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Abstract

For photovoltaics, switching the p‐type dopant in silicon wafers from boron to indium

may be advantageous as boron plays an important role in the light‐induced degrada-

tion mechanism.With the continuous Czochralski crystal growth process it is now pos-

sible to produce indium doped silicon substrates with the required doping levels for

solar cells. This study aims to understand factors controlling the minority carrier life-

time in such substrates with a view to enabling the quantification of the possible ben-

efits of indium doped material. Experiments are performed using temperature‐

dependent Hall effect and injection‐dependent carrier lifetime measurements. The

recombination rate is found to vary linearly with the concentration of un‐ionized

indium which exists in the sample at room temperature due to indium's relatively deep

acceptor level at 0.15 eV from the valence band. Lifetime in indium doped silicon is

also shown to degrade rapidly under illumination, but to a level substantially higher

than in equivalent boron doped silicon samples. A window of opportunity exists in

which the minority carrier lifetime in degraded indium doped silicon is higher than

the equivalent boron doped silicon, indicating it may be suitable as the base material

for front contact photovoltaic cells.
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1 | INTRODUCTION

The vast majority of photovoltaic (PV) solar cells are made from

boron doped p‐type silicon substrates. Such substrates are poten-

tially susceptible to light‐induced degradation (LID) due to the forma-

tion of a recombination centre containing boron and oxygen,1 which

can result in cell conversion efficiency reductions of ~10% (relative).

Oxygen in silicon usually originates from the silica crucibles

which contain the melt. Whilst low oxygen concentrations can be
- - - - - - - - - - - - - - - - - - - - - - - - - -
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achieved by modifying the Czochralski process with magnetic fields

(~3 × 1017 cm−3)2 or novel processes such as NeoGrowth

(~4 × 1017 cm−3)3, the production of such crystals is relatively

expensive or immature. Float‐zone silicon (FZ‐Si) has lower oxygen

concentrations than Cz‐Si or mc‐Si (usually <5 × 1015 cm−3) but

comes with other lifetime stability issues probably due to complexes

associated with intrinsic point defects4 and is also much more

expensive. Using n‐type substrates is generally beneficial from the

perspective of bulk lifetime,5 but this requires modifications to
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standard p‐type cell processes such as diffusions, electrical contact

schemes, and surface passivation.

Creation of p‐type substrates by doping silicon with group III ele-

ments other than boron (such as aluminium, gallium, or indium) may

provide a route to reducing or eliminating LID. Aluminium is unlikely

to be a viable bulk dopant, as aluminium‐oxygen complexes exhibit

strong recombination activity.6 Gallium doped silicon exhibits stable

high lifetimes upon illumination7,8 so could be a viable alternative.

