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Stochastic pitch angle diffusion due to electron-whistler
wave–particle interactions

W. J. Wykes,a) S. C. Chapman,b) and G. Rowlands
Space and Astrophysics Group, Physics Department, University of Warwick, Coventry CV4 7AL,
United Kingdom

~Received 19 October 2000; accepted 23 March 2001!

In the Earth’s magnetosphere, electron–whistler mode wave–particle interactions are a candidate
mechanism for auroral precipitation via electron phase space diffusion. Of particular interest are
stochastic interactions between relativistic electrons and~as often observed! waves of more than one
wave number. It can be shown that the interaction between electrons and two oppositely directed
monochromatic whistlers is stochastic. Once a threshold is exceeded, stochastic trajectories exist in
addition to regular orbits~Kolmogorov–Arnold–Moser, or KAM, surfaces! near resonance, and
here their corresponding pitch angle diffusion is estimated. The treatment is extended to consider
broad band whistler wave packets and it is shown that the stochastic diffusion mechanism is again
present for interactions with one or two wave packets. The pitch angle diffusion coefficient is
estimated from the dynamics of stochastic electrons. For wave amplitudes consistent with planetary
magnetospheres, such as at the Earth and Jupiter, pitch angle diffusion due to stochastic interactions
occurs on fast~millisecond! time scales resulting in significant increases in the pitch angle diffusion
coefficient. © 2001 American Institute of Physics.@DOI: 10.1063/1.1371953#
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I. INTRODUCTION

Electron–whistler wave–particle interactions have lo
been considered as a mechanism for pitch angle scatterin
planetary magnetospheres. In particular gyroresonant
cesses with near-parallel propagating waves~e.g., Refs. 1
and 2! have been shown to produce pitch angle diffusion
electrons that are at resonance with a background of
domly phase whistler waves.3 However, typical wave ampli-
tudes observed in planetary magnetospheres are insuffi
to result in significant phase space diffusion if only a sin
whistler is considered; the changes in the background fi
with respect to the electron mean that the resonance co
tion is satisfied for too short a time. Alternatively, stocha
ticity ~in the dynamical sense!, and hence stochastic diffu
sion, can be introduced by coupling the bounce motion of
trapped electrons with a single whistler~e.g., Ref. 4!, by
considering the interaction with a broad band whistler wa
~e.g., Ref. 5! or by considering inhomogeneities in the m
dium ~e.g., Ref. 6!. More recently, the possibility of stochas
tic phase space diffusion in the presence of oppositely
rected whistlers has been considered, as demonstr
numerically in Ref. 7 for a wave frequency of half the g
rofrequency and in Ref. 8 for relativistic electrons. Th
mechanism has been shown to exist in self-consis
simulations.9 On closed field lines on planetary magnet
spheres, oppositely directed whistlers are commonly
served as whistlers are readily reflected inside
magnetosphere.10

In this paper we derive the full equations of motion, f
the system of two oppositely directed whistlers interact

a!Fax: 144~0!24 76692016. Electronic mail: wykes@astro.warwick.ac.uk
b!Electronic mail: sandrac@astro.warwick.ac.uk
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with relativistic electrons. By initially considering mono
chromatic whistler waves we first show that the presence
the second wave introduces stochastic effects and then s
an analytical framework for the treatment of the more re
istic case of wave packets.

We extend the treatment to consider a single wa
packet, which we represent as a wave with a range of w
frequencies and wave numbers. The electron dynamics
found to be essentially the same as for a pair of monoch
matic waves. It is then straightforward to consider the e
ciency of the mechanism in scattering electrons for para
eters consistent with a generalized planetary magnetosp
and for the interaction with two oppositely directed bro
band whistler wave packets.

The degree of stochasticity in the system is quantified
estimating the Lyapunov exponents of individual trajectori
The Lyapunov exponents are shown to be positive~hence
indicating stochastic trajectories! in regions of phase spac
where significant changes in pitch angle occur, therefo
these changes are due to stochastic effects. The Lyapu
exponents are then used to estimate the interaction time
hence the diffusion coefficient, which can be compared w
the diffusion coefficient estimated using the method deriv
in Ref. 1 for gyroresonant processes with a single whistl

II. MONOCHROMATIC WHISTLERS

We consider a total magnetic field, consisting of a ba
ground magnetic field,B05B0x̂, and a wave field,Bv . The
electron population is initially in the vicinity of the magnet
equator of a magnetospheric field line, which is assumed
be uniform since, as we shall see, the electron whistler in
3 © 2001 American Institute of Physics
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FIG. 1. Illustration of the coordinate
system used in the model. In~a! the
magnetic wave fieldsBv

1 andBv
2 lie in

the ŷ,ẑ plane, perpendicular to the
background field, B05B0x̂. In ~b!
(vy ,vz) is parameterized in terms o
the perpendicular velocity,v' , and
phase, f. The phase angle,c5kx
2vt1f, is defined as the angle be
tweenBv

1 and the electron perpendicu
lar velocity, v' and the phase differ-
ence, Dc5u022kx, is the angle
betweenBv

1 andBv
2 , whereu05p is

the initial phase difference of the
waves. In~c! the electron pitch angle,
a, is defined as the angle between th
velocity vectorv and the background
field B0 .
th
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action occurs on sufficiently fast time scales such that
change in the background magnetic field experienced by
electron over the interaction time is small.

