priest,E.R. and Demoulin,P., *J.G.R.* 100, 23443 (1995) Priest,E.R. et al *Ap. J*. 624, 1057 (2005)
- Schrijver,C. and Title,A.,*Sol. Phys.* 207, 223 (2002)
 - Stanier, A. et al Astron. Astrophys. 542, A47 (2012)
 - Syrovatskii,S.I. *Sov. Phys. JETP*, 33, 933 (1971)
 - Taylor,J.B., *Phys. Rev. Lett*, 33, 1139 (1974)
- Taylor, J.B., *Rev. Mod. Phys.*, 58, 741 (1986)
 - Titov, V.S. et al, Ap. J. 582, 1172 (2003)
- Vekstein,G. and Jain,R. *Phys. Plasmas.* 5, 1506 (1998)
 - Wood, P. and Neukirch, T. Sol. Phys. 226, 73 (2005)

