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Abstract. The Kelvin-Helmholtz (KH) instability can operate in various situations in the solar wind, but at the boundaries
of planetary obstacles, for example the Earth’s magnetopause, it is most amenable to investigation. Reliable estimates of
wave characteristics are essential for comparison with theoretical and numerical models and for understanding the non-
linear development of KH waves and their role in the plasma entry into the magnetosphere. After discussing their typical
conditions of appearance in KH unstable domains at the magnetopause, both theoretically and observationally, we outline
recent results of multi-spacecraft analysis with Cluster giving accurate, albeit spatially limited, determination of surface wave
characteristics. Those characteristics (wavelength and propagation direction), close to the terminator on the nightside, are
likely to be prescribed by the 3-D geometry and the bending offield lines developed by the KH waves, rather than by the
magnitude and the direction of the magnetosheath or background flow. An unprecedented number of satellites provides now
the opportunity to extend the analysis of source regions of KH waves and their domains of development.
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INTRODUCTION

The Kelvin-Helmholtz (KH) instability is a classical ex-
ample of flow-driven instability, which plays a major role
in solar or extrasolar system phenomena such as coronal
dynamics, the magnetospheric and heliospheric bound-
aries and cometary tails, and in astrophysical jets. For
example, in the solar wind, it is one of the possible mech-
anisms responsible for Alfvénic fluctuations, generated
by shear flows across tangential discontinuities [1]. How-
ever, the most favorable region in space for its multi-
point in-situ observation and analysis is by far the outer
boundary of the Earth’s magnetosphere – the magne-
topause – and its adjacent boundary layers [e.g.2, 3, 4].

The KH mechanism at the magnetopause contributes
to the widening of the the low latitude boundary layer
(LLBL) [5]. The result was demonstrated during North-
ward IMF conditions from multi-spacecraft analysis with
Cluster [4]. The LLBL is a mixing layer adjacent to
and Earthward of the magnetopause at low geomagnetic
latitudes, with densities and velocities intermediate be-
tween values in the magnetosheath and the magneto-
sphere proper. However, it is not clear when, and to what
extent, the KH mechanism generates the observed LLBL
properties, since it may have to compete with, or en-
hance, other mechanisms. The LLBL properties may re-
sult, for example, from diffusion onto closed field lines
[e.g. 6] or reconnection of interplanetary and geomag-
netic fields [e.g.7]. Both particle transport mechanisms

may operate in KH vortices, which may then carry the
mixed plasma over large distances down the tail [8]. The
KH instability is also believed to be operative in other
planetary environments of the solar system [e.g.9].

For these reasons, reliable estimates of the wave char-
acteristics are essential, notably via comparison with the-
oretical and numerical models, to elucidate the condi-
tions leading to the formation of KH waves, their pos-
sible non-linear development and their role in the plasma
entry into the magnetosphere. Focusing on the KH waves
at the magnetopause, we first discuss their typical con-
ditions of appearance. We then outline recent results of
multi-spacecraft analysis withCluster giving accurate,
albeit spatially limited, determination of surface wave
characteristics. We conclude on what recent broad multi-
spacecraft configurations can provide to shed further
light on the KH mechanism.

KH UNSTABLE DOMAINS

KH waves are commonly understood as surface waves,
characterised by a rapid spatial decay away from both
sides of the interface. In the simplest linear magneto-
hydrodynamic (MHD) description, the onset condition
for the KH instability in an ideal incompressible plasma,
with a discontinuous velocity shear layer and assuming
the layer to be infinitely thin (i.e.in the limit of no bound-
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FIGURE 1. View of the magnetopause and adjacent geomagnetic field froma dayside and North-West vantage point. The
distribution in green of KH unstable regions is given for maximum KH growth rates above a 0.1 threshold as obtained without
boundary layer [2] for northward IMF with (a) zero IMF clock angle and (b) an IMF clock angle (indicated by a blue arc) of
-30◦. Slightly reduced growth rates are obtained in the presenceof the boundary layer. The regions of instability represented on
the nightside are an extension (downtail) of the regions that are validated by simulation results [2] on the dayside. In case (b), the
position ofClusteron the dawn flank is indicated by a red filled circle.
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Here the indices refer to the two plasma environments
on either side of the boundary,n is the plasma number
density,mp the proton mass,µ0 the permeability of free
space,V is the plasma flow velocity,B the magnetic field
vector andk the wave vector;V, B andk are all locally
tangential to the layer. As Equation (1) shows, KH waves
are caused by a velocity gradient or shear,|V1 −V2|, be-
tween the streaming magnetosheath and relatively stag-
nant magnetospheric plasmas, in the case of the mag-
netopause. The instability criterion is more likely to be
met for wave propagation in the direction of high flow
shear. Moreover, the threshold above which KH insta-
bility may occur (i.e., the right-hand-side in Equation
(1)) is reduced in the regions of low or high magnetic
shear between the magnetosheath and magnetospheric
field lines (whenB1 andB2 are respectively parallel or
anti-parallel) and for wave propagation perpendicular to
the magnetic fields: this part corresponds to stabilising
effects from magnetic tension forces [e.g. 11] that are
weakened for strongly northward or southward IMF (i.e.
low or high magnetic shear respectively).