Indium doped silicon has been studied since the 1950s.9 Historically,

indium doped crystal growth research has been in the context of the

development of infrared detectors10,11 for which the challenge is to

get a high concentration of indium. Crystal growth is challenging due

to the relatively low segregation coefficient of indium,10,12,13 evapo-

ration of indium from the melt,12 and the clustering or precipitation

of indium at high concentrations.11,12,14,15 Photovoltaic devices gen-

erally require lower levels of indium doping than infrared detectors,

and recent work has shown that 200 mm diameter indium doped sil-

icon wafers with PV‐relevant doping levels can be grown on an

industrial scale.13 Passivated emitter and rear cells (PERC) made

from indium doped silicon substrates have an efficiency of >20%

even after exposure to light levels which would result in substantial

LID in boron doped cells.16 It is also noted that indium's relative

scarcity is unlikely to limit the commercial deployment of indium

doped silicon. Based on solar irradiance of 1000 Wm−2, 1 TW of sil-

icon PV peak capacity equates to 5 × 109 m2 of 20% efficient silicon

PV cells. If these are 180 μm thick, the required volume of silicon

for 1 TW capacity is 9 × 105 m3. The indium doping level will be

~1016 cm−3, which is around 2 × 10−7 of the silicon volume, so

the volume of indium required for this level of deployment is

0.18 m3. The density of indium is 7310 kg/m3, which means that

only 1300 kg of indium is required for 1 TW peak of indium doped

silicon deployment, which is a tiny fraction of the world's total

indium reserves of >356 000 000 kg.17

The challenge with the deployment of indium doped silicon arises

from indium's relatively deep acceptor level, which optical measure-

ments reveal to be at EV + 0.15 to EV + 0.16 eV.9,18-21 For shallow

acceptors, such as boron, aluminium, and gallium, it is often reason-

able to assume complete ionization at room temperature. With

indium doping, this approximation is not valid, so not only does

the doping level change with temperature, but the un‐ionized indium

has the potential to act as a recombination centre. The aim of this

paper is to understand factors which control the minority carrier life-

time (henceforth just “lifetime”) in indium doped silicon for PV appli-

cations. We use temperature‐dependent Hall effect measurements

to determine the concentration of ionized indium, and make

injection‐dependent lifetime measurements on the same material.

We correlate lifetime measurements with indium levels to establish

the relationship between lifetime and the levels of ionized and un‐

ionized indium. By analysing the injection dependence of the life-

time, we extract the relevant defect parameters and hence enable

general parameterization of lifetime in indium doped silicon. As there

are apparent conflicts in the literature regarding whether indium

doped silicon itself experiences LID,16,22-24 we perform LID
experiments. We compare the final lifetimes to those expected for

boron doped silicon with equivalent doping and oxygen concentra-

tions after complete boron‐oxygen LID to assess the viability of

indium doped silicon in PV applications.
2 | EXPERIMENTAL METHODS

Seven indium doped mono‐crystalline silicon wafers grown by the

continuous Czochralski process were studied. Samples for characteri-

zation were laser cut from 156 mm diameter pseudo squares, which

were initially ~190 μm thick. Interstitial oxygen and, in some cases,

substitutional carbon concentrations were measured by infrared spec-

troscopy in sections of the ingot from which the wafers used were

taken. The maximum and minimum values measured are given in

Table 1, and concentrations in the wafers studied lie in this range.

For Hall effect measurements, the Van der Pauw method with con-

tacts at the corners of 10 mm × 10 mm square samples was used.

Contacts were formed by evaporation of aluminium followed by a

10 min anneal at 450°C in a nitrogen atmosphere. Hall effect

measurements were made from 100 K up to 320 K, which was the

maximum operational temperature of the system.

Themain set of samples for lifetimemeasurements (40mm×40mm)

first underwent a chemical etch which typically removed ~30 μm of

material from each side. Samples were then subjected to room

temperature superacid‐derived surface passivation25,26 which used a

thin film formed from a solution of bis(trifluoromethane)sulfonimide

(TFSI) dissolved in anhydrous 1,2‐dichloroethane using a procedure

described in detail by Grant et al.25 The advantage of this scheme over

dielectrics is that it avoids possible ambiguities associated with anneal-

ing, external gettering, and possible hydrogenation which typically

occur with dielectric passivation.27 We expect excellent surface pas-

sivation from the superacid‐derived scheme and have previously

shown surface recombination velocities (SRVs) of 2.7 ± 1 cms−1 for

1 Ωcm and 0.63 ± 0.07 cms−1 for 10 Ωcm boron doped silicon.25

Lifetimes were measured at room temperature (~25°C) by

photoconductance measurements conducted with a Sinton WCT‐

120 lifetime tester. Errors in lifetime measurements were taken as

5%, as guided by a reproducibility study.28 Based on information in

Table 1, it is noted that the level of compensation in some samples

is as high as 2.2, which according to Schindler et al29 would lead to

a reduction in mobility of around 10%. This relatively small change is

ignored in the measurement of lifetimes presented in this paper.

Samples with superacid‐derived passivation were also characterized

by photoluminescence (PL) imaging30 using a BT Imaging LIS‐L1 PL

system with a photon flux of 2.6 × 1017 cm−2 s−1.

A second set of lifetime samples cut from the same indium

doped wafers was used for LID experiments. Such experiments

required surface passivation with better temporal stability than the

superacid‐derived scheme, and we opt for Al2O3 deposited by

atomic layer deposition (ALD) rather than SiNx as the latter has its

own instabilities under illumination.31,32 Float‐zone silicon samples

(360 μm thick, 2 Ωcm, n‐type) were also passivated to demonstrate
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the stability of the surface passivation under illumination. Samples

were subjected to a thorough surface preparation procedure involv-

ing a dip in HF (2%), an RCA 1 clean (H2O, H2O2 (30%), NH4OH

(30%) in the ratio 5:1:1) at 75°C for 5 minutes, a dip in HF (2%), a

tetramethylammonium hydroxide etch at 80°C for 10 minutes, a

dip in HF (2%), an RCA 2 clean (H2O, H2O2 (30%), HCl (37%) in

the ratio 5:1:1) at 75°C for 10 minutes, and a final HF dip (2%).

