Transverse Oscillations in coronal loop triggered by a jet

Dipankar Banerjee Indian Institute of Astrophysics

Solar Physics

November 2016, Volume 291, <u>Issue 11</u>, pp 3269–3288

Transverse Oscillations in a Coronal Loop Triggered by a Jet

Authors

Authors and affiliations

S. Sarkar, V. Pant, A. K. Srivastava, D. Banerjee 🖂

Introduction

- MHD waves are ubiquitous in solar corona
- Provide input for diagnosing the local plasma conditions using the principles of MHD seismology
- Around 95% of the transverse oscillations are associated with Low coronal eruptions (LCE) (Zimovets & Nakariakov, 2015)
- CMEs and associated shocks can trigger transverse oscillations in coronal loop
- Coronal jets have much less energy as compared to CMEs

Can coronal jets can trigger oscillations in coronal loop?

Observations

Normal intensity

Unsharp mask

Red arrow -> jet footprint Green arrow -> coronal loop under study

- -200 -600-800-5 -1200-1000-800-400-600X (arcsec)
- A jet is marked with arrow
- Seven artificial slices are placed on coronal () -400 loop • Only half of the loop is ≻
- clearly visible
- Muti-wavelength study was done to find the association between jet and coronal loop

- We process the images to enhance the visibility of loop
- Other end of loop is faintly visible
- Fitted a spline curve and estimated the projected length to be 377 Mm
- Semicircle model is also used to estimate the loop length
- Semi circle model estimate loop length to be 539 Mm

Lower limit -> 377 Mm Upper limit -> 539 Mm

Time-distance maps

- Average oscillation period ~ 32 min
- Long period oscillations in coronal loops
- Not an active region loop

Observations from STEREO

- Solar limb is plotted in green
- Jet footpoint is marked with black arrow and is beyond the limb in EUVI 171
- 3D reconstruction was not feasible
- Coronal loop is marked with arrow in red in AIA 171
- Coronal loop is not seen clearly in EUVI 171

Simultaneous view from STEREO and SDO

- Filtered images using Multi Gaussian Normalisation (MGN)
- jet footpoints -> white arrow
- coronal loop -> green arrow

Difference images

Dark features propagating inwards in EUVI 195 A Unlikely to be an eruption otherwise it would be moving outward Few scenarios are possible

- Plasma disappearance due to heating of plasma by nearby flare or jet associated with it
- Should get signatures in hotter temperature channels. EUVI do not have hot temperature channels
- Dark feature is also associated with the jet in AIA 193 A
- Dark feature in EUVI 195 could be the hot component of jet that subsequently appears in EUVI 195 A after displacing the coronal loop
- Should get signatures in hot temperatures channels of AIA

Note that a very dark feature is associated with the jet

Dark feature is also seen in normal intensity images. It suggest that very hot plasma is associated with jet

AIA 94 A shows a very faint emission at the location of dark feature

- Jet was oscillating while propagating
- To capture the trajectory of jet we choose the wavy artificial slice so that jet remain within the slit

Time-distance map shows that jet has two components Two components propagate with different velocities Hot component has higher velocity

Temperature Map

Higher temperature at the location of dark feature

Density of coronal loop and estimation of magnetic field

Density of coronal loop and jet was estimated using Differential Emission measure Loop density = $10^{8.56}$ / cm³ Jet density = $10^{9.92}$ / cm³

MHD seismology

We know,
$$V_{\rm ph} = C_{\rm K} = \frac{2I}{P}$$

and

 $C_{A0} = \frac{C_{\rm K}}{\sqrt{\frac{2}{1+\frac{\rho_e}{2\pi}}}}$

Observables

- L -> length of coronal loop (projected length and semicircular model)
- P-> period of oscillations
- Density contrast estimated from intensity ratio

where internal Alfven speed, $C_{A0} = B_0 / \sqrt{\mu_0 \rho_0}$,

Density contrast depends on the EUV intensity ratio as $\left(\frac{\rho_e}{\rho_0}\right)^2 = \frac{I_e}{I_0}$

- We estimated the EUV intensity ratio at several places along the loop at different times
- Intensity ratio varies from 0.18—0.5
- Density contrast varies from 0.4—0.7 (0.1 is kept as a standard practice)
- Once density constrast, L and P are calculated, Alfven speed inside the loop and magnetic field strength can be estimated

Table 1 Estimation of the Alfvén speed and the magnetic field strength inside the coronal loop.						
<u>ρ</u> <u>ρ</u> 0	Projected length			Semicircular model		
	0.1	0.4	0.7	0.1	0.4	0.7
$C_{A0} ({\rm km s^{-1}})$	299 ± 27	328 ± 14	361 ± 16	415 ± 28	469 ± 32	516 ± 35
<i>B</i> (G)	2.68 ± 0.64	2.86 ± 0.12	3.20 ± 0.14	3.62 ± 0.24	4.1 ± 0.28	4.5 ± 0.31

Energy estimates

Energy of jet is defined by, $E_{jet} = \frac{1}{2}\rho_{jet}v^2 = (19.6 \pm 3.6) \times 10^{-3} \text{ Jm}^{-3}$ Energy of oscillating monolithic loop is given by, $E_{\text{monolithic}} = \frac{1}{4}\rho_0\omega^2 A_0^2$ $= (1.22 - 3.28) \times 10^{-5} \text{ Jm}^{-3}$

Energy of oscillating multi stranded loop is given by, $E_{\text{multistrand}} = \frac{1}{2} f(\rho_0 + \rho_e) \omega^2 A_0^2$

where, f is the filling factor by $f = \frac{\sum_{i=1}^{N} R_i^2}{R^2}$ (Van Doorsselaere et al, 2014)

We estimated f by inspecting the crosssectional intensity profiles at several instances along the length of the coronal loop. The sum of the widths of any intensity peak, which represents a single flux tube, is determined and divided by the overall width of the loop. f is found to be 0.17

We find that, Emultistrand=0.4-0.6 Emonolithic Therefore, Ejet >> Emonolithic>Emultistrand

We find that jet has enough energy to displace coronal loop and induce transverse oscillations in it

Conclusions

- We find a coronal oscillations associated with nearby jet eruption
- Jet consists of hot and cool component
- Jet (probably the hot component) interacted with coronal loop and displaced it
- We find that magnetic field inside coronal loop is low as compared to the average values may be because this loop is not associated with active region
- We estimated the energy in jet and find that energy density of jet is larger than energy density of coronal loop
- Thus jet is inferred to be the cause of transverse oscillations in jet

Thank you for your attention