Solar terrestrial relations, space weather, solar variability and climate

Chris Davis September 2011

With thanks to Richard Harrison, Jackie Davies, Curt de Koning, Dusan Osdrcil, Mathew Owens and Mike Lockwood

A Coronal Mass Ejection (CME)

An eruption/ejection of material into interplanetary space.

~ 10^{12} kg ejected at typical speeds of 350 km/s.

Up to a few per day.

A solar flare

An explosive release of energy <u>in an</u> <u>active region.</u>

RAL Space

~ 10²⁵ J released in tens of minutes (100 million 1 megaton bombs! Or 100 million million tonnes of TNT)

When the Sun is active, around two CMEs occur every day

Though flares generate much faster SEPs than CMEs, those associated with CMEs represent a much greater radiation risk because they contain much heavier elements and occur for much longer (so-called 'gradual' events).

Monitoring these vast eruptions in the solar wind and studying their effects on Earth's technology has become known as 'Space Weather'

Galactic Cosmic Rays – energetic particles from outside our solar system

The coronal magnetic field is dragged out by the solar wind flow to give the interplanetary magnetic field which shields Earth from galactic cosmic rays

the IMF at Earth is relatively strong, protecting our planet from cosmic rays

When the Sun is inactive, as it has been recently, the IMF is weaker, more cosmic rays reach the Earth and its space environment.

There isn't a 'good' time to be in space!

Exposure in space

Radiation doses from GCRs (at 1977 solar minimum) and/or SPE

Given in REM behind a shield of 10 g.cm⁻²

	Open Space	59	REM yr ⁻¹
GCR dose	Moon	29	REM yr ⁻¹
	Mars	12	REM yr ⁻¹
	Trip to & stay on	10	DEM
Total CCB daga	Moon (190 Days)	10	REIVI
Total GCR dose	Trip to Mars	02	DEM
	(947 days)	92	REIVI
	Open Space	130	REM
Total doca in a color	On Lunar	60	DEM
narticle overt*	Surface	00	
particle event	On Martian	25	DEM
	Surface	25	
Lifetime dose limit	anywhoro	20	DEM
for a male aged 55	anywhere	50	
Lifetime dose limit	anywhara	15	DEM
for a female aged 55	anywhere	15	

RAL Space

* For a severe event

UNITS: Röntgen Equivalent Man, 1 REM = 10 mSv 🐼 0.01 J kg⁻¹

SEPs: what's the space weather been like?

SEPs and Galactic cosmic rays since the Apollo Missions

Onset of d Location o Dimming r	limming and CME 'coincident of dimming under ascending (mass and CME mass consist	r. RAL Space CME. ent	2
Date	Dimming mass	CME Mass	
	(DEM/Si X) [kg]	[kg]	
Jul 16 19	97 4.3x10 ¹⁰ /1.3x10 ¹¹	5x10 ¹⁰	
May 8 19	99 1.1x10 ¹² /4.2x10 ¹²	3x10 ¹¹	
Jul 25 19	99 7.4x10 ¹¹ /3.4x10 ¹²	3.5x10 ¹²	
Feb 19 20	000 1.1x10 ¹⁴ /2.7x10 ¹⁴	1.1x10 ¹²	
Aug 19 20	000 6.4x10 ¹¹ /1.8x10 ¹²	4.7x10 ¹¹	

(from Harrison, Bryans, Simnett and Lyons, 2003, A&A 400)

Dimming under CMEs (EUV & X-rays) has been reported using SOHO (CDS & EIT) and Yohkoh (SXT) since 1997 (Sterling & Hudson, 1997; Harrison, 1997; Golapswamy & Hanaoka, 1998; Zarro et al., 1999).

Tracking CMEs

CMEs are observed by Thomson scatter of sunlight by electrons in plasma. This process is far more efficient for CMEs travelling perpendicular to the observer since the plasma cloud is at its densest along the line-ofsight at this point (as it is closest to the Sun).

RAL Space

Earth-directed CMEs observed from spacecraft near the Sun-Earth line appear as diffuse 'halos'

RAL Space It is difficult to estimate the speed of Earth-directed CMEs observed by SOHO since it is the expansion rate of the CME that is being measured, not the

velocity.

While there is a statistical relationship between the CME expansion rate and its speed, this is not sufficiently accurate for forecasting purposes.

Better to observe CMEs from outside the Sun-Earth line. This was the justification for the Solar TErestrial RElations Observatory (STEREO).