The samples, which were typically 180 μm thick after the pretreat-

ment, were then pulled dry from the final HF dip (ie, no rinsing)

and were immediately transferred to a Veeco Fiji G2 ALD system

where they were rapidly put under vacuum to prevent surface oxi-

dation. Al2O3 was deposited at 200°C using a plasma O2 source

and a trimethylaluminum precursor for 160 cycles to give films

~15 nm thick. The samples were then turned over, and the same

deposition conditions were used to deposit Al2O3 on the other sur-

face. To activate the passivation, a postdeposition anneal in air was

performed in a quartz tube furnace at 450 ± 10°C for 30 minutes.

LID experiments were performed using a halogen lamp to give a

sample irradiance of approximately 1 Sun, and this resulted in the

samples being heated up to 40 to 50°C during illumination.
3 | RESULTS AND ANALYSIS

3.1 | Hall effect data

The hole concentration calculated from the Hall effect experiments is

shown in Figure 1. For consistency with several other Hall effect stud-

ies in indium doped silicon,10,33-35 we take the Hall coefficient as

unity. The hole concentration at 298 K (p298K) is extracted from

Figure 1 and is taken as the ionized indium concentration for analysis

of lifetime data. Complete ionization of the indium acceptor is not
FIGURE 1 Carrier concentration versus temperature from Hall
effect measurements. The values at 298 K were taken as the ionized
indium concentrations for the lifetime measurements presented later
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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achieved at our highest possible measurement temperature (320 K). A

fit to the Hall effect carrier concentration data is therefore performed

to give an estimation of the fully ionized indium concentration (Na). By

considering charge neutrality in a nondegenerate p‐type semiconduc-

tor with majority acceptors above the valence band, it can be shown

(eg, by Blakemore36) that

p pþ Ndð Þ
Na − Nd − p

¼ p*1 (1)

where

p*1 ¼ gNv exp −
Ea
kT

� �
(2)

and where p is the hole concentration (temperature dependent), Nd is

the total donor concentration, Na is the total acceptor concentration, g

is the spin degeneracy, Nv is the density of states in the valence band,

Ea is the energy level of the acceptor above the valence band, k is

Boltzmann's constant, and T is absolute temperature. It should be

noted that the definition of p*1 in Equation (2) is different to the

definition of p1 used in lifetime measurements later in this paper as

it includes the degeneracy factor (g) which is commonly included for

Hall effect studies. Rearranging Equation (1) and solving as a quadratic

in p gives the positive root:
FIGURE 2 Carrier concentration versus temperature from Hall
effect measurements in selected samples. The fits to the data were
used to ascertain the total indium concentration in the samples. Key fit
parameters for all samples are given in Table 1 [Colour figure can be
viewed at wileyonlinelibrary.com]
p ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nd þ p*1
� �2

− 4p*1 Nd − Nað Þ
q� �

− Nd þ p*1

� �	 

: (3)

Equation (3) is therefore used to fit the temperature‐dependent

hole concentration data from the Hall effect measurements assuming

the main indium level is the only acceptor state. Figure 2 shows

the results of this fitting for three samples. In all cases, we take

Nv ¼ 1:95 × 1015 × T
3=2 cm−3 37 and g = 0.25 (based on Baron et al33).

Ea is varied in the range 0.152 to 0.159 eV to achieve the best fit to

the experimental data. The key parameters resulting from the fit are

Na (the total indium concentration) and Nd (the compensating donor

concentration), and these are listed in Table 1 for all the samples.

The un‐ionized indium concentration at 298 K is calculated as

Na − p298K and is also shown in Table 1. The key point is that at room

temperature there is a substantial concentration of both ionized and

un‐ionized indium in all samples, with the ionization level ranging from

approximately 32% to 53%.

