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Abstract

We analyse the distributions of the number of goals scored by home teams, away teams, and
the total scored in the match, in domestic football games from 169 countries between 1999 and
2001. The probability density functions (PDFs) of goals scored are too heavy-tailed to be 3tted
over their entire ranges by Poisson or negative binomial distributions which would be expected
for uncorrelated processes. Log-normal distributions cannot include zero scores and here we 3nd
that the PDFs are consistent with those arising from extremal statistics. In addition, we show that
it is su7cient to model English top division and FA Cup matches in the seasons of 1970=71–
2000=01 on Poisson or negative binomial distributions, as reported in analyses of earlier seasons,
and that these are not consistent with extremal statistics.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Few authors have considered football scores from a statistical point of view. Moroney
[1] showed that the numbers of goals scored by individual teams, and the total goal
scores, were well described by a “modi3cation of the Poisson”; Reep et al. [2] later
identify this as the negative binomial distribution, and found similar results for other
ball games. Maher [3] then pointed out that a negative binomial distribution may
arise from the aggregate of Poisson-distributed scores with a diCerent mean for each
team. The short-term predictability of results has subsequently been modelled using
independent Poisson distributions with means dependent on teams’ past performances
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[4,5]; an improved model [6] includes the scoring-rate dependence on both time and
the current score.
Other aspects of the game have been examined including the eCects of certain condi-

tions on the scores—see Ref. [7] for a review. Seeking a broader understanding, it has
been suggested [8] that the distribution of goals per player may be linked with anoma-
lous diCusion via the Zipf–Mandelbrot law. In this paper we show, in agreement with
analyses of matches from the 1960s [1,2], that 13,000 English top division and 5000
FA Cup matches between the seasons of 1970=71 and 2000=01 [9] are closely-3tted by
either Poisson or negative binomial distributions. However, we 3nd that the number of
goals scored by home and away teams, and the total goals, in over 135,000 domes-
tic football games (leagues and cups, hereafter referred to as domestic matches) from
169 countries between 1999 and 2001 [10], cannot be 3tted over their entire ranges
by Poisson or negative binomial distributions. Instead, we 3nd that the data can be
modelled by extremal statistics (explained in Section 3).
The ubiquity of power-law relationships in both nature [11–13] and the 3eld of

econophysics [14–17] has spawned a signi3cant amount of literature in recent years.
Intriguingly, extremal statistics in a global measure are found in turbulent Nuids and
other highly-correlated systems [18–23]. Hence the signi3cance and origin of extremal
and power-law-tailed distributions are currently of considerable interest in statistical
physics; the use of probability distributions in the modelling of complex systems is a
topical approach to the inverse problem. From an operational perspective, knowledge
of the statistics would be an important constraint on any model for the game.

2. The probability density function (PDF)

The 3rst step in our analysis of each data set is the construction of its PDF. The
PDF P(x) of a variable X is de3ned such that the probability that X lies within a
small interval dx centred on X = x, is equal to P(x) dx: P(x) is normalised so that∫ xmax

xmin

P(x) dx = 1 : (1)

Here, x takes the integer values of goals scored (xmin = 0 and xmax is the maximum
number of goals scored in the sample of matches) so Eq. (1) becomes

∑xmax
xmin

P(x)=1.
We further normalise each PDF to the sample mean � and standard deviation � to
enable comparison with extremal distributions (see Section 3).
The Poisson distribution is de3ned by

P(x|�) = �x

x!
e−�I(0;1; :::)(x) ; (2)

where I(0;1; :::)(x) ensures that P(x) = 0 for non-integer x. In the Poisson PDF � = �2;
for data to be well-3tted by this distribution we require � ≈ �2. It is explained in
Refs. [1,2] that this condition does not hold for football goals because a constant
probability per unit time of scoring a goal is not a valid assumption. Instead, a



J. Greenhough et al. / Physica A 316 (2002) 615–624 617

compound Poisson or negative binomial distribution is used, de3ned by

P(x | r; p) =
(
r + x − 1

x

)
prqxI(0;1; :::)(x) ; (3)

where x is the number of goals scored with probability q per goal before r “failed goals”
(probability p=1− q) have occurred. The negative binomial PDF has �= r(1−p)=p
and �2 = r(1− p)=p2; 3tting to data thus requires �=�2 = p6 1 and �p=(1− p) = r,
where we round r to the nearest integer.

