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Are particles detrapped by constant B, in static
magnetic reversals?

Sandra C. Chapman and George Rowlands
Space and Astrophysics Group, University of Warwick, UK

Abstract. Single-particle dynamics in simple models for the static reversing
magnetic field of the geotail current sheet have been extensively studied in the case
where the reversing field B,(z) varies, the linking field B, is constant, and the
crosstail field B, is zero (and some generalization to include time dependence has
been achieved). More recently, numerically integrated trajectories in static reversals
which include a constant shear B, component have suggested some differences in
the nature of the dynamics in this and the By, = 0 case. The invariant of the z
cross-sheet motion for the By = 0 case is well known, here we find its equivalent for
systems with constant By. Our results hold for reversals with general z dependence
and arbitrary comnstant B,. The form of this invariant suggests that it is still
conserved for trapped particles, but for certain values of energy, B, and B,, the
invariant is destroyed and particles are detrapped. This corresponds to an increase
in the volume in phase space available to current carrying particles that transit the
sheet. For typical magnetotail parameters, both protons and electrons in an average
1 Rg thick sheet will be detrapped, but in a thin ~ 100 km sheet protons will not.

Introduction

Single-particle dynamics in the Earth’s geotail has
been studied in detail in simple magnetic reversal mod-
els where a shear (By) field is absent, both in the static
case [see Chen, 1992; Buchner and Zelenyi, 1989; Wang,
1994 and references therein] and including time depen-
dence [e.g. Chapman, 1994]. However, observations
suggest that a shear field is present and depends upon
the interplanetary magnetic field direction [Cowley and
Hughes, 1983], and in the substorm growth phase in par-
ticular [Sergeev et al., 1993]. Recent results obtained for
specific field models suggest that energization and scat-
tering of particles in static reversals is fundamentally
different in the presence of a shear field [e.g. Karimabadi
et al., 1990; Zhu and Parks, 1993; Buchner and Zelenys,
1991; Baek et al., 1995].

In this paper we will consider the dynamics in the
general case, that is, for a reversal with constant link-
ing field B,, constant shear field By, and z dependent
reversing field B;(z). We work in the frame of zero elec-
tric field but show that this is valid for any E.B = 0
that can be achieved by De Hoffman Teller frame trans-
formation, which means E = —U A B for any constant
U = (U, Uy, 0), that is, transformation velocity U con-
sistent with MHD. The results hold in the ”Speiser”
limit [Speiser, 1965; Sonnerup, 1971] of weak linking
field, that is, B, < B; but are valid for any shear field
magnitude B,. The motion of particles trapped in the
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reversal is assumed to have periodicity; however, the
reversing field B;(z) is not assumed to be symmetric
about the z = 0 plane, so that although this study is
aimed primarily at the geotail, the results also have ap-
plication to asymmetric geometries such as at the mag-
netopause.

We provide the first proof that an adiabatic invariant
of the z motion, J, of particles trapped in the reversal
exists and is conserved. From the form of the integral
for J we conjecture that the particles detrap for certain
shear field strength B, but for certain energies only:
this process is illustrated with numerically integrated
trajectories in a simple field model with entry and exit
regions. The implication is that regions in phase space
usually occupied by trapped particles will, for certain
energies and shear field, become accessible to particles
that transit the sheet. Since trapped particles carry zero
net cross-tail or cross-sheet y-directed current averaged
over an orbit, whereas transiting particles carry finite
net current, this may have implications for the structure
and evolution of the current sheet under conditions of
nonzero, and slowly evolving, shear field.

System of Equations

We consider a magnetic reversal with general z de-
pendence:

B :BO(f(Z)abZ)bl) (1)
where z,y, z Cartesian coordinates correspond to GSE
and z = Z/L is normalized to a convenient length

scale of the system L. An electric field consistent with
ideal MHD plasma flow U will satisfy E = ~-UAB
(and hence E.B = 0). The most general electric field
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amenable to the analysis here is generated from a con-
stant U = (U, Uy, 0) which simply corresponds to a
De Hoffman Teller frame transformation velocity in the
z,y plane. This gives

E = (=Uyby, Ugby, —Uzbs + Uy f(2)) (2)

(the special case U, = 0 was considered by Zhu and
Parks, [1993]).