3.2 | Measured lifetime data

The measured lifetimes in as‐received samples with superacid‐derived

passivation are plotted in Figure 3. The lifetime curves have similar

injection dependences in all cases, which is indicative of the recombi-

nation occurring via the same processes, and this is analysed in more

detail later. Figure 4 shows calibrated PL lifetime images of several

indium doped samples taken with 1 Sun illumination. The average

injection levels are approximately 8 × 1015 cm−3 for In‐7,

4 × 1015 cm−3 for In‐6, 2 × 1015 cm−3 for In‐4, and 4 × 1014 cm−3

for In‐1. These images demonstrate both the uniformity of the surface

passivation and the uniformity of the bulk lifetime in the samples

studied. Some silicon wafers contain annular striations, which are

often associated with suboptimal crystal growth conditions.38 There
FIGURE 3 Measured lifetime versus excess carrier concentration in
as‐received indium doped silicon samples measured with superacid‐
derived surface passivation [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 4 Calibrated PL lifetime images
under 1 Sun illumination of selected as‐
received indium doped silicon samples
(4 cm × 4 cm) measured with superacid‐
derived surface passivation. These images
demonstrate the uniformity of both the
surface passivation and the lifetime
distribution in the sample [Colour figure can
be viewed at wileyonlinelibrary.com]
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is a slight hint of these in Sample In‐7 (top left), but their impact on

bulk lifetime appears to be fairly small in the samples studied.

3.3 | Correlation of recombination with indium

To establish a possible correlation between lifetime and indium

doping, the intrinsic lifetime given by the parameterization of Richter

et al39 was removed from the measured lifetime according to

τresidual ¼ 1
τmeasured

−
1

τintrinsic

� �−1

: (4)

The residual lifetime, τresidual, will still include a small contribution from

other recombination processes not related to indium, τother. Figure 5

shows the correlation between τresidual and both the ionized (p298K)

and un‐ionized (Na − p298K) indium concentrations at 1015 and

1016 cm−3 injections. There is an approximately linear relationship

between recombination and un‐ionized indium.

If the un‐ionized indium acts as a recombination centre, then the

recombination rate can be expressed according to

1
τresidual

¼ αn Na − p298Kð Þ þ 1
τother

(5)

where αn is the capture coefficient for electrons at the un‐ionized

indium centre (the capture coefficient is the product of the capture

cross section and the thermal velocity). The linear fits to the black cir-

cles in Figure 5 are in accordance with Equation (5), and the gradients

—which are equivalent to capture coefficients αn—are given by

1.7 ± 0.2 × 10−12 and 2.4 ± 0.3 × 10−12 cm3 s−1 for injection levels

of 1015 and 1016 cm−3, respectively. The corresponding intercepts
are given by 521 ± 154 and 1243 ± 261 s−1. τother will be partly deter-

mined by surface recombination, so the intercepts from Figure 5 can

be used to place an upper limit on the SRV, S, according to

S ≤
W

2τother
(6)

where W is the wafer thickness of around 130 μm. This analysis gives

S ≤ 4 cms−1 at 1015 cm−3 and ≤ 8.1 cms−1 at 1016 cm−3. In a study of

superacid‐derived passivation of boron doped p‐type silicon, it was

found that S < 2.7 cms−1 for p‐type silicon at 1015 cm−3 25 so, either

the surface passivation for these indium doped samples was not as

good for some unknown reason, or there is a small amount of other

bulk recombination in the samples.

Equation (1) at 298 K can be rewritten as

Na ¼ p298K p298K þ Ndð Þ
p*1

þ Nd þ p298K : (7)

Substituting Equation (7) into Equation (5) gives

1
τresidual

¼ αn
p298K p298K þ Ndð Þ

p*1
þ Nd

" #
þ 1
τother

: (8)

If the compensating donor concentration is small, then Equation (8)

simplifies to

1
τresidual

¼ αn
p2298K
p*1

þ 1
τother

: (9)

Equation (9) implies that if recombination is via un‐ionized indium, a

quadratic dependence on recombination rate with p298K is expected

for samples which are not significantly compensated. The results

http://wileyonlinelibrary.com


FIGURE 5 Residual recombination rate in as‐received indium doped
silicon samples versus concentration of either the un‐ionized indium
(Na − p298K) in black or the ionized indium concentration (p298K) in red
at an excess carrier of (a) 1015 cm−3 or (b) 1016 cm−3. A linear fit is
shown for un‐ionized indium, and a quadratic fit is used for ionized
indium [Colour figure can be viewed at wileyonlinelibrary.com]
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presented in Figure 5 show approximate quadratic behaviour, with

deviation from this most likely due to the level of compensation

being non‐negligible in some samples (see Table 1 and Equation (8)).

