
A&A 510, A17 (2010)
DOI: 10.1051/0004-6361/200912784
c© ESO 2010

Astronomy
&

Astrophysics

Torsional Alfvén waves in small scale current threads
of the solar corona

P. Copil1, Y. Voitenko2, and M. Goossens1

1 Centre for Plasma Astrophysics, K. U. Leuven, Celestijnenelaan 200 B, 3001 Heverlee, Belgium
e-mail: copil@wis.kuleuven.be

2 Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, 1180 Brussels, Belgium

Received 29 June 2009 / Accepted 5 November 2009

ABSTRACT

Context. The magnetic field structuring in the solar corona occurs on large scales (loops and funnels), but also on small scales. For
instance, coronal loops are made up of thin strands with different densities and magnetic fields across the loop.
Aims. We consider a thin current thread and model it as a magnetic flux tube with twisted magnetic field inside the tube and straight
field outside. We prove the existence of trapped Alfvén modes in twisted magnetic flux tubes (current threads) and we calculate the
wave profile in the radial direction for two different magnetic twist models.
Methods. We used the Hall MHD equations that we linearized in order to derive and solve the eigenmode equation for the torsional
Alfvén waves.
Results. We show that the trapped Alfvén eigenmodes do exist and are localized in thin current threads where the magnetic field is
twisted. The wave spectrum is discrete in phase velocity, and the number of modes is finite and depends on the amount of the magnetic
field twist. The phase speeds of the modes are between the minimum of the Alfvén speed in the interior and the exterior Alfén speed.
Conclusions. Torsional Alfvén waves can be guided by thin twisted magnetic flux-tubes (current threads) in the solar corona. We
suggest that the current threads guiding torsional Alfvén waves, are subject to enhanced plasma heating due to wave dissipation.
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1. Introduction

The Alfvén wave is one of the magnetohydrodynamic (MHD)
waves propagating in magnetized plasmas. The MHD waves
have been intensively studied by solar physicists, who predicted
their existence in the solar atmosphere well before they had ac-
tually been observed. Theoretical modelling of MHD waves in
structured magnetised plasma was developed more than twenty
years ago by Spruit (1981, 1982), Roberts & Webb (1979),
Edwin & Roberts (1983), and others. After the launching of
space-based telescopes SOHO and TRACE, a huge amount of
data from the solar atmosphere became available and the predic-
tions could finally be tested. The observations confirmed that the
fast kink (Aschwanden et al. 1999; Nakariakov et al. 1999; Wang
& Solanki 2004), sausage (Nakariakov et al. 2003; Aschwanden
et al. 2004), and slow magnetoacoustic (De Moortel et al. 2002;
Wang et al. 2003) waves are supported by magnetic plasma
structures of the solar atmosphere.

Torsional Alfvén waves are more difficult to observe be-
cause, due to their near incompressibility, they do not produce
density variations hence no variations in the observed emission
intensity. However, it is still possible to detect them using spec-
troscopic measurements. The effects of torsional waves are line
broadening for spatially unresolved velocities and line shifting
for spatially resolved velocities. These are consequences of the
Doppler shifts in the emitted radiation.

Observations made in coronal holes above the limb show that
the line widths first increase with altitude up to 1.2 solar radii,
exhibit a constant plateau up to 1.5 solar radii, and then start to

decrease (Banerjee et al. 1998). At the equator, Harrison et al.
(2002) also observed a decrease in line width above 50 000 km,
with the width narrower than above coronal holes. The interpre-
tation is that this behaviour is caused by Alfvén waves, with the
increase in line width caused by wave flux conservation and de-
crease by wave damping. Very recent observations performed by
Dolla & Solomon (2008) show the same behaviour of the spec-
tral lines. However, they suggest that line narrowing is not a con-
sequence of wave damping, but is an instrumental effect caused
by stray light.