Normalizing time to 7 = {Q where Q¢ = eBo/m, we

then have equations of motion in the De Hoffman Teller
frame:

dv,

—d;‘ = ’l_)ybl - ’Uzbg (3)
dv _

d—;’ = v, f(z) — Upb (4)
dv, _ _

I = Uzbo — Uy f(2) (5)

here z,y, z, vg, vy, v, refer to the particle trajectory in
the E # 0 frame, and we have used the transformation

Up =vx—Us (6)
vy =vy = Uy (M
The z and y equations then integrate to give
Uy = by — zba+Cy (8)
vy = F(z)—zb) +Cy 9)

where F(z) = [ f(z)dz and Cq,Cy are constants and
are related to the invariant of the y motion Py by Cy =
P,/eBy—Uy. The constant energy in the moving frame
is

h= (%)2 + (%)2 +[F(2)—zb1 + Cy)*  (10)

Substituting —¢ = —b1& + Cy gives the equations of

motion in terms of two coordinates:
LA L CLCR (1)
L0 P - g = bab (12)
e (&) (%) sr-aray

Derivation of Constant of the z Motion

We now wish to obtain an expression for J = § vZdr
for ‘the z motion. In the limit b € 1 we can ex-
pand coordinates z, ¢ as functions of two well-seperated
timescales: 7, (slow) and 7; (fast), where 7, = by
(and hence d/dr = d/dry + b1d/dr;). This is an exam-
ple of the method of multiple scale perturbation theory
[see e.g. Rowlands, 1990]. The limit by — 0 corre-
sponds to the integrable limit of vanishing linking field
[Karimabadi et al., 1990; Buchner and Zelenyi, 1991]

and 1; — 00. The expansion gives
z = zo(Tp, Ts) + brza(Ty, Ts) + o (14)
¢ = ¢0(Ts)+b1¢1‘(7'f,7'5)+.‘. (15)
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Equations (11)-(13) to lowest order give

d%z
Er? = —f(20)[F(20) = ¢o]+

by (%ﬁf + %) (16)
d(%? =0 (17

2

-t

() s oo

to first order we have
%1— = —sz% (19)

which integrates with respect to 77 to give

dey

E = a(7;) — bazo

(20)

this can be substituted into (16) which then integrates
with respect to 7;:

)’ _
de -

K — (F(z0) — ¢0)* —

d 2 do 2
[ o ban] + (e va) e

where we have assumed that ¢o(7;) and a(7;) are con-
stants over the integration wrt 7;.
Comparing (21) with (18) and using (20) we have

, 2
K+ (d‘po + a) = ho (22)
dTs
The equation for the zero-order z miotion is then
dzo\’ -
(d—"]‘q) = ho—(F(z2) — §250)2 - =
d 2
[Ef_‘j' +a— szo] (23)

In addition, if to lowest order we assume periodic mo-
tion on the fast timescale 7; with period T = T(ho, )
from (23) then zo(77) = 20(7y + T'). If ¢1 has the same
property then (20) can be integrated over period T to
give

a(Ts) =by < Z[)(ff) > (24)

where

1 T
< Zg >= -7—.,/0 Zo(Tf)dT’f
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This periodic motion has an associated constant J
which to lowest order is given by

T 2 z
(lZo 2dZo
= — ) dry =2 —d
Jo /o (de) K / dry

= 2/Z2 [ﬁo — (F(20) — ¢0)*—

drg

where J = Jy + b1 J1 + .... This reduces to the result
obtained by Buchner and Zelenyi, [1989] for by = 0
for the more restricted case of zero shear field. The
conservation of Jy is shown in the appendix. ~

It is important to note that we can insist that hg = h.
This imposes constraints on the solution for z, with r >
1 which can always be satisfied by choosing constants of
integration which naturally occur in solving the higher-
order equations.

The oscillation period of the fast zy motion is then

d 45
( $o + by < 29 > —Zgbz) :l dzg (25)

T= 2/22 |:’_lo = (F(20) — $0)”—

1

d¢ 2172
(dTO -+ bz < zg > —Zobz) ] dZo (26)

The introduction of the shear field b3 then implies that
for certain h, by and implicitly by (since zo = zo(7¢, 75),
$0 = ¢o(7s) and 7, = by 1) the denominator of (26) may
vanish. Hence particles of a given energy will ” detrap”,
that is, T — oo for a particular range of shear field
strength. By analogy with the simple nonlinear pendu-
lum, chaotic motion first appears near-the separatrices
of the motion defined by Jy = const. These correspond
to the case of orbits with infinite period [Lichtenberyg
and Lieberman, 1992].
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The implication is that a region of phase space occu-
pied by trapped J conserving particles which over an
orbit do not carry net cross-tail current becomes acces-
sible to particles which enter and exit the reversal and
hence can carry net cross-tail current.