The quadratic fits shown are performed by fixing the vertical axis

intercepts to have the same values as the un‐ionized indium linear

fits. The fits used give values of
αn
p*1

of 7.5 ± 0.8 × 10−29 cm6 s−1

for 1015 cm−3 and 1.08 ± 0.14 × 10−28 cm6 s−1 for 1016 cm−3. Using

the values of αn extracted via Equation (5) previously gives the same

value of p*1 of 2.2 ± 0.4 × 1015 cm−3 for both injection levels. This

can be used, in accordance with Equation (2), to extract Ea, the

energy level of the defect responsible for the recombination relative

to the valence band edge. Such an extraction requires knowledge of

Nv and g. Perhaps surprisingly, there is a range of different values of

Nv used in the literature, and a study by Green noted that using dif-

ferent parameters can result in energy level discrepancies of up to

30 meV.40 Using the Nv values from Green40 which are often used

in lifetime studies, and g = 0.25 to be consistent with prior Hall

effect studies,33 gives Ea as 0.150 ± 0.04 eV. This is very similar

to the known indium level. Using other values of Nv, such as those
used in older Hall studies (eg, by Schroder et al34), would give a

lower value of Ea by around 30 meV, consistent with the findings

of Green's work.

3.4 | Analysis of the lifetime injection dependence

To provide a deeper understanding of the recombination activity in

indium doped silicon, the injection‐dependent lifetime data were

analysed using a linear version of Shockley‐Read‐Hall (SRH) statistics

which has been described in detail previously.41,42 For a p‐type semi-

conductor, the lifetime is plotted as a function of the ratio of the total

electron concentration to the total hole concentration. When appro-

priate, the lifetime curve can then be fitted with an integer number

of independent SRH centres where the lifetime due to the ith SRH

recombination centre varies according to

τi ¼ 1
αniNi

1þ Qini
p0

þ pi
p0

þ X Qi −
Qini
p0

−
pi
p0

� �	 

: (10)

where αni is the capture coefficient for electrons, Ni is the concentra-

tion of the recombination centre, Qi ¼ αni
αpi

where αpi is the capture

coefficient for holes, p0 is the hole concentration (taken as p298K here),

and X ¼ n
p
¼ n0 þ Δn

p298K þ Δn
. The variables ni and pi are the SRH densities

for electrons and holes, respectively. By convention for lifetime mea-

surements, the spin degeneracies used for SRH densities in Hall effect

measurements (eg, for p*1 in Equation (2)) are omitted, and so

ni ¼ Nc exp −
Ec − ETið Þ

kT

� �
: (11)

and

pi ¼ Nv exp −
ETi − Evð Þ

kT

� �
: (12)

where Nc is the density of states in the conduction band, Nv is the den-

sity of states in the valence band, and ETi is the energy level of the trap

relative the edge of the conduction band (Ec) or the valence band (Ev).

The residual lifetime from experiment can be fitted using an inte-

ger number of independent SRH centres each with lifetimes varying

in accordance with Equation (10) combined according to

τresidual ¼ ∑
i

1
τi

� �−1

: (13)

Figure 6 shows that the residual lifetime in indium doped samples

plotted against X approximates to linear as X increases. In accordance

with Equation (10), this suggests that one SRH centre dominates the

recombination in indium doped silicon at relatively high X. At lower

values of X, the lifetime curves in Figure 6 bend downwards, which

implies the existence of at least one other SRH centre in the samples.