Velocity shear induces the onset of the KH instabil-
ity, but the 3-D topology and various conditions of the
magnetised plasma introduce additional constraints and
control the characteristics of the resulting disturbances.
Much insight has been gained by performing idealised

high-resolution numerical simulations, where e.g. the
role of the initial magnetic topology in the decay to
magneto-turbulence became evident [13]. The KH insta-
bility leads to the compression of field lines in localized
zones, which in turn, leads to reconnection driven by the
flow [e.g.14]. The analysis of resistive instabilities and
magnetic reconnection requires high order spectral-like
techniques where the diffusion coefficients may be con-
trolled explicitly. In addition, the Hall term, electron in-
ertia and kinetic effects (such as wave-particle interac-
tions) introduce dispersion and increase the number of
wave-modes. At the magnetopause in particular, MHD
simulations [8] indicate that reconnection can occur in-
side the narrow current layers generated by the KH insta-
bility. When the magnetic fields are initially anti-parallel
over the velocity shear layer, 2-D Hall-MHD numerical
simulations [e.g.15] show that reconnection can operate
in two regions within the vortex: a) in the current layer
separating magnetosheath and magnetospheric fields and
b) in the current layer generated by the twisting of the
KH vortices.

Furthermore, due to the 3-D geometry of the magne-
topause surface, there is a finite interaction region with
the interplanetary magnetic field lines at which the KH
instability can operate without being stabilised by the
field line curvature and tension. The size of this KH un-
stable domain may set an upper limit for the KH wave-
length [2, 4]. Figure 1 illustrates the relation between the
regions satisfying the conditions for the KH instability
onset,i.e.wave activity generation, and the IMF clock
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FIGURE 2. The occurence of magnetopause surface waves on 14 June 2001 between 15:00 and 17:30 UT, (a) shown in the
magnetic field magnitude|B| from the Flux Gate Magnetometer (FGM) onClusterC2: the magnetosheath plasma is associated
with |B| ∼ 25 nT, while inside the magnetosphere|B| ∼ 15 nT [after 12]; (b) related to the IMF clock angle, on average -15◦in this
2.5-hour time interval, as shown in 1-min running averages inferred from the High Resolution OMNI (HRO) data product (readily
time-shifted to a model bow shock nose location), time-shifted by 13 minutes to represent conditions near and upstream of Cluster.

angle, defined as the polar angle of the IMF direction in
the Geocentric Solar Magnetospheric (GSM) YZ plane.
This figure is adapted from [2], who performed linear
MHD simulations of the incompressible surface mode
disturbances on a mesh covering the dayside of a model
magnetopause. Regions of maximum KH growth rates
on the dayside magnetopause correspond, as expected, to
regions of high flow shear and low magnetic shear. The
wave perturbations may become unstable away from the
stagnation point in the direction of high flow shear. For
small clock angle, the regions of maximum KH growth
rates are broad and confined to the equator away from the
sunward side (Figure 1a). As the clock angle increases in
absolute value (the case of negative clock angle is repre-
sented in Figure 1b), the regions of instability narrow and
migrate away from the equator, southward on one flank
and northward on the other, depending on the sign of
the clock angle. Recent 3-D numerical simulations [16]
show strong reconnection processes at the boundaries
of the KH unstable domain, strongly enhanced plasma
transport and, critically, the impact of the 3-D geometry
on the wavelength of unstable modes, such that can be
unveiled by changes in IMF clock angle [2, 4].

Figure 1b and Figure 2 complement the analysis
of the event of 14 June 2001 reported withClus-
ter [12]. Together they show thatCluster at posi-

tion [−5.5,−16.2,−4.7] RE (GSM), ∼ 4.7 MLT and
−15◦GSM latitude, is in a favorable location, with an
IMF clock angle of∼ −15◦, for the occurence of KH
waves. This complementary diagnostic supports the in-
terpretation of the surface waves in terms of KH waves
for this event. The KH unstable domains in Figure 1b
mirror the ones shown for the event of 21 November
2001 on the dusk flank, with small positive IMF clock
angle [4, Figure 1].

