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 Abstract 
 
This report concerns the development of two cellular automata sandpile models.  
The sandpile of Chapman et al. [14] was modified to be non-directed and to allow 
multiple feeding.  A separate algorithm was devised to investigate the applicabilit y 
of self-organised criti calit y (SOC) to the dynamics of water droplets on a “glass-
li ke” inclined plane. 
 
The time averaged height profile of the Chapman et al. sandpile has been shown to 
display some of the phenomenology of tokamak confined plasmas [10]. The simple 
modifications made to the Chapman et al. sandpile enabled further aspects of the 
sandpile’s phenomenology to be identified with characteristic features of the 
tokamak temperature profile.  These features are: the dependence of the position of 
“steps” and “plateaus” to the outflow boundary, the time signal of the electron 
temperature at a point of heating i.e. “giant saw-tooth crash” , and the appearance of 
distinct peaks, termed “ears” , when heating takes place at the edge of a “plateau”. 
 
The droplet model was developed in an attempt to understand how the dynamics of 
droplets could lead to the development of SOC.  Concepts of threshold driven 
diffusion (redistribution by overcoming surface tension), non-threshold driven 
transport  (fluid flow/diffusion), droplet formation on deposition and droplet 
formation in the wetted stream left by a moving droplet were introduced into the 
model.  The statistics from the model were compared with those collected 
experimentall y and qualitative agreement was found between them, particularly the 
statistics concerning the delay times between outflow events. 
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1. Introduction 
 
Widespread interest in the statistical nature of sandpile models was sparked by the work of Bak, Tang and 
Wiesenfield (BTW) [1] in which they introduced the idea of Self-Organised Criti calit y (SOC).  In this work, a 
computer model of an idealised sandpile was used to ill ustrate the vital principles of SOC.  What follows in this 
section is a brief elaboration on two questions that naturall y follow from the previous statements: (a) “Why is the 
study of SOC of interest?” and (b) “Why are computer models of sandpiles useful tools in the investigation of 
SOC”? 
 
Self-organised criti calit y is a term used to describe complex systems that, seemingly contrary to the law of 
increasing entropy, evolve into a state of high order and behave very much li ke equili brium systems at their 
criti cal point. However, systems for which SOC is applicable are often driven far from their equili brium state.  
This criti cal state is characterised by the propagation of local distortions throughout the entire system, though 
direct interaction only takes place on a nearest neighbour level. The response of the system to perturbation is no 
longer accurately described by a characteristic length or time scale (i.e. an average consideration does not give a 
good description [2]).  A lack of characteristic scale is described mathematicall y by power law scaling of the 
form: 
 

N A A( ) ~ −−−− �

 (1) 

 
 
Where N(A) is the number of events of size A and αααα is a constant called the criti cal exponent. 
 
Criti cal phenomena are well understood in equili brium statistical mechanics with respect to phase transitions.  A 
key difference between the equili brium criti cal state and SOC is that SOC requires no fine-tuning of control 
parameters, where as the equili brium criti cal state is only observed at specific temperatures and pressures. 
 
Systems that evolve into a state described by SOC have a separation of time scales associated with them i.e. the 
driving process that may bring about an instabilit y acts on a timescale much larger than instabiliti es relax.  This is 
thought of as being due to the presence of thresholds and metastabilit y.  The development of scale-less dynamics 
(as described by (1)) and the development of order can be thought to come about in the following way: 
 
Imagine a general system in which a potential is present at each site.  A driving process tends to increase the 
potential at these sites.  Once this potential exceeds a critical value, it is redistributed amongst other sites locall y. 
The driving force slowly pushes many sites in the system towards instabilit y.  Many may remain in a state below 
the criti cal threshold (i.e. in a metastable state) but some may exceed this threshold leading to local redistribution 
by nearest neighbour effects.  These nearest neighbour sites would then be pushed closer towards instabilit y.  
Eventually a connected network of marginall y sub-criti cal sites may form through which redistribution could be 
observed as a non-local phenomenon due to repeated nearest neighbour interaction. Such an “avalanche” is seen 
as one event macroscopicall y.  Therefore, it is conceivable that events of any size may exist since the system may 
organise itself to possess connected networks on any scale.  These networks do not exist in a temporall y stable 
way because “avalanching events” destroy, as well as build these networks.     
 
SOC combines the concepts of self-organisation and criti cal behaviour to explain complexity.  The 
characterisation of complexity is discussed in [3].  A complex system is thought of as possessing a hierarchical 
structure. That is, it can be seen to consist of many similar interacting components (e.g. individual cars in a traff ic 
jam) in which large scale events are a result of the repeated interaction of these components.  Complexity research 
is concerned with showing that the behaviour of each level of the hierarchy is a macroscopic (or emergent) 
property of the level below it. As such, investigations that examine the universal macroscopic properties of these 
systems are favoured over those that examine all detail s.  Complex systems that are thought to be examples of 
SOC include earthquakes, the development of river networks, propagation of forest fires and (controversiall y) 
evolution.   
 
