Classification of the interlayer coupling in high-T_c cuprates from low-field magnetization studies

N. E. Hussey, J. R. Cooper, R. A. Doyle, C. T. Lin, W. Y. Liang, and D. C. Sinclair

Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom

G. Balakrishnan and D. McK. Paul
Department of Physics, University of Warwick, CV4 7AL, United Kingdom

A. Revcolevschii
Laboratoire de Chimie des Solides, Université Paris Sud, 91405 Orsay Cedex, France

(Received 21 August 1995)

Low-field magnetization $M(H)$ measurements are reported for single crystals of various high-T_c cuprates with different anisotropies ($\gamma=\lambda_c/\lambda_{ab}$, where λ_c and λ_{ab} are the c-axis and ab-plane penetration depths). For YBa$_2$Cu$_3$O$_7$ ($\gamma\approx5$) and La$_{1.85}$Sr$_{0.15}$CuO$_4$ ($\gamma\approx12$), qualitatively similar $M(H)$ behavior is observed when the magnetic field is applied both perpendicular ($H\parallel c$) and parallel ($H\parallel ab$) to the CuO$_2$ planes, consistent with a description of these compounds as anisotropic three-dimensional superconductors. Tl$_2$Ba$_2$CuO$_{6+\delta}$ ($\gamma\approx25$) and Bi$_2$Sr$_2$CaCu$_2$O$_8$ ($\gamma\approx250$), on the other hand, show significant differences in $M(H)$ with $H\parallel ab$ which can be attributed to the presence of Josephson screening currents across the layers. These observations imply that the nature of the interlayer coupling is determined primarily by the ratio of the out-of-plane coherence length ξ_c to the interlayer spacing s.

I. INTRODUCTION

In high-T_c cuprates, the superconducting layers are weakly coupled along the crystalline c axis leading to strong anisotropy in their physical properties. In many anisotropic layered superconductors, the phase of the superconducting order parameter is continuous across the layers and anisotropic three-dimensional (3D) Ginzburg-Landau theory is applicable. However, when the coupling is sufficiently weak, the interlayer phase difference becomes discrete and the free energy must be expressed in terms of the Lawrence-Doniach formulas for a Josephson-coupled multilayered superconductor. There is significant evidence that in the strongly anisotropic cuprate Bi$_2$Sr$_2$CaCu$_2$O$_8$ ($\gamma\approx250$), the layers are Josephson coupled, while at the other extreme, YBa$_2$Cu$_3$O$_7$ ($\gamma\approx5$) can be described adequately using an anisotropic 3D model. For intermediate anisotropies, however, the nature of the interlayer coupling has not yet been systematically studied though recent experiments have suggested that some of these compounds possess various properties attributable to intrinsic Josephson effects. For example, Tl$_2$Ba$_2$CuO$_{6+\delta}$ (Ref. 4) ($\gamma\approx25$) and Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ (Ref. 5) ($\gamma\approx30$), show large discontinuities in the magnetization at fields close to H_{c1} when the field is applied parallel to the ab planes. This discontinuity is thought to arise from the destruction of Josephson screening currents between the layers by the magnetic field. In La$_{2-x}$Sr$_x$CuO$_4$ ($\gamma\approx12$), the c-axis penetration depth λ_c is reported to follow a temperature dependence similar to the Ambegaokar-Baratoff relation for Josephson junctions and a recent model involving thermal fluctuations of the phase of Josephson junctions between the planes has been successful in modeling the c-axis resistive transition of La$_{2-x}$Sr$_x$CuO$_4$ with $H\parallel c$ (the quasi-force-free configuration). However, in all these intermediate anisotropic systems, no direct evidence has yet been reported for intrinsic Josephson coupling.

The presence of c-axis Josephson screening currents has a profound effect on the physical behavior of a layered superconductor, particularly in the mixed state, and it is therefore essential to determine the nature of the interlayer coupling for a particular cuprate system in order to understand its physical properties. Furthermore, it has been suggested recently that only $\lambda_c(T)$, and not the more widely measured in-plane penetration depth $\lambda_{ab}(T)$, can give information regarding the orbital symmetry of the order parameter in high-T_c cuprates. However, if the CuO$_2$ layers are Josephson coupled, this should affect the temperature dependence of $\lambda_c(T)$ in an entirely different way to nodes in the energy gap.