WAVE CHARACTERISTICS

Quoted values of surface wave observations on the mag-
netopause indicate that their frequencies are typically
in the Pc5 (1-10 mHz) range, with a wide range of
phase velocities (varying from about 60 kms−1[see 4]
to 350 kms−1[see 17]) and a similar spread in wave-
lengths (from 2 RE [see 4] to a few tens of RE [see 18]).
Arguably, a key factor controlling the wavelengths,λ ,
is the distance of the observing site from the subso-
lar point, because the magnetosheath flow speed picks
up as one moves tailward, leading to aλ -stretching ef-
fect. In addition, KH surface waves in the magneto-
spheric context can become non-linear while propagat-
ing down the tail. Non-linear effects have been invoked
to account for (i) wavelengths of a few RE typically ob-
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served on the magnetopause, which, as argued in [19],
are much longer than those predicted by linear theory;
(ii) the tailward steepening of the KH leading fronts ob-
served withCluster[12, 4], consistent with the growing
phase of KH waves [20] (note that the inverse depen-
dence found between the boundary layer thickness and
the tailward steepening of the leading edge [4] suggest
that this effect is affected by changing conditions of the
medium in which the waves propagate); (iii) the pres-
ence of vortices, a phenomenon supported by the inter-
pretation of data in single or multi-spacecraft analyses
[18, 21, 22, 23]; (iv) an inverse dependence between the
IMF clock angle and the wavelength at the flank [4] or
the geomagnetic pulsation period [3], which confirms the
significance of source regions and non-linear develop-
ment for interpreting observations of remotely generated
KH waves.

Reliable estimates of the wave characteristics are thus
essential. Triangulation or 4-spacecraft timing analysis
[24] has been applied to our knowledge in twoCluster
studies of surface waves, that by Owen et al. [12] and
that by Foullon et al. [4], on the dawn and dusk flanks
respectively. The waves studied have a sawtooth shape,
which they retain as they propagate pastCluster(within
a relatively short time interval), at an epoch when the
four satellites have separations of∼2000 km. Such con-
ditions are appropriate for estimating their phase speeds,
and consequently their wavelengths, via the method pro-
posed by Foullon et al. [4] [see illustration in 25, and also
a more approximative variant in 7]. This method uses ag-
gregate results from 4-spacecraft timing analysis applied
to a pair of bounding surfaces as input.

Both Clusterstudies of surface waves [12, 4] refer to
similar distances from the subsolar point (with spacecraft
located atXGSM ≈ [−3,−6] RE , on opposite sides of
noon and at low geomagnetic latitudes) and indicate
phase speeds (50-90 kms−1) and wavelengths (2-3.4 RE )
in the lower range compared to other reports in the same
locales. Although they represent a modest sample of the
observations analysed over the past, the phase speeds
derived so far withCluster yield values of a 1/3 or
less of the magnetosheath flow speed (∼260 kms−1in
[4]) or the average flow speed in the boundary layer
(∼200 kms−1in [4, Figure 4c]). BothCluster studies
also refer to locales south of the equatorial plane, but
the directions of wave propagation are found to have
either a southward [4] or a northward [12] component.
Rather than being related to the magnetosheath flow
component (expected to be southward in both cases,
although without marked evidence for it [see 4, Figure
4g]), the direction of propagation is perpendicular to an
average external magnetic field direction, as expected
when generated by the KH mechanism. The unexpected
field direction in [12] may result from the bending of
field lines by the KH waves [see also 4].

CONCLUSIONS

Although shear flows are essential for the KH instability
to occur, the KH wave characteristics (wavelength and
propagation direction) may initially, close to the termi-
nator on the nightside, have little to do with the mag-
nitude and the direction of the flow itself. The impact
of 3-D geometry may set an upper limit for the initial
wavelength of unstable KH modes, which may then de-
velop non-linearly along the flank. The wave propagation
direction may adjust to the bending of field lines devel-
oped by the KH waves. Accurate, albeit spatially lim-
ited, determination of surface wave characteristics with
Clustercomply with this theory. To characterise the evo-
lution of the KH activity with changes in interplanetary
and local conditions and along the flank magnetopause,
an unprecedented number of satellites is now or has re-
cently been crossing the Earth’s magnetospheric bound-
ary in concert, repeatedly and in different places (the 4
Cluster, the Double Star TC-1 satellite and other space-
craft such asGeotailand the 5 THEMIS spacecraft). In
favourable configurations, these spacecraft are separated
from each other by several Earth radii along the flank
magnetopause. They provide the opportunity to extend
the analysis of source regions of KH waves and their do-
mains of development.
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