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MAXWELLS EQUATIONS 

 

GAUSS’ LAW 

 

(i) ELECTROSTATICS 
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S

SD    or     D  

 

D  Electric Displacement [Cm
-2
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(i) MAGNETOSTATICS 

 

0 
S

dSB     or    0  B  

 

B  Magnetic Flux Density [Tesla] 

 

AMPERES CIRCUITAL LAW 
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I   or   JH   

 

H  Magnetic Field [Am
-1

] 

J  Current density [Am
-2

] 



FARADAY LAW OF ELECTROMAGNETIC INDUCTION 

 

Oestred showed that an electrical current produces a magnetic field (1820). 

1831  FARADAY found that a current was induced in a circuit when a 

magnetic field that links the circuit changes. 

 

 

The EMF induced in a 

circuit (given by line l) is 

t
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
  (minus sign 

comes from Lenz’s Law). 

 

 

 

 
S

dSB  (Any surface whose boundary is the line l) 

 

 

  MAGNETIC FLUX linked by the circuit [Tesla m
2
 or Weber, Wb] 

 

The induced EMF V  is equal the line integral of the induced E  [Vm
-1

] electric 

field around the coil. 
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Using Stokes Theorem SElE dd   
Sl
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CONSTITUTIVE RELATIONS 

 

Ohms Law IRV   
A

l
R R  R Resistivity [m] 

R

C



1

  C Conductivity [ 1 m
-1

] 
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Or in vector form (Homogeneous, isotropic media) EJ C  

 

So we now have: 

 

PED  0   ED r0  

 

 MHB  0   HB r0  

 

EJ C  



BOUNDARY CONDITIONS IN MAGNETISM 
 

We will consider boundaries between linear, isotropic and homogeneous media. 
 

 THE TANGENTIAL COMPONENT OF H  IS CONTINUOUS 

ACROSS A BOUNDARY PROVIDED THAT THERE IS NO 
SURFACE CURRENT ON THE BOUNDARY. 

 

 THE NORMAL COMPONENT OF B  IS CONTINUOUS ACROSS A 

BOUNDARY. 

 
 

ANY SOLUTION TO AN MAGNETOSTATICS PROBLEM MUST 

SATISFY THE BOUNDARY CONDITIONS. 
 

BOUNDARY CONDITIONS IN ELECTROSTATICS 
 

 THE NORMAL COMPONENT OF D  IS CONTINUOUS ACROSS 

A BOUNDARY PROVIDED THAT NO FREE CHARGE IS 
PRESENT ON THE BOUNDARY. 

 

 THE TANGENTIAL COMPONENT OF E  IS CONTINUOUS 

ACROSS A BOUNDARY. 
 
 

ANY SOLUTION TO AN ELECTROSTATICS PROBLEM MUST 

SATISFY THE BOUNDARY CONDITIONS. 
 



POWER DISSIPATION AND JOULE HEATING 

 

Power is dissipated in the resistance R causing “Joule Heating”. 
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v

EJ W   [Now works if E  and J  in different directions 

and/or vary with position] 

 



THE EQUATION OF CONTINUITY 

 

Imagine a volume of space v  that at a given time 

contains a total charge Q , where 

 

 v
dvQ  

If charge can flow out (or into) the volume then there 

is a current. 
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[Think about the sign; charge decreasing implies 

current flowing out of surface and note the surface is 

closed] 

 

Gauss’ Theorem states   
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SJJ ddv
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DISPLACEMENT CURRENT 

 

In magnetostatics we found that I
l

  lH d  and hence JH    

 

But 0 H  always (!) and 0  J  always! 
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RESOLUTION OF THE PROBLEM 
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Now we can see how we may amend Amperes Law 
t
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D
 Displacement current density [Am

-2
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Total effective current 
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
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D
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J  Conduction current density [Am
-2
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dSJI    Conduction Current 

 

 






S
dS

D

t
I  Displacement Current (not a real current) 

 
S

dSJI    Conduction Current 

 

 






S
dS

D

t
I  Displacement Current (not a real current) 



AMPERE-MAXWELL LAW IN A DIELECTRIC WITH A FINTE  

CONDUCTIVITY 
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
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D
JH   EJ C   PED  0  
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EH 0  

 

Conduction current  

(Motion of free charges  

through the medium) 

Not related to a motion of 

any sort of charge  

Motion of the bound polarisation charges  

in the vicinity of its nucleus. 

 

In fact we have found that for time varying fields in vacuum ( 0C , 0P )  

t


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E
H 0  

We see a fundamental difference between dynamic and static electrical and 

magnetic fields. 

 



STATICS: 

  

E  and H  are completely independent of each other. 

 

DYNAMICS (examples in vacuum): 

 

When 
t

E
 is finite must also have a H  field where  

t



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H
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E
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In dynamics E  and H  are coupled (cannot have one without the other). 