The wavefieldBv is composed of the superposition
two whistler mode waves,Bv

1 andBv
2 , propagating paralle

and anti-parallel to the background magnetic field, resp
tively ~for the coordinate system see Fig. 1!. The wavesBv

1

andBv
2 are written as:

Bv
151Bv cos~kx2vt !ŷ

2Bv sin~kx2vt !ẑ, ~1!

Bv
251Bv cos~2kx2vt1u0!ŷ

2Bv sin~2kx2vt1u0!ẑ, ~2!

where Bv is the whistler wave amplitude,u0 is the initial
phase difference of the waves andv and k are the wave
frequency and wave number of the whistler waves, related
the electron whistler mode dispersion relation~neglecting ion
effects!

k2c2

v2 512
vpe

2

v~v2Ve!
, ~3!
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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where vpe is the plasma oscillation frequency andVe

5eB0 /m is the electron gyrofrequency. The correspondi
electric field is obtained from Maxwell’s relation for plan
propagating waves:kEv5v k̂∧Bv . Each of the whistler
mode waves is in resonance with electrons traveling a
parallel to its wave numberk, with resonance velocity,vr ,
given by the resonance condition

v2k•vr5nVe /g, ~4!

wheren is an integer andg5(12v2/c2)21/2 is the relativis-
tic factor, which is not constant since electrons can gain
lose energy through the interaction with the whistler wav

We substitute the fields into the Lorentz Force Law a
derive the following normalized equations of motion~for a
more detailed derivation see the Appendix!:

dv i

dt
51

bv'

g S 12
v i

c2D sinc

1
bv'

g S 11
v i

c2D sin~c1Dc!, ~5!
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dv'

dt
52

b

g Fv i2S 11
v'

2

c2 D Gsinc

2
b

g Fv i1S 11
v'

2

c2 D Gsin~c1Dc!, ~6!

dc

dt
5kv i2v1

1

g
2

b

gv'

~v i21!cosc

2
b

gv'

~v i11!cos~c1Dc!, ~7!

dg

dt
5

bv'

c2 sinc12
bv'

c2 sin~c1Dc!, ~8!

where b5Bv /B0 is the normalized wave amplitude, tim
has been normalized to the electron gyroperiod andv i and
v' are the velocities parallel and perpendicular to the ba
ground field, respectively, normalized to the phase velo
of the waves,vf5v/k. The phase angle,c, is the angle
between the perpendicular velocity and the waves propa
ing in the positivex̂ direction, given in the plane perpendicu
lar to the background field and the phase difference,Dc
5u022kx, is the angle between the two waves. Again,
the geometry, see Fig. 1. For clarity, we refer to Eqs.~5!–~8!
as the full equations of motion.

A. Numerical results

The full equations,~5!–~8!, are solved numerically using
a variable order, variable step size differential equation in
grator~see Refs. 11 and 12!. We present numerical solution
of the full equations using phase space diagrams. These
composed of a sum of stroboscopic surfaces of section~see
Ref. 13! to sample the full electron phase space.

1. Physical parameters used in the numerical
solutions

Electron–whistler interactions are considered atL.6.6
in the Terrestrial magnetosphere~geo-synchronous orbit! due
to the abundance of experimental data and in the Io toru
the Jovian magnetosphere~at about 6 Jovian radii!, a region
of increased wave power and electron energy. Physical
rameters are shown in Table I. Scaling the physical par
eters to intrinsic magnetospheric quantities~see normaliza-
tion in the Appendix! gives normalized parameters for th
Terrestrial and Jovian magnetospheres that are quantitat

TABLE I. Values of the electron gyrofrequency,Ve , wave frequency,v,
plasma frequency,vpe , magnetic-field strength,B0 , and wave amplitude,
Bv , given for both the Terrestrial~see, for example, Refs. 22–24! and
Jovian ~Refs. 16 and 17! magnetospheres. The two planetary magne
spheres have quantitatively similar parameters in the normalized syste

Parameter
Earth

L56.6
Jupiter
L56

Normalized
parameter

Earth
L56.6

Jupiter
L56

Ve ~kHz! 25.3 334 ¯ 1 1
v ~kHz! 0–25.3 0–334 v/Ve 0–1 0–1

vpe ~kHz! 184 2231 vpe /Ve 7.25 7.1
B0 ~nT! 144 1900 ¯ 1 1
Bv ~pT! 400 1 Bv /B0 1023– 1024 1026
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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similar. We therefore consider a generalized magnetosp
with wave frequencies up to the electron gyrofrequen
wave amplitudes of the order of 231026 for quiet times
increasing by up to an order of magnitude during inten
magnetospheric activity and a plasma frequency in the ra
7.1–7.25.