We can demonstrate this with numerically integrated
trajectories in a simple model for the magnetic reversal,
here we use B, =tanh(z). This model allows particles
that are sufficiently field aligned to enter and exit the re-
versal and will therefore permit three classes of particle
orbit (see, e.g. the review by Chen, [1992]): transient
(or Speiser) trajectories that transit the reversal once,
stochastic trajectories that after entry interact with the
reversal many times but will ultimately exit the reversal
and regular trajectories that remain on KAM surfaces
and are trapped indefinitely within the reversal. Since
trajectories cannot cross in phase space, the KAM sur-
faces of regular motion partition phase space, as can be
seen on a Poincare surface of section (SOS) plot.

Each of the surface of section plots in Figures 1-5
were generated for a given h, by and by. The plots show
the z, z coordinates of trajectories as they intersect the
z = 0 plane. The many trajectories shown in each plot
are initialized at # = y = 0 and over the full range of
pitch angle and gyrophase so that the phase space for
a given h is well explored (the initial Z is such that all

‘trajectories have the same P, from (9)).

The Figures compare surface of sections for b = 0.1
and v = Vk = 1,0.1 and a range of shear field
0<by <1 Thev= V= 0.1 phase space has arange
of values of by for which no KAM surfaces are apparent,
that is, no regular trapped orbits can be found. This
is in contrast to the v = V' h = 1 case where although
the region occupied by trapped orbits is reduced in the
vicinity of b2 ~ 0.1, the KAM surfaces persist (it should
be stressed that this does not exclude the possibility
that the KAM surfaces do vanish for some infinitesi-
mally small range of b2). The tendency for ”maximal

~10 -5 0 5 10
X

Figure 1. Poincare SOS for by = 0 and v = 0.1 (left), 1.0 (right)
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Figure 2. Poincare SOS for by = 0.1 and v = 0.1 (left), 1.0 (right)

chaos”, that is, minimum region in phase space occu-
pied by regular orbits at By ~ B, (i.e. by ~ 0.1 here)
has previously been conjectured by Karimabadi et al.,
[1990] and demonstrated by means of surfae of section
plots.

The form of (25) and (26) indicate that three param-
eters h = 2H/mL*Q2, by = B, /B, and by = B, /By are
needed to determine the fate of non current-carrying
J conserving orbits in the case of general z depen-
dence. Since h = H/2 and b; = by, are the parame-
ter pair shown by Chen, [1992] (and references therein)
to be required to completely specify the dynamics in
the By = 0 system, we have identified the third pa-
rameter needed for general z dependence when By # 0.
In the case of the parabolic field where f(z) = 2, a
single parameter such as « is sufficient to completely
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specify the dynamics when By = 0 [Buchner and Ze-
lenyi,1989] where k = bih~%. A modified & parameter,

kns = k(1 + (By/B,)?)7 specified by parameter pair &
and k, = byh~ % has been proposed for the By # 0 case,
on the basis of SOS plots, and the minimum radius of
curvature [Karimabadi et al., 1990] and inspection of
the equations of motion [Buchner and Zelenyi, 1991].
Since kK = bih™% k; = boh~% and kn, = Kns(K, Ks)
we would expect that overall trends in dynamical be-
havior demonstrated by surface of section plots will be
ordered by either «, & as given by Buchner and Zelenyi,
[1991] or h, by, by, as given by Karimabadi et al., [1990]
(shown by varying by for a given b; and h) and here
(shown by varying b; and h for a given b;). It should
be stressed, however, that (25) and (26) derived here
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Figure 3. Poincare SOS for by = 0.15 and v = 0.1 (left), 1.0 (right)
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Figure 4. Poincare SOS for b, = 0.3 and v = 0.1 (left),1.0 (right)

cannot be rewritten as functions of &, k; which implies
that quantitative information, such as the stability cri-
teria and volume in phase space occupied by regular J
conserving orbits will in general depend upon h, by, bs.