Space Weather forecasting

Accurate prediction of a CME at Earth requires estimates of;

RAL Space

- CME direction
- CME initial speed
- Acceleration/deceleration of CME by ambient solar wind
- Deflection of the CME by ambient solar wind (?)

and/or

•Observations of the CME once it has reached its final 'cruise speed'

© 2010 RAL Space

- 2010 101 COL

Methods 2 and 3: Geometric and polarimetric localization

Both use STEREO coronagraph data to return estimates of CME initial speed and direction

Geometric localization:

- uses a series of lines of sight from two spaced-based coronagraphs
- works on the CME boundary

Polarimetric localization:

• measured polarization fraction within CME can be related to source location relative to plane of sky

CME location within 3D space on 2010 March 14 at 07:08 UT

- CME speed = 252 km/s
- CME longitude = -52° W
- CME latitude = 21° N

Estimates the average speed and direction of a CME in interplanetary space

As a CME moves across the field of view, it will have an apparent acceleration due to the wide field of view of the cameras.

RAL Space

This can be used to estimate the speed and direction of a CME.

The ecliptic lies approximately along the central line of the HI images.

Tracking the rate at which the CME expands along this line generates a 'J-map'.

The gradient is a function of speed and direction of the CME

Assuming the CME propagates radially (ϕ constant) and at a constant speed;

 $\alpha(t) = \arctan\left[\frac{vt\sin(\phi)}{H_{\circ} - vt\cos(\phi)}\right]$ (Sheeley et al., JGR, 1999)