2. Numerical solutions of the full equations

The numerical solutions of the full equations have be
presented in detail for the nonrelativistic case in Ref. 7 a
for the relativistic case in Ref. 8, therefore, only the impo
tant aspects of the solutions are briefly reiterated here.

The initial pitch angle was varied over the range@0°,
180°#, so that the initial parallel velocity covers the rang
@2v r ,v r #, wherev r is the resonance velocity, given by th
resonance condition,~4!, for n51. As expected from~5! to
~8!, and as shown in the following analysis, an order para
eter isbv' , and hence high pitch angles,v'@v i , are more
likely to exhibit stochasticity at the wave amplitudes se
typically in magnetospheres. Distribution functions with
high perpendicular velocity anisotropy~‘‘pancake’’ distribu-
tions! are also typically required by gyroresonant diffusio
mechanisms and in plasma density models to
observations.14 The initial x coordinate~distance along the
background field! was chosen so that the initial phase ang
c(t50) ~angle between the perpendicular velocity and
first whistler waveBv

1 , see Fig. 1! was either 0 orp.
Figures 2~a! and 2~c! show that the degree of stochasti

ity increases with the normalized wave amplitude,b
5Bv /B0 @Figs. 2~b! and 2~d! are explained in Sec. II B#.
Initially almost all trajectories are regular@Fig. 2~a!, b
50.001# and are confined to Kolomogorov–Arnold–Mos
~KAM ! surfaces~near-integrable trajectories with an a
proximate constant of the motion, see e.g., Ref. 13!. Stochas-
tic trajectories appear as the wave amplitude is increased
the regular orbits between the two resonances are prog
sively destroyed. The stochastic region grows and furt
erodes the KAM surfaces close to the resonances@Fig. 2~c!,
b50.005#. The stochastic region is bounded by the first u
trapped~regular! trajectories away from the resonances, th
there is a limit on diffusion in phase space.

In Fig. 3~a! we plot the pitch angle,a in degrees, agains
phase angle,c in radians, with the same parameters as
Fig. 2~c!; i.e.,b50.005,v5Ve/3, E5340 keV. Phase spac
is divided into stochastic and regular regions in a simi
way. Regular trajectories are confined to close to the re
nance pitch angle,a r5arctan(v',0 /v r). Stochastic electrons
can diffuse throughout the stochastic region and unde
larger changes in pitch angle. In Figs. 3~b!–3~d! the pitch
angle is plotted as a function of time for electron trajector
in different regions of phase space. In Fig. 3~b! the electron
is on resonance. The trajectory is regular with little change
pitch angle. In Fig. 3~c! the electron trajectory is on a regula
trajectory, with regular fluctuations in pitch angle. In Fi
3~d! the electron trajectory is in the stochastic region
phase space. Large, irregular changes in pitch angle occ
the electron diffuses through the stochastic region of ph
space.

-
.
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FIG. 2. Stroboscopic surface of section plots forv
5Ve/3, electron energyE5340 keV calculated from
numerical solutions of the full equations of motio
@panels~a! and ~c!# and reduced equation@panels~b!
and ~d!#. For low wave amplitudes@panels~a! and ~b!,
b50.001# all trajectories are regular. At higher wav
amplitudes@panels~c! and~d!, b50.005# stochastic ef-
fects are introduced. Regular trajectories are confined
close to the resonance velocity. The stochastic regio
bounded above and below by the first regular, u
trapped trajectories away from resonance. Stocha
electrons can diffuse throughout the stochastic region
phase space.
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In Figs. 2 and 3, for sufficiently large amplitude whi
tlers, the region of phase space away from the resona
becomes stochastic. Electrons not in resonance with eithe
the waves are not restricted to KAM surfaces and can diff
extensively in the stochastic region of phase space and
possible to estimate a phase space and thus a pitch a
diffusion coefficient for the diffusion of electrons on a st
chastic trajectory. Dynamics in the vicinity of resonance
unchanged.

B. Reduced equations

Since the observed wave amplitude is generally m
less than the background magnetic-field strength equat
~5!–~8! can be approximated in the limitb!1. We assume
small perturbations in the velocities of the order ofb:

v i5v i ,01bv i ,1 , ~9!

v'5v',01bv',1 . ~10!

Then to first order inb we have

dv i ,0

dt
50, ~11!

dv',0

dt
50, ~12!

thusv i ,0 andv',0 are the constant initial parallel and perpe
dicular velocities. Taking Eq.~7! to lowest order and inte
grating once gives

c5~1/g02v!t1kx, ~13!

rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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c1Dc5~1/g02v!t2kx1u0 . ~14!