Zaqarashvili (2003) suggests that the torsional Alfvén waves
can be observed as temporal and spatial variations in spectral
emission along the coronal loops. A standing wave has nodes
and antinodes, so by measuring the distance between two nodes
or two antinodes, the wavelength λ of the standing wave can be
estimated. After the wave period, T is measured from observa-
tions, the Alfvén speed in the corona can be computed using
the relation vA = λ/T . By using early observations by Egan &
Schneeberger (1979) of periodic Doppler width fluctuations in
Fe XIV spectra above an active region, Zaqarashvili calculated
the Alfvén speed and the amplitude of the torsional Alfvén wave
in a coronal loop.

In this paper, we study analytically the torsional Alfvén
eigenmodes in the coronal loops, particularly in thin current
threads composing the loops. Coronal loops were observed for
the first time in the 70s with the Skylab mission (Vaiana et al.
1973). The images revealed that the corona is highly stratified in
density and magnetic field, and coronal plasma is concentrated
mostly in loops. More recent pictures taken with TRACE show
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that coronal loops are also structured, consisting of fine strands,
as long as the loop, but about 2000 km in width (Aschwanden &
Nightingale 2005). More recent Hinode observations also sug-
gest that coronal loops consist of multiple threads (Ofman &
Wang 2008). The threads are outlined by chromospheric ma-
terial spreading along them. Ofman & Wang (2008) looked at
transverse loop oscillations, which were interpreted to be the fast
magnetoacoustic waves. These waves have different properties
in different threads, such that they are standing in some threads
and in others propagating.

The loops are formed in a strong magnetic field, which varies
in the range 10−100 Gauss (Aschwanden et al. 2001). There is
also evidence that the magnetic field inside the loops is twisted.
Leka et al. (1996) investigated five different loops and analysed
their morphology and footpoint motion. They suggest that the
magnetic field of the loops was already twisted before it emerged
in the photosphere. Analysis of the sunspot motion led Ishii et al.
(1998) to conclude that the twisted flux tubes are formed in
the convection zone before they emerge above the photosphere.
These authors also propose a schematic model for the magnetic
field in the solar atmosphere, where they point out that the ge-
ometry of the magnetic field in the corona is very complex. The
field that they deduced from their data appeared twisted, coiling
around the trunk of a magnetic flux tube.

Modelling of MHD waves in twisted magnetic flux-tubes
was done by Erdélyi & Carter (2006). They consider a three-
layer cylinder in which the magnetic field is straight in the inte-
rior, twisted in a finite layer, and then again straight in the ex-
terior. The authors find that the twist introduces the so-called
hybrid surface-body MHD modes. The hybrid modes are body-
like in the twisted part and evanescent in the part where the mag-
netic field is straight. Ofman (2009) constructed a 3D model of
a coronal loop, made up of four threads. By perturbing the loop
with a velocity pulse at the footpoints, the loop starts oscillating
in a fundamental mode that resembles the kink mode of a single
threaded loop. If the four-threaded loop is twisted, the induced
oscillation is complex with all three components of the velocity
generated in the loop. In the twisted case, the oscillation is no
longer described by the fundamental kink mode.

The present work aims to investigate the trapped Alfvén
waves in thin, twisted magnetic flux-tubes (current threads) with
homogeneous density, but with an inhomogeneous magnetic
field. Since there is a lot of evidence of twisted magnetic fields
in the solar corona, we assume that the inhomogeneity is intro-
duced by the non-uniform azimuthal component of the magnetic
field.

The paper is structured as follows. In the second section we
present the model for the coronal loop and the equations used to
mathematically describe the torsional Alfvén waves. In the third
section we present and explain the results and the last section
contains conclusions and plans for future work.

2. Current thread model and governing equations

We model the coronal current thread as a straight cylinder with
the same homogeneous density inside and outside the cylinder.
The magnetic field is varies, such that it is straight at the axis
(r = 0), then twists up to a radius R, and is again straight and
constant in the exterior of the tube. Inside the tube, the magnetic
field, denoted by B0, has an azimuthal component, B0ϕ(r), and
a field-aligned component, B0z(r). For r > R, Bϕ = 0 and B0z

is constant. We consider very low values of R, of the order of
several tens of meters. Such thin threads can result from the fila-
mentation of larger-scale coronal currents or can be generated by

z

r

B0 B0

R

Fig. 1. Model of a current thread. The plasma density is constant ev-
erywhere, but the magnetic field is changing, such that it is straight at
r = 0, then it twists, and then it is straight again at r ≥ R.

the small-scale photospheric vortices with the consequent pinch-
ing of the currents at coronal heights. The equilibrium is plotted
in Fig. 1.

