
A Recursive Algorithm to find the
Determinant

CIS008-2 Logic and Foundations of Mathematics

David Goodwin
david.goodwin@perisic.com

11:00, Tuesday 6th March 2012

Forming a recursive algorithm for a Determinant Cofactors

Outline

1 Forming a recursive algorithm for a
Determinant

2 Cofactors

Forming a recursive algorithm for a Determinant Cofactors

Outline

1 Forming a recursive algorithm for a
Determinant

2 Cofactors

Forming a recursive algorithm for a Determinant Cofactors

Forming a recursive algorithm for a
Determinant

• Finding the determinant involves making smaller and smaller minors, until
we find 2 × 2.

• 2 × 2 can be solved directly:∣∣∣∣a b
c d

∣∣∣∣ = ad − bc

• we start by defining the determinant as a function that will solve for a
2 × 2 case:

function D = Det algo (A)
%make sure not to use a function name that may
%already be a matlab function, like det
%predefine D for efficiency
D = zeros(size(A,1)−1,size(A,2)−1);
if size(A,1)˜=size(A,2)

message='matrix not square; no proper determinant';
else

if max(size(D))==2
D = (A(1,1)*A(2,2))−(A(1,2)*A(2,1));

end
end

Forming a recursive algorithm for a Determinant Cofactors

Forming a recursive algorithm for a
Determinant

• The function on the previous page should find the determinant for a 2 × 2
matrix

• Also test if the matrix is square, to avoid improper input errors.

• The next stage would be to recursively use the Det algo function to find
the determinant for a 3 × 3 matrix.

• The algorithm would not enter the inner if statement since it is not a
2 × 2 matrix, so we need an else condition to account for when the matrix
is not 2 × 2.

• Although we will account here for all cases where the matrix is not 2 × 2,
we will only, initially, test matrices that are 3 × 3.

function D = Det algo (A)
%make sure not to use a function name that may
%already be a matlab function, like det
if size(A,1)˜=size(A,2)

message='matrix not square; no proper determinant';
else

if max(size(A))==2
D = (A(1,1)*A(2,2))−(A(1,2)*A(2,1));

else
for i=1:size(A,1)

D temp=A;
D temp(1,:)=[];
D temp(:,i)=[];
if i==1
D=(A(1,i)*((−1)ˆ(i+1))*Det algo(D temp));

else
D=D+(A(1,i)*((−1)ˆ(i+1))*Det algo(D temp));

end
end

end
end

Forming a recursive algorithm for a Determinant Cofactors

Forming a recursive algorithm for a
Determinant

• We then test the function for a 3 × 3 matrix.

• It is useful here, keeping in mind we are still debugging, to explicity
output the result of sections of our calculation. Debugging tools are
good, but they generally do not show you the numbers calculated at each
iteration of the loops. Also, it is a good idea to section and large
calculations into smaller chunks.

• To output the result of a calculation, simple remove the output
suppression.

function D = Det algo (A)
%make sure not to use a function name that may
%already be a matlab function, like det

if size(A,1)˜=size(A,2)
message='matrix not square; no proper determinant';

else
if max(size(A))==2
D = (A(1,1)*A(2,2))−(A(1,2)*A(2,1));

else
for i=1:size(A,1)

D temp=A;
D temp(1,:)=[];
D temp(:,i)=[];
o=A(1,i)
o=((−1)ˆ(i+1))
o=Det algo(D temp)
o=(A(1,i)*((−1)ˆ(i+1))*Det algo(D temp))
if i==1
D=(A(1,i)*((−1)ˆ(i+1))*Det algo(D temp));

else
D=D+(A(1,i)*((−1)ˆ(i+1))*Det algo(D temp));

end
end

end
end

Forming a recursive algorithm for a Determinant Cofactors

Forming a recursive algorithm for a
Determinant

• If we test for a 3 × 3 case and all works well, we test for a 4 × 4 case.

• If all works, we may assume that the function will work for any size
matrix, since there are no new types of operation for these increasing
sizes, just added recursive elements. The 4 × 4 case was a good test for
the recursive elements of the algorithm, so no more is needed..

• The next task would be to create a new function that uses the Det algo
function to find a matrix of cofactors. This would be useful in finding an
inverse of a matrix.

• Another task may be to modify the Det algo function so that it may be
used to find eigenvalues of a matrix, where we are not just looking for the
determinant as a number, but one that includes symbolic elements. Her a
bit of leteral thinking is needed to find the coefficients of the
characteristic polynomial produced when finding the eigenvalues. There
are two main approaches to algorithm writing, top-down and bottom-up;
the top-down approach may be useful here.

Forming a recursive algorithm for a Determinant Cofactors

Outline

1 Forming a recursive algorithm for a
Determinant

2 Cofactors

function C = Cofact algo (A)

for i=1:size(A,1)
for j=1:size(A,2)
C temp=A;
C temp(:,j)= [];
C temp(i,:)= [];
C(i,j)=((−1)ˆ(i+j))*(Det algo(C temp));
end
end

	Forming a recursive algorithm for a Determinant
	Cofactors