Since dg/dt;b, the relativistic factor g0

5A12v i ,0
2 /c22v',0

2 /c2 is a constant. To the next order inb:

dv i ,1

dt
51

v',0

g S 12
v i ,0

c2 D sinc

1
v',0

g S 11
v i ,0

c2 D sin~c1Dc!, ~15!

which may be written using~13! and ~14! in the limit v i ,0

!c2 as

d2x

dt2
51

bv',0

g0
sin@~1/g02v!t1kx#

1
bv',0

g0
sin@~1/g02v!t2kx1u0#, ~16!

where v',0 is the initial perpendicular velocity andg0

51/A(12v i ,0
2 /c22v',0

2 /c2). For clarity we shall refer to
Eq. ~16! as the reduced equation. The reduced equation
the form of two coupled pendula, with perturbations prop
tional to bv',0 /g0 .

1. Numerical solutions of the reduced equation

Numerical solutions of the reduced equation are sho
in Figs. 2~b! and 2~d!, for the same parameters as Figs. 2~a!
and 2~c!. These can be seen to yield phase space diagr
that are qualitatively similar to those of the full equation
The reduced equation has the form of two coupled pend
with coordinatesẋ andx @these are related tov i andc since
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 3. In panel ~a! electron pitch
angle in degrees in plotted agains
phase angle. Parameters are as in F
2~c!, i.e., v5Ve/3, b50.005 andE
5340 keV. The phase plots are qual
tatively similar and share many of the
same features. In panels~b!–~d! the
pitch angle is plotted as a function o
time. In panel~b! the electron is on
resonance with little change in pitch
angle. In panel~c! the electron is on a
regular trajectory, with the pitch angle
changing regularly with time. In pane
~d! the electron trajectory is stochasti
with larger, irregular changes in pitch
angle.
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v i5 ẋ and c5kx1(1/g02v)t)#. The amplitude of oscilla-
tion is proportional tobv',0 /g0 . There is a transition to
stochasticity as the amplitude of oscillation increases. Thi
demonstrated in Fig. 2, where the system becomes stoch
asb is increased, fromb50.001@Fig. 2~b!# to b50.005@Fig.
2~d!#.

The reduced equation~16!, therefore, preserves the un
derlying dynamics of the full system of equations@Eq. ~5!–
~8!# but allows us to consider a simpler system which
readily extended to a more realistic case, i.e., wave pack
which we present in the next section.

III. BROAD BAND WHISTLERS

A. Single wave packet

Using the framework established in Sec. II we can e
tend the reduced equation~16! to consider broad band whis
tler wave packets. We express the wave number in term
the wave frequency, using the derivatives of the lineariz
dispersion relation~3!, evaluated at the central wave fre
quency,v0 , and wave number,k0 , of the wave packet

k~v!5k01
dk

dv U
v0 ,k0

~v2v0!

1
d2k

dv2U
v0 ,k0

~v2v0!21¯ . ~17!

Assuming the first derivative is approximately constant o
the width of the wave packet we can writek5k01(v
2v0)/vg , where vg5dv/dk is the group velocity of the
wave, evaluated atv5v0 andk5k0 . We parameterize the
wave frequency, wave number, and wave amplitude in te
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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of an integer,n, and a finite bandwidth,Dv, i.e., vn5v0

1nDv, kn5k01nDk5v01nDv/vg and bn5b. The re-
duced equation for a single wave becomes

d2x

dt2
51

v',0

g0
sin@~1/g02v!t1kx# f n~r !, ~18!

where

f n~r !5bne2 i ~vn2v0!r , ~19!

and we have writtenr 5t2x/vg . We now consider the in-
teraction with an infinite series of monochromatic wav
each centered at wave frequency,vn , with amplitude,bn ,
wherenP@2`,`#. Equation~18! becomes

d2x

dt2
51

v',0

g0
sin@~1/g02v0!t1k0x# f ~r !, ~20!

where

f ~r !5 (
n52`

`

bne2 i ~vn2v0!r . ~21!

Equation~20! is expressed as a Fourier series with coe
cientsbn . From the definition of Fourier transforms~given
in Ref. 15! we obtain

f ~r !5E
2`

`

A~v!e2 i ~v2v0!rdv, ~22!

A~v!5
1

2p E
2`

`

f ~r !ei ~v2v0!rdr. ~23!

Equations~22! and ~23! are now a Fourier transform pair
The functionA(v) represents the wave amplitude per u
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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wave frequency bandwidth. Depending on the form ofA(v)
we can solve Eq.~22! and determine the approximate equ
tion of motion for a single wave packet.

1. Delta function

For monochromatic waves we can writeA(v) in terms
of a d-function centered at frequencyv0

A~v!5b0d~v2v0!. ~24!

Equation~22! is readily integrated to givef (r )5b0 and Eq.
~20! becomes

d2x

dt2
51

b0v',0

g0
sin@~1/g02v0!t1k0x#, ~25!

which is the reduced equation for a single monochrom
whistler.

