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Stochastic pitch angle diffusion due to electron-whistler
wave—particle interactions

W. J. Wykes,® S. C. Chapman,” and G. Rowlands
Space and Astrophysics Group, Physics Department, University of Warwick, Coventry CV4 7AL,
United Kingdom

(Received 19 October 2000; accepted 23 March 2001

In the Earth’s magnetosphere, electron—whistler mode wave—patrticle interactions are a candidate
mechanism for auroral precipitation via electron phase space diffusion. Of particular interest are
stochastic interactions between relativistic electrons(apaften observedvaves of more than one

wave number. It can be shown that the interaction between electrons and two oppositely directed
monochromatic whistlers is stochastic. Once a threshold is exceeded, stochastic trajectories exist in
addition to regular orbit§Kolmogorov—Arnold—Moser, or KAM, surfacgsear resonance, and

here their corresponding pitch angle diffusion is estimated. The treatment is extended to consider
broad band whistler wave packets and it is shown that the stochastic diffusion mechanism is again
present for interactions with one or two wave packets. The pitch angle diffusion coefficient is
estimated from the dynamics of stochastic electrons. For wave amplitudes consistent with planetary
magnetospheres, such as at the Earth and Jupiter, pitch angle diffusion due to stochastic interactions
occurs on fastmillisecond time scales resulting in significant increases in the pitch angle diffusion
coefficient. © 2001 American Institute of Physic§DOI: 10.1063/1.1371953

I. INTRODUCTION with relativistic electrons. By initially considering mono-
) o ) chromatic whistler waves we first show that the presence of
Electron—whistler wave—particle interactions have longihe second wave introduces stochastic effects and then set up

been considered as a mechanism for pitch angle scattering ity analytical framework for the treatment of the more real-
planetary magnetospheres. In particular gyroresonant prgsiic case of wave packets.

cesses with near-parallel propagating waves., Refs. 1 We extend the treatment to consider a single wave
and 2 have been shown to produce_ pitch angle diffusion forpacket, which we represent as a wave with a range of wave
electrons that are at resonance with a background of raffequencies and wave numbers. The electron dynamics are
domly phase whistler wavesHowever, typical wave ampli- found to be essentially the same as for a pair of monochro-
tudes observed in planetary magnetospheres are insufficiepfatic waves. It is then straightforward to consider the effi-
to result in significant phase space diffusion if only a singleciency of the mechanism in scattering electrons for param-
whistler is considered; the changes in the background fielders consistent with a generalized planetary magnetosphere
with respect to the electron mean that the resonance condiyg for the interaction with two oppositely directed broad
tion is satisfied for too short a time. Alternatively, stochas-panq whistler wave packets.

ticity (in the dynamical sengeand hence stochastic diffu- The degree of stochasticity in the system is quantified by
sion, can be introduced by coupling the bounce motion of thestimating the Lyapunov exponents of individual trajectories.
trapped electrons with a single whistiée.g., Ref. 4 by  The |yapunov exponents are shown to be positivence
considering the interaction \.N|th.a broad bar_uj wh|stler Wav€ngicating stochastic trajectoried regions of phase space
(e.g., Ref. 3 or by considering inhomogeneities in the me- yhere significant changes in pitch angle occur, therefore,
dium (e.g., Ref. 6. More recently, the possibility of stochas- {hese changes are due to stochastic effects. The Lyapunov
tic phase space diffusion in the presence of oppositely d"exponents are then used to estimate the interaction time and
rected whistlers has been considered, as demonstrat¢ghnce the diffusion coefficient, which can be compared with
numerically in Ref. 7 for a wave frequency of half the gy- the diffusion coefficient estimated using the method derived

rofrequency and in Ref. 8 for relativistic electrons. Thisiy Ref. 1 for gyroresonant processes with a single whistler.
mechanism has been shown to exist in self-consistent

simulations’ On closed field lines on planetary magneto-
spheres, oppositely directed whistlers are commonly ob-
served as whistlers are readily reflected inside thg, MONOCHROMATIC WHISTLERS
magnetospher.

In this paper we derive the full equations of motion, for e consider a total magnetic field, consisting of a back-
the system of two oppositely directed whistlers interactingground magnetic fieldB,=B,%, and a wave fieldB,. The
electron population is initially in the vicinity of the magnetic

dFax: +44(0)24 76692016. Electronic mail: wykes@astro.warwick.ac.uk equatpr of a_magnetOSpheriC field line, which is assum_ed to
YElectronic mail: sandrac@astro.warwick.ac.uk be uniform since, as we shall see, the electron whistler inter-
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a) - b)
B
Z v Vz
® BO B+
vi
© +k A Y
#(t)
® -k
kx —wt
v by FIG. 1. lllustration of the coordinate

system used in the model. I@) the
magnetic wave fieldB;, andB; lie in
the ¥,z plane, perpendicular to the

background field, By=BgX. In (b)
(vy,v,) is parameterized in terms of
Phase ¥y =kx —wt + ¢ the perpendicular velocityy, , and
phase, ¢. The phase angley=kx
—wt+ ¢, is defined as the angle be-
Ay = 6y — 2kx tweenB; and the electron perpendicu-
) lar velocity, v, and the phase differ-
ence, Ay=6,—2kx, is the angle
betweenB,, andB_ , wheref,= is
vy the initial phase difference of the
v waves. In(c) the electron pitch angle,
«a, is defined as the angle between the
velocity vectorv and the background
field By .