3. Extremal statistics

Our data analysis presented in Section 4 (Figs. 1–3) shows that the tails of the
PDFs of goal scores in the domestic matches clearly deviate from both the Poisson
and the negative binomial distributions. Here, we compare the PDFs of the data with
those arising from extremal statistics. We choose extremal distributions 3tted over the
entire dataset in preference to a piecewise 3t of arbitrary functions as (1) they have
been observed in a wide variety of natural systems; (2) they may suggest a physical
interpretation, as they arise in situations where only the largest events are observed;

0 2 4 6 8 10
−5.5

−5.0

−4.5

−4.0

−3.5

−2.5

−1.5

−1.0

−0.5

0

(x _ µ)/σ

lo
g 10

σP
(x

)

Domestic (1)
English league (2)
FA Cup (3)
Frechet a=1.04
Negative binomial fits to (1) & (3)
Negative binomial fit to (2)

−2.0

−3.0

−2

Fig. 1. PDFs of goals scored by home teams, normalised with respect to � and �, showing how domestic
matches are more closely 3tted by a FrQechet distribution than by a negative binomial. Coincident curves are
plotted as a single line as indicated in the legend.
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Fig. 2. PDFs of goals scored by away teams, normalised with respect to � and �, showing how domestic
matches are more closely 3tted by a FrQechet distribution than by a negative binomial. Coincident curves are
plotted as a single line as indicated in the legend.

(3) following normalisation of the data, only one parameter (a) remains to be estimated,
and (4) unlike log-normal PDFs, they can be applied to data including zero values.
The two limiting distributions of interest are “Gumbel’s asymptote” and FrQechet

[24–26]. In outline, the limiting distributions result from selecting the maximum value
xmax from each of a large number of large samples whose individual members are drawn
from a distribution P(x). When P(x) decreases more rapidly than any power-law (as
x → ∞), “Gumbel’s asymptote” has the form

PG(xmax) = K(eu−eu)a with u= b(x − s) ; (4)

where in the limit of an in3nite number of measurements a ≡ 1; the constants K , b, and
s are 3xed by normalisation as in Section 2 (see Refs. [27,28]). Selecting the second
largest values from the same large samples produces a PDF of the same functional
form as Eq. (4) but with a ≡ 2.

FrQechet distributions PF(xmax) arise in the same manner when the underlying PDF
P(x) is power-law; the power-law tail of this underlying distribution is preserved in the
FrQechet, thus lending itself to the 3tting of heavy-tailed data. Mathematically, PF(xmax)
can be de3ned by Eq. (4) but with u=�+� ln(1+ x=G), where K; �, and G are again
3xed by normalisation, and � = (1− a)−1 [28]. These curves exist for a¿ 1.

A simple heavy-tailed distribution often encountered in nature is the log-normal.
Log-normal distributions with the same means and variances as the datasets provide
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Fig. 3. PDFs of total goals scored, normalised with respect to � and �, showing how domestic matches are
more closely 3tted by a Gumbel distribution than by a negative binomial. Coincident curves are plotted as a
single line as indicated in the legend. Domestic �=2:9; �=1:9; league �=2:6; �=1:7; Cup �=2:8; �=1:8.

very poor models in all cases if scores of zero are included. The domestic home and
away scores are quite well modelled by log-normal PDFs providing zero scores are
neglected. Alternatively, one goal can be added to all scores but, since the log-normal is
not invariant under translation, the results are no more meaningful. Scores of zero occur
frequently and should not be removed; we seek a single heavy-tailed PDF appropriate
for modelling integer data from zero upwards.

4. Results

As discussed in Section 1, the Poisson distribution has been demonstrated to be
inferior to the negative binomial when modelling football scores; only where this is
not the case do we include a Poisson 3t in Figs. 1–3. In Fig. 1, we show the PDFs
of home team scores with their respective negative binomial PDFs (3tted to � and �)
along with the best-3t extremal distribution (see Section 3) for the domestic matches.
While the league scores follow a negative binomial PDF, it is clear that the domestic
scores are better described by a FrQechet distribution beyond about �+3� (a home score
of about 6 goals). Although the Cup scores are suggestive of some departure from a
negative binomial PDF, we cannot quantify the functional form of this tail. Counting
errors caused by binning a 3nite dataset are omitted from Figs. 1–3 for the purpose of
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Fig. 4. Normalised PDF of domestic home scores plotted against a range of 3tted PDFs. Straight lines indicate
where the points would lie were the 3ts perfect, and are separated by an arbitrary vertical displacement;
dashed lines indicate 95% binomial counting errors. Note how the FrQechet a = 1:04 PDF (e) provides a
superior 3t to the gumbel a = 1; 2 (c,d), negative binomial (b), and Poisson (a) distributions; compare
Fig. 1.