B. Scattering due to a single wave packet

We can write the function,A(v), as a top hat distribu-
tion, i.e. the wave amplitude is constant over a finite f
quency range and zero everywhere else:

A~v!5H 0 : v,v2Dv/2

A0 : v2Dv/2,v,v1Dv/2

0 : v.v1Dv/2

. ~26!

Solving for f (r ) in Eq. ~22! and substituting into Eq.~20!
gives the following equation of motion:

d2x

dt2
5

v',0

g0
A~x,t !Dv sin@~1/g02v0!t1k0x#, ~27!

whereA(x,t) is given by

A~x,t !5A0

sin@~x2vgt !~Dv/2vg!#

~x2vgt !~Dv/2vg!
. ~28!

If the extrema of the packet wave frequencies and w
numbers are given byv65v06Dv/2 and k65k06Dk/2
then Eq.~27! can be written as:

d2x

dt2
51

A0

~ t2x/vg!

v',0

g0
cos@~1/g02v1!t1k1x#

1
A0

~ t2x/vg!

v',0

g0
cos@~1/g02v2!t1k2x1p#,

~29!

which we compare with the reduced equation for two wa
with frequenciesv1 and v2 @obtained by definingA(v)
5b0d(v2v1)1b0d(v2v2) in Eq. ~22!#:

d2x

dt2
51

b0v',0

g0
sin@~1/g02v1!t1k1x#

1
b0v',0

g0
sin@~1/g02v2!t1k2x#. ~30!

The two equations are qualitatively similar, differing only
the phase difference in the sine and cosine terms~but see
Ref. 7! and the wave amplitudes. Therefore, we conclu
that a single wave packet scatters electrons in phase spa
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

137.205.41.6 On: Tue, 1
-

ic

-

e

s

e
as

if it were composed of a pair of monochromatic whistle
with an enhanced wave amplitude given byA0 /(t2x/vg).
We expect that a single broad band wave packet will resu
the diffusion of stochastic electrons in a similar way to tw
oppositely directed monochromatic whistlers.

1. Gaussian wave amplitude distribution

Instead of a top hat distribution, the function,A(v), can
be written as a Gaussian distribution of widthDv, with mag-
nitude,A0 , and central wave frequency,v0

A~v!5A0e2~v2v0!2/Dv2
. ~31!

SubstitutingA(v) into Eq.~22! and integrating over all wave
frequencies givesf (r ), which is then substituted into Eq
~20! to give the equation of motion for the interaction with
single wave with a Gaussian wave amplitude distribution

d2x

dt2
5

v',0

g0
A~x,t !Dv sin@~1/g02v0!t1k0x#, ~32!

whereA(x,t) is given by

A~x,t !5A0e2~x2vgt !2~Dv/2vg!2
. ~33!

We define the wave density,A0 , as the wave amplitude pe
unit wave frequency bandwidth, with units of Teslas p
Hertz. In the limit where the width of the wave packet ten
to zero, the Gaussian wave packet becomes ad-function.
Hence ~32! yields the reduced equation~16! in the limit
whereDv→0 providedA0 satisfies

lim
Dv→0

A0

Dv
5b0 . ~34!

C. Oppositely directed wave packets

We have shown that the scattering due to a single w
packet can be described as effectively that due to the in
action of two monochromatic whistlers with enhanced wa
amplitudes@see Eq.~29!#. In order to find the maximal de
gree of stochasticity in the system two oppositely direc
wave packets are considered. The equation of motion for
wave packets, with Gaussian wave amplitude distribution
derived in a similar way to Eq.~32!

d2x

dt2
51

v',0

g0
A1~x,t !Dv sin@~1/g02v0!t1k0x#

1
v',0

g0
A2~x,t !Dv sin@~1/g02v0!t2k0x#, ~35!

whereA1(x,t) andA2(x,t) are given by

A1~x,t !5A0e2~x2vgt !2~Dv/2vg!2
, ~36!

A2~x,t !5A0e2~x1vgt !2~Dv/2vg!2
. ~37!

Equation~35! is referred to as the wave packet equation.
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FIG. 4. In panel ~a! the change in
pitch angle in degrees is calculated fo
electrons interacting with a range o
wave packet widths~E580 keV, v
5Ve/10!. For narrow wave packets
the change in pitch angle is maximum
for regular trajectories@zero Lyapunov
exponent in panel~b!# close to reso-
nance~indicated by the vertical black
line!. For wide wave packets the maxi
mum change in pitch angle occurs fo
electrons in the stochastic region o
phase space@positive Lyapunov expo-
nent in panel~b!# away from reso-
nance.
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D. Numerical solutions of wave packet equation

The wave density,A0 , is estimated from the analysis o
Voyager 1 data~see Refs. 16–18! for the Jovian magneto
sphere

A05
b0

Dv i
5A B8

Dv i
, ~38!

whereB8 is the magnetic-field spectral density~in units of
T2/Hz21! and Dv i is the instrument bandwidth at a give
frequency. For all frequencies up to the gyrofrequencyA0

'231023. For the generalized magnetosphere we assu
A0'231023 is a good estimate for undisturbed times a
additionally consider enhancements of up to an order
magnitude for intense magnetospheric events such as
storms.

