Test of Probe PH MASDVT1000S6 BL1.3 N/C/H NO_I/E, H170062/0001

1 Introduction

The probe was tested for achievable pulse width/RF field strength, resolution/line shape, signal-to-noise, stability during decoupling and CP, and double CP efficiency and stability. The tests were performed on 18th of August, 2020. This report was finished on the 13th of October, 2020.

2 Test Summary

2.1 Probe Performance

	RF fie	ld sti	rength and power requirements	
Irradiation type	pulse width	/μs	RF field strength/kHz	Power (TopSpin) / W
¹ H decoupling		1.8	140	45
¹³ C CP		3.0	83	40
¹⁵ N CP		3.5	70	82
			Paralistics.	
	12		Resolution	
nucleus	line width	Sample/parameters		comment
¹³ C	< 2.0 Hz	A	damantane, ns=16, d1=10s	40 kHz spinning, 20 kHz SPINAL64 decoupling
			Signal to noise	_
nucleus	S/N	_	ample/parameters	comment
¹³ C	94		lycine (¹³ C and ¹⁵ N in natural	
			oundance), 10 kHz spinning,	
		ns	s=64, aq=14 ms, 140 kHz	
		_	ecoupling	
¹⁵ N	15		lycine (¹³ C and ¹⁵ N in natural	
		ab	oundance), 10 kHz spinning,	
		ns	s=64, aq=29ms, 140 kHz	
		de	ecoupling	
-			CD stability	
	111	-	CP stability	
nucleus	result	_	imple/parameters	comment
¹⁵ N	ok	- 1	ycine (13C and 15N in natural	test duration:
			oundance), ns=4, aq=29 ms,	1h 25 min
			10 kHz decoupling, d1=5s	
			66 spectra with 4scans each at 5s	
			cycle delay and 5.04 s repetition	
		tir	ne	

			wp				
Double CP efficiency							
sample type	efficiency	Sample/ parameters	comment				
Full rotor	52%	Glycine-1,2-13C ₂ -15N, full spinner, 10 kHz	¹³ C at -1 sideband				
		spinning,	condition in ¹⁵ N- ¹³ C,				
		¹⁵ N- ¹³ C contact: 16 ms, 90%t to 100%	contact parameters				
		ramped ¹³ C pulse centered at 25 kHz,	optimized on sample				
		square ¹⁵ N pulse at 35 kHz,					
		¹ H- ¹⁵ N contact: 3 ms 50% to 100% ramped					
		¹ H pulse centered at 80 kHz, square ¹⁵ N					
		pulse at 70 kHz, 140 kHz decoupling					
44%		Glycine-1,2- ¹³ C ₂₋ ¹⁵ N, full spinner, 10 kHz	¹³ C at +1 sideband				
		spinning,	condition in ¹⁵ N- ¹³ C,				
		¹⁵ N- ¹³ C contact: 20 ms, 90%t to 100%	contact parameters				
		ramped ¹³ C pulse centered at 45 kHz,	optimized on sample				
		square ¹⁵ N pulse at 35 kHz,					
		¹ H- ¹⁵ N contact: 3 ms 50% to 100% ramped					
		¹ H pulse centered at 80 kHz, square ¹⁵ N					
		pulse at 70 kHz, 140 kHz decoupling					
Double CP stability							
nucleus	result	sample/parameters	comment				
¹ H, ¹⁵ N, ¹³ C	ok	Glycine-1,2- ¹³ C ₂ - ¹⁵ N, full spinner, 10 kHz	¹³ C at +2 sideband				
		spinning,	condition				
		¹⁵ N- ¹³ C contact: 20 ms, 90% to 100% ramped	total experiment time:				
		¹³ C pulse centered at 55 kHz, square ¹⁵ N	5 h 40 min				
		pulse at 32 kHz,					
		$^{1}\text{H-}^{15}\text{N}$ contact: 3 ms, 50% to 100% ramped					
		¹ H pulse centered at 80 kHz, square ¹⁵ N					
		pulse at 70 kHz, 140 kHz decoupling					
		512 spectra with 8 scans each at 5 s recycle					
		delay, total number of scans: 4096					

