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Three solar cycles with BiSON 

Chaplin et al. 2007, ApJ, 659, 1749  

Acoustic signatures of the solar 
cycle: where it all started… 

SMM/ACRIM data 

Woodard & Noyes 1985, Nature; 1988, IAU123 
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Early BiSON data (Data: Tenerife & Haleakala) 

Isaak et al. 1988, IAU123 

l =0 l =1 

Cross-correlation analysis 

Pallé et al., 1989, A&A, 224, 253 
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Clear correlations with surface 
measures of activity 

Elsworth et al. 1990, Nature, 345, 322 

Behave like spherical harmonics 

l: number of 
nodal lines 

m: number of 
azimuthal 
nodal lines 
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Frequency and degree dependence 
of shifts… 

Libbrecht & Woodard 1990, Nature, 345, 779 

Frequency dependence                   
at low degree 

Elsworth et al. 1994, ApJ, 434, 801  
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Sound waves generated at top of 
Convection Zone... 

Convection 
Zone 

Radiative 
Interior 

Photosphere 

Acoustic 
source 

The Resonant Sun 
The Sun resonates like a musical instrument... 
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Standing acoustic wave 
patterns... 

Internal acoustic 
ray paths 

Surface displacement: 
oscillation patterns in 3D 

red waves give… 

blue waves give… 

Resonance in simple 1-D pipes 
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§  Directly, by action of Lorentz force 

§  Indirectly by changing stratification 

Changes in Mode Properties... 

Magnetic fields can act as 
agents of change: 

The Solar Activity Cycle 
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Dispersion relation 

§  Simple  = ck relation modified: 
 

§ Interior stratified under gravity 
§ Total internal reflection implies existence 

of cut-off frequency 
§ Radial (r) and horizontal (h) wave 

numbers required 

Dispersion relation 

§  Allow for different types of internal 
wave: 

 

§ Acoustic waves: compression dominates 
§ Buoyancy waves: displacement 

dominates 
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Dispersion relation 

§  Simple  = ck relation modified to: 

 

  
 ac: acoustic cut-off frequency 

 

 N: Brunt Väisälä frequency (characterises oscillation 
of fluid element displaced from rest position) 
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Trajectories of acoustic waves in 
interior 

Courtesy J. Christensen-Dalsgaard 

Upper 
turning 
point 

Lower 
turning 
point 
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Trajectories of acoustic waves in 
interior 

Waves launched at steeper angle to radial 
direction penetrate more deeply! 

Trajectories of acoustic waves in 
interior 

These more-deeply penetrating waves have 
longer horizontal wavelengths: bigger skip 
distance goes with longer h [smaller kh] 
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Behave like spherical harmonics 

l: number of 
nodal lines 

m: number of 
azimuthal 
nodal lines 

Trajectories of acoustic waves in 
interior 

Longer h [smaller kh] = lower degree, l 

So the lower the degree, the more deeply 
penetrating the mode; and the larger the 

associated mode inertia 
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Mode inertia and mode mass 

Frequency dependence 
of shifts  

Chaplin et al. 2001, MNRAS, 324, 910 
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Chaplin et al. 2001, MNRAS, 324, 910 

Frequency dependence of shifts  

)(/ nlnlnl EEQ ν=

: inertia an l=0 mode would have at frequency nl )( nlE ν

Frequency dependence of shifts  

UTP for radial modes (model ‘S’) 
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Frequency dependence of shifts  
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§  What do we expect for  ? 
 