Eversince they were discovered theoretically by H. Alfvén in
1942, and confirmed experimentally by S. Lundquist in 1949, the
shear Alfvén waves have become a heavily studied wave mode in
astrophysical and laboratory plasmas. These are low-frequency
waves in plasmas embedded in the background magnetic field,
with the main wave components the co-aligned plasma mo-
tions and magnetic field perturbations perpendicular to the back-
ground magnetic field.

In the ideal MHD model for a plasma embedded in a straight
magnetic field, the perturbed velocity, v⊥, and the magnetic field
perturbation, b⊥, are the only componets of the shear Alfvén
wave. In a homogeneous plasma, the shear wave can have any
profile in the direction perpendicular to the magnetic field, while
it has a sinusoidal shape along the field, ∼sin (kzz − ωt), propa-
gating with the Alfvén speed, ω/kz = vA (vA = B0/

√
4πρ0, B0

is the background magnetic field, and ρ0 is the plasma density).
If the plasma is inhomogeneous in the cross-field plane, there
is a continuous spectrum of the waves with the same wavenum-
ber kz but with different frequencies. On each magnetic surface
r = r0, where the Alfvén velocity vA(r0) is constant, there is a
different wave with the frequency that matches the local Alfvén
frequency ωA(r0) = kzvA(r0). The wave’s profile in r is a Dirac
delta function, δ(r − r0), and the profile in z is a sin function.
The singularity at r = r0 can be removed by taking a twisted
magnetic field or by accounting for viscosity and/or resistivity.

In this paper we study the torsional Alfvén wave in the
framework of Hall MHD. The MHD and Hall MHD models are
different because the first assumes the Hall current zero (which
means that the ions are magnetized or tied to the magnetic field
lines), while the second accounts for its finiteness. Thus, because
of the coupling of thermal pressure effects with the cross-field
Hall currents at the ion gyroradius length scales, our results also
contain the so-called “finite Larmor radius” effects.

The set of Hall-MHD equations is

ρ
du
dt
= −∇p +

1
4π

(∇ × B) × B; (1)
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∂B
∂t
= ∇ × (u × B) − ∇ ×

[
j

ne
× B

]
; (2)

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

where u is the plasma velocity, p the plasma pressure, ρ � nmi

the plasma density, n the number density, B the magnetic field
and j the current.We complement this set by the polytropic equa-
tion of plasma state

pρ−γ = const. (4)

The waves in the tube can be excited by the perturbations of the
tube end driven by random motions in the photosphere or by
magnetic reconnection. Before the waves are excited, the sys-
tem is assumed to be in quasi-static equilibrium, and the total
pressure is set to be constant across the thread. Putting u0 = 0
in (1) and assuming that the plasma is isothermal, we obtain the
equation that describes the equilibrium:

1
4π

(∇ × B0) × B0 = 0, (5)

where the subscript 0 refers to the equilibrium state. Equation (5)
implies that the equilibrium currents (∼∇ × B0) flow along the
magnetic field lines. In the r direction, Eq. (5) is

∂

∂r

⎛⎜⎜⎜⎜⎜⎝B2
0ϕ + B2

0z

4π

⎞⎟⎟⎟⎟⎟⎠ + B2
0ϕ

8πr
= 0, (6)

where B0ϕ is the azimuthal component and B0z the z component
of the background field, B0. Equation (6) shows that the gas pres-
sure is constant, but the magnetic pressure is variable inside the
tube. The gradient of magnetic pressure is balanced by the ten-
sion force that appears due to the twist of magnetic field lines.
We have to account for Eq. (6) when we choose a specific mag-
netic field profile.