Sandpile models consist of a grid of cell s, in which information about the pile’s local height, or slope, are stored.  
The system is driven by the gradual addition of sand by a fuelli ng process. Once the local gradient exceeds some 
threshold value an avalanche is triggered and sand is redistributed. This redistribution could lead to further 
avalanches. Boundaries of the pile are either open (in which case mass loss events can take place) or closed (in 
which case any reference to cell s that would lie outside this boundary are ignored).  Sandpile models comply with 
the notions of complexity associated with SOC because: 
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- They consist of many locall y interacting cell s.  
- They are maintained in a state far from equili brium by constant fuelli ng and boundary interactions. 
- There is a separation of time scales so that the system relaxes (completes a series of avalanches) far faster 

than the interval between fuelli ng events. This is important in allowing the critical state to evolve.  
 
The li st above, combined with the ease with which computer models allow data to be recorded and parameters to 
be controlled, makes the computer simulation of sandpiles an obvious tool in the investigation of SOC.  An exact 
knowledge of the internal dynamics of the system inherent with computer simulation (in contrast to an 
experimental study of a sandpile) allows the application of the Renormalization Group (RG) [4][13].  RG is a 
powerful tool in predicting the large-scale behaviour of systems that exhibit self-similar dynamics.  It provides the 
best way of determining why a system displays self-similarity and power law scali ng.  
 
2. Model Development and Behaviour 
 
2.1 The Sandpile of Chapman et al. 
 
2.1.2 Introduction 
The study of sandpile models is an effective tool for assessing how useful the concepts of SOC are in explaining 
the dynamics of the temperature profiles of tokamak plasmas. Tokamaks are designed to confine plasmas at high 
enough temperatures to allow commerciall y viable nuclear fusion.  They magneticall y confine the plasma in a 
toroidal chamber so as to separate the plasma from the chamber wall [5][6].  The temperature profile of the 
tokamak plasma is essentiall y the distribution of plasma temperature, or electron energy, as a function of radial 
displacement within the toroidal chamber.   
 
Two plasma energy transport mechanisms, for which a direct sandpile analogy exists, are diffusion and a 
phenomenon termed “avalanching” .  In this context, “avalanching” is a term used to describe the transport of 
energy in the plasma, which can occur on spatial scales up to the system size [9].  Mechanisms suspected of 
causing this transport only act on spatial scales of the order of ion gyroradii .  In light of this, a transport 
mechanism that draws on the idea of SOC has been suggested [7].  This approach could explain this transport 
without a detailed consideration of the underlying transport mechanism [7] [8].  The local redistribution of sand, 
once a cell becomes over criti cal, is used as an analogy to diffusive transport and the “chain reaction” of local 
redistribution, which result in a sandpile avalanche, is used as an analogy to plasma “avalanching” .  It is 
appropriate to use the concept of a critical gradient to decide whether a cell is over criti cal or not because a criti cal 
gradient has been identified in the plasma temperature profile [7][8].  The fuelli ng cell of the sandpile model can 
be interpreted as the radial position at which the plasma is being heated and the open boundary is interpreted as 
the edge of the confinement chamber at which heat loss can occur.  There is a table in [7] that lists the appropriate 
analogies that li nk transport mechanisms in sandpile models with turbulent transport in plasmas. 
 
The Chapman et al. sandpile model is a one-dimensional model, and so consists of a row of cell s.  The update 
algorithm is a generali sation of that used by P. Bak et al. [1] so as to include a mechanism for the non-local 
redistribution of sand “uphill ” from the avalanche site.  This has a signif icant effect on the phenomenology of the 
model.  The most readily obtainable result from the Chapman et al. model, which has direct relevance to tokamak 
plasma temperature profiles, is that of the average height profile of the sandpile.  When this is averaged over many 
thousands of avalanches, after the system has evolved into the criti cal state, it displays steps and pedestals, which 
closely resemble those found in the temperature profiles of fusion experiments [10][11].  
 
The aim of this investigation is to determine how much of the complicated behaviour displayed by tokamak 
confined plasmas can be reproduced with the sandpile of Chapman et al. 
 
2.1.2 The Model of Chapman et al. and Model Development1 
 
The original Chapman model is edge driven, so an amount of sand (γγγγ) is periodicall y added to the cell next to the 
closed boundary (cell 1).  Cell L, where L is the number of cell s in the row, marks the last cell in the row, and thus 

                                                        
1 The development of the Chapman et al. model was a task divided between the author and Mr. T. K. March.  The 
principal results of this investigation (namely those presented in figures 1, 2 and 3) were obtained through 
development undertaken by Mr. T. K March.  Their importance to the project warrants the inclusion of these 
results in this paper.  Developments undertaken by the author concerned the introduction of a forward 
“fluidisation length” . 
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the open boundary.  The height of the pile at each cell is simply interpreted as the amount of sand in that cell (h(k) 
where k is the kth  cell ) , which leads to following definition of the local gradient: (k+1) – h(k) .  There is a 
gradient below which sand is always stable, cr, and a gradient above which the sand is unstable and must be 
redistributed, c.  Any further discussion of gradient will be in terms of C, which is defined by, C = cr – c.  
Therefore, C is the gradient relative to cr above which a cell i s always unstable.  The Chapman model is a 
generali sed version of the BTW model to include a region of fluidisation (or non-local transport) “uphill ” from the 
avalanche front to provide a mechanism for non-local redistribution of sand.  Once the kth cell becomes criti cal the 
following relaxation algorithm is applied: 
 