vi

Pitch Angle o = arctan (v 1 /v")

action occurs on sufficiently fast time scales such that thevhere w, is the plasma oscillation frequency arfd,
change in the background magnetic field experienced by theeB,/m is the electron gyrofrequency. The corresponding
electron over the interaction time is small. electric field is obtained from Maxwell’s relation for plane
The wavefieldB,, is composed of the superposition of propagating waveskE,=wkB, . Each of the whistler
two whistler mode waves3,, andB,, , propagating parallel mode waves is in resonance with electrons traveling anti-
and anti-parallel to the background magnetic field, respecparallel to its wave numbek, with resonance velocityy, ,
tively (for the coordinate system see Fig. The WavesBZ given by the resonance condition
andB, are written as:

B/ =+B, cogkx— wt)§ w—k-vi=nQc/y, 4
~ B, sintkx—wt)z, @ Wwherenis an integer and/=(1—v?/c?)~Y2is the relativis-
B, =+B, co — kx— wt+ 6y)y tic factor, which is not constant .since_ electrons_ can gain or
_ A lose energy through the interaction with the whistler waves.
—B,, sin(—kx—wt+ 6)Z, 2 We substitute the fields into the Lorentz Force Law and

derive the following normalized equations of motitior a

where B, is the whistler wave amplitudeq, is the initial ) B ;
more detailed derivation see the Appendix

phase difference of the waves aadand k are the wave
frequency and wave number of the whistler waves, related by

the electron whistler mode dispersion relatioeglecting ion dvy  bu, vy .
effecty at —y — —|siny
k?c? wlz)e bu v
o 1 ey &) + | 1 g siny s ), 5)
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TABLE |. Values of the electron gyrofrequenc§}., wave frequencyw,

similar. We therefore consider a generalized magnetosphere
plasma frequencyw,., magnetic-field strengttB,, and wave amplitude,

; _ with wave frequencies up to the electron gyrofrequency,
B, , given for both the Terrestrialsee, for example, Refs. 22-24nd litud f th d 501076 et ti
Jovian (Refs. 16 and 17 magnetospheres. The two planetary ma\gneto-wave a_mpl udes o € orger o . or qUIe_ Imes
spheres have quantitatively similar parameters in the normalized system. INCreasing by up to an order of magnitude during intense

magnetospheric activity and a plasma frequency in the range

Earth  Jupiter Normalized Earth Jupiter 7.1-7.25.
Parameter L=6.6 L=6 parameter L=6.6 L=6
Q. (kHz) 253 334 1 1 ) ) )
o (kHz)  0-253 0-334 wlQ, 0-1 0-1 2. Numerical solutions of the full equations
“oe ((i;'%z) iii ggé wpel Qe 7'125 71'1 The numerical solutions of the full equations have been
Bz ®T) 200 1 B, /B, 10%-10°% 10°° presented ir_1 _de.tail for the nonrelativistic case in Ref_. 7 and
for the relativistic case in Ref. 8, therefore, only the impor-
tant aspects of the solutions are briefly reiterated here.
) The initial pitch angle was varied over the rand¥,
do, bl 1+ %) sin 1807, so that the initial parallel velocity covers the range
dt vi c? 4 [—v,,v,], Wwherev, is the resonance velocity, given by the
o ) resonance conditiori4), for n=1. As expected front5) to
Vil (8), and as shown in the following analysis, an order param-
——lvt+| 1+ = | [sin(¢y+Ay), 6 T . . '
y| Z| SNy +AY) © eter isbv, , and hence high pitch angles, >v,, are more
d 1 b likely to exhibit stochasticity at the wave amplitudes seen
_'/’:kvu_ w+ —— —— (v;—1)cosy typically in magnetospheres. Distribution functions with a
dt Y Yvy high perpendicular velocity anisotrofypancake” distribu-
tions) are also typically required by gyroresonant diffusion
———(vyt+1)cogy+Ay), (7)  mechanisms and in plasma density models to fit
You observations? The initial x coordinate(distance along the
dy bv, . bv, background fieldwas chosen so that the initial phase angle
Gt o Sinva— oz sin(y+Ay), (8  y(t=0) (angle between the perpendicular velocity and the

whereb=B, /B, is the normalized wave amplitude, time

has been normalized to the electron gyroperiod andnd

first whistler waveB, , see Fig. 1 was either 0 orr.
Figures 2a) and Zc) show that the degree of stochastic-
ity increases with the normalized wave amplitude,