E. Lyapunov exponent

We quantify the degree of stochasticity in the system
considering Lyapunov exponents of numerical solutions
the wave packet equation~35!, for a given set of parameter
~wave density, wave frequency, and electron energy!. The
Lyapunov exponents are estimated using the method
scribed in Refs. 19 and 20. The Lyapunov exponents
estimated over all phase space and evolved to t
asymptotic limit. The only significant Lyapunov expone
corresponds to spatial perturbations along the backgro
field direction. A positive Lyapunov exponent corresponds
a stochastic trajectory while a zero Lyapunov exponent in
cates the trajectory is regular. For a thorough description
Lyapunov exponents see Ref. 21.
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F. Pitch angle diffusion

It is not possible to produce phase space diagrams for
wave packet equations due to their implicit time dependen
Instead other methods are used to analyze them. In Fig. 4
consider the interaction between 80 keV electrons with
tial pitch angles in the range@0°, 90°# and two oppositely
directed whistler wave packets with wave frequency,v
5Ve/10 and wave packet widths up to the maximum for
given frequency,Dvmax. The maximum packet widthDvmax

is chosen to be as large as possible, providing that the
trema of the wavepacket frequencies given byv65v0

6Dv/2 does not exceed the limits of either zero or the el
tron gyrofrequency. Finally, we consider an enhanced w
density,A510A0 , to represent intense magnetospheric
tivity.

In Fig. 4~a! we consider the change in pitch angle
degrees for increasing wave packet widths. In Fig. 4~b! we
plot the dimensionless~i.e., normalized! Lyapunov exponent
l* 5lVe

21. For narrow bandwidths,Dv/Dvmax51022, the
wave packet equation yields the reduced equation with
wave amplitudes. The maximum change in pitch angle
curs for regular electron trajectories@indicated by zero
Lyapunov exponent in Fig. 4~b!# close to resonance~indi-
cated by the vertical black line ata0550°!. As the wave
packet width increases stochastic effects~in the dynamical
sense! are introduced, as indicated by positive Lyapunov e
ponent in Fig. 4~b!. Significant change in pitch angle occur
due to stochastic interactions, for electrons away from re
nance. As the wave packet width approachesDvmax, diffu-
sion is maximum in the stochastic regions of phase spac

In Fig. 5 we show the regions of phase space where
diffusion of stochastic electrons occurs, as a function of b
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FIG. 5. In panel~a! we show the elec-
tron velocities and wave frequencie
for which a significant change in pitch
angle~in degrees! occurs. Pitch angle
diffusion is maximum for stochastic
electrons @indicated by positive
Lyapunov exponent in panel~b!#. The
stochastic region of phase space o
curs away from resonance~indicated
by the black line in both panels!.
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electron energy and wave frequency. Maximum change
pitch angle~in degrees! occurs away from resonance~indi-
cated by the black lines in both panels! due to stochastic
interactions@positive Lyapunov exponent in Fig. 5~b!#.

IV. DIFFUSION COEFFICIENT

In this section we estimate the pitch angle diffusion c
efficient for the scattering of electrons at resonance in a
dom background of wave fluctuations~see Ref. 1!, DKP ,
compared with the diffusion coefficient for stochastic~in the
dynamical sense! electrons,DL , estimated from the solu
tions of the wave packet equation. The diffusion coefficie
for the gyroresonant interaction with a single whistler
given in Ref. 1~page 13 onwards!

DKP'
~Da!2

2Dt
'S Bv

B0
D 2 Ve

2Dt

2
, ~39!

whereDt'2/Dkv i is the time a particle is in resonance wi
the wave.

For two oppositely directed broad band whistlers, t
Lyapunov exponent estimated here can be used to estim
diffusion coefficient. The separation of two electrons w

TABLE II. Estimated diffusion coefficients, diffusion time scales~for reso-
nant and stochastic diffusion! and bounce time scales for the Terrestr
magnetosphere, for increasing wave density and wave amplitude.

