Fast sausage modes in transversely continuous coronal tubes

Bo Li Institute of Space Sciences Shandong University

Thanks to S.-X. Chen, H. Yu, M.-Z. Guo @ Shandong U. M. Xiong @ National Space Science Center

ISSI-BJ, 16-20 Jan 2016

Fast sausage modes in transversely continuous coronal tubes

Contents

- Brief Intro to sausage modes
- Standing sausage modes in flare loops & their seismological applications
- Impulsively generated sausage wave trains in coronal tubes & implications for seismology

Fast sausage modes in tubes

Stationary Prop. Waves [Nakariakov & Verwichte 05 LRSP] Phase speeds: real part (thick), imag. (thin) [Rosenberg 70; Zaitsev & Stepanov 75; Edwin & Roberts 83; Cally 86; ...]

Fast standing modes: an initial-valueproblem perspective trapped leaky

Upper row: Filled contours \rightarrow density pert.; vectors \rightarrow vel. Field Lower row: radial distribution of radial velocity

Fast standing modes: an IVP approach

trapped

leaky

Quasi-periodic pulsations(QPPs) in solar flare lightcurves

- Discovered in late 1960's[Parks & Winckler 69, Frost 69, Rosenberg 70, ...]
- Seen in all phases, in nearly all (? Inglis+16) flares [Nakariakov+09, Van Doorsselare+16]
- Imaging measurements possible
 - NoRH [e.g.,Asai+01, Nakariakov+03, Kolotkov+15]
 - ➢ SDO/AIA [e.g., Su+12, Li, Ning+16]
 - ➤ IRIS [Tian+16]
- Standing sausage modes → QPPs with periods ~ secs [e.g., Aschwanden+04]

Inferring flare loop parameters with QPPs

- Transverse Alfven time \rightarrow B strength
- Key assumptions

Transverse distributions of parameters: Discontinuous

> (very often) gas pressure neglected

Dispersive Properties of Sausage Modes

	Transversely discontinuous	Transversely continuous
beta = 0	Eigenmode analysis: Rosenburg 70; Zaitsev & Stepanov 75; Meerson+78; Spruit 82; Cally 86; Vasheganhi Farahani+14; Initial-value-problem (IVP) Terradas+07	Eigenmode analysis: Pneuman 65; Lopin & Nagorny 14, 15; Chen+15a, Yu+16; summarized in Yu+17 ApJ IVP Nakariakov+12; Chen+15a,b; Guo+16
beta = 0	Edwin & Roberts 83; Kopylova+07;	Eigenmode analysis: Chen+16 Initial-value-problem (IVP) Chen+16

Transversely continuous density profile (but still pressureless)

Analytical DR [Chen+15], applicable to
□ arbitrary transition layer thickness (0, 2*R*)
□ arbitrary profile prescription in the TL

	${\rho_{\mathrm{i}}} - rac{{ ho_{\mathrm{i}}} - { ho_{\mathrm{e}}}}{l} \left(r-R+rac{l}{2} ight),$	linear,
$(r) = \int$	$ ho_{ m i} - rac{ ho_{ m i} - ho_{ m e}}{l^2} \left(r-R+rac{l}{2} ight)^2,$	parabolic,
$\mathcal{P}_{\mathrm{tr}}(r) = $	$\rho_{\rm e} - \frac{\rho_{\rm e} - \rho_{\rm i}}{l^2} \left(r - R - \frac{l}{2} \right)^2,$	inverse – parabolic,
	$\frac{\rho_{\rm i}}{2} \left[\left(1 + \frac{\rho_{\rm e}}{\rho_{\rm i}} \right) - \left(1 - \frac{\rho_{\rm e}}{\rho_{\rm i}} \right) \sin \frac{\pi (r-R)}{l} \right],$	sine.