v, are the velocities parallel and perpendicular to the back=B_ /B, [Figs. 2b) and 2d) are explained in Sec. IIB
ground field, respectively, normalized to the phase velocCitynitially almost all trajectories are reguldiFig. 2(@), b

of the wavesy ,=w/k. The phase angley, is the angle

=0.001] and are confined to Kolomogorov—Arnold—Moser

between the perpendicular velocity and the waves propagaikAM ) surfaces(near-integrable trajectories with an ap-
ing in the positivex direction, given in the plane perpendicu- proximate constant of the motion, see e.g., Ref. $8chas-

lar to the background field and the phase differenté,

tic trajectories appear as the wave amplitude is increased and

= 6p— 2kx, is the angle between the two waves. Again, forthe regular orbits between the two resonances are progres-

the geometry, see Fig. 1. For clarity, we refer to H§%-(8)
as the full equations of motion.

A. Numerical results

The full equations(5)—(8), are solved numerically using
a variable order, variable step size differential equation inte-

sively destroyed. The stochastic region grows and further
erodes the KAM surfaces close to the resonafEes 2(c),
b=0.005. The stochastic region is bounded by the first un-
trapped(regulay trajectories away from the resonances, thus
there is a limit on diffusion in phase space.

In Fig. 3(a) we plot the pitch angleg in degrees, against

grator(see Refs. 11 and 12We present numerical solutions Phase angley in radians, with the same parameters as in

Fig. 2c); i.e.,b=0.005,0=/3, E=340keV. Phase space

of the full equations using phase space diagrams. These a &9-

composed of a sum of stroboscopic surfaces of sec¢ter
Ref. 13 to sample the full electron phase space.

1. Physical parameters used in the numerical
solutions

Electron—whistler interactions are considered.a{6.6
in the Terrestrial magnetosphdgeo-synchronous orbitue

is divided into stochastic and regular regions in a similar
way. Regular trajectories are confined to close to the reso-
nance pitch angley,=arctang, o/v,). Stochastic electrons
can diffuse throughout the stochastic region and undergo
larger changes in pitch angle. In FiggbB-3(d) the pitch
angle is plotted as a function of time for electron trajectories
in different regions of phase space. In Figb)3the electron

to the abundance of experimental data and in the lo torus iis on resonance. The trajectory is regular with little change in

the Jovian magnetosphefat about 6 Jovian radiia region

pitch angle. In Fig. &) the electron trajectory is on a regular

of increased wave power and electron energy. Physical pdrajectory, with regular fluctuations in pitch angle. In Fig.
rameters are shown in Table I. Scaling the physical param3(d) the electron trajectory is in the stochastic region of

eters to intrinsic magnetospheric quantitisee normaliza-

phase space. Large, irregular changes in pitch angle occur as

tion in the Appendix gives normalized parameters for the the electron diffuses through the stochastic region of phase
Terrestrial and Jovian magnetospheres that are quantitativespace.
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B /B.=0.001, ©= /3, E=340 keV B /B .=0.001, ©=Q /3, E=340 keV
@ 0 ! e’ w0 [}

FIG. 2. Stroboscopic surface of section plots for
=./3, electron energyfE=340keV calculated from
numerical solutions of the full equations of motion
[panels(a) and (c)] and reduced equatiofpanels(b)
‘a4 ) 0 2 4 4 2 0 2 4 and (d)]. For low wave amplitudefpanels(a) and (b),
Phase Angle, y Phase Angle, y b=0.001 all trajectories are regular. At higher wave

amplitudegpanels(c) and(d), b=0.005 stochastic ef-

B /B,=0.005, 0=0 /3, E=340 keV B /B;=0.005, o= /3, E=340 keV fects are introduced. Regular trajectories are confined to
c) 2 d) 2 close to the resonance velocity. The stochastic region is
bounded above and below by the first regular, un-
trapped trajectories away from resonance. Stochastic
electrons can diffuse throughout the stochastic region of
phase space.

Phase Angle, y Phase Angle, v

In Figs. 2 and 3, for sufficiently large amplitude whis- U+ A= (1lyo— w)t—Kkx+ 6. (14)
tlers, the region of phase space away from the resonances R
becomes stochastic. Electrons not in resonance with either oF'oo zdylzdthb' 5 _the relativistic -~ factor Yo
the waves are not restricted to KAM surfaces and can diffusé V1-vfdc®—vf Jc? is a constant. To the next orderlin

extensively in the stochastic region of phase space and itis dy, , V.o vio| .

possible to estimate a phase space and thus a pitch angle T:JF Ty 1- 2 siny

diffusion coefficient for the diffusion of electrons on a sto-

chastic trajectory. Dynamics in the vicinity of resonance are V)0 1 Uio) . A 1

unchanged. Tt +? sin(y+Ay), (15)
which may be written using13) and (14) in the limit v o