To fit the curves shown in Figure 6, we adopt a two independent SRH

centre approach and fit the data in accordance with Equation (13). We

arbitrarily refer to the state dominant at high injection as State 1 and

http://wileyonlinelibrary.com


FIGURE 6 Residual lifetimes in as‐received indium doped silicon samples plotted as a function of X = n/p. The two independent SRH states used
to fit the data and their combined effect are shown in (b) for sample In‐7 and (c) for sample In‐3. Combined two state fits (but, for clarity, not their
components) for the other samples are shown in (a) [Colour figure can be viewed at wileyonlinelibrary.com]
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the other as State 2. In Figure 6(b) and (c), we show the two compo-

nents used to fit the experimental data for two samples, and the fits

shown in Figure 6(a) are the combination of these two states, but

the individual states are not plotted for clarity. In order to fit the data,

we have allowed the State 1 fit parameters to vary freely, but we have

constrained the State 2 fit parameters to have the same value for all

samples at the high injection limit where X = 1. Setting X = 1 in Equa-

tion (10) shows this so‐called ambipolar lifetime limit to depend only

on the concentration of the recombination centre and its capture

coefficients for electrons and holes. This assumption is valid if the ori-

gin of State 2 is not related to indium but instead is related to a set of

defects whose concentration is the same in all the samples studied,

such as the remaining recombination centres at the surfaces of the

samples after the superacid‐derived surface passivation treatment.

State 1 is the dominant recombination centre in the indium doped

silicon samples studied and, from Figure 6, it is clear that its concentra-

tion is dependent on the indium level in some way. A correlation

between recombination rate and the un‐ionized indium concentration

was found in Figure 5. If State 1 is due to un‐ionized indium, then

taking the X = 1 limit of Equation (10) with N1 = Na − p298K gives

Na − p298K ¼ 1
αn1

þ 1
αp1

� �
1

τn1X→1
: (14)

where τn1X → 1 is the X = 1 limit of the State 1 fit to the experimental

data. Figure 7(a) is a plot in accordance with Equation (14) which

shows an approximate linear relationship between Na − p298K and

1
�
τn1X→1

with the fit shown having a gradient of
1
αn1

þ 1
αp1

¼ 1:96 ±

0:21 × 1011 scm‐3. This approximate linearity indicates that State 1 is

most likely proportional to the un‐ionized indium level.
Further evidence for State 1 being related to un‐ionized indium

can be gained for a more detailed analysis of the State 1 injection

dependence. Differentiating Equation (10) for State 1 at 298 K with

respect to X and normalizing this by the X = 1 limit gives the follow-

ing expression which is independent of state density:

dτn1
dX

=τn1X→1 ¼ Q1

1þ Q1
−

1
p298K

Q1n1 þ p1
1þ Q1

� �
: (15)

Figure 7(b) is a plot in accordance with Equation (15). Extrapolation

of the fit shown gives a 1/p298K = 0 intercept of
Q1

1þ Q1
¼

− 1:17 ± 1:20, which implies Q1 < 0.036. The gradient gives

Q1n1 þ p1
1þ Q1

¼ 9:75 ± 0:97 × 1016 cm‐3. If State 1 is assumed to be

closer to the valence band than the conduction band, then

p1 > > Q1n1 and p1 could lie in the range 8.8 × 1016 cm‐3 to

1.1 × 1017 cm‐3. According to Equation (12) with Nv from Green,40

this implies ET1 lies in the range 0.144 eV to 0.150 eV. This is similar

to the energy level for indium in silicon measured by other tech-

niques.9,18-21

3.5 | Degradation experiments

A series of experiments was performed to assess the degree to which

indium doped silicon degrades under illumination. Whilst the

superacid‐derived passivation scheme used earlier in this paper

provides very good initial passivation, it does not have sufficient tem-

poral stability for use in LID experiments.25,26 For this part of the

study, different indium doped silicon samples, as well as n‐type float‐

zone silicon controls, were passivated with Al2O3 and subjected to 1

http://wileyonlinelibrary.com


FIGURE 7 Plots relating to State 1 extracted from fitting the
injection‐dependent lifetime data for as‐received indium doped
silicon. Plot (a) shows the relationship between the X = 1 limit of the
recombination rate and the un‐ionized indium concentration. Plot (b)
shows the relationship between the reciprocal of doping level and the
fitted gradient for State 1 divided by its X = 1 lifetime limit. Gradients
for the fits are given on the graphs, and the open symbol in plot (b) for
sample In‐6 was disregarded for fitting purposes [Colour figure can be
viewed at wileyonlinelibrary.com]
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Sun illumination. Significant lifetime degradation occurs in all indium

doped samples, as shown by the data for sample In‐7 in Figure 8(a).

The degradation is not due to degradation of the surface passivation

as measurements of float‐zone silicon control samples also shown in

Figure 8(a) show a stable lifetime within experimental error. In indium

doped silicon, substantial lifetime degradation occurs in <1 second,

with the lifetime then decaying to a steady state in a few minutes.