Low-field magnetization measurements have not been used extensively in the study of Josephson effects in high-T_c single crystals, despite having various advantages over other investigative techniques. They are simple to perform and, in contrast to transport (I-V) measurements, are not prone to the problem of internal heating. When a magnetic field is applied parallel to the superconducting layers, circulating supercurrents flow within the ab planes and also tunnel between them. If the layers are Josephson coupled, these currents will be different to ordinary London screening currents, particularly once vortices start to penetrate within the junctions. We show here that a magnetization measurement in low fields is a sensitive probe of the nature of the screening currents and the interlayer coupling in cuprate superconductors. Our procedure has been applied to a range of systems including Bi$_2$Sr$_2$CaCu$_2$O$_8$, Tl$_2$Ba$_2$CuO$_{6+\delta}$, YBa$_2$Cu$_3$O$_7$, La$_{1.85}$Sr$_{0.15}$CuO$_4$, and the layered dichalcogenide NbSe$_2$ ($\gamma\approx3$).

For the more anisotropic systems, Bi$_2$Sr$_2$CaCu$_2$O$_8$ and Tl$_2$Ba$_2$CuO$_{6+\delta}$, distinct qualitative differences are ob-
TABLE I. Values of T_c, γ, $\lambda_i(0)$, $\xi_i(0)$, s, $\xi_i(0)/s$, and $2\xi_i(0)/(s-2.8)$ for the single crystals described in the text. s for YBa$_2$Cu$_3$O$_7$ and Bi$_2$Sr$_2$CaCu$_2$O$_8$ are taken as the larger interplanar distance.

<table>
<thead>
<tr>
<th></th>
<th>T_c (K)</th>
<th>$\lambda_i(0)$ (nm)</th>
<th>$\xi_i(0)$ (nm)</th>
<th>s</th>
<th>$\xi_i(0)/s$</th>
<th>$2\xi_i(0)/(s-2.8)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_2$Sr$_2$CaCu$_2$O$_8$</td>
<td>89 > 60 > 15</td>
<td>0.5 12.3 0.06 0.1 0.45</td>
<td>0.17 0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl$_2$Ba$_2$CuO$_6$</td>
<td>82</td>
<td>25 2 2</td>
<td>11.5 0.17 0.45</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl$_2$Ba$_2$CuO$_6$+δ</td>
<td>65</td>
<td>20 2 2</td>
<td>11.5 0.17 0.45</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La${1.89}$Sr${0.11}$CuO$_4$</td>
<td>27</td>
<td>12 5 3</td>
<td>6.6 0.45 1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YBa$_2$Cu$_3$O$_7$</td>
<td>92</td>
<td>5 0.7 3.2</td>
<td>8.2 0.38 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NbSe$_2$</td>
<td>7</td>
<td>3 1.5 30</td>
<td>6.0 5.0 19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

served for the two orientations $H\parallel ab$ and $H\parallel c$. It should be noted here that for $H\parallel c$, identical behavior is observed for all systems studied, showing that the differences which are found for $H\parallel ab$ are purely a consequence of the c-axis screening currents, which we ascribe to the presence of Josephson-coupled planes in the Tl- and Bi-based compounds. On the other hand, the YBa$_2$Cu$_3$O$_7$, La$_{1.89}$Sr$_{0.11}$CuO$_4$, and NbSe$_2$ crystals exhibit similar magnetization behavior for both field orientations and can therefore be described as anisotropic 3D superconductors. Despite the similarity in the anisotropy of Tl$_2$Ba$_2$CuO$_6$ and La$_{1.89}$Sr$_{0.11}$CuO$_4$, their magnetization behavior is fundamentally different. This particular observation helps clarify what parameters determine the nature of the interlayer coupling in the high-T_c cuprates.