Uniform external medium

Dispersive properties of sausage modes

• Overall, similar to top-hat case

Chen, Li+2015 ApJ, 812,

22

Re-analysis of the Mclean & Sheridan event

$$P_{\text{saus}} = \frac{R}{\nu_{\text{Ai}}} F_{\text{saus}} \left(\frac{L}{R}, \frac{l}{R}, \frac{\rho_{\text{i}}}{\rho_{\text{e}}} \right)$$
$$\frac{\tau_{\text{saus}}}{P_{\text{saus}}} = G_{\text{saus}} \left(\frac{L}{R}, \frac{l}{R}, \frac{\rho_{\text{i}}}{\rho_{\text{e}}} \right).$$

$$k = \pi/L$$

Chen+15 ApJ, 812, 22

- Deduced transverse Alfven time: Max/Min = 1.8
- Not possible to constrain TL width

Guo+16, 2016 SoPh, 291, 877

• Possible to improve, if QPPs spatially resolved & involve multiple modes

Finite gas pressure & continuous distribution

Gas/magnetic pressure may reach unity □ Hot Active Region Loops [SUMER, Wang+07,...] □ Hot & Dense flare loops [Nakariakov+03, Melnikov+05]

$$\rho(r) = \begin{cases} \rho_{\rm i}, & 0 \leqslant r \leqslant r_{\rm i} = R - l/2, \\ \rho_{\rm tr}(r) = \mathcal{F}(\rho_{\rm i}, \rho_{\rm e}; r), & r_{\rm i} \leqslant r \leqslant r_{\rm e} = R + l/2, \\ \rho_{\rm e}, & r \geqslant r_{\rm e}, \end{cases}$$

$$T(r) = \begin{cases} T_{i}, & 0 \leq r \leq r_{i}, \\ T_{tr}(r) = \mathcal{F}(T_{i}, T_{e}; r), & r_{i} \leq r \leq r_{e}, \\ T_{e}, & r \geq r_{e}. \end{cases}$$

[Chen, Li, et al. 2016 ApJ 833, 114]

Uniform external medium

Importance of units of P & tau

Finite vs. zero gas pressure

$$\frac{\omega R}{v_{\rm fi}} = \mathcal{H}\left(\frac{L}{R}, \frac{l}{R}, \frac{\rho_{\rm i}}{\rho_{\rm e}}, \beta_{\rm i}, \beta_{\rm e}\right)$$

$$\delta P = \max \left| \frac{P^{\beta \neq 0}(\beta_{i} \in [0, 1])}{P^{\text{cold}}} - 1 \right|$$
$$\delta \tau = \max \left| \frac{\tau^{\beta \neq 0}(\beta_{i} \in [0, 1])}{\tau^{\text{cold}}} - 1 \right|$$

- negligible changes to cutoff wavenumbers & periods
- Changes to damping times may be substantial

Sausage wave trains in coronal tubes

Oscillatory behavior in optical measurements of the corona

- Originated in Billings 59; Tsubaki 77... (5303; periods>minutes)
- Rapid oscillatory behavior at total eclipses
 - ▶ 5303; 0.5-2 secs (?) [Pasachoff & Landman 84; 1980 Hyderabad]
 - ➤ 5303; 0.5-4 secs (?) [Pasachoff & Ladd 87; 1983 Indonesian]
 - ▶
 - ➢ 5303; 6 secs [Williams+01, 02; Katsiyannis+03; 1999 Bulgaria]
 - ▶ 5303 & 6374; 6-25 secs [Samanta+16, 2010 Chile]

Interpretation in terms of sausage wave trains

Spatial extent of initial perturbations

yellow curves: $\omega - h/c$

- Spatial extent of init. pert. important
- The reasoning by Roberts & co-workers?
- Group speed curves helpful for providing the context
 - Cutoff wavenumbers
 - Whether curves are monotonical

Continuous Transverse Structuring

- Exist only when f(r) not less steep than $r^{-2}(\text{Lopin \& Nagorny 15})$
- When present
 - \succ increases with l
 - but decreases with density contrast

Asymptotic *k*-dependence: Conjecture

Conjecture 1 When $kR \gg 1$, the phase speed for arbitrary density contrast $\rho_i/\rho_e > 1$ or transverse harmonic number lis, to leading order, given by $v_{\rm ph} \approx 1 + [c_l/(kR)]^{\beta}$ for any f(r) that reads, to leading order, $1 - (r/R)^{\bar{\mu}}$ when $r/R \ll 1$. Here $\beta = 2\bar{\mu}/(\bar{\mu}+2)$, and c_l depends on ρ_i/ρ_e as well as $\bar{\mu}$.