 



MAXWELLS EQUATIONS 

 

Gauss’ Law in electricity and magnetism 

 

  D      [M1] 

 

0  B      [M2] 

 

Ampere-Maxwell Law 
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Faraday Law 
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LINEAR AND ISOTROPIC MEDIA LINEAR, ISOTROPIC AND 

HOMOGENEOUS MEDIA 

 

ED r0   HB r0      EJ C  

 
r  and r  independent of position 

0


   Er  

 
0



r

  E  

0  Hr  

 

0  H  

t
rC





E
EH  0  

 

t
rC





E
EH  0  

t
r





H
E 0  

 

t
r





H
E 0  

 

 

Ampere-Maxwell Law 
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GENERAL WAVE EQUATION 
 

Consider a medium in which 0 , and that is LINEAR, ISOTROPIC and 

HOMOGENEOUS ( r  and r  constants, independent of position)  

ED r0   HB r0      EJ C  
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TEM 

Guided EM Waves 
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Rectangular hollow waveguide with field patterns for a propagating TE10 mode. Solid 
lines indicate electric field and broken lines magnetic field; ×'s indicate energy E 
pointing down; solid circles indicate E pointing up. (After MIT Radar School Staff, 
Principles of Radar, 1952) 
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Magnetic Resonance Spectrometers 



Why do we use resonators? 

A simple Optical Absorption Spectrometer 

Cavity, Loop Gap, Dielectric, Coil…… 



Inside and EPR spectrometer 



Automatic Frequency Control  



Magnet Field Control 



Field Modulation 
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The transformer is based on two principles: first, that an electric current can produce 
a magnetic field (electromagnetism), and, second that a changing magnetic field 
within a coil of wire induces a voltage across the ends of the coil (electromagnetic 
induction). Changing the current in the primary coil changes the magnetic flux that is 
developed. The changing magnetic flux induces a voltage in the secondary coil. 

Induction law 
The voltage induced across the secondary coil 
may be calculated from Faraday's law of 
induction, which states that: 

S S

d
V N
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
 

Since the same magnetic flux passes through 
both the primary and secondary coils in an 
ideal transformer, the instantaneous voltage 
across the primary winding equals: 
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If the secondary coil is attached to a load that allows current to flow, electrical power is 
transmitted from the primary circuit to the secondary circuit. Ideally, the transformer is 
perfectly efficient. All the incoming energy is transformed from the primary circuit to the 
magnetic field and into the secondary circuit. If this condition is met, the input electric 
power must equal the output power: 

IN P P OUT S SP I V P I V  

S S P

P P S

V N I

V N I
 

giving the ideal transformer equation 
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In general VC(t), VR(t), and VL(t) are all out of phase with the 
applied voltage. 
 
I(t) and VR(t) are in phase in a series RLC circuit. 
 
The amplitude of VC, VR, and VL depend on . 
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Q = 2 (max energy stored)/(energy lost) per cycle 

The maximum energy stored in the inductor is 

There is no energy stored in the capacitor at this instant because I and VC are 90 out of phase. 
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The energy lost in one cycle is (Power)x(time for cycle) 

Q (quality factor) of a circuit: Determines how well the RLC circuit stores energy 





The coupling coefficient conveniently defines three conditions.  
 
= 1 corresponds to a critically coupled or “matched” resonator. This corresponds to 
maximum power transfer from the microwave source to the cavity.  
Maximum EPR sensitivity is achieved in this condition.  

The VSWR (Voltage Standing Wave Ratio) is equal to 1, which corresponds to a 
reflection coefficient , of zero. This means when we are matched, no microwaves are 
reflected from the cavity. It also means that the loaded Q is half the unloaded Q.  

 < 1 corresponds to an undercoupled cavity with VSWR = 1/  and  > 0. This means 
that microwaves are reflected from the cavity. The Q is somewhat higher than for a 
matched cavity.  
 
 > 1 corresponds to an overcoupled cavity with VSWR =  and  < 0. Microwaves are 
reflected from the cavity with a 180 degree phase shift. The Q is lower than for a 
matched cavity. 
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ADVANTAGES 
• Large Filling Factor 
• Good S/N for small samples 
• Reasonable physical size at low frequencies 
• Large B1 per square root Watt 
• Fairly uniform B1 over the sample 
• Easy to achieve low Q for large bandwidth and short ring-down time 
• LGR’s from ~100 MHz to 94 GHz 

DISADVANTAGES 
• Lower Q than cavity 
• Small gaps may lead to arcing at high 

powers 
• Require careful sample positioning 
• LGR heating if thermal mass small 
• Large frequency shift as coupling changed. 



Dielectric objects can function as resonators.  
 
A disk-shaped dielectric resonator (DR) with a 
vertical hole up the middle operating in the 
transverse-electric TE01 mode will have a 
vertically directed microwave magnetic field 
extending through its centre where the 
sample is located and will confine the electric 
field, mostly within the 
dielectric. 
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