Notes:

- 1) The ¹⁵N signal to noise test was run at 10 kHz spinning as defined for a 1 GHz system. As the ¹⁵N figure is rather low compared to the results obtained for comparable 800 MHz probes the test were run at 8 kHz spinning. An S/N of 17 was found (using optimized 50% to 100% or 70% to 100% ramped ¹H contact pulses, respectively). This figure is not significantly different from the figure of 15 determined at 10 kHz spinning.
- 2) All double CP efficiencies are determined by comparing the intensity of the C_{α} signal in the double cross polarization experiment (${}^{1}H \rightarrow {}^{15}N \rightarrow {}^{13}C$) to the intensity in the single cross polarization experiment (${}^{1}H \rightarrow {}^{13}C$) for the same sample. The single cross polarization experiment was optimized using the standard 50% to 100% ramp shaped ${}^{1}H$ contact.
- 3) The double CP stability test was run at the +2 sideband condition (which is not the most efficient one) for ¹³C deliberately to stress the probe.

3 Experimental

3.1 Spectrometer setup

Instrument: Avance Neo 1000 SB

TopSpin: 4.0.9 (of 2020-05-25 14:09:09)

3.2 Standard Temperature settings

- T(set)= 20°C
- VT=500 l/h
- p(bearing) and p(drive) as set by the MAS III unit (rotation profile: Generic 0.7 mm)
- Regulation on TC2 (probe has a single thermocouple, only)
- Chiller=BCU II, power = strong

3.3 External Filters

Filters were used on all probe channels throughout:

¹⁵N channel: ¹⁵N LRP filter ¹³C channel: ¹³C-²³Na BP filter

¹H channel: ¹H BP filter

3.4 Double Cross Polarization Experiment

This experiment was optimized using a 90% to 100% ramped 13 C contact pulse for the $^{15}N\rightarrow^{13}$ C contact, no other shapes (square, tangential) were tried.

The determined maximum efficiencies (-1, +1, and +2 sideband conditions) are good. Long contact pulses were possible indicating that the probe's tuning and matching are stable during the pulses.

4 Figures

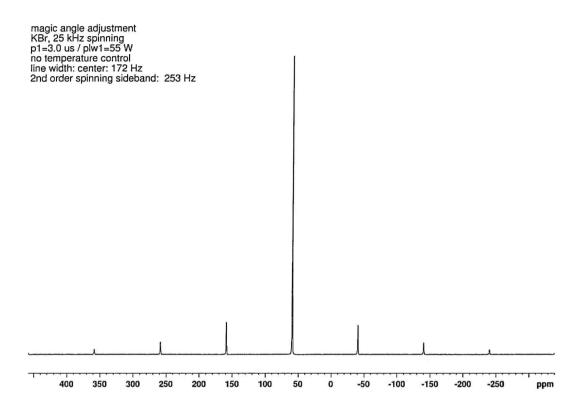


Figure 1: Magic angle adjustment: ⁷⁹Br spectrum of KBr at 25 kHz spinning.

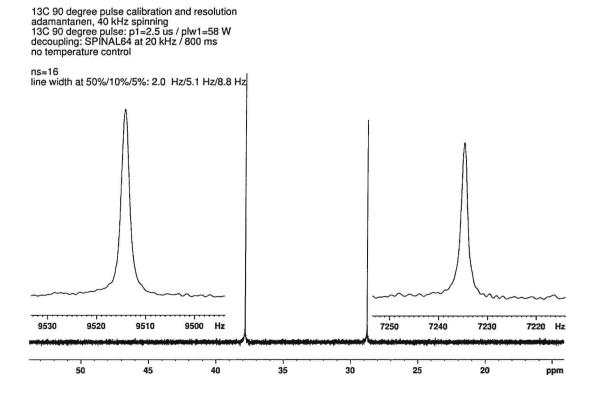


Figure 2: ¹³C resolution test: ¹³C spectrum (direct excitation) of adamantane at 40 kHz spinning.