B. Reduced equations <c? as

Since the observed wave amplitude is generally much d?x bv, o

less than the background magnetic-field strength equations W:Jr Yo sin (/o= w)t+kx]

(5)—(8) can be approximated in the limit<1. We assume
small perturbations in the velocities of the orderbof I bvi’osir[(l/yo— w)t—kx+ 6], (16)

vi=vyotboy, 9 7o

where v, ; is the initial perpendicular velocity and

v =votbu . (10 =1N(1—vo/c®—v7 o/c?). For clarity we shall refer to
Then to first order irb we have Eqg. (16) as the reduced equation. The reduced equation has
d the form of two coupled pendula, with perturbations propor-
vio_ tional tobu | o/ yo.
T 0, (11 1L,
dv, 1. Numerical solutions of the reduced equation
dt > (12 Numerical solutions of the reduced equation are shown

in Figs. 2b) and Zd), for the same parameters as Fig&)?2

and Zc). These can be seen to yield phase space diagrams
that are qualitatively similar to those of the full equations.
The reduced equation has the form of two coupled pendula
= (1yy— w)t+kx, (13 with coordinates< andx [these are related tm, and ¢ since

thusv, g andv, o are the constant initial parallel and perpen-
dicular velocities. Taking Eq(7) to lowest order and inte-
grating once gives
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On Resonance

b) 90
3
88
[=2
a) Z 86f
S
82 = 84r FIG. 3. In panel(a) electron pitch
82 . angle in degrees in plotted against
84r 500 1000 1500 2000 phase angle. Parameters are as in Fig.
N 'gme,t 2(c), i.e., @=0Q4/3, b=0.005 andE
86; % ear nesonance =340keV. The phase plots are quali-
5 83 tatively similar and share many of the

()]

3

o 88 same features. In panel®)—(d) the
8’86 pitch angle is plotted as a function of
< g h

c time. In panel(b) the electron is on

[5]

Pitch Angle,
©
o

ool T 84r 1 resonance with little change in pitch
82 . angle. In pane(c) the electron is on a

94 0 500 1000 1500 2000 regular trajectory, with the pitch angle
Time, t changing regularly with time. In panel

Stocr.'asm (d) the electron trajectory is stochastic

with larger, irregular changes in pitch
angle.

Phase Angle, y

500 1000 1500 2000
Time, t

v;=X and y=kx+ (1/yo— w)t)]. The amplitude of oscilla- of an integer,n, and a finite bandwidthAw, i.e., w,=wq
tion is proportional tobv, o/y,. There is a transition to +nAw, k,=ko+nAk=we+nAw/vgy and b,=b. The re-
stochasticity as the amplitude of oscillation increases. This isluced equation for a single wave becomes
demonstrated in Fig. 2, where the system becomes stochastic
ashis increased, fronh=0.001[Fig. 2(b)] to b=0.005[Fig. d_)z( - Msir{(llyo— @)t kx]f (1), (18)
2(d)]. dt Yo

The reduced equatiofl6), therefore, preserves the un-

derlying dynamics of the full system of equatiorisy. (5)— where
(8)] but allows us to consider a simpler system which is _ —i(@p— Q)T
: = . fa(r)=bne : (19
readily extended to a more realistic case, i.e., wave packets,
which we present in the next section. and we have writtem=t—x/v4,. We now consider the in-

teraction with an infinite series of monochromatic waves
each centered at wave frequenay,, with amplitude,b,,,

IIl. BROAD BAND WHISTLERS wheren e[ —,]. Equation(18) becomes

A. Sing| k d’>x v
Single wave packet Gz =+ s (Uyo— wo)t+kex]F (1), (20
Using the framework established in Sec. Il we can ex- t Yo
tend the reduced equatigh6) to consider broad band whis- where

tler wave packets. We express the wave number in terms of

the wave frequency, using the derivatives of the linearized * .

dispersion relation3), evaluated at the central wave fre- f(r)= 2 bye (@n-wor, (21
guency,wq, and wave numbek,, of the wave packet o

Equation(20) is expressed as a Fourier series with coeffi-

dk . L . :
K(w)=ko+ — (0—wg) cientsb,,. From the definition of Fourier transfornfgiven
do wg.ko in Ref. 15 we obtain
d%k ) o .
+d_a)2 (w—wg)“+---. 17 f(r)=f Al(w)e (@700 dgy, (22
wq.Kg -

Assuming the first derivative is approximately constant over _ *° (0o

the width of the wave packet we can write=ky+ (w A(“’)_Zf_xf(r)e ofdr. (23)
—wp)/vg, Wherevy=dow/dk is the group velocity of the

wave, evaluated ab=w, andk=k,. We parameterize the Equations(22) and (23) are now a Fourier transform pair.
wave frequency, wave number, and wave amplitude in term3he functionA(w) represents the wave amplitude per unit
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wave frequency bandwidth. Depending on the formA¢®)
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if it were composed of a pair of monochromatic whistlers

we can solve Eq(22) and determine the approximate equa-with an enhanced wave amplitude given Ay/(t—x/vg).

tion of motion for a single wave packet.