A0 Bv /B0 DKP tKP DL tL tb

1024 231026 231026 53105 0 ` 1
1023 231025 231024 53103 1021 10 1
1022 231024 231022 50 1 1 1
1021 231023 2 0.5 10 1021 1
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Lyapunov exponent,l, in phase space, scales approximat
as;explt, thus an order of magnitude estimate shows t
changes in pitch angle scale approximately as;explt, giv-
ing a characteristic time constant,t, for changes in pitch
angle of by a factor ofe1, of approximatelyt;1/l gyrope-
riods. In Figs. 4 and 5 the maximum Lyapunov exponen
of the order of 1022– 1023. This implies that the changes i
pitch angle occur on time scales of the order of 102– 103

electron gyroperiods. This indicates very short interact
times~less than one second! and hence confirms the validit
of the approximation of constant background magnetic fie

Since changes in pitch angle of the order ofDa5e1

occur on time scales of the order ofDt51/l ~where we
obtain the un-normalized Lyapunov exponent froml
5l* Ve!, the normalized diffusion coefficient can be es
mated as

DL'
~Da!2

2Dt
'

1

2
e2l* Ve . ~40!

Thus the diffusion coefficient scales with the electron gyr
requency and has units of radians2 s21. We estimate the dif-
fusion coefficients for resonant diffusion and stochastic d
fusion in both magnetospheres in Tables II and III, f
broadband (Dv'v) low-frequency (v5Ve/10) waves in-
teracting with 80 keV electrons. Note that the same wa
density corresponds to different wave amplitudes in the
ferent magnetospheres.

In the Terrestrial magnetosphere~Table II! at low wave
densities (A051024) the stochastic diffusion mechanism
not ‘‘switched on,’’ resulting in zero diffusion coefficien
and infinite diffusion time scales. The dominant diffusio
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mechanism is resonant diffusion albeit with diffusion tim
scales of the order of several days (tKP!tb). For larger
wave densities the stochastic diffusion mechanism
switched on resulting in diffusion coefficients initially a
order of magnitude greater than for resonant diffusion. Co
paring the time scale for diffusion by one radian with t
bounce time scale we find that stochastic diffusion is sign
cant for wave densities greater than the quiet time wave d
sity (A>A051023). A similar result is obtained for the Jo
vian magnetosphere~Table III! except that the diffusion
coefficients for resonant diffusion are generally an order
magnitude higher.

V. DISCUSSION

The interaction between relativistic electrons and t
oppositely directed monochromatic whistler waves is s
chastic~in the dynamical sense! for sufficiently large wave
amplitudes. Stochastic electrons can diffuse throughout
stochastic region resulting in electron diffusion in pha
space. Regular orbits still exist close to resonance, he
their dynamics is unchanged from that found for a sin
monochromatic wave.

An analytical description of wave packets was derived
consider broadband whistler waves. Stochastic trajecto
were shown to exist and it was found that a single bro
band whistler wave packet scatters electrons as if it w
effectively composed of two oppositely directed monoch
matic whistlers with enhanced wave amplitude. Diffusion
stochastic electrons occurred for low wave amplitudes c
sistent with the Terrestrial and Jovian magnetospheres.

The degree of stochasticity in the system was quanti
by considering the Lyapunov exponent of solutions of
wave packet equation. Significant pitch angle diffusion o
curs for stochastic electrons, whose trajectories have pos
Lyapunov exponent. Given the Lyapunov exponent one
obtain an estimate for the pitch angle diffusion coefficie
this is found to be significant during conditions of enhanc
magnetospheric activity.
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TABLE III. Estimated diffusion coefficients, diffusion time scales~for reso-
nant and stochastic diffusion! and bounce time scales for the Jovian ma
netosphere, for increasing wave density and wave amplitude.

A0 Bv /B0 DKP tKP DL tL tb

1024 1027 1028 108 0 ` 10
1023 1026 1026 106 1 1 10
1022 1025 1024 104 10 1021 10
1021 1024 1022 102 100 1022 10
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APPENDIX: DERIVATION OF THE FULL EQUATION
OF MOTION

The wave field is described by a vector potential

Av51
Bv

k
~cos~kx2vt !2cos~2kx2vt1u0!!ŷ

2
Bv

k
~sin~kx2vt !2sin~2kx2vt1u0!!ẑ, ~A1!

giving magnetic (Bv5¹3Av) and electric (Ev

52dAv /dt) wave fields of the form

Bv
151Bv cos~kx2vt !ŷ2Bv sin~kx2vt !ẑ, ~A2!

Bv
251Bv cos~2kx2vt1u0!ŷ

2Bv sin~2kx2vt1u0!ẑ, ~A3!

Ev
152Bv

v

k
sin~kx2vt !ŷ1Bv

v

k
cos~kx2vt !ẑ, ~A4!

Ev
251Bv

v

k
sin~2kx2vt1u0!ŷ

1Bv

v

k
cos~2kx2vt1u0!ẑ. ~A5!

The velocity is written in terms of its components paral
and perpendicular to the background magnetic field;v5v ix̂
1v' cosfŷ1v' sinfẑ, wheref5f(t) is the phase of the
perpendicular velocity with respect to theŷ axis. The phase
angle c5kx2vt1f is defined as the angle between t
perpendicular velocity andBv

1 and the phase differenceDc
5u022kx as the angle between the two waves.

