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ABSTRACT

Slow magnetoacoustic waves are routinely observed in
solar coronal structures. These waves can be strongly af-
fected by non-adiabatic effects leading to self-organising
compressible propagating disturbances — magnetoa-
coustic autowaves. Autowaves are propagating distur-
bances which have parameters independent of the excita-
tion that are determined by the parameters of the medium
only and, consequently, are potentially an ideal tool for
coronal seismology. The influence of non-adiabatic ef-
fects is studied and magnetoacoustic autowaves are mod-
elled with the extended Burgers equation. A numerical
code is developed to study the evolution of such waves
and a parametric study is carried out. Observable param-
eters of coronal magnetoacoustic autowaves could pro-
vide a tool for the determination of heat deposition mech-
anisms in the corona.

1. INTRODUCTION

Thanks to observations by satellites such as TRACE and
SOHO it is now possible to observe slow magnetoacous-
tic waves in coronal loops and plumes. There are two
main classes of observations. The first are of travelling
waves, typically observed propagating up from the foot-
points of coronal loops. These waves have been observed
by TRACE and SOHO/EIT and are studied in [1], [2],
[31, [4], [5], [6], [7], [8] and [9]. Secondly, Doppler shift
oscillations observed by SUMER have revealed the ex-
istence of long wavelength standing wave oscillations in
coronal loops. (References [10], [11] and [12].)

One of the important features of waves is that they carry
information about the medium through which they prop-
agate. This is the principle used in seismology and helio-
seismology to learn about the interior of the Earth and the
sun respectively. It is hoped that the study of waves will
lead to a similar theory for the corona through the science
of coronal seismology. The development of this science
relies on a detailed theory of wave propagation.

This paper studies magnetoacoustic autowaves. An au-
towave is a propagating disturbance which has parame-
ters (such as speed, amplitude, frequency, etc.) which are
independent of the initial excitation and so depend only

on the properties of the medium through which it prop-
agates. Such waves carry information only about their
medium, which is what we would like to measure and
not about the event that initiated them. This makes them
ideal tools for coronal seismology.

Autowaves exist as the result of competition between a
variety of different effects on a wave’s evolution. Three
effects are studied in this paper. The first is a wave
amplification mechanism which acts most strongly at
low frequencies. The second is non-linear steepening of
the wave which moves energy from low frequencies to
high frequencies. The third is high frequency dissipa-
tion which damps high frequency oscillations. It will be
shown that this cycle of energy which is input at low fre-
quencies, transferred to higher frequencies and then dissi-
pated leads to the possible existence of magnetoacoustic
autowaves.

The amplification mechanism considered in this project
is thermal instability. The solar corona is continually ra-
diating energy in addition to being heated by some un-
known mechanism. Thermal instability occurs when a
decrease in temperature leads to increased radiative en-
ergy losses. In this case, a section of the plasma which is
initially cooler than the surrounding plasma cools more
quickly. This instability has been studied extensively,
[13] and used as an explanation for wide range of as-
tronomical and solar phenomena such as prominences.
It leads to condensations, regions which are cooler than
their surroundings, as well as the amplification of magne-
toacoustic waves.

There are a number of possible sources for high fre-
quency dissipation such as resistivity, viscosity and ther-
mal conductivity. According to theoretical estimations
([9] and [11]) the dominant wave damping mechanism
for slow magnetoacoustic waves in coronal loops is ther-
mal conductivity, and for this reason thermal conductivity
is considered as the source of high frequency dissipation.

In this paper, an equation is derived for the evolution
of magnetoacoustic waves under the influence of ther-
mal conductivity, thermal instability and non-linearity.
The existence of stationary solutions to this equation is
shown, and the stability of these solutions is investigated
numerically.



2. NON-ADIABATIC TERMS

2.1. Thermal Conductivity

In the solar corona magnetic conductivity is high along
magnetic field lines, where heat is carried mainly by elec-
trons and negligible across the magnetic field.
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Thermal conductivity is introduced into the MHD equa-
tions as a term on the right hand side of the energy equa-
tion.
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Thermal conductivity can damp acoustic waves. As one
increases «, the coefficient of thermal conductivity, how-
ever, this wave damping reaches a maximum and begins
to decrease again. In the limit of infinite thermal con-
ductivity, there is no damping. This behaviour creates
two regimes. In the adiabatic (low thermal conductivity)
regime, sound waves propagate adiabatically at the adia-
batic sound speed (yp/p) with small attenuation. In the
isothermal regime, sound waves propagate isothermally
at the isothermal sound speed (p/p). In the transition
between these two regimes the attenuation becomes ex-
tremely large, and can damp away waves within a cou-
ple of wavelengths. According to theory, slow magne-
toacoustic waves in the corona are strongly damped by
thermal conductivity. Observations show strong damp-
ing, which is consistent with this theory. The amount
of damping also depends on the wavelength, short wave-
length waves are more strongly affected by thermal con-
ductivity. Figure 1 shows how the the damping length de-
pends upon the plasma temperature and the wavelength.