′′′′h (k + 1) =  h(k + 1) +  
�

 (2) 

h k i h k i
L

i L
f

f' ( ) ( ) , ,−−−− ==== −−−− −−−− ==== −−−−
�

0 1 
 

(3) 

 
Where L f is the fluidisation length and h′′′′(k) is the amount of sand in the kth cell after one application of (2) and 
(3).  In terms of plasma analogy, L f can be thought of as a turbulent correlation length or eddy size. The amount 
∆∆∆∆ is defined by the condition shown in (4): 
 

′′′′ ++++ −−−− ′′′′ ====h k h k( ) ( )1 0  (4) 

 
Remembering a gradient of zero now represents the angle of repose. Note, (2) may cause the cell at k+1 to 
become unstable.  Steps (2) and (3) are repeated until all cell s are under-criti cal before sand is added at cell one 
again, i.e. relaxation is instantaneous.  The entire process from cell one becoming criti cal to all cells being under-
criti cal is defined as one avalanche.  Mass loss events (MLEs) occur when cell L becomes criti cal and are handled 
by applying (5). 
 

′′′′ −−−− ==== ==== −−−−h L i i L f( ) ,0 0 1 (5) 

 
The behaviour of this model can be seen to be consistent with that of SOC when the elementary dissipative events 
are investigated.  Power law scali ng is found in the avalanche length distribution and the distribution of dissipated 
potential energy in avalanche events.  For both cases α α α α ≈ 1.  This can be shown analyticall y, by exact solution for 
a limiti ng case [12] and generally through the application RG [13], and is found numericall y [14].  The dissipated 
potential energy in an avalanche event, dE, is simply defined by (6): 
 

dE h k h k
k

k L

k

k L
==== −−−−
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====

====
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(6) 

 
As such, the gravitational potential energy, E, of the system is then defined by (7): 
 

E h k
k

k L
==== ====

====∑∑∑∑ 2

1
( )  

(7) 

 
 
  In order to make the algorithm more physical, the criti cal gradient is not single valued but randomly fluctuates 
about a mean value (<C>).  Each cell has a criti cal gradient associated with it, Ck. A new criti cal gradient is 
chosen from a top hat distribution, which allows Ck to vary by 1% around <C>, every time cell k becomes over 
criti cal.  Results produced in [13] and [14] have been shown to be stable to these fluctuations. 
 
The original Chapman model allows non-local redistribution to take place “uphill ” of the avalanche front, but sand 
is only redistributed locall y (to one cell ) “downhill ” from the avalanche front. It was decided to investigate the 
effect of allowing non-local redistribution to take place “downhill ” from the avalanche front as well as “uphil l” 
from it.  This was designed to remove an asymmetry in the model that had no physical necessity.  The control 
parameter L for was used to control the range of non-local transport “downhill ” from the avalanche front, in the 
same way as L f is used to control the range of non-local transport “uphill ” of the avalanche front.  It was hoped 
that the introduction of this new parameter might change the way the system approaches its fixed point (as 
revealed by RG) or introduce a new non-trivial fixed point.  The modified algorithm relaxes by steps (2) and (3), 
identicall y to the original algorithm.  Two more stages follow:  
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(9) 

 
Where h′′′′′′′′ refers to the height of sand after this second relaxation process and h′′′′ still refers to the height of sand 
after an application of (2) and (3).  Equation (9) removes an amount of sand, which totals to ϑϑϑϑ, from all cell s that 
lie within the fluidisation region described by L f and one cell that lies outside this region, i.e. cell  k+1.  Equation 
(8) then conservatively divides ϑϑϑϑ amongst all cell s that lie within the fluid region described by L for excluding cell 
k+1.  ϑϑϑϑ was chosen to be proportional to (L for – 1),  so ϑϑϑϑ = 0 for L for = 1 thus reducing the model back to its 
original form, and so that condition (9a) is satisfied, to parallel condition (3) on ∆∆∆∆. As such, ϑϑϑϑ is defined by (9b).  
 

′′′′′′′′ ++++ −−−− ′′′′′′′′ ++++ ====h k h k( ) ( )2 1 0  (9a) 
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(9b) 

 
2.1.3 Model Behaviour 
 
The investigations below were designed to determine whether all the complicated phenomenology of tokamak 
plasmas can be recovered from the, reduced physics, sandpile model.  If the sandpile model and the tokamak 
plasma are of the same universality class [20], then this should be possible. 
 