We assume that the waves produce small perturbations of the
equilibrium, which allows us to write each physical quantity (ex-
cept for the plasma velocity that is set to zero in the equilibrium)
as a sum of a background quantity (denoted with the subscript
0) and a small perturbation:

ρ = ρ0 + ρ(r, t); p = p0 + p(r, t); (7)

B = B0(r) + b(r, t); u = u(r, t); (8)

n = n0 + n(r, t); j = j0(r) + j(r, t). (9)

To find the governing equation for torsional Alfvén waves, we
introduce (7)−(9) into (1)−(3), retaining both background quan-
tities and perturbations. Because the perturbations are small, we
apply a standard procedure of linearization, neglecting nonlinear
terms (products of perturbations):

ρ0
∂u

∂t
= −∇p +

1
4π

(∇ × b) × B0 +
1

4π
(∇ × B0) × b; (10)

∂b
∂t
= ∇ × (u × B0) − ∇ ×

[
j0

n0e
× b +

j
n0e
× B0

]
; (11)

∂ρ

∂t
+ ∇ · (ρ0u) = 0, (12)

where the quantities with subscript 0 are background quantities
and the rest are perturbations. Then we linearize the derivative
of (4) with respect to time, which gives

∂p
∂t
ρ
−γ
0 − γp0ρ

−γ−1
0

∂ρ

∂t
= 0. (13)

Eliminating ∂ρ/∂t here by the use of (12), we obtain

∂p
∂t
= −γp0∇ · u. (14)

As the plasma is homogeneous in the z direction, the perturba-
tions can be Fourier-analysed in z. Since we are interested in
the torsional waves with the azimuthal wave number m = 0, the
wave quantities have the following form:

f (r, z, t) = f (r)ei(kz−ωt), (15)

where ω is the frequency of the wave, k the wavenumber in the
z direction, and f (r) the radial wave profile.

Before going further, we have to clarify the notions that we
use. The notion of magnetic shear wave defines a wave in which
the wave magnetic fields are normal to the local gradients of
the wave profile, such that there are no compressive magnetic
and velocity perturbations but only shear ones. In ideal MHDs,
the torsional Alfvén wave has only bϕ and vϕ components. The
torsional wave with m = 0 is also a shear wave, because in any
point (z, r, ϕ) the wave quantities bϕ and vϕ are perpendicular to
the local gradient of the wave profile, which lies in the z−r plane.

In the Hall MHD, the m = 0 “torsional” Alfvén wave with
short cross-field wavelengths is strictly speaking no longer a
torsional or shear wave, because it also has the radial (vr and
br) and the axial (bz and vz) components, coupled to the main
shear/torsional bϕ and vϕ components. Nevertheless, since the
minor components vr, br, bz, and vz are much smaller than the
main ones, we call this mode torsional.

Some simplifying assumptions have to be considered to
make the problem analytically tractable. The ones we use are
to neglect br and vz. Indeed, putting br to zero can be justified by
the equation ∇ · b = 0, which can be written as

1
r
∂

∂r
(rbr) + ikbz = 0, (16)

implying that br/bz � λ⊥/λ‖, where λ‖ is the wavelength along
the tube’s axis and λ⊥ is the wavelength perpendicular to it. It
is important to notice that λ⊥ is of the same order as R (tens of
meters), while λ‖ is about 106 m. Thus, λ⊥/λ‖ 	 1, which im-
plies that br/bz 	 1, so br can be ignored. Here vz is omitted for
the same reasons, namely a large mismatch between the paral-
lel and cross-field length scales in the torsional Alfvén wave we
consider, although the algebraic justification is not so straight-
forward.

With these approximations, and using (14) to eliminate p, we
write the r and ϕ components of Eqs. (10) and (11) as

− ρ0ω
2vr =

∂

∂r

(
γp0

r
∂

∂r
(rvr)

)

+
iω
4π

[
∂

∂r
(B0zbz) +

1
r2

∂

∂r

(
r2B0ϕbϕ

)]
; (17)

− ρ0ω
2vϕ =

ωk
4π

B0zbϕ; (18)

0 = ikB0zvr − k2cB0z

4πn0e
bϕ; (19)
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− iωbϕ = − ∂
∂r