As suggested by Möller and Lauer,22 we find that a 200°C anneal

reverses the LID, and, as shown in Figure 8(a), the lifetime then again

degrades under illumination at approximately the same rate as on

previous degradation cycles.

The motivation for using indium doped silicon would be to replace

boron doped silicon which is well known to degrade under illumina-

tion.43 It is therefore important to compare the degraded lifetimes in

indium doped silicon with boron doped equivalents. For such a
comparison, we use the parameterization of degraded lifetime in

boron doped silicon from Bothe et al.44 Noting the comments of

Niewelt et al,45 this provides a reasonable comparison to our data as

it refers to the as‐delivered state, and our samples did not undergo a

high temperature diffusion step which can strongly affect the effective

concentration of the recombination centre which forms under LID. In

Figure 8(b), the lifetime for all the indium doped samples is plotted in

the undegraded state (“U”) after a 200°C anneal for 15 minutes, and

the degraded state due to 1 Sun illumination for 1 hour (“D”). The

lifetime in the degraded boron doped equivalent sample (“B”) is also

plotted using the parametrization of Bothe et al,44 taking the oxygen

concentration as the midpoint from the values in Table 1. Importantly,

in all cases, the degraded lifetime is higher in the indium doped

material than in the boron doped samples with a lifetime limited by

the boron‐oxygen defect.
4 | DISCUSSION

4.1 | Factors controlling lifetime

Our work clearly shows that the lifetime in as‐received indium doped

silicon is in some way dependent on the doping level of the sample. In

Figure 3, we see awell‐ordered family of lifetime curves. All the samples

considered have relatively low doping levels and, even with excellent

surface passivation, the lifetimes measured are well below those

expected from intrinsic (Auger and radiative band‐to‐band) recombina-

tion.39 The results presented in Figure 5 show that the lifetime varies

linearly with the un‐ionized indium concentration and with the square

of the ionized indium concentration (subject to the limitations of this

analysis in compensated material). Analysis in Figure 7(b) enables an

energy level close to that expected for indium to be extracted from

the injection‐dependent lifetime data. We therefore conclude that the

un‐ionized indium gives rise to the main recombination centre which

controls lifetime in our indium doped silicon samples.

In previous studies, indium doped silicon is often found to contain a

shallower defect (sometimes called the “X‐centre”) at around

EV + 0.11 eV.11,33,34,46,47 An initial study by Baron et al33 found this

defect to scale with the total indium concentration, and to exist in

float‐zone as well as Czochralski silicon thus probably ruling out the

involvement of oxygen.33 A later study showed a correlation with

carbon concentration so it was concluded that the level was due to a

substitutional carbon‐indium pair,47 and additional evidence for

indium‐carbon pairing comes from co‐implantation studies.48 For our

samples, there is no clear evidence that the X‐centre limits carrier

lifetime at room temperature. We suspect the absence of X‐centre

effects arises because the relatively modern growth techniques used

for our samples limit the incorporation of carbon. The carbon concen-

trations in our samples stated inTable 1 are at the lower end of the range

studied by Baron et al.47 Any effects of the X‐centre in our samples are

masked by the stronger recombination activity of the un‐ionized

indium.

http://wileyonlinelibrary.com


FIGURE 8 Measured effective lifetimes
from LID experiments on ALD Al2O3

passivated indium doped samples. Graph (a)
shows lifetime at an excess carrier density of
1015 cm−3 versus time under ~1 Sun
illumination for sample In‐7, showing the
original lifetime can be recovered by a 15 min
anneal at 200°C. The 2 Ωcm n‐type float‐zone
(FZ) control sample does not degrade under
illumination. Graph (b) shows the undegraded
(“U”) and degraded (“D”) lifetimes in all the
indium doped silicon samples studied. Also
shown in graph (b) are the degraded lifetimes
for boron‐doped samples (“B”) with the same
doping level and oxygen concentration taken
from the parameterization of Bothe et al.44

Lifetimes in graph (b) are at an excess carrier
density of 0.1 × p298K to facilitate direct
comparison with Bothe et al's data [Colour
figure can be viewed at wileyonlinelibrary.
com]
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4.2 | Light‐induced degradation