clarity; typical sizes of counting errors are indicated by Nuctuations around a smooth
trend and become apparent in the 3nal few bins.
We plot the away team scores in Fig. 2. Again, the domestic scores are consistent

with a FrQechet distribution above � + 4� (an away score of about 6 goals) whereas
negative binomial PDFs su7ce for the league and Cup scores if the last few points
are discounted as explained above. The total goal scores with 3tted negative binomial
PDFs are plotted in Fig. 3. Here we 3nd that the domestic scores are consistent with a
Gumbel distribution (see Section 3) above �+3� (9 goals), and that the league scores
are more suggestive of a Poisson than a negative binomial PDF.
We now provide more detailed analysis of the goodness of 3t of the extremal PDFs

to the domestic scores. Figs. 4–6 show in linear form the closeness of 3t of various
distributions to the domestic data. To quantify whether the data are consistent with
the 3tted PDFs, one must estimate the likely counting errors in the numbers of points
in the bins (introduced by the 3nite size of the dataset). We are interested in the
distribution of the number of points in a bin, given both the total number of data
points and the probability that any point will lie in that particular bin (given directly
by the 3tted PDF). A binomial distribution of counting errors is a reasonable estimate,
and one can thus estimate the upper and lower limits of the number of points one
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Fig. 5. Normalised PDF of domestic away scores plotted against a range of 3tted PDFs. Straight lines indicate
where the points would lie were the 3ts perfect, and are separated by an arbitrary vertical displacement;
dashed lines indicate 95% binomial counting errors. Note how the FrQechet a = 1:10 PDF (e) provides a
superior 3t to the gumbel a = 1; 2 (c,d), negative binomial (b), and Poisson (a) distributions; compare
Fig. 2.

would expect to 3nd in any bin on 95% of occasions; these are plotted with dashed
lines. The ending of a dashed line indicates that the lower=upper limit of the expected
number of occurrences of the corresponding score is zero; where both limits stop, no
higher scores are expected given the size of the dataset. From these plots we again
conclude that a FrQechet a=1:04 PDF is the best 3t to domestic home scores, a FrQechet
a= 1:10 PDF is the best 3t to domestic away scores, and a Gumbel a= 1 PDF is the
best 3t to domestic total scores.
The empirical PDF varies between the negative binomial and extremal PDF in each

case; for low scores both the negative binomial and extremal distributions provide
satisfactory 3ts. However, as shown in the previous 3gures, there is a strong departure
from the negative binomial on to heavier-tailed distributions for the higher scores. Our
aim here is to identify a single distribution that 3ts the whole dataset rather than an
arbitrary piecewise 3t. The latter could always be achieved given a su7cient number of
independent distribution functions to 3t to diCerent ranges of data, but would ultimately
be less informative of the underlying processes.
In this context, it is important to note that the distribution of the aggregate of

many thin-tailed datasets (i.e., the pooled data) is heavy-tailed if the variances of the
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Fig. 6. Normalised PDF of domestic total scores against a range of 3tted PDFs. Straight lines indicate where
the points would lie were the 3ts perfect, and are separated by an arbitrary vertical displacement; dashed
lines indicate 95% binomial counting errors. Note how the Gumbel a=1 PDF (c) provides a superior 3t to
the gumbel a = 2 (d), negative binomial (b), and Poisson (a) distributions; compare Fig. 3.

component datasets diCer [29,30]. Hence the heavy-tails seen in worldwide football
results could arise simply from the aggregation of scores from many teams. Individual
teams’ scores may follow diCerent Poisson distributions, which when pooled produce
countries’ scores following negative binomials, and then the aggregation of countries’
scores is heavy-tailed. Testing this hypothesis would require signi3cantly more data
than used here, and would run over an interval of time that may imply signi3cant
changes in the game process. The alternative—and more interesting—possibility is that
the heavy tails are the result of some inherent process that increases the likelihood of
high scores over their Poisson-based expectations.
We also 3nd that both the English data and the worldwide domestic results show

a mean goal diCerence (home score minus away score) of 0.51, an aggregate home
advantage (see Ref. [31]), and a bias towards uneven scores as the total score rises
is evident in the larger domestic dataset; these trends are well-known in the world of
football.
It is important to note that the observation of a departure from negative binomial

distributions is not the result of a larger dataset for domestic matches. Whilst more rare
events are observed in a larger sample and the distribution extends to higher values
with lower probabilities, it is nevertheless possible to distinguish between the diCerent
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distributions, as we have shown, without considering these extreme values. We have
looked brieNy at other individual countries and 3nd similar trends to those shown for
English matches.