An investigation was designed to determine whether the positions the stable plateauxs and “steps” , common to 
both tokamak plasma profiles and the sandpile height profile, were determined by the position of the fuelli ng cell 
or the position of the open boundary.  The model was generali sed to enable avalanches to take place in both 
directions.  Previously, because the pile was always fuelled from cell 1, avalanches could only propagate from 
lower to higher cell numbers.  If the fuelli ng position is to be moved avalanches must be allowed to go both ways.  
A number of runs were performed with varying fuelli ng positions but with constant L f (see figure 1.).  The 
boundary at L, here cell 1024, was closed and the boundary at cell 1 was open. 

 
 

 
 

Figure 1: Average height profiles of 6 runs with L f = 100 and varying fuelli ng cells.  The 
boundary at cell 1 was open and the boundary at cell 1024 was cl osed.  The “ steps” near the 
open boundary seem to lie in the same position irrelevant of the fuelling cell .  

T
im

e averaged height 

Cell number 
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It was found that the “steps” remained in broadly the same positi on suggesting that their positi ons are bound to the 
open boundary rather than the fuelli ng position of the fuelli ng cell . 

 
“Giant saw-tooth crashes”  are observed experimentall y at sites of plasma heating.  That is, the temperature of the 
plasma at a point of heating gradually increases with time and then drops suddenly to describe a saw-tooth li ke 
signal.  The Chapman model was investigated in order to determine whether it describes this phenomenon.  A 
method of visualising the evolution of the sandpile’s height profile with time was developed using Matlab.  This is 
a surface plot displaying height of sand on the vertical (z) axis and cell number and “time” on the x and y axis 
receptively.  The amount of sand added to the pile is taken as a linear measurement of time since the same amount 
of sand is added periodically to the fuelli ng cell .  Surface plots obtained show a clear saw-tooth crash effect at the 
fuelli ng cell (see figure 2.). 
 

 
Indication of cell number 

 
 

 
 

 
 
 
 
Tokamak plasmas that are heated at the centre of the toroidal chamber develop a broad a distinct plateau in their 
temperature profile around the region of heating [15].  If heat is then deposited at positions that correspond to the 
two edges of this plateau, sharp peaks in the temperature profile develop at the plateau edges [15].  These features 
are known as “ears” and represent increased plasma confinement.  It was attempted to recreate this phenomenon 
with the Chapman et al. model, again to see whether this complicated behaviour could be recovered from the 
sandpile model.  The most impressive results were obtained by fuelli ng at two cell s simultaneously, representative 
of heating the plasma at positions corresponding to the plateau edges.  Clear similarities can be seen between 
averaged height profiles of this dual fuelli ng and “ears” observed experimentall y (see figure 3). 

Indication of cell 
number around 
fuelli ng cell  

height 

Time (200 grains) 

height 

Figure 2:  (Bottom) Surface plot to show saw-tooth li ke behaviour of the height 
at the fuelli ng cell with time. (Top) Cross-sectional sli ces to show the height 
profile around the fuelli ng cell at the times indicated by labels 1-4. L f  was 100 
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All the results shown thus far are produced from the original redistribution rules.  Early efforts at obtaining 
accurate statistics for runs with L for larger than 4 proved diff icult because very long term saw-tooth periodicity 
was introduced into the energy time series of the sandpile making it diff icult to judge whether the pile had indeed 
reached a quasi steady state.  The approach of a quasi steady state in the energy time series is used to estimate the 
approach of the system to the critical state [14].  Statistics of avalanche length distributions from runs with L for up 
to 4 did not deviate signif icantly from each other, suggesting that changes in L for will not result in the adoption of 
another fixed point in RG space leaving L f as the sole control parameter.  However, only a limited fraction of L for 

space has been explored.  Animations of the instantaneous height profile were made of simulations with L for > 1. 
They revealed that although the height profile for runs with different values of L for may vary considerably at any 
given time, the formation of “steps” and plateaus remains a constant feature of their phenomenology.  
 
2.2 Modelling the Dynamics of Drops on Glass 
 
2.2.1 Introduction 
 
The dynamics of fluid droplets was one of the systems earmarked for investigation with regards to SOC when the 
concept was first introduced [1].  Despite the enormous amount of research undertaken concerning droplet 
dynamics [16], there is relatively littl e literature about experimental investigations on this subject.  Two papers 
have been found whose topics are directly concerned with such experiments [17][18].  A discussion of their 
principle findings can be found in Jenson p23.  A notable difference in their conclusions is that B. Ploude suggests 
power law scaling exists in the sizes and li fe times of drops leaving the system, where as I. M. Janosi finds no 
evidence to support the notion of power-law scaling.  Neither experiment probed the elementary redistribution 
events in their search for power-law scaling relations 
 
The aim of this investigation was to develop a cellular automater model for the dynamics of water droplets on a 
“glass-li ke” surface.  The ideas of threshold driven diffusion and fluid transport were to be central in the 
development of a model that could exhibit SOC.  The search for SOC was primaril y concerned with identifying 
power law scaling amongst elementary redistribution events.  Investigations to compare the statistics of the model 
with existing experimental data were also undertaken to give an idea of its physical validity. 
 