Our study has shown a clear degradation in lifetime in ALD Al2O3

passivated samples subjected to illumination (Figure 8). As the degra-

dation does not occur in identically passivated float‐zone control

samples, we conclude that the bulk lifetime is degrading upon illumi-

nation and not the surface passivation. There are apparent conflicts

in the literature regarding whether the properties of indium doped

silicon change upon illumination, with some reporting stability and

others a substantial degradation. Möller and Lauer found substantial

lifetime degradation in indium doped samples, with degradation

occurring much more slowly than in our samples.22,23 A recent study

by Cho et al found that passivated emitter rear cells (PERC) made

from indium doped silicon do not degrade under illumination,16 and

Binns et al also concluded that only negligible lifetime degradation

occurs in indium doped silicon upon light soaking.24 Additionally,

Schmidt and Bothe report limited results for indium doped silicon
in their LID studies and found the lifetime to be stable with illumina-

tion.1 It is of course possible that others have not observed the LID

effect that we have seen because it happens relatively quickly and it

was simply missed.

The physical origin of the defect responsible for the LID in indium

doped silicon is not currently known to us. Our initial results do not

show a clear correlation with concentration of indium, oxygen, or car-

bon. We are currently working on understanding the mechanism of

the LID effect, but, as with boron‐oxygen‐related LID,43 this is likely

to be a complex problem with variables such as bulk passivation,

thermal history, and illumination conditions playing a role.
4.3 | Use of indium doped silicon in solar cells

This study has shown that indium doped silicon has the potential to

offer higher carrier lifetimes than degraded boron doped equivalent

http://wileyonlinelibrary.com
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samples at room temperature, even after LID that occurs in indium

doped samples. It is however noted that processes to regenerate

boron doped silicon after boron‐oxygen LID exist,49,50 and applica-

tion of similar processes to indium doped silicon may provide effec-

tive results. It is also important to note that a solar cell in service will

typically operate above room temperature. Our Hall effect data

(Figure 1) show that indium is not fully ionized at room temperature,

so raising the temperature will increase the ionized indium concen-

tration and hence reduce the un‐ionized indium acting as a recombi-

nation centre. This means that the minority carrier lifetime should

increase with temperature, but it is noted that to achieve a full

temperature‐dependent parameterization of lifetime in indium doped

silicon it would be necessary to determine the temperature depen-

dence of the electron and hole capture coefficients. Furthermore,

because of the relatively deep acceptor state of indium, the effective

doping level of an indium doped silicon substrate will change as the

cell temperature changes. This is fundamentally unavoidable, and this

variation may cause challenges for the optimization of other aspects

of the cell manufacturing processes. This limitation also means that

indium doped silicon may only be of use in front junction solar cells,

such as PERC designs which have already been demonstrated.16

Rear contact cells (eg, interdigitated back contact cells) require car-

rier lifetimes of several milliseconds or greater,51 and even with

the lowest indium level studied here (sample In‐7), the un‐ionized

indium level limits the lifetime to below 2 ms (below 1 ms after LID).
5 | CONCLUSIONS

The electronic properties of indium doped silicon grown by the con-

tinuous Czochralski process have been studied systematically to

understand factors which limit its minority carrier lifetime. The results

of Hall effect experiments have been combined with those of

injection‐dependent lifetime measurements to understand the pri-

mary origin of the recombination activity in as‐received samples. At

room temperature, for typical PV substrate doping levels of 1015 to

1016 cm−3, the un‐ionized and ionized indium concentrations are of

the same order of magnitude. The results show that the recombina-

tion activity is linearly dependent upon the concentration of un‐

ionized indium in the samples. Analysis of the injection dependence

of the lifetime is consistent with a recombination centre at

Ev + 0.15 eV, with an effective capture coefficient of around

2 × 10−12 cm3 s−1. Therefore, whilst the concentration of un‐ionized

indium is fundamentally very high at room temperature, its capture

coefficient is very small, and this means that the lifetimes achieved

in indium doped silicon are still suitable for some types of PV

devices. A preliminary study has been performed into LID of indium

doped silicon. The lifetime is found to degrade rapidly under illumina-

tion, but to stabilize at a level in most cases substantially higher than

in equivalent boron doped samples. Thus, there exists a window of

opportunity in which indium doped silicon can have a higher lifetime

after degradation than boron doped silicon.
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