CHI Event List - Windows Internet Explorer					_ <u>8</u> ×
COO - @ http://www.stereo.rl.ac.uk/scie	nce/events/HI_Event_list.html				Google
File Edit View Favorites Tools Help					
🙀 🎶 🌈 HI Event List					🛐 + 🔂 - 🖶 Page + 🎯 Tools + "
2008-02-04 HI 1 movie HI 2 movie	Ahead : vel 504.0 km/s; angle - Ahead : vel 484.0 km/s; angle - Ahead : vel 439.0 km/s; angle -	19.3±24.0°; est launch 2 54.3±17.5°; est launch 2 21.3±15.0°; est launch 2	008-02-03T19:55:32.440; est au 008-02-04T09:31:31.010; est au 008-02-04T08:35:36.564; est au	rrival 2008-02-07T05:11:43.138 rrival 2008-02-07T22:09:11.406 rrival 2008-02-08T05:53:46.387	
2008-02-05 HI 1 movie HI 2 movie	Ahead : vel 360.0 km/s; angle	7.3± 3.5°; est launch 200	08-02-05T00:42:16.049; est arri	val 2008-02-09T18:29:59.827	at DAL use this
2008-02-07 HI 1 movie HI 2 movie 	Ahead : vel 383.0 km/s; angle -	4.8±30.5°; est launch 20	08-02-05T08:26:45.036; est am	ival 2008-02-09T19:26:32.921	at RAL use this
2008-02-09 HI 1 movie HI 2 movie -	Ahead : vel 227.0 km/s; angle -	21.2±10.5°; est launch 2	008-02-08T09:26:38.351; est au	nival 2008-02-15T22:01:55.779	technique to produce an
2008-02-11 HI 1 movie HI 2 movie -	Ahead: vel 313.0 km/s; angle Ahead: vel 210.0 km/s; angle	.57.1±17.5°; est launch 2 .68.1±10.5°; est launch 2	008-02-10T20:17:02.447; est au 008-02-10T16:58:39.347; est au	rrival 2008-02-16T07:17:57.450 rrival 2008-02-18T20:15:09.899	event list
2008-02-14 <u>HI 1 movie</u> <u>HI 2 movie</u> -	Ahead: vel 302.0 km/s; angle Ahead: vel 297.0 km/s; angle Ahead: vel 244.0 km/s; angle Ahead: vel 244.0 km/s; angle	68.1±8.5°; est launch 2(40.1±13.0°; est launch 2 27.1±12.5°; est launch 2 54.1±17.0°; est launch 2	008-02-12T14:45:19.394; est an 008-02-13T13:18:17.483; est a 008-02-13T13:55:58.539; est a 008-02-14T04:35:56.782; est a	rival 2008-02-18T06:37:00.374 rival 2008-02-19T07:27:12.486 rival 2008-02-20T14:05:21.228 rival 2008-02-21T03:23:17.822	(www.stereo.rl.ac.uk)
2008-02-16 HI 1 movie HI 2 movie -	Ahead : vel 311.0 km/s; angle Ahead : vel 332.0 km/s; angle Ahead : vel 239.0 km/s; angle	57.0±16.5°; est launch 2 68.0±18.0°; est launch 2 50.0±17.5°; est launch 2	008-02-15T08:08:18.902; est au 008-02-15T18:45:07.783; est au 008-02-15T12:05:51.493; est au	rival 2008-02-20T20:07:07.184 rival 2008-02-20T22:23:02.771 rival 2008-02-22T15:50:14.657	How accurate are our
2008-02-17 HI 1 movie HI 2 movie	Ahead: vel 271.0 km/s; angle Ahead: vel 141.0 km/s; angle	68.0±12.5°; est launch 2 26.0± 6.0°; est launch 2	008-02-15T20:48:37.916; est an 008-02-14T14:47:19.432; est an	rival 2008-02-22T04:18:03.348 rival 2008-02-26T17:57:04.056	
2008-02-18 HI 1 movie HI 2 movie -	Ahead : vel 263.0 km/s; angle -	36.0±44.5°; est launch 2	008-02-16T12:29:22.411; est a	nival 2008-02-23T00:37:10.305	estimates? We need to
2008-02-21 - HI 1 movie HI 2 movie	Behind: vel 350.0 km/s; angle 6	.3±10.0°; est launch 200	8-02-21T00:16:38.047; est arriv	al 2008-02-25T21:40:19.578	compare with other
2008-02-22 HI 1 movie HI 2 movie -	Ahead: vel 507.0 km/s; angle	43.9± 4.5°; est launch 20	008-02-22T01:00:48.738; est an	rival 2008-02-25T10:04:23.744	techniques and in-situ
2008-02-24 HI 1 movie HI 2 movie	Ahead : vel 148.0 km/s; angle	19.8±37.5°; est launch 2	008-02-21T21:16:22.138; est as	rrival 2008-03-04T11:05:00.732	data
2008-02-25 HI 1 movie HI 2 movie -	Ahead: vel 438.0 km/s; angle Ahead: vel 287.0 km/s; angle	12.8±19.5°; est launch 2 67.8±12.0°; est launch 2	008-02-23T21:41:50.882; est au 008-02-24T07:05:08.196; est au	rrival 2008-02-27T19:35:29.622 rrival 2008-03-01T06:22:49.548	
2008-02-28 HI 1 movie HI 2 movie HI 2 movie	Ahead : vel 263.0 km/s; angle - Behind: vel 183.0 km/s; angle 4 Behind: vel 176.0 km/s; angle 5	48.7±13.0°; est launch 2 6.3±20.0°; est launch 20 8.3±20.0°; est launch 20	008-02-26T09:18:57.280; est an 08-02-27T12:52:28.953; est an 08-02-27T17:33:55.946; est an	rrival 2008-03-03T21:48:01.402 ival 2008-03-07T21:46:03.729 ival 2008-03-08T11:24:11.309	The 'Fixed phi' method
2008-03-01 HI 1 movie HI 2 movie -	Ahead : vel 268.0 km/s; angle -	21.6± 7.0°; est launch 20	008-02-28T13:01:44.730; est an	rival 2008-03-05T22:40:14.580	assumes a noint feature
2008-03-02 HI 1 movie HI 2 movie HI 2 movie	Ahead : vel 343.0 km/s; angle Behind: vel 410.0 km/s; angle 2	29.6±10.5°; est launch 2 5.3±25.0°; est launch 20	008-02-29T16:53:18.081; est an 08-03-01T13:39:40.717; est an	rrival 2008-03-05T16:57:54.979 ival 2008-03-05T18:06:57.244	Other techniques make
2008-03-04 - HI 1 movie HI 2 movie	Behind: vel 302.0 km/s; angle 4 Behind: vel 300.0 km/s; angle 0	.3±29.0°; est launch 200 .3± 6.5°; est launch 200	8-03-03T09:21:42.432; est arriv 3-03-03T14:21:16.280; est arriv	al 2008-03-09T01:48:37.638 al 2008-03-09T07:42:46.253	Other techniques make
2008-03-06 HI 1 movie HI 2 movie HI 2 movie	Ahead : vel 495.0 km/s; angle Ahead : vel 196.0 km/s; angle Behind: vel 402.0 km/s; angle 1	11.4±12.0°; est launch 2 39.4±25.0°; est launch 2 9.3±10.5°; est launch 20	008-03-04T23:51:57.880; est au 008-03-05T02:05:27.858; est au 08-03-05T11:15:15.616; est au	rrival 2008-03-08T11:09:24.183 rrival 2008-03-13T20:26:32.756 ival 2008-03-09T17:48:49.348	different assumptions
2008-03-15 HI 1 movie HI 2 movie	Ahead: vel 309.0 km/s; angle	67.0±21.0°; est launch 2	008-03-15T01:06:53.518; est au	rrival 2008-03-20T14:51:30.489	about the CIVIE shape;
RAL STEREO HI Support Group					
2008-03-27 10:13 GMT Chris Davis					
🕈 Start 🞯 🄏 🗿 » 🗿 Inbox - Microsoft	Outlook [🏠 multimedia	Search Results	Microsoft PowerPoint - [🔏 HI Event List - Windo	🔮 🖸 Z. 🔇 🗮 🚭 🏑 🖉 💽 10:32

