Physics of Fusion

Lecture 15: Inertial Confinement Fusion

Lecturer: Dirk O. Gericke
Two Different Ways to Fusion

- Lawson Criterion: $n_{20} T_k \tau_E > 30$ Ignition
- Temperature must be around $T = 6 \ldots 15$ eV
- Two ways to fulfil Lawson criterion:
 1. First solution (magnetically confined plasmas): increase confinement time
 2. Other solution (inertial confinement fusion - ICF): increase density of fusion plasma
- Many similarities, but a few decisive differences!
Inertial Confinement Fusion Concept

- **Radiation**: Laser beams or laser-produced x rays rapidly heat the surface of the fusion target, forming a surrounding plasma envelope.
- **Blowoff**: Fuel is compressed by the rocketlike blowoff of the hot surface material.
- **Inward transported thermal energy**: During the final part of the capsule implosion, the fuel core reaches 20 times the density of lead and ignites at 100,000,000°C.
- **Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.**
Plasma Conditions During ICF

- **Before compression and ignition**

 Density: solid DT ice at 0.225 g/cm³ and gas
 Temperature: few Kelvin

- **During the burn phase**

 Density: 300 to 1000 times liquid density
 300 to 1000 g/cm³ ≈ 10²⁶ cm⁻³
 Temperature: around 10.000.000 K or 10 keV
 Pressure: around 10^{12} bar

- **Confinement time needed**: around 200 ps
Calculating the ‘Confinement’ Time

- Consider homogeneous sphere of DT-fuel at \(t=0 \) with Radius \(R(t) \) and constant temperature and density.

- Sphere ‘explodes’ with sound speed \(c_s = (2 \ k_B T / M)^{\frac{1}{2}} \) (fastest speed to transport information, fix parameter).

- Mass confinement time: \(t_{\text{conf}} = R(t=0) / c_s \)

- Time needed for fusion: \(t_{\text{fusion}} = 1 / <\sigma v> \ n_0 \)

- Ratio \(t_{\text{conf}} / t_{\text{fusion}} \) depend on product: \(n_0 \ t_{\text{conf}} \)

- \(n_0 \ t_{\text{conf}} = (1 / M c_s) \ \rho R \) with \(\rho = M \ n_0 \) mass density

- Parameter \(\rho R \) must be as large as possible.
Limits for Compression and Radius

- Radius is limited by total mass and related energy that can be handled in target chamber.
- Compression limited by energy available in driver since first law of thermodynamics, $dU = T \, dS - p \, dV$, relates compression ΔV and energy input ΔU.
 - Isentropic compression ($dS = 0$) is better than shocks.
- Work, i.e. $p \, dV$, is defined by $p(n,T)$.
 - Classical ideal gas: $p = n \, k_B T$.
 - Degenerate quantum gas at high densities $p \sim n^{5/3}$.
- Again cold, isentropic compression are beneficial.
- Total energy needed to compress a few mg DT: ~ 1 MJ.
Possible Drivers: Z - Pinches

Advantages:
- Good energy coupling (many x-rays)
- Large Targets

Disadvantages:
- Very slow (one shot / day)
- Only one device worldwide

Z-Maschine, Sandia labs, Albuquerque USA
Possible Drivers: Ion Beams

Advantages:
- Excellent conversion from electric power to beam energy
- Large targets

Disadvantages:
- Concept was never tested
- Beam intensity is still too low

Planed FAIR facility, Darmstadt, Germany

10 to 20 rings needed for fusion power plant!
Possible Drivers: Lasers (Best Shot)

Advantages:
- Well advanced technology
- Good control of energy release

Disadvantages:
- Bad energy conversion
- Very expensive to build

National Ignition Facility (NIF), Livermore, USA
Possible Drivers: Lasers (Best Shot)

Advantages:
- Well advanced technology
- Good control of energy release

Disadvantages:
- Bad energy conversion
- Very expensive to build

National Ignition Facility (NIF), Livermore, USA
Possible Drivers: Lasers (Best Shot)

Target chamber, NIF with 192 laser beams

Advantages:
- Well advanced technology
- Good control of energy release

Disadvantages:
- Bad energy conversion
- Very expensive to build
Possible Drivers: Lasers (Best Shot)

~1000 large Optics:

192 beam lines:

Advantages:
- Well advanced technology
- Good control of energy release

Disadvantages:
- Bad energy conversion
- Very expensive to build

Engineering challenges at NIF
Compare Driver to Target Sizes!

real NIF target

Schematic

DT capsule
Problems blocking Fusion Energy

Technical and Engineering Problems
- High energy drivers are expensive and untested
- Energy conversion is too low (gain of >100 needed now)
- Repetition rate of drivers are too low (3-10 Hz needed)

Physics Problems
- Instabilities and Mixing
 - Rayleigh-Taylor unstable compression
 - Break of symmetry destroys confinement
- How to improve energy coupling into target
- What is the best material for the first wall?
Rayleigh-Taylor Instability

- Major instability: heavy material pushes on low density one
- Will always occur since driver is never 100% symmetric
- The Rayleigh-Taylor instability always grows

➢ Energy must be delivered as symmetric as possible!
Rayleigh-Taylor Instability – spherical implosions / explosions

Striking similarities exist between hydrodynamic instabilities in (a) inertial confinement fusion capsule implosions and (b) core-collapse supernova explosions. [Image (a) is from Sakagami and Nishihara, *Physics of Fluids B* 2, 2715 (1990); image (b) is from Hachisu et al., *Astrophysical Journal* 368, L27 (1991).]

➢ Energy must be delivered as symmetric as possible!
Reminder: Direct Drive Scheme

Radiation

Laser beams or laser-produced x rays rapidly heat the surface of the fusion target, forming a surrounding plasma envelope.

Blowoff

Fuel is compressed by the rocketlike blowoff of the hot surface material.

Inward transported thermal energy

During the final part of the capsule implosion, the fuel core reaches 20 times the density of lead and ignites at 100,000,000°C.

Thermonuclear burn spread

Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.
Relaxing the Symmetry Conditions – Indirect Drive

- Laser beams heat walls
- Walls emit thermally (x-rays)
- X-rays compress and heat the fusion capsule
- **X-rays highly symmetric!**
Relaxing the Symmetry Conditions – Fast Ignition

Fast ignition scheme with many facets

- Idea: separate compression and ignition with two pulses
- Less compression, cooler targets, lower densities
- **Problem:** How can energy be transferred to hot spot?
Interesting Experiments to Come

- National Ignition Facility (NIF, Livermore, USA)
 - More than 90% completed, first tests done
 - First full scale experiments this year; ignition in 2010?

- Laser Mega-Joule (LMJ, France)
 - Commissioning (full scale) in 2011

- FIREX I and FIREX II (ILE, Osaka, Japan)
 - Fast ignition experiments showed prove-of-principle
 - Fully integrated experiments in 2010 / 2011

- HiPER project (Europe, R.A.L. ???)
 - European fast ignition proposal based on NIF
 - Design work funded last year; full funding pending
Future: HiPER ???

Artist view of the fast ignition experiment HiPER