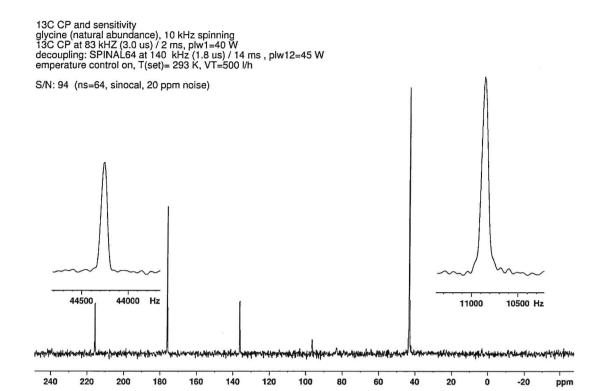


Figure 3: ¹³C sensitivity (S/N) test: ¹³C spectrum of glycine (natural abundance) at 10 kHz spinning.

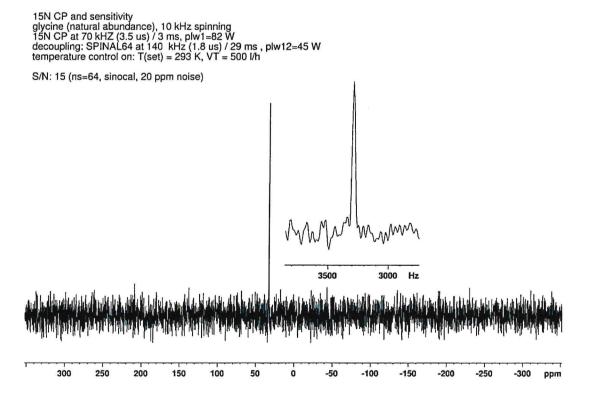


Figure 4: ¹⁵N sensitivity (S/N) test: ¹⁵N spectrum of glycine (natural abundance) at 10 kHz spinning.

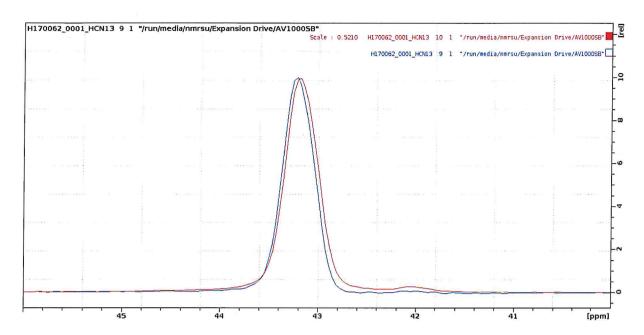


Figure 5: ${}^{1}H^{-15}N^{-13}C$ double CP efficiency test: Glycine-1,2- ${}^{13}C_{2}^{-15}N$ at 10 kHz spinning. Blue line: double CP experiment at the -1 side band CP condition for ${}^{13}C$, red line: standard CP experiment scaled by down by a factor of 0.52

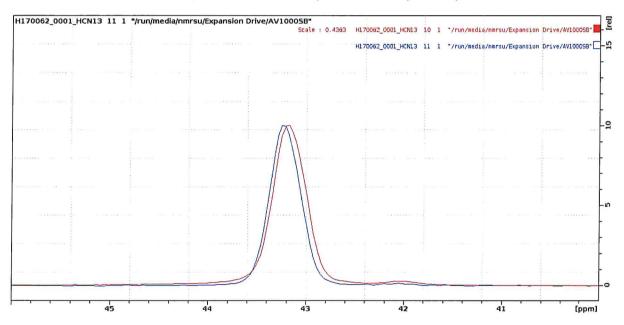


Figure 6: ${}^{1}H^{-15}N^{-13}C$ double CP efficiency test: Glycine-1,2- ${}^{13}C_{2}^{-15}N$ at 10 kHz spinning. Blue line: double CP experiment at the +1 side band CP condition for ${}^{13}C$, red line: standard CP experiment scaled by down by a factor of 0.44.