 
 

Cell number 

height 

Figure 3: (Left) Average height profile of sandpile fuelled at two cell s simultaneously.  “E ars” can be 
seen as sharp peaks at the edge of the central plateau. L f = 400.  
 
  (Right) After M. R. de Baar  et al.Phys. Plasmas. 6(12) 4645 (1999).  Figure shows the time 
averaged electron temperature profile, as electron energy, Te, against radial displacement within the 
toroidal chamber ρ.  “ Ears” can be seen as peaks at approximately ρ = ± 0.5. 
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2.2.2 Model Development  
 
An important extension that had to be made to the Chapman et al. model was to make mass transport threshold 
driven when a drop is flowing onto dry surface (i.e. it has to overcome surface tension), and for this threshold not 
to exist when the drop is flowing into an existing drop (i.e. the coalescence of drops is energeticall y favourable 
because of the minimisation of surface energy).  Initial ideas concerned the fitti ng of a stream (i.e. a drop with a 
trail of wetted surface left behind it) to a stream profile.  The distance the drop had travelled and the total mass of 
the stream as it coalesces with existing droplets would scale this profiles dimensions accordingly.  It was decided 
that this behaviour could be approximated by a simple cellular approach if: all drops are considered to have the 
same contact area regardless of mass (all drops occupy one cell only); all wetted trail s hold the same mass of fluid 
per unit area; and all wetted trail s are the same width regardless of the size of the drop which caused them (i.e. all 
trail s are one cell wide).  The 2D grid of cell s that was used for this simulation was either connected with 
diamond, or square geometry.  If a drop is over criti cal mass on a diamond grid there are only two possible “child 
sites” it could move to.  However, if the grid is connected by square geometry there are three possible child sites 
(see figure 4.). 
 
 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The basic algorithm is similar to that described in [18] in that, if a cell contains more than a criti cal amount of 
fluid, the following update is applied (10a)(10b).   
 

′′′′ →→→→F p

�
 (10a) 

′′′′ →→→→ ++++ −−−−F F Fc p

�
 (10b) 

 
Where Fp is the mass of water on the parent site, Fc is the mass of water on the child site and δδδδ is the constant 
mass of water left behind on the parent cell due to wetting.  The dashed values are to indicate they represent the 
mass of water after applying the relaxation, where as the un-dashed values show the original mass of water on 
these cell s.  The amount of fluid a cell needs to have before it is deemed over criti cal, and redistribution takes 
place, is governed by the rules (11a)11(b).  
 
If at least one of the child sites has water, redistribution takes place to the child cell with the most water if (11a) is 
satified. 
 

F p >>>>
�

 (11a) 

 
This represents non-threshold driven mass transport.  The inequalit y condition is set so that (Fp -δδδδ), found in 
(10b), is never negative.  A negative value of (Fp -δδδδ) would result in water being redistributed up the pane.  
 
If none of the child sites hold water, the cell is deemed over critical i f it meets the condition: 
 

Square geometry 

 (j-1)th 

 jth row 

 jth row 

 
(j-1)th 
 

Figure 4: This figure shows two possible geometric arrangements for the 2D grid of cells 
used in modelli ng the dynamics of drops on glass.  “ Child sites” to the black “ Parent 
Site” site are shown in grey.  Implicitly the row index (j) decreases as the drop moves 
down the surface and looses gravitational potential energy 

Diamond geometry 
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F cp m>>>>  (11b) 

 
cm is always set to be greater than δδδδ.  Equation (11b) represents threshold driven diffusion – surface tension is 
exceeded. 
 
If all the child sites hold the same amount of water the cell directly below the parent cell i s always preferred in 
square geometry, and one of the two child cell s is chosen at random in diamond geomet ry. 
 
The same update algorithm is then applied to the child sites until the “avalanche” stops or comes to the outflow 
boundary at row j=0.  Thus, relaxation is instantaneous. The boundaries at the sides of the grid are periodic.   
 
The system is driven by randomly depositing droplets of size g over the grid.  After each deposition the deposition 
site is checked for conditions (10a) and (10b), and relaxation takes place accordingly. B. Ploude et al. argue that, 
in order to adequately describe the dynamics of water droplets consideration has to be given to droplet formation 
and deposition, as well as coalescence and avalanching [19].  Thus, droplets are allowed to coalesce on deposition 
if the parent or child sites of the deposition site have water.  If two droplets coalesce in this way, the site where the 
smaller mass was becomes empty and the water is summed onto the site that has the larger mass.  This process 
forms clusters with open spaces between them in an attempt to account for droplet formation on deposition.  
 
Experimentali sts also talk of droplet formation in the wetted stream left by a moving droplet.  Identifying a 
fluidisation length, λλλλ, simulates this.  If a cell is part of a droplet’s wetted stream, and is greater than λλλλ cells from 
the droplet, then the water in this cell i s removed and combined with that of the cell i n the same stream one row 
above it with a probabilit y of ½.  Thus, the path of the droplet is covered by a perfectly wetted region, up to a 
distance λλλλ from the avalanching droplet, and then the path is randomly interspersed with clusters and open spaces 
(i.e. droplets form in the wetted part of the stream). 
 