1. Delta function

For monochromatic waves we can wrtd w) in terms
of a &function centered at frequenay,

A(w)=bgé(w—wq). (24

Equation(22) is readily integrated to givé(r)=b, and Eqg.
(20) becomes

d2X bOUL 0

g2 =t o Si(Lyo— wo)t+kox], (29

which is the reduced equation for a single monochromati

whistler.

B. Scattering due to a single wave packet

We can write the functionA(w), as a top hat distribu-
tion, i.e. the wave amplitude is constant over a finite fre-

guency range and zero everywhere else:

0 Do w<w—Aw/2
Alw)={ Ap | o-Awl2<v<wt+Aol2 (26)
0 : w>wt+tAwl2

Solving for f(r) in Eq. (22) and substituting into Eq(20)
gives the following equation of motion:

d2X ULO -
—7 = ——AX DA SN (Lyo— wo)t+keX], (27)
dt Yo
whereA(x,t) is given by
sif(x—vq4t)(Aw/2
At = Ag N(X—vgt)(Awl2vg)] 28)

(x—vgh)(Awi2vg)

If the extrema of the packet wave frequencies and wave

numbers are given by *=wo*Aw/2 andk™=Kky+ Ak/2
then Eq.(27) can be written as:

d b R0 Vo e otk
dtz (t X/Ug) Coi( Yo~ ) X]
Ao 1/ t+kx+
m “Ocog( Yo~ @) X+ 7],

(29

which we compare with the reduced equation for two waves

with frequencieso® and o~ [obtained by definingA(w)
=bpd(w— ") +byd(w—w) in Eq. (22)]:

We expect that a single broad band wave packet will result in
the diffusion of stochastic electrons in a similar way to two
oppositely directed monochromatic whistlers.

1. Gaussian wave amplitude distribution

Instead of a top hat distribution, the functioh(w), can
be written as a Gaussian distribution of widtl, with mag-
nitude, Ay, and central wave frequenci,

(w— wo)zlAw

Al(w)=Aje" (31)

CSubstitutingA(w) into Eq.(22) and integrating over all wave

frequencies gived(r), which is then substituted into Eq.
(20) to give the equation of motion for the interaction with a
single wave with a Gaussian wave amplitude distribution

2

d X UJ_,O X

WZWA(XJ)A(H Sin (1/y— wo)t+kex], (32
whereA(x,t) is given by

A(x,1) = Age~ X vgh(Ral20g)?, (33

We define the wave density,, as the wave amplitude per
unit wave frequency bandwidth, with units of Teslas per
Hertz. In the limit where the width of the wave packet tends
to zero, the Gaussian wave packet becomeSfanction.
Hence (32) yields the reduced equatiof16) in the limit
whereAw—0 providedA, satisfies

(34)

C. Oppositely directed wave packets

We have shown that the scattering due to a single wave
packet can be described as effectively that due to the inter-
action of two monochromatic whistlers with enhanced wave
amplitudes[see Eq.(29)]. In order to find the maximal de-
gree of stochasticity in the system two oppositely directed
wave packets are considered. The equation of motion for two
wave packets, with Gaussian wave amplitude distribution, is
derived in a similar way to Eq32)

d2

FTche +—A+(x ) A w sin (1/yo— wo)t+ Kox]

d?x bov Vio,_ .
gt ”sm[(l/yo 0"tk X] +%A (X,t)Awsir (1o~ wo)t—kox], (35
bov whereA™ (x,t) andA™(x,t) are given b
+ Oyl'osir'{(llyo—w’)tJrk*x]. (30) (1) (xH g Y
-O o . - - . A+(X,t):Aoe (Xx—v t) (Aw/ng) , (36)
The two equations are qualitatively similar, differing only in
the phase difference in the sine and cosine tefing see A (x t):Aoe*(Xvagt)z(Aw/ng)z. (37)

Ref. 7) and the wave amplitudes. Therefore, we conclude
that a single wave packet scatters electrons in phase spacekEguation(35) is referred to as the wave packet equation.
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5 Change in pitch angle Lyapunov exponent x 1072

a) 10 ................. b) 100 BL W W § vk B Sel ARE B
FIG. 4. In panel(a) the change in
pitch angle in degrees is calculated for
electrons interacting with a range of

g é wave packet widthSE=80keV, w

8 | =0,/10). For narrow wave packets

3 3 the change in pitch angle is maximum

£ 10 ;- 10" for regular‘trajectorieSZero Lyapunov

k=] ] exponent in panelb)] close to reso-

% E nance(indicated by the vertical black

2 g line). For wide wave packets the maxi-

s I mum change in pitch angle occurs for
electrons in the stochastic region of
phase spacfpositive Lyapunov expo-
nent in panel(b)] away from reso-
nance.