In the analysis that follows, it is assumed that thermal
conductivity is weak, and therefore that we are within
the quasi-adiabatic regime. In this regime damping due
to thermal conductivity always increases at higher fre-
quency, and so thermal conductivity acts as high fre-
quency dissipation.

2.2. Radiativelnstability

The second important non-adiabatic term is the radiative
loss and heating term, which may lead to wave amplifi-
cation due to thermal instability. The optically thin coro-
nal plasma is continually losing energy due to radiation.
These radiative losses depend upon temperature in com-
plex manner that is determined by the atomic physics of
the plasma. One approximation to this cooling function
is that given by [14] which is shown in Figure 2.
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Figure 1. A contour plot showing the damping length
due to thermal conductivity in wavelengths for various
temperatures and velocities. This plot is generated for a
density p = 8 x 10713 kg m 3.
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Figure 2. The dependence of the loss function on temper-
ature as estimated by [14]

These radiative losses are represented by a function
L(p,T) on the right hand side of the energy equation.
This function is a combination of the the radiative losses
described by [14] and a heating function, . The depen-
dence of the heating function upon the parameters of the
plasma is unknown. £ is expressed as:

L=n2Q(T)-H (4)

Thermal instability may occur in any region where g—%
is negative. In this case, a section of the plasma which
is cooler than its surroundings will lose heat faster and
hence continue to cool. The plasma is thermally unstable
and this effect leads to wave amplification. [13]

3. EXTENDED BURGERSEQUATION

The goal is to derive an evolutionary equation for magne-
toacoustic waves starting with the MHD equations. This
derivation extends that carried out by [15].
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The magnetic field is taken to be in the (X, z)-plane,
Bo = Bgsinaxg + By cos azg, Where « is the angle
between the magnetic field and the z-axis. The dynamics
of waves propagating along the z-axis are considered, so
dependences upon z and y are ignored. Only quadratic
non-linearity is considered, and the effect of thermal con-
ductivity and cooling is assumed to be small.

Combining these equations gives an equation taking into
account thermal conductivity, radiative loss/gain terms
and quadratic non-linearity.
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This equation introduces the non-linear terms Ny, Ny, Ng
and N7 and the new operators and variables given by:

2,
Ps = 5p~ %o (10
2, o
Daz = 55~ Caigs (11)
82
L, (v—1)jiC2
K = /-ecosza(vis 13
Rypo (13)
_ _ ., (P =1iacg
A = -1 (64 O ) g

In the weakly non-adiabatic, non-linear case, waves prop-
agate approximately at the slow or fast wave speed.
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In order to follow the evolution of a single wave mode we
move into a frame of reference which travels at the speed

of the wave. This is done by performing the change of
variables

E=2—-Ct and T =1. (16)

After some manipulation an extended Burgers equation
for the evolution of the wave, taking into account non-
linearity, thermal instability and thermal conductivity is
obtained:

av. 02V, ov.

Three new coefficients are introduced v, y and e, which
represent radiative losses, thermal conductivity and non-
linearity respectively:
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These coefficients could be changed to include different
terms, such as viscosity instead of thermal conductivity or
stratification instead of radiative losses without changing
the general form of the extended Burgers equation. [9] By
looking for solutions to Eg. 17 we can study in a general
sense the result of competition between an amplification
term, high frequency dissipation and non-linearity. The
coefficient € is always positive while v is always nega-
tive. u can be positive or negative depending upon the
signs of £/ and L', with negative y corresponding to
amplification of the wave. The first step in analysing Eq.
17 is to look for stationary solutions. Stationary waves
are waves that travel at a constant velocity and without
change of form.

We change to a frame of reference which moves with the
stationary wave, by the substitution x = £ — v, where v
is the speed of the stationary wave relative to the magne-
toacoustic wave speed. Equation 17 becomes
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In any stationary solution, V, must remain finite as x
goes to infinity. This is ensured due to a balance between
%Vz — Y and £ terms. These can only be balanced
when v = 0, so there can only be stationary solutions
which propagate at a magnetoacoustic wave speed. [16]
The stationary solutions are then solutions of the ODE
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Figure 3. Phase diagram ‘;—f vs z) for the thermally un-
stable case, p < 0. The closed loops represent stationary
solutions.