II. EXPERIMENT

The single crystals used in this study were grown using either the floating zone method or self-flux methods. All crystals were first characterized to ensure that they were fully superconducting, displaying the full screening signal with $H\parallel ab$, and that their transitions were sharp, with typical transition widths (10–90%) of less than 2 K. Several crystals of each compound were investigated to check the consistency of the $M(H)$ results (except NbSe$_2$). The onset T_c for each crystal described in the text are recorded in Table I. The magnetization measurements were performed using a Cryogenic Consultants low-field SQUID susceptometer with a scan length of 5 cm. Crystals were reliably mechanically stabilized to prevent them moving in the applied field. For both field orientations, the $M(H)$ sweeps were performed using the same procedure. Initially, each crystal was zero-field cooled (≤ 0.004 G) through the transition to a set temperature to achieve an initial superconducting state with no trapped flux. The field was increased in small steps (typically 1 G) to beyond the field of first flux penetration and then decreased in similar sized steps to zero. The sweep sequence was subsequently repeated, with identical or similar step sizes, but now with trapped flux, i.e., with vortices initially present within the sample. This procedure was carried out at several temperatures, though only selected field sweeps are described in the text. None of the $M(H)$ data shown here are corrected for demagnetization factors but these are negligibly small for $H\parallel ab$ and even for $H\parallel c$, they do not change any of the qualitative features that are discussed. There have been reports recently of the presence of geometrical barriers in high-T_c cuprates, which can have a profound effect on the magnetization behavior with $H\parallel c$. However, geometrical barriers are not thought to influence our findings, since the anomalous behavior is only found with $H\parallel ab$ and in all crystals studied, including NbSe$_2$, the magnetization behavior with $H\parallel c$ show essentially the same features.

III. RESULTS

A. Bi$_2$Sr$_2$CaCu$_2$O$_8$

Figure 1(a) shows a typical $M(H)$ loop for Bi$_2$Sr$_2$CaCu$_2$O$_8$ with $H\parallel ab$ (left panel) and $H\parallel c$ (right panel) at a temperature $T=60$ K. The initial linear region on the first sweep (marked by a thick arrow) represents the Meissner signal and deviations from the dotted line correspond to flux penetration into the crystal. The field at which flux starts to penetrate is labeled H_{pen}. The peak in $M(H)$ on the first sweep was observed at all temperatures. Moreover, there was no indication of any further increase in magnetization beyond the peak, thus confirming that the alignment parallel to the planes was good. The raw $M(H)$ data look very similar in both cases, except for the difference in scales. In order to study the field evolution of the internal flux density with field more closely, the magnetization data have been plotted.
in Fig. 1(b) as $\Delta M(H) = M(H) - \chi_M H$, where χ_M is the slope of the linear (Meissner) region. In these plots, an important difference is revealed in the low-field behavior of the magnetization for the two field orientations. With $H \perp c$, the initial behavior of $\Delta M(H)$ is the same for both field sweeps, i.e., no flux penetration takes place below $H = H_{pen}$, even though vortices are already present within the crystal at the start of the second sweep. With $H \parallel ab$, however, the internal flux density changes for all $H > 0$ on the second sweep but not on the first one.

In order to understand this fundamental difference in behavior, it is important to take into account the very weak nature of the interlayer coupling in this highly anisotropic material and picture the layered structure of $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$ as a stack of Josephson junctions. It is well known that the presence of a magnetic field within a Josephson junction causes strong suppression of the Josephson currents across it because of its influence on the phase of the order parameter. Furthermore, it has been shown theoretically that when a magnetic field exceeding H_{c1} is applied parallel to the layers of a weakly Josephson-coupled layered superconductor, Josephson vortices begin to form within the layers, the surface currents are effectively suppressed and there is no further screening of the parallel component of the external field. Thus, at the start of the second sweep, with vortices still present between the CuO$_2$ planes, no screening is possible and the magnetization changes as soon as the applied field is stepped up again. By contrast, with $H \perp c$, the ab-plane supercurrents have no Josephson component and the system behaves as a conventional type-II superconductor, with surface currents coexisting alongside the vortices. These surface currents screen further flux penetration on the second sweep until H_{pen} is reached once more.