= 41
10°——— b 107 : —
0 20 40 60 80 0 20 40 60 80
Initial Pitch Angle, o, Initial Pitch Angle, %y
D. Numerical solutions of wave packet equation F. Pitch angle diffusion
The wave densityd,, is estimated from the analysis of It is not possible to produce phase space diagrams for the
Voyager 1 datasee Refs. 16—18or the Jovian magneto- wave packet equations due to their implicit time dependence.
sphere Instead other methods are used to analyze them. In Fig. 4 we
- consider the interaction between 80 keV electrons with ini-
b B . . . o i .
Ap=—— =\ (3g) tial pitch angles in the ranggd°, 90 and two oppositely
Ao Ao directed whistler wave packets with wave frequenay,
whereB’ is the magnetic-field spectral density units of = {2¢/10 and wave packet widths up to the maximum for a

T?Hz™Y) and Aw; is the instrument bandwidth at a given given frequencyA wpay. The maximum packet width oy
frequency. For all frequencies up to the gyrofrequedgy IS chosen to be as large as possible, providing that the ex-
~2x1073. For the generalized magnetosphere we assuméema of the wavepacket frequencies given by = wy
Ap~2x10 2 is a good estimate for undisturbed times and* Aw/2 does not exceed the limits of either zero or the elec-
additionally consider enhancements of up to an order ofron gyrofrequency. Finally, we consider an enhanced wave
magnitude for intense magnetospheric events such as su@iensity, A=10A,, to represent intense magnetospheric ac-

storms. tivity.
In Fig. 4@ we consider the change in pitch angle in

degrees for increasing wave packet widths. In Figp) 4ve
E. Lyapunov exponent plot the Qimensionlesé.e., normalized Lyapunov exponent
' A*=\Q_ . For narrow bandwidths\ w/A wma=10"2, the
We quantify the degree of stochasticity in the system bywave packet equation yields the reduced equation with low
considering Lyapunov exponents of numerical solutions ofvave amplitudes. The maximum change in pitch angle oc-
the wave packet equatidB5), for a given set of parameters curs for regular electron trajectorigsndicated by zero
(wave density, wave frequency, and electron energie  Lyapunov exponent in Fig.(8)] close to resonancéndi-
Lyapunov exponents are estimated using the method desated by the vertical black line at;=50°). As the wave
scribed in Refs. 19 and 20. The Lyapunov exponents arpacket width increases stochastic effe@tsthe dynamical
estimated over all phase space and evolved to theisensgare introduced, as indicated by positive Lyapunov ex-
asymptotic limit. The only significant Lyapunov exponent ponent in Fig. 4b). Significant change in pitch angle occurs,
corresponds to spatial perturbations along the backgroundue to stochastic interactions, for electrons away from reso-
field direction. A positive Lyapunov exponent corresponds tonance. As the wave packet width approaches,,y, diffu-
a stochastic trajectory while a zero Lyapunov exponent indision is maximum in the stochastic regions of phase space.
cates the trajectory is regular. For a thorough description of In Fig. 5 we show the regions of phase space where the
Lyapunov exponents see Ref. 21. diffusion of stochastic electrons occurs, as a function of both
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Change in Pitch Angle Lyapunov Exponent
a) 1 b) 1p
0.9 0.9
0.8 0.8
0.7 0.7
FIG. 5. In panela) we show the elec-
o o b :
L6 205 tron vglomtlgs gnd wave frequen_cnes
= = for which a significant change in pitch
"§ ‘g‘; angle(in degreep occurs. Pitch angle
g 05 E 05 diffusion is maximum for stochastic
S c electrons [indicated by positive
£ s Lyapunov exponent in panéb)]. The
2 0.4 5 0.4 stochastic region of phase space oc-
curs away from resonancgndicated
03 03 by the black line in both panels
0.2 0.2
|
0.1 0.1|
i
0 o
0 0.5 1 0.2 0.4 0.6 0.8 1
Wave Frequency,o)/Qe Wave Frequency,(x)/Qe

electron energy and wave frequency. Maximum change iyapunov exponenty, in phase space, scales approximately

pitch angle(in degreesoccurs away from resonanémdi-  as~expAt, thus an order of magnitude estimate shows that

cated by the black lines in both paneldue to stochastic changes in pitch angle scale approximately-esxp\t, giv-

interactiong positive Lyapunov exponent in Fig(i5]. ing a characteristic time constant, for changes in pitch
angle of by a factor o&', of approximatelyr~ 1/\ gyrope-

IV. DIFFUSION COEFFICIENT riods. In Figs. 4 and 5 the maximum Lyapunov exponent is

of the order of 102—10 3. This implies that the changes in
itch angle occur on time scales of the order of-100°
electron gyroperiods. This indicates very short interaction

times(less than one secopdnd hence confirms the validity

. : of the approximation of constant background magnetic field.
dynamical sengeelectrons,D,, estimated from the solu-