This equation is equivalent to Eq. 17 with 3% = 0, ie,,
no wave evolution. We can now proceed to rewrite this
equation in a dimensionless form. There are two forms,
the first corresponds to activity, negative u, and the sec-
ond to dissipation, positive p. Clearly, we cannot expect
stationary solutions in the latter case. The variables x and
t defined here are not related to their previous uses.
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Figure 3 shows the phase diagram for the case with the
thermal instability. The closed loops around the origin are
stationary solutions. These stationary solutions propagate
at the magnetoacoustic wave speed, there are an infinite
number of them and they symmetrical around the y-axis.

Even though we know that such solutions exist, we can-
not say from this information whether or not these solu-
tions are stable. Without a stability analysis we cannot
say whether these waves will exist in nature. It is diffi-
cult to perform a stability analysis on these waves analyt-
ically as there is no analytical expression for them. The
next step is, therefore, to investigate the stability of these
solutions numerically.

4. NUMERICAL SIMULATION

We proceed to examine the solutions to Eg. 17 numeri-
cally. This has been done using the MacCormack finite
difference scheme, as described by [17].

We start with a sine wave and examine how this sine wave
evolves under the influence of the various evolutionary
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Figure 4. The same sine wave evolves to four different
stationary solutions under different values of the param-

eter u.
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Figure 5. The amplitude of the final wave is independent
of the initial amplitude, as shown in this graph of ampli-
tude versus time for four waves with initial amplitudes of
0.5,0.75,1.0 and 1.25.

terms. Figure 4 shows the evolution of a sine wave for
four different values of x (-0.1,-0.2, -0.3 and -0.4) where
e = 1.0 and v = —0.3. In each case the sine wave steep-
ens into a sawtooth shape wave of a different amplitude
which no longer evolves. An initial sine wave evolvesto a
stationary non-evolving solution. These sawtooth waves
may look like shock waves but they are not, the presence
of high-frequency dissipation prevents shock formation.

In order for these to be autowaves, the solution to which
the wave evolves must not depend upon the initial condi-
tions. To test this we ran the simulation with sine waves
of various amplitudes and the same set of coefficients.
The result is shown in Figure 5. The amplitude of the fi-
nal wave is independent of the initial amplitude. This is
the defining feature of an autowave.

5. EVIDENCE OF AUTOWAVES IN FLARING
LOOPS

Recent simulations of oscillations in flaring loops has
shown that these oscillations can be interpreted as stand-
ing acoustic waves. [18] However, in the conditions un-
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Figure 6. A comparison between the simulation results of
[18] (top) and the level of thermal damping predicted by
theory. (bottom)

der which these waves occur there is sufficient thermal
conductivity to damp the waves on a timescale of less
than one loop oscillation. A comparison between the sim-
ulation results of [18] and the damping time predicted by
theory is shown in Figure 6.

One explanation for the discrepancy between these two
results is that thermal instability or some other amplifi-
cation mechanism such as gravitational stratification bal-
ances the dissipation due to thermal conductivity. These
waves may then be autowaves. The extended Burgers
Equation cannot be used to describe these waves as that
equation describes travelling waves and these are stand-
ing waves.

6. CONCLUSIONS

In the solar corona slow magnetoacoustic waves prop-
agating in loops and plumes and trapped between loop
footpoints, are modified by thermal conductivity, radia-
tive losses and non-linearity. Taking the MHD equations
we have derived an extended Burgers equation to model
the slow evolution of waves due to these factors. An
equivalent equation can also be derived including effects
such as viscosity and stratification without any change in
the form of this equation.

We have shown that there exist stationary solutions to
this equation and, using numerical simulations, that a sine
wave of arbitrary amplitude evolves to a stationary solu-
tion of a specific amplitude. This is a propagating magne-
toacoustic autowave. The amplitude of this autowave is
determined only by the properties of the medium and not
by the amplitude of the initial disturbance. However, the
frequency of the wave is not determined, and determines
the final amplitude.

The derivation of the extended Burgers equation is lim-
ited to weak non-adiabacity. Damping by thermal con-
ductivity is often very strong and this limits the applica-
bility of the equation. In addition, this technique is lim-
ited to the study of a single propagating mode and so is
not useful in the study of standing waves. These problems

can be solved by examining the results of hydrodynamic
simulations.

The observable properties of autowaves (speed, ampli-
tude and wavelength) could provide a tool for the study
of heat deposition mechanisms in the solar corona.
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