If there is an over-criti cal mass of water on a cell on row j=0, outflow occurs.  Here all cell s that the avalanching 
drop has visited, within a distance λλλλ of the boundary, are set to zero.  This prevents the long term existence of 
large wetted regions, which if allowed to remain, would lead to transport being entirely dominated by non-
threshold driven means.  Outflow in this way is analogous to the “re-setting avalanches” discussed in Jenson. 
 
The value of λλλλ was allowed to fluctuate about a mean value, <λλλλ>.  This means a new value of λλλλ was drawn from a 
“top-hat” probabilit y distribution, centred around <λλλλ>, every time the program needs a value for λλλλ.  Values for λλλλ 
were allowed to fluctuate by 25% with no apparent effect on system statistics.  This demonstrates some degree of 
robustness.  Further tests for robustness will have to include the introduction of randomness in cm . 
 
2.2.3 Model Behaviour 
 
The model was designed to allow non-threshold effects to play a vital role in the transport of mass, and thus act as 
a proxy to fluid transport.  Regions of spatial correlation (streams) are produced that direct fluid transport along 
them.  However, the lengths of these spatial correlations are limited by the formation of droplets in the wetted part 
of the stream and, to a lesser extent, by the formation of droplets by deposition.  Streams are removed by outflow 
events.  Maintaining a balance between the formation and destruction of spatial correlations was found to be 
crucial in recovering power law scaling in avalanche length distributions, as can be seen in figure 5, 6 and 7.  The 
length of an avalanche is simply defined as the difference in row number from when the drop was initiall y 
deposited to when the drop’s motion is terminated, be it by becoming under-criti cal or by outflow. 
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i  (column coordinate) Avalanche lengths 

N
um

ber of avalanches 

Figure 5 (Left) Plot showing the number of avalanches recorded per avalanche length. (Right)  
Colour map showing the amount of water in each cell after completing the simulation.  Lighter 
shades represent more water.  Here <λλλλ> was set to 750. 

N
um

ber of avalanches 

Avalanche lengths 

Figure 6:  This simulation was run to demonstrate the effect of allowing spatial correlation to build 
without them being destroyed.  This was done by altering the simulation so only one drop was removed on 
out-flow, droplets were no allowed to form on deposition and droplets were not allowed to form in the 
wetted part of the stream.  Avalanches become equally likely for all allowed lengths. <λλλλ> is 750. 

Figure 7:  (Left) Plot showing the number of avalanches recorded per avalanche length. (R ight)  Colour map showing the 
amount of water in each cell after completing the simulation. This simulation was run to demonstrate the effect of restricting 
the length of spatial correlations to a length much smaller than the number of rows in the grid (i.e. here <λλλλ> is 5). 
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All the runs for figures 5, 6 and 7 where performed on a grid of 100 by 1000 cell s with square geometry, g was 10, 
cm was 100 and δδδδ was 12.  Figure 5 shows power law scaling of avalanche lengths over nearly three decades 
(obviously the number of decades over which this scaling can take place is limited by the system size).  The 
colour map of figure 5 shows well defined streams which exist over hundreds of cell s.  Figure 6 shows a “white” 
distribution of avalanche lengths, the data in this figure has been plotted linearly for clarity.  This “white” 
distribution is the result of allowing spatial correlations to form but not introducing methods to destroy them.  The 
colour map would show a homogenous grid with every cell holding δδδδ.  Every deposition would lead to an 
avalanche stretching to the open boundary because of condition (11a).  Figure 7 shows that the power law scali ng 
for avalanche lengths is all but destroyed when spatial correlations are limited to a value far smaller than the 
number of rows in the system.  The colour map shows the absence of the large streams, which are visible in figure 
5.   
 
These figures show that the formation of streams is important in creating power law scaling over a wide range of 
avalanche lengths, and that mechanisms that disrupt the formation of streams are important in preventing the 
avalanche length distribution from becoming saturated by fluid transport avalanches. 
 
The model’s behaviour was checked for consistency with experimental results shown in [17].  Figure 8 shows 
avalanche length distribution for two values of δδδδ the experimental results from [17].   

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8:.(Left, Top) Plot of number of avalanches against avalanche lengths. δδδδ is 40.  (Left, Bottom) Plot of number 
of avalanches against avalanche lengths. δδδδ is 4.  A different criti cal exponent defines the power law scaling for each 
case.  Increasing δδδδ can be seen as a proxy to increasing the viscosity of the fluid. 
 