. £ th K ion. The diffusi fici Since changes in pitch angle of the order dof=e!
tions of the wave pac .et equgtlon. | he dittusion coe 'C'e.ntoccur on time scales of the order aft=1/A (where we
for the gyroresonant interaction with a single whistler is

: - Ref. 1 13 obtain the un-normalized Lyapunov exponent from
given in Ref. 1(page 13 onwards =\*Q,), the normalized diffusion coefficient can be esti-

In this section we estimate the pitch angle diffusion co-
efficient for the scattering of electrons at resonance in a ra
dom background of wave fluctuatiorisee Ref. 1, Dgp,
compared with the diffusion coefficient for stochagtit the

(Aa)? (B, 2Q§At mated as
KP™ 2At %(B_O 2 39
2
whereAt~2/Akv, is the time a particle is in resonance with - (Aa) ~ lez)\*Q (40)
the wave. 2At 2 e

For two oppositely directed broad band whistlers, the

Ia_);fapL_mov eX?f(.)nem e_?:]lmated her_e car; be US?d to eSt'mfi:]eTﬂus the diffusion coefficient scales with the electron gyrof-
fffusion coefficient. The separation of two electrons With o \ancy and has units of radidss®. We estimate the dif-

fusion coefficients for resonant diffusion and stochastic dif-

TABLE II. Estimated diffusion coefficients, diffusion time scaldsr reso- ~ fusion in both magnetospheres in Tables Il and llI, for
nant and stochastic diffusibrand bounce time scales for the Terrestrial broadband 4 w~ w) low-frequency =./10) waves in-
magnetosphere, for increasing wave density and wave amplitude. teracting with 80 keV electrons. Note that the same wave

density corresponds to different wave amplitudes in the dif-

Ao B,/Bo Dkp TP D, L To
ferent magnetospheres.
—4 —6 —6 .
107 2x10’ 2x10 5X1gz 0 * 1 In the Terrestrial magnetosphe(Eable 1)) at low wave
10,2 2X10,4 2X10,2 5x1 10 10 ! densities A,=10 %) the stochastic diffusion mechanism is
10 2%10 2%10 50 1 1 1 L K o e g
1001 2x10°3? 2 0.5 10 101 1 not “switched on,” resulting in zero diffusion coefficient

and infinite diffusion time scales. The dominant diffusion
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TABLE IIl. Estimated diffusion coefficients, diffusion time scalésr reso- APPENDIX: DERIVATION OF THE FULL EQUATION
nant and stochastic diffusiprand bounce time scales for the Jovian mag- OF MOTION
netosphere, for increasing wave density and wave amplitude.

The wave field is described by a vector potential

Ag B, /Bg Dkp TKP D, T Th B
1074 1077 108 1P 0 % 10 A,=+ —(cog kx— wt) — cog —kx— wt+ 6))¥
1073 1076 1078 10° 1 1 10 k
1072 10°° 104 10t 10 10? 10
10t 104 1072 107 100 102 10 B, . : 5
ahra (sin(kx— wt) —sin( —kx—wt+ 6y))2, (Al)

giving magnetic B,=VXxA, and electric E,
=—dA,/dt) wave fields of the form

mechanism is resonant diffusion albeit with diffusion time B/ =+B, cogkx— wt)§— B, sin(kx— wt)2, (A2)
scales of the order of several dayscf<<7,). For larger

wave densities the stochastic diffusion mechanism is B, =+B,cog{—kx—ot+6y)y

switched on resulting in diffusion coefficients initially an . .

order of magnitude greater than for resonant diffusion. Com- ~ By Sin(—kx=ot+60)2, (A3)
paring the time scale for diffusion by one radian with the N ® R ® ~
bounce time scale we find that stochastic diffusion is signifi- ~ Ew =~ Bu7SiNkx—wt)§+ B, -coskx—wt)z, (A4)
cant for wave densities greater than the quiet time wave den-
sity (A=A,=10"3). A similar result is obtained for the Jo-
vian magnetospheréTable Ill) except that the diffusion
coefficients for resonant diffusion are generally an order of

magnitude higher. +B s cog — kX— wt+ fg)2. (A5)

w
E. = +B,—sin(—kx—ot+ 6§

The velocity is written in terms of its components parallel
and perpendicular to the background magnetic fietdp X
+v, cos¢y+uv, singz, wherep= ¢(t) is the phase of the
perpendicular velocity with respect to tfeaxis. The phase

The interaction between relativistic electrons and two I = kx— ‘s defined h le b h
oppositely directed monochromatic whistler waves is stolngle y=kx=wt+ ¢ is defined as the angle between the

. ; . .
chastic(in the dynamical sengdor sufficiently large wave gerpenzdkmular \r/]elocnyl aEBw and trr]'e phase differendey
amplitudes. Stochastic electrons can diffuse throughout the fo—2kx as the angle between the two waves. _
stochastic region resulting in electron diffusion in phase Substituting into the relativistic Lorentz Force Law gives

space. Regular orbits still exist close to resonance, hendd® following equations of motiofin the frame in which the

their dynamics is unchanged from that found for a singleVaves have phase speedg,= = w/k):

monochromatic wave. dv, eB,v; ovy)
An analytical description of wave packets was derivedto i = 1- k2 siny
consider broadband whistler waves. Stochastic trajectories