5. Conclusions

We have shown that the simplest models—the thin-tailed Poisson and negative
binomial distributions based on the assumption of uncorrelated processes—do not 3t
domestic (worldwide) football matches between 1999 and 2001 beyond the low scores.
Heavier-tailed distributions are required if these datasets are to be 3tted with single
PDFs. Log-normal distributions do not include zero scores whereas extremal distribu-
tions can model the entire range of scores. Extremal distributions have been observed
in a variety of complex systems and our results may then inform the modelling of
football games.
In addition, using English top division and FA Cup matches in the seasons of

1970=71–2000=01, we con3rm the Poisson or negative binomial nature of English scores
as reported in analyses of earlier football seasons.

Acknowledgements

We are grateful to Nick Watkins and Richard Dendy for helpful discussions. J.G. and
P.C.B. acknowledge Research Studentships from the UK Particle Physics and Astron-
omy Research Council. Data provided by members of the Recreational Sport Soccer
Statistics Foundation and SportingData.com.

References

[1] M.J. Moroney, Facts from Figures, Penguin Books, London, 1956.
[2] C. Reep, R. Pollard, B. Benjamin, J. Roy. Statist. Soc. Ser. A 134 (1971) 623.
[3] M.J. Maher, Statist. Neerlandica 36 (1982) 109.
[4] M.J. Dixon, S.G. Coles, Appl. Statist. 46 (1997) 265.
[5] D. Dyte, S.R. Clarke, J. Opl. Res. Soc. 51 (2000) 993.
[6] M.J. Dixon, M.E. Robinson, The Statistician 47 (3) (1998) 523.
[7] J.M. Norman, in: J. Bennett (Ed.), Statistics in Sport, Arnold, London, 1998.
[8] L.C. Malacarne, R.S. Mendes, Physica A 286 (2000) 391.
[9] http://www.SportingData.com.
[10] http://www.rsssf.com/histdom.html.
[11] P. Bak, How Nature Works: The Science of Self-Organised Criticality, Oxford University Press, Oxford,

1997.
[12] C. Tsallis, S.V.F. Levy, A.M.C. Souza, R. Maynard, Phys. Rev. Lett. 75 (20) (1995) 3589.
[13] C. Tsallis, Phys. World 10 (1997) 42.
[14] R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance,

Cambridge University Press, Cambridge, 1999.
[15] H.E. Stanley, L.A.N. Amaral, X. Gabaix, P. Gopikrishnan, V. Plerou, Physica A 299 (1–2) (2001) 1.
[16] H.E. Stanley, L.A.N. Amaral, X. Gabaix, P. Gopikrishnan, V. Plerou, Physica A 302 (1–4) (2001) 126.
[17] S. Solomon, P. Richmond, Physica A 299 (1–2) (2001) 188.

http://www.SportingData.com
http://www.rsssf.com/histdom.html


624 J. Greenhough et al. / Physica A 316 (2002) 615–624

[18] S.T. Bramwell, P.C.W. Holdsworth, J.-F. Pinton, Nature 396 (1998) 552.
[19] S.T. Bramwell, K. Christensen, J.-Y. Fortin, et al., Phys. Rev. Lett. 84 (17) (2000) 3744.
[20] V. Aji, N. Goldenfeld, Phys. Rev. Lett. 86 (6) (2001) 1007.
[21] S.T. Bramwell, J.-Y. Fortin, P.C.W. Holdsworth, et al., Phys. Rev. E 63 (2001) 41 106.
[22] B. Zheng, S. Trimper, Phys. Rev. Lett. 87 (18) (2001) 188 901.
[23] S.T. Bramwell, K. Christensen, J.-Y. Fortin, et al., Phys. Rev. Lett. 87 (18) (2001) 188 902.
[24] R.A. Fisher, L.H.C. Tippett, Proc. Cambridge Philos. Soc. XXIV (1928) 180.
[25] E.J. Gumbel, Statistics of Extremes, Columbia University Press, New York, 1958.
[26] D. Sornette, Critical Phenomena in Natural Sciences, Springer, Berlin, 2000.
[27] K. Bury, Statistical Distributions in Engineering, Cambridge University Press, Cambridge, 1999.
[28] S.C. Chapman, G. Rowlands, N.W. Watkins, Nonlinear Processes in Geophysics, 2002, in press.
[29] C.W. Granger, D. Orr, J. Am. Statist. Assoc. 67 (1972) 275.
[30] S.J. Kon, J. Finance 39 (1984) 147.
[31] S.R. Clarke, J.M. Norman, The Statistician 44 (4) (1995) 509.


	Football goal distributions and extremal statistics
	Introduction
	The probability density function (PDF)
	Extremal statistics
	Results
	Conclusions
	Acknowledgements
	References