(
B0ϕvr

)
+ ikBzvϕ

+
ikc

4πn0e

[
∂

∂r
(B0zbz) +

2
r

B0ϕbϕ

]
, (20)

where 0 in subscripts indicates background quantities.
Next, we reduce the set of Eqs. (17)−(20) to one differential

equation. We multiply (17) by 4π/(iω) and (20) by 4πn0e/(ikc),
and then subtract eliminating bz. The result is

∂

∂r

(
B0ϕbϕ

)
− i

4π
ω

∂

∂r

(
γp0

r
∂

∂r
(rvr)

)
− 4πn0e

c
B0zvϕ

− i
k

4πn0e
c
∂

∂r

(
B0ϕvr

)
= i4πρ0ωvr + 4πn0e

ω

kc
bϕ. (21)

From (18) and (19), we express vϕ and bϕ in terms of vr:

bϕ = i
4πn0e

kc
vr; (22)

vϕ = − i
ω

eB0z

Mc
vr. (23)

Using (22) and (23) in (21), we obtain the following equation
for vr:

ρ2
i
∂

∂r

(
1
r
∂

∂r
(rvr)

)
=

⎛⎜⎜⎜⎜⎝ v
2
A

v2A0

− ω
2

ω2
ci

− ω2

k2v2A0

⎞⎟⎟⎟⎟⎠ vr. (24)

Here vA = B0z(r)/
√

4πρ0 is the Alfvén speed as a function of
r, vA0 = B0z(0)/

√
4πρ0 is the Alfvén speed at r = 0, ωci =

eB0z(0)/Mc is the ion cyclotron frequency at r = 0, ρi = vT/ωci is
the ion Larmor radius at r = 0, and vT =

√
γp0/ρ0 is the thermal

speed. Since the ion cyclotron frequency in the solar corona is of
the order of 105 Hz and the Alfvén frequency in coronal loops is
much lower, in the range 0.01−10 Hz, we neglect ω2/ω2

ci in the
above equation. As a result, we obtain:

ρ2
i v

2
A0
∂

∂r

(
1
r
∂

∂r
(rvr)

)
+

(
ω2

k2
− v2A

)
vr = 0. (25)

This is the eigenmode equation for torsional Alfvén waves in
current threads. It gives the equation for the wave amplitude in
r when the Larmor radius ρi is taken as a finite quantity. In the
limit ρi = 0, when the particles are tied to the magnetic field
lines, we obtain
(
ω2

k2
− v2A

)
vr = 0, (26)

which is the ideal MHD equation for torsional Alfvén waves in
inhomogeneous axially symmetric plasma structures. This equa-
tion is singular, giving an infinite number of degenerate solutions
and a continuous spectrum.

It is useful to write Eq. (25) in a dimensionless form, where
all velocities (including ω/k) are made dimensionless by the
Alfvén velocity vA0, distances by the ion gyroradius ρi, and mag-
netic fields by B0z(0) − the value of the background magnetic
field at r = 0. Thus we write the governing equation in the
dimensionless form as

∂

∂r

(
1
r
∂

∂r
(rvr)

)
+

(
ω2

k2
− v2A

)
vr = 0. (27)

Fig. 2. The plot of B0z (solid line) and B0ϕ (dashed-dotted line) fields in
the interior and exterior of the current thread for case A. The magnetic
field is made dimensionless by the magnetic field at r = 0, (50 Gauss);
r is expressed in units of ion gyroradius at r = 0, ρi = 27 cm. The
expressions for the magnetic field components are given by Eqs. (28)
and (29). The dotted line marks the boundary between the interior and
the exterior of the tube.

3. Results

In this section we present the solutions of the (27) obtained for
two particular profiles of the magnetic field. First we specify the
loop parameters, used to calculate the dimensional quantities,
defined at the end of the previous section. The number density
inside and outside the loop is 3 × 109 cm−3, the temperature is
2 × 106 K, and the magnetic field at r = 0 is B0z(0) = 50 Gauss.
Hence, vA0 = 2 × 108 cm/s and ρi = 27 cm.