§ Change confined close to surface          
(but in the interior):  = 0 

 

§ Change confined to photosphere       
(within one pressure scale height):  = 3  

Frequency dependence of shifts  

Chaplin et al. 2001, MNRAS, 324, 910 

  
0 

  
2 

Frequency dependence of shifts  
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Effects of near-surface activity on modes  
Depends on spherical harmonic of mode (l, m) 

(1,0) (1,1) (2,0) 

(3,0) (2,2) (2,1) 

Global Frequency Shifts in GONG 
data: as Function of Solar Latitude 

Courtesy R. Howe 

Spatial dependence 
correlates strongly 
with active regions 

Dependence of 
shifts on mode 

degree, l, and mode 
frequency, suggests 

near-surface effect 
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Solar Cycle Variations 

Frequency 

Damping Power density 

BiSON 
GONG 

Howe et al., 2003, ApJ, 588, 1204 

Variations in Global 
Mode Damping and 

Energy 

La
tit

ud
e 

1996  1997  1998  1999  2000  2001 1996  1997  1998  1999  2000  2001 

60 

20 

-20 

-60 

Energy (forcing/damping) Mode Damping 

Komm, Howe & Hill, 2002 

Inference on changes to 
convection, which excites 
and damps modes 
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Internal Solar Rotation 

GONG data 

The Tachocline (‘speed slope’) 

Courtesy P. H. Scherrer, SOI Stanford 

Located just 
beneath base of 
convection zone 

Key for dynamo 
action! 
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Tachocline oscillations 

Howe et al. 2011, JPCS 

GONG and MDI data 

Above 
tachocline 

Beneath 
tachocline 

Torsional oscillations of 
the whole convection 

zone 

Difference in 
successive 72-d 
rotation inversions of 
MDI data 

Courtesy S. Vorontsov and collaborators 

Migrating bands of flow penetrate interior! 
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Slow start to cycle 24 

Howe et al. (2009), updated to 2012 

Near-surface flows: GONG, MDI, HMI 

Dynamics: comparing solar minima 

Antia & Basu (2010) 

MDI & GONG data: cycle 24 – cycle 23 
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Structure: comparing solar minima 
BiSON frequencies: cycle 24 – cycle 23 

“Sounding” stellar activity cycles: Sun 
Three solar cycles with BiSON Sun-as-a-star data 

scaled 10.7-cm radio flux 
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Broomhall et al., 2012, ApJ, 420, 1405 

Quasi-biennial 
variation 
After removal of 
11-yr cycle 
signature 

Cycles 22, 23… and rise of 24 
BiSON Sun-as-a-star data 

High-frequency                    
modes 

Intermediate-frequency        
modes 

Low-frequency                 
modes 

scaled 10.7-cm radio flux scaled ISN 

22 23 24 
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CoRoT sounds 
F type stars 
Michel et al. 2008 
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CoRoT reveals a short activity        
cycle in HD49933  

García et al., 2010, Science 

NASA Kepler Mission 

Kepler Asteroseismic Science 
Consortium (KASC) 
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Kepler target field 

1.5 
1.4 

1.3 
1.2 

1.1 

1.0 
0.9 

0.8M¤ 

KASC asteroseismic survey 
More than 600 solar-type stars 

Chaplin et al., 2011, Science, 332, 213 
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Sun 
SOHO 

6116048 

6603624 

6106415 

8379927 

8006161 

-  “Sound” stellar cycles 
- Accurate inference on depths of 

convective envelopes 
-  Internal rotation 
- Constrain surface distribution of active 

regions 
 

The asteroseismic ensemble 
Inferences on stellar activity, dynamo theories 

Deheuvels et al. 2012, ApJ, in the press 
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-  “Sound” stellar cycles 
- Accurate inference on depths of 

convective envelopes 
-  Internal rotation 
- Constrain surface distribution of active 

regions 
 

The asteroseismic ensemble 
Inferences on stellar activity, dynamo theories 

Effects of near-surface activity on modes  
Depends on spherical harmonic of mode (l, m) 

(1,0) (1,1) (2,0) 

(3,0) (2,2) (2,1) 
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Spatial dependence of the 
frequency shifts 

Chaplin et al., 2004, 
MNRAS, 352, 1102 

Sun-as-a-star 
BiSON data 