A second fundamental difference between the two field directions is the actual field dependence of the internal flux density beyond H_{pen}. In Fig. 2, ΔM is plotted against $(H - H_{pen})^2$ to compare $\Delta M(H)$ with the classical Bean critical state behavior for a constant-J_c flux profile. With $H \parallel c$, $\Delta M(H)$ for both the first- and second-field sweeps follows the expected $(H - H_{pen})^2$ behavior, the rate of flux entry being lower on the second sweep due to the presence of the trapped flux. For $H \parallel ab$, however, ΔM on the first sweep follows no simple field dependence just beyond H_{pen}, though it varies as $(H - H_{pen})^2$ at higher fields. On the second sweep, $\Delta M \propto (H - H_{pen})^2$ for all $H > 0$. The unusual variation of $\Delta M(H)$ just above H_{pen} on the first sweep can also be understood within the Josephson picture if the CuO$_2$ planes are assumed to have a broad, continuous distribution of Josephson coupling strengths. At H_{pen}, vortices begin to penetrate only into junctions with the lowest critical currents and fields, then as the applied field is increased further, the variation of $\Delta M(H)$ reflects the spread of critical currents (fields) of the individual junctions. Further support for such a scenario in $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$ was reported recently from c-axis current-voltage (I-V) characteristics with $H \parallel c$ ($H = 2$ T). In this report, sharp I-V characteristics were observed over a narrow temperature range ($14 < T < 25$ K) which was believed to represent phase locking of the individual junctions in the magnetic field. As the temperature was lowered, differences in the physical properties of the individual junctions began to diverge, causing the junctions to unlock. The resulting broad IV characteristic observed at lower temperatures was thus viewed as a manifestation of the continuous distribution of J_c's along the c axis.

Once H has exceeded the lower critical field of all the junctions, $\Delta M(H)$ begins to follow the $(H - H_{pen})^2$ dependence found in the other field orientation. This observation, and the quadratic behavior observed on the second sweep with $H \parallel ab$, suggests that the dynamics of the Josephson vortices also obey critical state behavior. This is surprising at first sight because the defect pinning mechanisms that control the dynamics of Abrikosov vortices are not expected to apply to Josephson vortices, since there are no normal cores to be pinned in the latter. However, critical state behavior of Josephson vortices was reported recently based on magnetization measurements on $\text{Tl}_2\text{Ba}_2\text{CuO}_{5+x+y}$ single crystals with $H \parallel ab$. Here it was suggested that local variations in the tunneling distance between the junctions may introduce a finite pinning of Josephson vortices moving along the ab planes. Dislocations can also act to pin Josephson vortex motion along the planes. Thus, although the inner core of Josephson and Abrikosov vortices are fundamentally different, different pinning mechanisms may give rise to similar dynamical behavior for both types of vortices in the mixed state. In addition, it was suggested in Ref. 4 that beyond H_{pen}, Josephson vortices combine to form a regular triangular lattice in a similar way to Abrikosov vortices, i.e., as elliptical current distributions with major and minor axes λ_c and λ_{ab}, respectively. Theoretical support for this picture was reported recently by Bulaevskii et al., who investigated the vortex dynamics of such a multilayered system in a par-
null
First, $\Delta M(H)$ remains unchanged at low fields up to the same H_{pen} on both sweeps. Second, as shown in Fig. 4(b), ΔM varies quadratically with field above H_{pen} in all cases. Thus, the screening currents flowing across the layers appear to behave in an identical fashion to those flowing within the planes and there are no signatures of Josephson coupling with H_{ab}. YBa$_2$Cu$_3$O$_7$ therefore seems to behave as an anisotropic three-dimensional superconductor with no Josephson interaction along the c axis. The flux lattice is presumably composed of Abrikosov vortices in both field orientations.

These results reveal how low-field magnetization measurements can be used to determine the nature of the interlayer coupling in layered superconductors. The different behavior observed in the two field orientations for Tl$_2$Ba$_2$CuO$_6$ and Bi$_2$Sr$_2$CaCu$_2$O$_8$ arises from the different nature of the screening currents within the CuO$_2$ planes and across the layers. In less anisotropic YBa$_2$Cu$_3$O$_7$, similar behavior is observed for both field orientations, implying that only standard (non-Josephson) screening currents, with anisotropic penetration depths, exist in this compound.