  (Right) After B Ploude et al. Phys. Rev. Let 71(17) 2749 (1993).  Figure (a) show the probabilit y density 
distribution, D(S), of drops size, S.  Figure (b) shows the probabilit y density distribution of, D(τ), of the time stamps of 
outflow events, τ.  Since relaxation and ouflow is instantaneous in the model discussed in this paper, no measurements 
could be made appropriate for comparison with this data.  Triangular markers are used for the high temperature (low 
viscosity) case and circular markers are used for the low temperature, (high viscosity) case.  
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It needs to be noted that a direct comparison cannot be drawn between the results shown in [17] and those 
displayed in figure 8.  This is because B. Ploude et al. measured the statistics of out-flow events only (specificall y 
the distribution of out flow masses for which evidence of power law scaling was found) where as the graphs 
displayed in figure 8 concern the internal events of the system and deal in avalanche lengths, not outflow masses.  
Power law scaling does not exist for the simulated out flow masses.  The distribution of simulated outflow masses 
is usually peaked around a preferred mass.  If a comparison between the graphs in figure 8 and the results in [17] 
is made (see figure 8) it can be seen that both exhibit power law scaling in there distributions and both show an 
increase in the criti cal exponent (αααα) with increased viscosity.  Increasing δδδδ act acts a proxy to increasing viscosity.  
The simulated outflow mass distributions are distorted from experimental ones because of the mechanism used in 
the simulation. Simulated outflow events involve the removal of all water in the fluid stream within a distance of 
λλλλ cell s from the open boundary.  In practice this would not be seen as one event but the water would leave the 
system through a “dripping” process.  B. Ploude et al. make an attempt to identify drips that are causally related, 
and so sum them into one outflow event.  It is unli kely that the removal of the entire wetted region of the fluid 
stream will be identified as one outflow event in this way since drips separated by more than 7msec were not 
considered to be causally connected.   
 
The number of deposition iterations can be thought of as a linear indication of time, since relaxation is assumed to 
be instantaneous.  The delay times between successive outflow events, ∆∆∆∆t, were always found to have a 
probabilit y distribution that decayed with an exponential dependence for all cases investigated.  Steeper decays 
were found for higher deposition rates (larger values of g), as shown in figure 9. 
 

 
 

 
 
 
 
 
 
 
Ploude et al. also produced return maps of delay times between outflow events to determine whether there was 
significant correlation between successive outflow events.  The return maps produced in [17] (see figure 10) show 
a high triangular concentration of events around the origin.  B Ploude et al. explained that the more diffuse 
distribution, produced for a low deposition rate, was due to the broadening of the delay time distribution as the 
deposition rate is decreased.  The simulated return maps were found to become more diffuse, and the distributions 
of delay times were found to become broader, as g was decreased (see figures 10 and 9 respectively). This is in 
agreement the finding of B. Ploude et al.  

P(∆∆∆∆t) 

∆∆∆∆t 

Figure 9: Probabilit y density distribution of outflow delay times for two different 
values of g.  (circles) g is 20, (triangles) g is 10.  The grid was composed of 1000 
rows and 100 columns in both cases.  .  <λλλλ> was 750, δδδδ was 8 and cm was 100. 
P(∆∆∆∆t) was calculated by binning the data linearly.  
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The task of extracting data from the simulation, which could be tested experimentall y, was also addressed.  
Probing the elemental redistribution events in the system is considered most important in determining whether it 
had evolved into a criti cal state.  The gravitational potential energy dissipated in each avalanche event was probed 
for power-law scaling.  The potential energy of the system, Eg, was simply identif ied by equitation (12).   
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Where w is the number of columns in the grid and h is the number of rows.  In this simple approach, gravitational 
potential energy scales linearly with fluid mass and row index.  Increasing the row index implies moving up the 
inclined surface.  It is imagined that a video recording could be made of the inclined surface as the experiment is 
run, as in [18], and then image processing could be used to identify how much water is resting on a cellular region 
for desecrate time intervals.  Assuming it could be determined at what time an avalanche started and stopped, 
energy dissipation statistics could then be recovered.  An example of simulated avalanche energy dissipation is 
shown in figure 11 

Figure 10: Return maps of ∆∆∆∆tn+1 versus ∆∆∆∆tn for: (Top Left) high deposition rate data (g = 40), and (Top Right) low 
deposition rate data (g = 10)  
 

(Bottom) After Plourde et al. Phys. Rev. Let 71(17) 2749 (1993).  Return maps of data collected at high 
viscosity for a high flow rate (a), 17cm3/min, and a low flow rate (b), 8cm3/min 
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It is not clear if a definite relation exists between avalanche length scaling and energy dissipation scaling.  This 
requires further investigation.  An obvious advantage of studying energy dissipation is that events are recorded on 
a range decades larger than that of avalanche lengths. 
 
Time series of simulated surface coverage, as investigated in [18], and of the net mass on the surface, as 
investigated in were taken.  There spectral power densities were estimated using Matlab’s “psd” command.  Both 
power spectrums were found to decay as 1/f2 (where f represents frequency). 
 
Grids with square geometry were used to produce all the results shown in this section, as was used in [18].  
Results collected using both geometries appeared to demonstrate the same phenomenology, although the precise 
effect of the different geometries on the statistics of the simulation was not determined. 
 