Support for this conjecture

$$f(r) = \begin{cases} 1, & 0 \le r \le R, \\ 0, & r \ge R. \end{cases}$$
$$\frac{v_{\text{ph}}^2}{v_{\text{Ai}}^2} \approx 1 + \frac{j_{1,l}^2}{k^2 R^2} \end{cases}$$
also holds for (mu arbitrary)
$$f(r) = \begin{cases} 1, & 0 \le r \le R, \\ (r/R)^{-\mu}, & r \ge R. \end{cases}$$

26

Support for this conjecture

Further support for this conjecture

 $f(x) \approx 1 - (x/R)^{\infty}$ for $|x/R| \ll 1$

slab 2.0 1.5 ∞ 1.0 0.5 0.0 10 100 1000 8 7 6 ວັ 5 $\rho_i/\rho_e = 10$ 4 l=13 2 10 100 1000 1 $\bar{\mu}$

Li et al. 2017 ApJ, to submit

$$f(x) = \begin{cases} 1, & 0 \le x \le R, \\ 0, & x \ge R. \end{cases}$$
$$\frac{v_{\text{ph}}^2}{v_{\text{Ai}}^2} \approx 1 + \left(\frac{l\pi}{kR}\right)^2$$
also holds for (mu arbitrary)
$$f(x) = \begin{cases} 1, & 0 \le x \le R, \\ (x/R)^{-\mu}, & x \ge R. \end{cases}$$

Further support for this conjecture $f(x) \approx 1 - (x/R)$ for $|x/R| \ll 1$ Li et al. 2017 ApJ, to submit

$$\begin{cases} f(x) = \frac{1}{1 + (x/R)} \\ f(x) = \begin{cases} 1 - \left(\frac{x}{R}\right), & 0 \le x \le R, \\ 0, & x \ge R. \end{cases} \\ f(x) = \exp\left(-\frac{x}{R}\right) \end{cases}$$
$$\frac{v_{\rm ph}^2}{v_{\rm Ai}^2} \approx 1 + \left[\frac{3(4l-1)\pi(1-\rho_{\rm e}/\rho_{\rm i})}{8kR}\right]^{2/3} \end{cases}$$

29

Summary

• Fast sausage waves in coronal tubes

- > axisymmetric, do not displace tube axis
- ➤ (quasi-)periodic contractions & expansions
- Strong compressibility & strong dispersion
- Fundamental, standing, fast sausage modes in flare loops
 - > often invoked to interpret QPPs with periods of order seconds
 - uncertainties in density distribution leads to considerable uncertainties in the deduced transverse Alfven time
 - ➤ Gas pressure not important for periods →cold MHD theory can be used, but deduced Alfven time is actually transverse fast time
- Impulsively generated sausage wave trains in coronal tubes
 - > invoked to interpret rapid oscillatory behavior
 - ➤ uncertainties in density distribution → Morlet spectra that look quite different from "crazy tadpoles" → worth digging into highcadence data in optical and radio passbands

Chen, Li, et al.	2015 SoPh, 290, 2231
Chen, Li, et al.	2015 ApJ, 812, 22
Guo, Chen, Li, et al	. 2016 SoPh, 291, 877
Chen, Li, et al.	2016 ApJ, 833, 114
Yu, Li, et al.	2016 ApJ, 833, 51
Yu, Li, et al.	<u>2017 ApJ, in press, arXiv:16120</u> 9479Y
Li, et al.	2017 ApJ, to be submitted soon

BACKUP SLIDES