Substituting into the relativistic Lorentz Force Law give
the following equations of motion~in the frame in which the
waves have phase speeds,vf

656v/k!:

dv i

dt
51

eBvv'

gm S 12
vv i

kc2 D sinc

1
eBvv'

gm S 11
vv i

kc2 D sin~c1Dc!, ~A6!

dv'

dt
52

eBv

gm Fv i2
v

k S 11
v'

2

c2 D Gsinc

2
eBv

gm Fv i1
v

k S 11
v'

2

c2 D Gsin~c1Dc!, ~A7!

dc

dt
5kv i2v1

ve

g
2

eBv

gmv'
S v i2

v

k D cosc

2
eBv

gmv'
S v i1

v

k D cos~c1Dc!, ~A8!

dg

dt
5

eBvvv'

kmc2 sinc2
eBvvv'

kmc2 sin~c1Dc!. ~A9!

The model is simplified by making the following normaliza
tions: b* 5Bv /B0 , t* 5tVe , x* 5xVe /vf , v* 5v/vf ,
c* 5c/vf , g* 5(12v* 2/c* 2)21/2, v* 5v/Ve , and k*
5kvf /Ve where vf5v/k is the phase velocity, which in
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the normalized system givesvf* 5v* /k* 51. Substituting
into the above equations and dropping the superscripts g
the normalized equations

dv i

dt
51

bv'

g S 12
v i

c2D sinc

1
bv'

g S 11
v i

c2D sin~c1Dc!, ~A10!

dv'

dt
52

b

g Fv i2S 11
v'

2

c2 D Gsinc

2
b

g Fv i1S 11
v'

2

c2 D Gsin~c1Dc!, ~A11!

dc

dt
5kv i2v1

1

g
2

b

gv'

~v i21!cosc

2
b

gv'

~v i11!cos~c1Dc!, ~A12!

dg

dt
5

bv'

c2 sinc2
bv'

c2 sin~c1Dc!. ~A13!

1C. F. Kennel and H. E. Petschek, J. Geophys. Res.71, 1 ~1966!.
2L. R. Lyons, R. M. Thorne, and C. F. Kennel, J. Plasma Phys.77, 3455
~1972!.

3R. Gendrin, Rev. Geophys.19, 171 ~1981!.
4J. Faith, S. Kuo, and J. Huang, J. Geophys. Res.102, 2233~1997!.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

137.205.41.6 On: Tue, 1
es

5U. S. Inan, T. F. Bell, and R. A. Helliwell, J. Geophys. Res.,@Space Phys.#
83, 3235~1978!.

6R. A. Helliwell and J. P. Katsufrakis, J. Geophys. Res.79, 2571~1974!.
7K. S. Matsoukis, S. C. Chapman, and G. Rowlands, Geophys. Res.
25, 265 ~1998!.

8W. J. Wykes, S. C. Chapman, and G. Rowlands, Planet. Space Sci.49, 395
~2001!.

9P. E. Devine and S. C. Chapman, Physica D95, 35 ~1996!.
10L. R. Lyons and R. M. Thorne, Planet. Space Sci.18, 1753~1970!.
11L. F. Shampine and M. K. Gordon,Computer Solution of Ordinary Dif-

ferential Equations: The Initial Value Problem~Freeman, New York,
1975!.

12S. C. Chapman and N. W. Watkins, J. Geophys. Res.98, 165 ~1993!.
13M. Tabor,Chaos and Integrability in Nonlinear Dynamics—An Introdu

tion ~Wiley, Chichester, 1989!.
14F. J. Crary, F. Bagenal, J. A. Ansher, D. A. Gurnett, and W. S. Kurth

Geophys. Res.101, 2699~1996!.
15T. L. Chow,Mathematics Methods for Physicists: A Concise Introducti

~Cambridge University Press, Cambridge, 2000!.
16F. L. Scarf, F. V. Coroniti, D. A. Gurnett, and W. S. Kurth, Geophys. R

Lett. 6, 653 ~1979!.
17W. S. Kurth, B. D. Strayer, D. A. Gurnett, and F. L. Scarf, Icarus61, 497

~1985!.
18Y. Hobara, S. Kanemaru, and M. Hayakawa, J. Geophys. Res.102, 7115

~1997!.
19G. Benettin, L. Galgani, and J. M. Strelcyn, Physica A14, 2338~1976!.
20T. S. Parker and L. O. Chua,Practical Numerical Algorithms for Chaotic

Systems~Springer-Verlag, New York, 1989!.
21R. C. Hilborn,Chaos and Nonlinear Dynamics~Oxford University Press,

Oxford, 1994!.
22D. Summers and C. Ma, J. Geophys. Res.105, 2625~2000!.
23M. Parrot and C. A. Gaye, Geophys. Res. Lett.21, 2463~1994!.
24I. Nagano, S. Yagitani, H. Kojima, and H. Matsumoto, J. Geomagn. G

electr.48, 299 ~1996!.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

7 Dec 2013 17:48:24