where: a=2d/Vt-cosb and b=sinb

Davis et al (2009) repeated this analysis for STEREO, comparing estimates from coronagraphs with those from the HIs

Thernisien et al, 2009 used STEREO COR2 data to estimate speeds and directions for 26 CMEs between November 2007 and August 2008

RAL Space

Forward Modeling of CMEs Using STEREO-SECCHI Data

127

Table 3 Velocity and acceleration of the 26 events. ϕ is the Stonyhurst longitude from Table 1, V is the 3D velocity of the apex of the model, V_{CDAW} is the projected velocity given by the CDAW catalog, V_p is the projected speed, and a is the 3D acceleration calculated using a second-order fit.

They then compared their values with those published by CDAW (coordinated data analysis workshop).

Both these sets of values were estimated from coronagraph data. How do they compare with measurements in HI?

Date	ϕ (degrees)	V	V _{CDAW} (km s ⁻¹)	V_p	a (m s ⁻²)
04-Nov-2007	-44	216	179	150	9.0
16-Nov-2007	123	345	326	289	11.8
04-Dec-2007	71	265	210	251	7.0
16-Dec-2007	-144	325	184	191	4.8
31-Dec-2007	-80	972	1013	957	-5.0
31-Dec-2007 up	-91	846	1013	845	-16.0
31-Dec-2007 low	-91	967	1013	967	-57.0
02-Jan-2008	-51	731	676	568	-6.3
23-Jan-2008	-160	442	362	151	10.4
29-Jan-2008	107	246	166	235	5.0
04-Feb-2008	-21	598	306	214	7.0
12-Feb-2008	93	249	266	249	12.1
13-Feb-2008	-18	225	157	70	2.9
15-Feb-2008	-73	230	163	220	8.2
24-Feb-2008	-122	244	246	207	8.8
17-Mar-2008	40	221	211	142	6.9
18-Mar-2008	-83	340	-	337	8.5
25-Mar-2008	-83	1127	980	1119	-30.6
05-Apr-2008	126	1043	962	843	4.0
26-Apr-2008	-21	741	515	266	1.4
17-May-2008	-45	986	630	697	13.1
24-May-2008	39	331	225	208	6.1
02-Jun-2008	-37	265	-	159	5.0
12-Jun-2008	-102	319	274	312	5.2
26-Jun-2008	-147	389	204	212	0.9
07-Jul-2008	-23	292	-	114	15.0
31-Jul-2008	141	288	-	181	1.8
07-Aug-2008	-54	215	_	174	0.6

Davis et al (2009) found good agreement when comparing the angle of propagation from both COR2 and HI (except for some events where this angle is large and the CMEs fade in HI images)

While the STEREO results also point to an interaction with the solar wind, the acceleration is smaller for the modern data. This could be due to differences in the techniques used or to a change in the solar wind between the two studies

Tracking a CME with STEREO: The CME of December 12 2008

Similar observations were made with HI-B

The 'Fixed Phi' method was applied to the HI data. The direction indicated that it was Earth-directed and the speeds of several distinct CME features were used to estimate their arrival time at the ACE spacecraft (0.1 AU upstream of the Earth in the solar wind). These times (dotted lines) closely matched the arrival of a high speed, dense plasma with an enhanced magnetic field.

The orientation of the magnetic field was northward, so geomagnetic activity was low but the solar wind dynamic pressure still compressed the Earth's magnetosphere

Turning these into a forecast requires repeated runs of the model with a range of initial conditions that reflect the uncertainties in the measurements (what the Met Office call 'ensemble forecasts')

© 2010 RAL Space

Enlil - Numerical Heliospheric Solution (Case 1a)

Enlil can produce synthetic J-Maps (Case 1a vs Case

Which can then be compared with the observations from HI to see which modelling scenario best represents reality.