A. The first profile for the magnetic field is

B0ϕ =

{
0.025

√
r(20 − r), 0 ≤ r ≤ 20;

0, 20 ≤ r.
(28)

Using this profile for B0ϕ, B0z is specified by Eq. (6). In this case,
we get

B0z =

⎧⎪⎪⎨⎪⎪⎩
√

r2

800 − 3r
80 + 1, 0 ≤ r ≤ 20;√

3/2, 20 ≤ r.
(29)

Both components of the magnetic field are shown in Fig. 2. It
can be seen that, as r increases, B0z decreases to a minimum at
r = 15 gyroradii, then goes up again until it reaches a constant
plateau. For r > 20 gyroradii, B0z is constant. At r = 0 B0ϕ is
zero, then it increases to r = 10 and decreases to zero at r = 20;
for r > 20, B0ϕ = 0. The maximum value of B0ϕ reaches 25% of
the value of B0z at r = 0, so it is quite significant.

For the profile (28), the piecewise solutions to Eq. (27),
which are regular at the origin and zero at infinity, are given by
the expressions:

vr(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

HeunB
(
2,− 3i

√
5

21/4 ,
115
√

2
4 − 20

√
2
(
ω
k

)2
, 0, i

√
5

21/410 r
)

×re
√

2r(r−30)/80, 0 ≤ r ≤ 20;

c1K1(
√

3
4 −

(
ω
k

)2
r), 20 ≤ r,

(30)
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Fig. 3. The dispersion function as a function of the phase velocity,
ω/k, for the case A. The phase velocity is expressed in units of vA0 =
2 × 108 cm/s. It is obvious that the dispersion function intersects the
horizontal axis in just one point, so the dispersion equation admits only
one solution.

where HeunB is a bi-confluent Heun function, K1 is the first-
order Kummer function. The phase speed ω/k and the constant
c1 are to be determined from the matching conditions at r = 20,
where the solution and its derivatives must be continuous. After
the matching conditions are applied, we obtain two algebraic
equations with two unknowns, c1 and ω/k. Eliminating c1 from
the two equations, we get the dispersion equation, F1(ω/k) = 0,
which is a transcendental equation in ω/k. The dispersion func-
tion F1(ω/k) is plotted in Fig. 3. The solutions to the dispersion
equation give the possible phase velocities of the trapped modes
propagating in the system. The current thread acts like a waveg-
uide and only allows some waves, which are compatible with its
geometry. As Fig. 3 shows, for this profile of magnetic field, the
dispersion equation only has one solution. We calculated it nu-
merically and obtained ω/k = 0.865. This value lies between the
minimum of the Alfvén speed inside the tube and the value of
the Alfvén speed outside the tube.

The profile for vr(r), corresponding to the mode with ω/k �
0.865 (which is also the fundamental mode), is plotted in Fig. 4,
after c1 was calculated from the boundary conditions. It can be
seen from Fig. 4 that the amplitude of the mode reaches a max-
imum in the interior of the cylinder. After that, the wave ampli-
tude starts to decrease, going to zero with growing r.

Next, we define the “well-confining condition” and calculate
the radius of the cylinder in which the mode is confined well.
This is obtained by calculating the safety factor of localization

q (r) =

∫ r

0
b2
ϕdr∫ ∞

0
b2
ϕdr
· (31)

We consider the mode to be localized inside a cylinder with ra-
dius r∗ if q (r∗) = 0.9. For r = 20, we get q = 0.61, so the mode
is not confined well in the interior of the current thread. The ra-
dius of the cylinder that confines the mode is r∗ � 33 gyroradii,
which is not much larger than the current thread radius.

We have to mention that the number of trapped modes de-
pends on the magnitude of the azimuthal field. By increasing
B0ϕ (and hence, the amount of twist), we obtain more modes. We
can also decrease the azimuthal field, such that we do not obtain

Fig. 4. The amplitude of the radial velocity, vr(r) for case A. Here vr(r)
is made dimensionless by the Alfvén velocity, vA0 = 2×108 cm/s, and r
by the ion gyroradius, ρi = 27 cm, at r = 0. The dashed line shows the
boundary between the interior and exterior of the cylinder.

anymore trapped modes in the system. For the chosen profile,
the modes disappear if we take 0.023 instead of 0.025 in (28), in
front of the B0ϕ function in the interior on the tube.