D. NbSe$_2$

For comparison with the cuprate superconductors, we performed identical $M(H)$ measurements on a single crystal of the layered dichalcogenide NbSe$_2$ [$T_c=7$ K, $\gamma=3$ (Ref. 30)]. Figure 5 shows the $\Delta M(H)$ data with H_{ab} at $T=5.1$ K. This figure shows clearly that the behavior at low fields for both field sweeps is in fact similar to that found for YBa$_2$Cu$_3$O$_7$. (Identical behavior was also observed for H_{c1}, but is not shown here.) This observation, for a less anisotropic noncuprate compound, further supports the anisotropic 3D picture presented above for YBa$_2$Cu$_3$O$_7$.

E. La$_{1.89}$Sr$_{0.11}$CuO$_4$

The La$_{1.89}$Sr$_{0.11}$CuO$_4$ crystal reported in this study has an anisotropy $\gamma=12$ determined both from the magnetization (i.e., H_{c1} measurements and the resistivity anisotropy of a second piece of the same crystal) which is intermediate between the anisotropy of YBa$_2$Cu$_3$O$_7$ and Tl$_2$Ba$_2$CuO$_6$+δ. The $\Delta M(H)$ data for H_{ab} at $T=18$ K are shown in Fig. 6(a). As found for YBa$_2$Cu$_3$O$_7$ and NbSe$_2$, $\Delta M(H)$ on the second sweep is parallel with that of the first until H_{pen} and is again found to vary quadratically with $(H-H_{pen})$ in both field sweeps [see Fig. 6(b)]. Thus, it appears that La$_{1.89}$Sr$_{0.11}$CuO$_4$ should also be considered as an anisotropic 3D superconductor.

IV. DISCUSSION

Table I summarizes the results for all single crystals discussed in the previous section. The values of the anisotropy parameter γ were obtained directly from our own magnetization measurements (except NbSe$_2$ for which γ was taken from the literature30). To estimate γ, we assume that H_{pen} (from the first field sweep) corresponds to the lower critical field, H_{c1} in each field orientation. The ratio of the penetration fields for H_{ab} and H_{c} must then be scaled by the demagnetization factor $1/(1-N_c)$, determined experimentally from the ratios of the initial linear (Meissner) regions of the $M(H)$ data at the lowest temperature measured.15 For the thin platelet samples used in this study, the demagnetization factor $1/(1-N_c)$ is ≈ 1 for H_{ab}. Therefore, $\gamma=(H_{pen,c} / H_{pen,ab})/(1-N_c)$ where $H_{pen,c}$ ($H_{pen,ab}$) is the penetration field measured at the lowest temperature with H_{c} (H_{ab}) and $1/(1-N_c)$ is the demagnetization factor for H_{c}.

Inspection of Table I leads us to conclude that there is some correlation between the level of anisotropy and the appearance of Josephson coupling and that the critical regime for the crossover from 3D to quasi-2D occurs in the range $12 \leq \gamma \leq 20$. The assumption that $H_{c1}=H_{pen}$ is justified in that values for H_{pen} agree well with other experimental values of H_{c1} in the literature and with those obtained from appropriate formulas for H_{c1} (Refs. 18 and 31) using typical values of λ_{ab} and γ from the literature. This implies that for the crystals studied here, surface barriers have little or no
effect on their $M(H)$. The only possible exception is the YBa$_2$Cu$_3$O$_7$ crystal where $H_{pen,ab} (= 220 \text{ G})$ is a factor of 2 higher than expected for typical values of $\gamma (= 5)$ and $\lambda_{ab} (= 1400 \text{ Å})$. However, for two other YBa$_2$Cu$_3$O$_7$ crystals also measured in this study (not discussed here), $H_{pen,ab}$ was found to be 110 G. All the essential features of the $M(H)$ data described in the previous section for YBa$_2$Cu$_3$O$_7$ were also observed for these two samples.