RAL Space

'Real-time' data from STEREO is lower resolution and has many data gaps due to telemetry constraints. This adds to the challenge of making realtime space-weather predictions

© 2010 RAL Space

The Enlil model is now being used operationally by the Space Weather Prediction Center, Boulder Colorado

An agreement has been signed recently between the UK and USA governments for the UK Met Office to run Enlil as an Ensemble model.

Future space weather forecasts should be able to give likelihoods of a storm at Earth (e.g. 60% chance of aurora over the UK tonight)

Impact of the solar events of 7 March 2012: Recorded by RAL instrumentation aboard the SDO and STEREO spacecraft and the RAL ionosonde

• (left) Bright solar flare and coronal activity detected using RAL cameras on NASA's SDO

• (right) Associated solar mass ejection detected heading straight for Earth from SOHO coronagraph

The Enlil MHD model of the heliosphere for this event – run using data from SOHO & STEREO - Earth is the green dot; the STEREO spacecraft are red and blue; the Sun is yellow

Ionosphere above RAL 6-12 March 2012: Shows disturbed ionosphere on March 7 & 9

Radio Frequency (MHz) $\approx 9\sqrt{\text{electron concentration}}$

Fig. 2 F2 layer peak electron density at Slough (52°N, 1°W) during the severe magnetic storm which started around midday on 1st March 1982

Fluctuating electrojet (~10⁶ A)

Time-varying magnetic field at ground level

Electric field induced in the Earth's crust (~several V/ km) → potential difference over continental scales)

Large GIC measured in Finland

(Slide courtesy of Jim Wild, University of Lancaster)

From Pirjola & Boteler [2006]

What is the effect of GICs in transformers?

- Half wave saturation with DC offset current of magnitude similar to magnetising current (well below transformer rated current).
- Harmonics, eddy currents, reactive power variation.
- Intense heating → catastrophic melting
- Stray heating initiates paper and oil degradation; possibly bubble formation if moisture content 'high'; possibly sulphur deposition
- Unclear what sustains degradation when GIC subsides
- Unclear effect of transformer designation and design

Modelling GIC

- GIC model require three key inputs, specifically:-
- 1. A realistic description of the power transmission system, including the location of nodes and connections, as well as line resistances, earthing and transformer resistances
- 2. A realistic description of the Earth's surface conductivity in the region of the power transmission system
- Knowledge of the electric field imposed upon the surface of the Earth over the grid

Surface Conductivity

(Slide courtesy of Jim Wild, University of Lancaster)

Other space weather effects include;

•Loss of HF communication (particularly important to trans-Atlantic aircraft)

RAL Space

•Increased radiation exposure for trans-Atlantic passengers overflying the poplar regions

 Increased susceptibility of modern 'fly-by-wire' aircraft to cosmic rays

	RAL Space

STEREO is a science project, not an operational space-weather mission. Nevertheless, efforts are being made to use STEREO data in real-time space-weather forecasting.

The UK HI team, in collaboration with the Royal Greenwich Observatory and the Galaxy Zoo team have created the citizen science project Solar Stormwatch (www.solarstormwatch.com) in which interested members of the public apply these techniques to the real-time HI data in order to provide estimates of CME speeds and directions. Their predicitons are made via the website and twitter.

NCOMING!		? Hints & tips
COLESTION	This is the very latest data — updated every hour using the spacecrafts' beacon mode' transmission Watch this pair of videos and see if you can spot solar storm starting on the outside edges. If you of tell us if it's in just one camera or both.	What does a solar storm look like in this near real-time data? Here's a bypical shot . a See more examples on Flickr. (opens do, in a new window)
STEREO BEHIND	STEREO AHEAD	more than a third of the way across the camera's view. To find out if it starts in the video too, try tracing it backwards. Think you can spot the tail-end of a solar storm but not the start? Just ignore it — we're on the hunt for new solar storms here. Watch a How to screencast.
A	Martin Series	

www.solarstormwatch.com

With many thanks to Mathew Owens and Mike Lockwood

September 7, 2012

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

¹⁴C & ¹⁰Be: spallation products from O, N & Ar

Solanki et al., 2004; Vonmoos et al., 2006 & Muscheler et al., 2007

Solanki et al., 2004; Vonmoos et al., 2006 & Muscheler et al., 2007

- The Sun varies on many timescales, from seconds to millennia.
- The space-age has been a period of high activity
- We're currently very close to solar maximum, likely the smallest for ~100 years.
- This could well be the start of a long-term decline.
- We live in interesting times!

0 Y (HEE)

-2