B. The second magnetic field profile we analyse is

B0ϕ =

{
0.008r, 0 ≤ r ≤ 20;
0, 20 ≤ r. (32)

The corresponding B0z, calculated from Eq. (6) is

B0z =

⎧⎪⎪⎨⎪⎪⎩
√

1 − 2
15625 r2, 0 ≤ r ≤ 20;

1, 20 ≤ r.
(33)

This profile is plotted in Fig. 5. It can be seen that B0ϕ is zero
at r = 0, then it increases and goes abruptly to zero at r = 20.
At r = 0 B0z is maximum, then it decreases and goes back to
the maximum value at r = 20. This profile is not physical, as it
is not continuous at r = 20, but it can be considered as a good
approximation of a realistic profile. Similar to the profile A, it is
localized within 20 gyroradii.

The solutions to Eq. (27) for profile B are

vr(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
i
r M 125i

2
√

2

(
1−( ωk )2)

, 12

(
i
√

2
125 r2

)
, 0 ≤ r ≤ 20;

c2K1

(√
1 −

(
ω
k

)2
r

)
, 20 ≤ r,

(34)

where M is the Whittaker function, K1 the first-order Kummer
function, and c2 the constant to be determined from the match-
ing conditions. The solution satisfies the same boundary condi-
tions: it is regular at the origin and zero at infinity. Applying the
same matching conditions at r = 20 (the solution is continuous,
with continuous derivatives), we find the dispersion equation for
ω/k: F2(ω/k) = 0. The dispersion function F2(ω/k) is plotted in
Fig. 6. It can be seen that it intersects the axis at a single point,
which is calculated to be ω/k � 0.996. As in the case A, the
system only allows one trapped mode, with the phase speed be-
tween the Alfvén speeds at r = 0 and r = 20.

The shape of the eigenmode with the phase speed ω/k =
0.996 is plotted in Fig. 7. It can be seen that it is very similar
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Fig. 5. The plot of B0z (full line) and B0ϕ (dashed-dotted line) fields in
the interior and exterior of the tube for case B. The magnetic field is
made dimensionless by the magnetic field at r = 0, 50 Gauss, and r
by the ion gyroradius at r = 0, ρi = 27 cm. The expressions for the
magnetic field components are given by Eqs. (32) and (33). The dotted
line marks the boundary between the interior and the exterior of the
current thread.

Fig. 6. The dispersion function F2 (ω/k) for case B. The phase velocity
ω/k is expressed in units of vA0 = 2× 108 cm/s. The dispersion function
intersects the horizontal axis in just one point, so the dispersion equation
admits only one solution.

to the profile of vr obtained in case A: it has a maximum in-
side the thread, and then goes to zero as r grows. The difference
from case A is that the amplitude now decreases faster and goes
to zero at about 75 gyroradii. This can come from to the more
abrupt magnetic field profile. As in case A, it appears that the
mode is not well confined in the interior of the cylinder. Using
formula 31 we obtain the safety factor q = 0.78 for r = 20. The
radius of the cylinder that confines the mode is r∗ = 23.5, even
closer to the current thread radius than in case A.

In case B, the maximum value of B0ϕ is 16% of the value
of B0z at r = 0, so the field does not need to be as twisted as

Fig. 7. The amplitude of the radial velocity, vr(r) in r, for case B. Here
vr(r) is made dimensionless by vA0 = 2 × 108 cm/s and r by the ion
gyroradius, ρi = 27, cm both taken at r = 0. The dashed line marks the
boundary between the interior and exterior of the current thread.

in the previous example. However, this profile is not as realistic
as the first one. What seems to be important in obtaining trapped
modes is the difference between the minimum value of B0z inside
the tube and the value of B0z outside, which is reflected in the
difference in the Alfvén speed. The difference of B0z is about the
same in the two cases: 0.9 Gauss for case A and 1.3 Gauss for
case B.

4. Conclusions

In the framework of Hall MHD, we investigated the torsional
Alfvén waves in the small-scale current threads in the solar
corona. We modelled a thread as a magnetic flux tube with
twisted magnetic field lines inside the tube and straight mag-
netic field lines outside the tube; the density is homogeneous
everywhere. The thread’s radius is considered to be about 20 gy-
roradii. We have analysed two particular magnetic field profiles,
both localized within r = 20 gyroradii.