The sensitivity of transient orbits to the presence of
shear field By has also been investigated by Kaufmann
et al.,[1994], and ensemble average pitch angle change
presented as functions of energy and shear field, and
as all other parameters are fixed, this is equivalent to
ordering with respect to h,b;,by. Consistent with the
above discussion, ordering in the results with respect to
K, Ks can also be sought as in Kaufmann et al.,[1994].
Trapped orbits were not investigated in Kaufmann et
al.,[1994] however so that the contribution to the nett
current that may result from their destabilization can-
not be estimated from their results.
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Conclusions

The dynamics for a reversal with constant linking
field B,, constant shear field By, and general z depen-
dent reversing field B;(z) has been investigated. The
results hold in the limit of weak linking field, that is,
B, < B, but are valid for any shear field magnitude
By, and for any E.B = 0 electric field. Although this
study is aimed primarily at the geotail, the formalism
also applies to asymmetric geometries such as at the
magnetopause.

An adiabatic invariant of the z motion, J, of par-
ticles trapped in the reversal has been shown to exist
and to be conserved. From the form of the integral for J
we then conjecture that the particles detrap for certain
shear field strength B, but for certain energies only:

Figure 5. Poincare SOS for b, = 1.0 and v = 0.1 (left), 1.0 (right)
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this process is illustrated with numerically integrated
trajectories in a simple field model with entry and exit
regions. The implication is that regions in phase space
usually occupied by trapped particles will, for certain
energies and shear field, become accessible to particles
that transit the sheet. Since trapped particles carry zero
net cross-tail or cross-sheet y-directed current averaged
over an orbit, whereas transiting particles carry finite
net current, this may have implications for the structure
and evolution of the current sheet under conditions of
nonzero, and slowly evolving, shear field. Three param-
eters are required, in general, to indicate detrapping
of particles from the sheet, or ”maximal chaos” under
conditions of nonzero shear field. For typical geotail pa-
rameters, in an average thickness (~ 1Rp) sheet, both
1 keV protons and electrons will be ”detrapped” in the
presence of moderate shear field, that is, for a range of
By ~ B, and for B,/B; ~ 0.1, J will not be conserved
over all phase space. In a thin (~ 100 km) reversal,
electrons will still be ” detrapped”, whereas protons will
not; the region in proton phase space containing non-
net current-carrying, trapped orbits is stable against
the introduction of a shear field.

Appendix: Conservation of J

We can examine the variation in J by differentiating
(25) with respect to the slow timescale 7;,. Given

=2 [

dé 273
(dro + by < 20 > —ngg) ] dzg (A1)

ho — (F(z0) — ¢0)*—

then since zg is just the variable to integration, dif-
ferentiation with respect to 7; involves only changes in
¢o and < zg >. This gives

8Jo
0T

= 2/: [Bo — (F(20) — 60)*—

d 2
( ¢0 + bz < zZg > —Zobg)
dTr,

-1
2

G(z0)dzo

T
= ./0 G(zp)dry (A2)

where

G = —2(F(20) — o) <((i1(f'f) -

d
2 ( %o + by < 29 > —()220>
dTs

2
.<d¢0+b2d<20>>

dr? dr, (A3)

recalling that ¢g = ¢o(7:) and < zg >=< 29 > (75)
only.
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Integration over 7; then gives

0Jo _ .doo
—8—7_-5——TE_:< F(Zo)—¢o > —
d?¢o d < zy >\ doo
( dr2 +b2 drs dr, T (A4)
To order b? one obtains the equation
d?¢y | d’¢g d?¢y
de2 dr? drdrs
dZO dz1
F(z0) — o — b s
(20) — do — b2 (de + de) (A5)

For ¢, to remain periodic on the 7; timescale the
following consistency condition must be satisfied:

d2¢0 ) d< 29 >
a2 < F(z20) — ¢0 > _b2T+
by dT
T ar. (<z0>—2(r=0,T,..)) (A6)
This used in conjunction with (30) gives
18Jy by dT _ do
?a’rs = _TdTS (< 20 > —20(7‘ =0,T, )) ar, (A?)

Now the limits of integration can always be chosen such
that the term < zg > —zo(r = 0,7, ..) will vanish to
order by and hence

aJ
2 =0(b)

ors (A8)

so Jy is a zero-order constant of the motion.
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