1H->15N->13C double CP stability test glycine-1,2-13C2-15N, 10 kHz spirning 1H->15N CP at 70 kHz for 15N, 50% to 100% ramped 1H contact pulse, 3 ms 15N->13C CP at 35 kHz for 15N and 55 kHz for 13C, square 15N contact pulse, 90% to 100% ramped 13C contact pulse, 20 ms temperature control on, T(set)=293 K, VT=500 l/h

512 spectra with 8 scans each at 5 s recycle delay

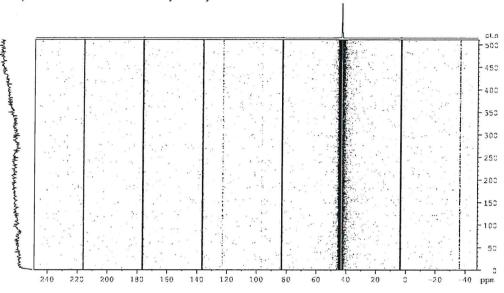


Figure 7: ¹H-¹⁵N-¹³C double CP stability test for glycine-1,2-¹³C₂-¹⁵N spinning at 10 kHz: 512 spectra with 8 scans each at 5 s recycle delay. Column projection (left) shows amplitude stability of CP signal, row projection (top) shows maximum noise compared to maximum signal.

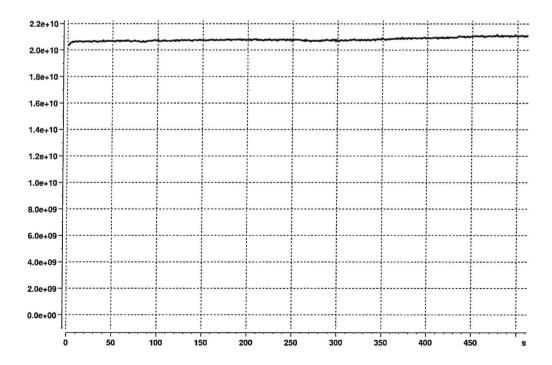


Figure 8: Expanded display of the column projection in Figure 7: signal amplitude is stable over time and the noise stays constant.

15N CP stability test glycine (natural abundance), 10 kHz spinning 15N CP at 70 kHZ (3.5 us) / 3 ms, plw1=82 W decoupling: SPINAL64 at 140 kHz (1.8 us) / 29 ms , plw12=45 W temperature control on: T(set) = 293 K, VT = 500 l/h

256 spectra with 4 scans each, 5.04 s repetiion time

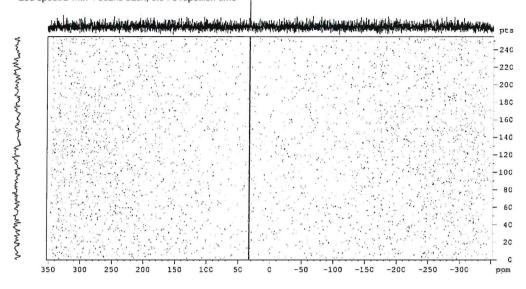


Figure 9: ¹⁵N CP stability test run on glycine (natural abundance) at 10 kHz spinning: 256 spectra with 4 scans each at 5 s recycle delay and 5.04 s repetition time. Column projection (left) shows amplitude stability of CP signal, row projection (top) shows maximum noise compared to maximum signal.

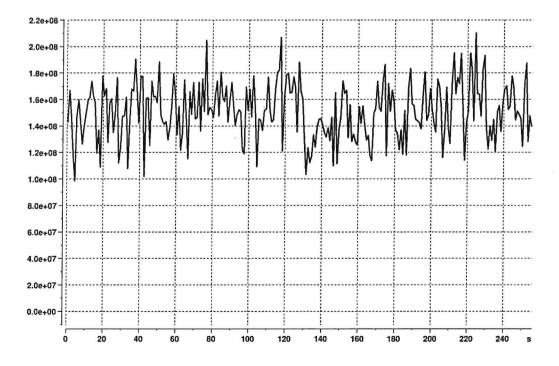


Figure 10: Expanded display of the column projection in Figure 9: signal amplitude is stable over time and the noise level stays constant.