3. Discussion 
 
The models described in section 2 use a reduced physics, rather than a full numeric simulation, to investigate 
complex behaviour.  Cruciall y, these models are concerned with characterising behaviour on spatial and temporal 
scales, which are large in comparison to elementary interactions.  This macroscopic approach has paid dividends 
in the past by virtue of the law of large numbers and the central limit theorem (e.g. Navier Stokes equation 
describes fluid motion without considering particular colli sions).  In cases li ke this, microscopic fluctuations are 
averaged out.  In other systems this approach is not possible since the detail s of the interactions on all scales are 
important in explaining the behaviour of the system.  In this case a full numerical simulation is required.  In 
between these two cases lies the regime in which fluctuation are not averaged out entirely, but lead to self 
similarity over many decades, so the details of interactions on all scales need not be considered [20]. 
 
With this in mind, the models must be designed to include the symmetry and scaling of the physical system.  It is 
also essential that these models are robust against fluctuations and can recover the same dynamics when given a 
range of parameters.  If it is asserted that the behaviour of the systems being modelled is not a consequence of its 
microscopic detail s, then the behaviour of the models should not depend on their detail s (i.e. the fine tuning of 
parameters).  An RG analysis has been performed on the sandpile of Chapman et al. [13].  This recovered a 

Figure 11:  Plot showing probabilit y density distribution of simulated avalanche energy dissipation of system 
with g = 12, δδδδ = 16, <λλλλ> = 750 and cm was 100.  The grid had 1000 rows and 100 columns.  Evidence of 
power law scaling can be seen.  Inset is the avalanche length distribution for the same run.  Number of 
avalanches is shown on the abscissa and avalanche length is shown on the ordinate axis.  P(∆∆∆∆Eg) was 
calculated by binning the data logarithmicall y.  

P(∆∆∆∆Eg) 

∆∆∆∆Eg 



 15 

scaling of avalanche frequency with avalanche size (αααα=1) that corresponds to a fixed point.  This fixed point 
shows the scaling should be robust to fluctuations - a result confirmed numericall y.  An RG analysis has not been 
performed for the droplet dynamics model but a range of deposition rates values of cm have been explored.  Two 
geometries for the lattice sites were also investigated.  The fact that the frequency of delay times always decayed 
exponentiall y with magnitude and the frequency of avalanches always decayed as a power law with magnitude, 
appears to be the robust behaviour of the model.  Of course, all areas of parameter space have not been explored 
for this model; the extent of its robustness cannot be determined until an analytic solution is found.  
 
The error bars shown have been calculated by taking the reciprocal of the square root of the number events 
recorded in a particular bin.  This is taken as an estimate of uncertainty.  In figures 9 and 11 there are deviations 
from straight-line behaviour.  This may be because the system size used (only 100x1000 cell s) was not large 
enough to view events of the magnitude that this approach is applicable to.  However, conclusions drawn based on 
the projection of this data onto the straight-line fit should be viewed with this deviation in mind. 
   
4. Conclusion 
 
The results presented in section 2.1.3 show that a few simple modifications can be made to the Chapman et al. 
model to reproduce some characteristic phenomenology of the temperature profiles of tokamak confined plasmas.  
This builds on the ideas presented in [7][8][9][10] that link sandpile models to tokamak confinement.  Further 
investigations are required to determine the extent to which these models can be used to quantitatively simulate 
fusion experiments and if an accurate predictive model can be made.  These developments will help to confirm 
tokamak plasma confinement as being a physical reali sation of SOC. 
 
The results presented in section 2.2.3 show that a simple model for the dynamics of drops on an inclined glass-li ke 
surface, which demonstrates power law scaling for elementary redistribution events, can be made.  Two aspects of 
the model were identified as criti cal to the recovery of this power law scaling. Firstly, macroscopic regions of 
wetting (“streams” ) must be allowed to exist on scales similar to that of the system, and secondly, a mechanism 
must exist that destroys the special correlation in these streams (here droplet formation) and streams must be 
allowed to be removed from the system quickly once they have joined with the outflow boundary.   
 
Experimentali sts can estimate the effect of droplet formation on destroying the correlation in the wetted stream by 
measuring the contact angle of a droplet with the glass.  From this a wetting time is estimated – streams are 
destroyed by droplet formation in this characteristic time. In [18] a glass with a very low wetting time was chosen 
to restrict the formation of macroscopicall y wetted regions.  It has to be noted that droplet formation was 
associated with a characteristic distance, λλλλ, in the model and not a characteristic time.  There is also the question 
as to whether the outflow algorithm applied in this model, vital in destroying streams connected to the open 
boundary, is physicall y applicable to real droplet dynamics. 
 
The model is successful in reproducing the qualitative statistical behaviour of outflow times shown in figures 9 
and 10, which have been found experimentally [17].  Further investigations into the physical applicabilit y of the 
algorithm (such as that suggested to test the prediction shown in figure 11) need to be made to determine whether 
the dynamics of water droplets is a physical reali sation of SOC. 
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