It was shown that the trapped torsional Alfvén waves can
propagate in the current thread with sufficient magnetic twist.
The waves propagate along the tube’s axis z and have a localized
profile across it. The modes are confined in the region of the
twisted magnetic field. The wave phase speed is between the
minimum value of the Alfvén speed inside the tube and the value
of the Alfvén speed outside the tube. Our results show that the
number of modes depends on the amount of magnetic twist: the
more twisted the tube, the more modes in the system. Also, if
the field is not twisted enough the modes can disappear, so there
is a threshold twist for their appearance.

The wave profiles we obtained in the present paper are very
similar to the wave profiles found in density threads (Copil et al.
2008). In that paper we investigated the trapped torsional Alfvén
waves in threads with a homogeneous magnetic field, but inho-
mogeneous density. The conclusion was that these waves do ex-
ist in density threads and are subjected to damping due to vis-
cosity and resistivity. Since the length scales and wave profiles
in the current threads are similar to those in the density threads,
we suggest that the current thread modes experience a similar
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damping. It is therefore possible that, as for the density threads,
the current threads guiding the torsional Alfvén waves can be
places of enhanced coronal heating because of the wave dissipa-
tion. However, this has to be analysed quantitatively.

It would also be interesting to study torsional Alfvén waves
in threads with both density and magnetic field inhomogeneity
to see how these two work together from the point of view of
wave trapping and damping.

Acknowledgements. We thank the referee for constructive criticism that helped
us to improve the paper. Y.V. acknowledges partial support by STCE (Solar-
Terrestrial Center of Excellence) under the project “Fundamental science”.

References

Aschwanden M. J., & Nightingale, R. W. 2005, ApJ, 633, 499
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ,

520, 880
Aschwanden, M. J., Nakariakov, V. M., & Melnikov, V. F. 2004, ApJ, 600, 458
Banerjee, D., Teriaca, L., Doyle J. G., & Wilhelm, K. 1998, A&A, 339, 208

Copil, P., Voitenko, Y., & Goossens, M. 2008, A&A, 478, 921
De Moortel, I., Ireland, J., Walsh R. W., & Hood, A. 2002, Sol. Phys., 209,

61
Dolla, L., & Solomon, J 2008, A&A, 483, 271
Egan, T. F., & Schneeberger, T. J. 1979, Sol. Phys., 64, 223
Edwin, P. M., & Roberts, B. 1983, Sol. Phys., 88, 179
Erdélyi, R., & Carter, B. K. 2006, A&A, 455, 361
Harrison, R. A., Hood, A. W., & Pike, C. D. 2002, A&A, 392, 319
Ishii, T. T., Kurokawa, H., & Takeuchi, T. T. 1998, ApJ, 499, 898
Leka, K. D., Canfield, R. C., McClymont, A. N., & Van Driel-Gesztelyi, L. 1996,

462, 546
Nakariakov, V. M., Melnikov, V. F., & Reznikova, V. E. 2003, 412, L7
Nakariakov, V. M., Ofman, L., DeLuca E. E., Roberts, B., & Davila J. M. 1999,

Science, 285, 862
Ofman, L. 2009, ApJ, 694, 502
Ofman, L., & Wang, T. J. 2008, A&A, 482, L9
Roberts, B., & Webb, A. R. 1979, Sol. Phys., 64, 77
Spruit, H. C. 1981, A&A, 102, 129
Spruit, H. C. 1982, Sol. Phys., 75, 3
Vaiana, G. S., Davis, J. M., Giacconi, R., et al. 1973, ApJ, 185, L47
Wang, T. J., & Solanki, S. K. 2004, A&A, 421, L33
Wang, T. J., Solanki, S. K., Innes, D. E., Curdt, W., & Marsch, E. 2003, A&A,

402, L17
Zaqarashvili, T. V. 2003, A&A, 399, L15

Page 7 of 7


	Introduction
	Current thread model and governing equations
	Results
	Conclusions
	References 