V. DISCUSSION

ym

were shown to exist and it was found that a single broad eB,v; 1 v\ A A6
band whistler wave packet scatters electrons as if it were + ym + kc? sin(y+A4), (AB)
effectively composed of two oppositely directed monochro- )
matic whistlers with enhanced wave amplitude. Diffusion of dv, eB, ® Uil
. . ——=———vy— 5|1+ —=]|siny
stochastic electrons occurred for low wave amplitudes con-  dt ym k c
sistent with the Terrestrial and Jovian magnetospheres. B 2
The .deg.ree of stochasticity in the system was guantified _ v+ —| 1+ _;_ Sin( g+ A ), (A7)
by considering the Lyapunov exponent of solutions of the ym k c
wave packet equation. Significant pitch angle diffusion oc-
. . X - dy we €B, ®
curs for stochastic electrons, whose trajectories have positive —_ = kv,—w+ —— v— —|cosy
Lyapunov exponent. Given the Lyapunov exponent one can dt Y  ymu, k
obtain an estimate for the pitch angle diffusion coefficient; e o
this is found to be significant during conditions of enhanced - m—: v+ X cody+Ay), (A8)
magnetospheric activity. Yo,
dy eB,ov, _ eB,wv, . +A A9
gt~ km& ST m@ SNWrAY. (A9)
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the normalized system givesy = w*/k* =1. Substituting
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5U. S. Inan, T. F. Bell, and R. A. Helliwell, J. Geophys. R¢Space Phy$.

into the above equations and dropping the superscripts give$3, 3235(1978.

the normalized equations

dUH_+bUJ_ l U” .
bv, I .
| 1+ sin(y+Ay), (A10)
dov b v? .
d_ti:_ v - 1+C—§ siny
2
vy .
——lu+|1+ 3 sin(g+Ay), (A11)
dl’b—k 1 b 1
dr - kim et ST (e Lcosy
— —— (v, +1)cog P+ Ay), (A12)
YL
d'y bvl ) bvl .
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1C. F. Kennel and H. E. Petschek, J. Geophys. Ré&s1 (1966.

2L. R. Lyons, R. M. Thorne, and C. F. Kennel, J. Plasma PHys3455
(21972.

3R. Gendrin, Rev. Geophy49, 171(1981).

4J. Faith, S. Kuo, and J. Huang, J. Geophys. R6g, 2233(1997).

5R. A. Helliwell and J. P. Katsufrakis, J. Geophys. RES, 2571(1974.
7K. S. Matsoukis, S. C. Chapman, and G. Rowlands, Geophys. Res. Lett.
25, 265(1998.
8W. J. Wykes, S. C. Chapman, and G. Rowlands, Planet. Spacé958b5
(200D.
9P. E. Devine and S. C. Chapman, Physic@%) 35 (1996.

0L, R. Lyons and R. M. Thorne, Planet. Space 94, 1753(1970.

1 F. Shampine and M. K. Gordoiomputer Solution of Ordinary Dif-
ferential Equations: The Initial Value ProblertFreeman, New York,
1975.

125, C. Chapman and N. W. Watkins, J. Geophys. R8s165(1993.

13M. Tabor, Chaos and Integrability in Nonlinear Dynamics—An Introduc-
tion (Wiley, Chichester, 1989

14E.J. Crary, F. Bagenal, J. A. Ansher, D. A. Gurnett, and W. S. Kurth, J.
Geophys. Resl01, 2699(1996.

15T, L. Chow, Mathematics Methods for Physicists: A Concise Introduction
(Cambridge University Press, Cambridge, 2000

16F L. Scarf, F. V. Coroniti, D. A. Gurnett, and W. S. Kurth, Geophys. Res.
Lett. 6, 653(1979.

W, S. Kurth, B. D. Strayer, D. A. Gurnett, and F. L. Scarf, Icaéls497
(1985.

18y Hobara, S. Kanemaru, and M. Hayakawa, J. Geophys. F¥%.7115
(1997.

19G. Benettin, L. Galgani, and J. M. Strelcyn, Physica 4 2338(1976.

20T, S. Parker and L. O. Chu®ractical Numerical Algorithms for Chaotic
SystemgSpringer-Verlag, New York, 1989

21R. C. Hilborn,Chaos and Nonlinear Dynami¢®©xford University Press,
Oxford, 1994.

22D, Summers and C. Ma, J. Geophys. RE35, 2625(2000.

M. Parrot and C. A. Gaye, Geophys. Res. L&tt, 2463 (1994).

4. Nagano, S. Yagitani, H. Kojima, and H. Matsumoto, J. Geomagn. Geo-
electr.48, 299(1996.