The c-axis penetration depth $\lambda_c(0)$ gives an indication of the strength of the screening currents flowing across the CuO$_2$ planes; the larger $\lambda_c(0)$, the smaller the c-axis J_c. It has been argued recently32 that $\lambda_c(0)$ is an important parameter in determining whether or not Josephson effects are to be found in the superconducting state and a large $\lambda_c(0)$ is correlated with the nonmetallic behavior of the c-axis resistivity in the normal state. In Table I we have listed estimates of $\lambda_c(0)$ derived from the values of H_{c1} and γ obtained from our magnetization data for each crystal (the value for YBa$_2$Cu$_3$O$_7$ is derived assuming $\gamma = 5$ and $\lambda_{ab} = 1400 \text{ Å}$). As one can see, $\lambda_c(0)$ for La$_{1.89}$Sr$_{0.11}$CuO$_4$ is more than twice that for both Tl$_2$Ba$_2$CuO$_6 + \delta$ crystals, implying that the c-axis screening currents in La$_{1.89}$Sr$_{0.11}$CuO$_4$ are weaker than in Tl$_2$Ba$_2$CuO$_6 + \delta$. However, the $M(H)$ behavior of the former is consistent with La$_{1.89}$Sr$_{0.11}$CuO$_4$ being an anisotropic 3D superconductor while Tl$_2$Ba$_2$CuO$_6 + \delta$ is Josephson coupled. Thus, it appears that the magnitude of $\lambda_c(0)$ is not the dominant factor determining the nature of the coupling between the planes.

The next column in Table I lists the values of the zero-temperature c-axis coherence length $\xi_c(0)$ for each system. For Bi$_2$Sr$_2$CaCu$_2$O$_8$ and NbSe$_2$, $\xi_c(0)$ is derived from the expression $\xi_c(0) = \gamma \xi_{ab}(0)$ where $\xi_{ab}(0)$ is taken from typical values reported in the literature.33 For YBa$_2$Cu$_3$O$_7$, La$_{1.89}$Sr$_{0.11}$CuO$_4$, and Tl$_2$Ba$_2$CuO$_6 + \delta$, $\xi_c(0)$ is estimated from the thermodynamic critical field H_c derived from specific heat measurements34 and the relation $\kappa_{ab} = 2\sqrt{2} \pi H_c \lambda_{ab}(0) \lambda_c(0) / \phi_0 = \lambda_{ab}(0) / \xi_c(0)$. In the table, one sees that for the two single layer compounds, La$_{1.89}$Sr$_{0.11}$CuO$_4$ and Tl$_2$Ba$_2$CuO$_6 + \delta$, $\xi_c(0)$ values are quite similar. However, the distance s between successive CuO$_2$ planes in Tl$_2$Ba$_2$CuO$_6 + \delta$ is almost twice that in La$_{1.89}$Sr$_{0.11}$CuO$_4$ (The values of s for each crystal structure are also listed in Table I.) Thus the ratio $\xi_c(0)/s$, which is essentially an indication of the dimensionality of the superconducting state at $T = 0$, does show a correlation with the onset of Josephson coupling. The critical value falls in the range 0.17 < $\xi_c(0)/s < 0.38$. This result is significant since it suggests that even though $\xi_c(0)$ can be less than half the interplanar distance, the system can still be considered to be three dimensional with a continuous phase change of the order parameter across the layers. Lawrence and Doniach1 state that the effective mass model breaks down when $\xi_c \approx s$, because in this case, most of the vortex core lies between the layers in a region of low electron density. Allowing for the fact that the CuO$_2$ layers are approximately 2.8 Å wide (i.e., twice the van der Waals radius for oxygen), the width of the low-electron density regions between the CuO$_2$ planes is $s = 2.8$ Å. If the order parameter decays along the c axis within this region over a distance ξ_c, from both sides, one could naively expect the variation of the order parameter between the layers to change from continuous to discrete whenever $2\xi_c \approx s = 2.8$ Å. The data summarized in the last column of Table I are consistent with this remark.35

Finally, it should be recalled that ξ_s is strongly temperature dependent. Thus, for Tl$_2$Ba$_2$CuO$_6 + \delta$ and Bi$_2$Sr$_2$CaCu$_2$O$_8$, there will be a temperature below T_c at which the point the above inequality is no longer satisfied and the behavior should revert to that of the anisotropic 3D superconductors. In Bi$_2$Sr$_2$CaCu$_2$O$_8$, this will be very close to T_c and therefore very difficult to observe. However, for Tl$_2$Ba$_2$CuO$_6 + \delta$, the inequality should be violated at much lower temperatures. Though not displayed here, it was shown in Ref. 4 that for a Tl$_2$Ba$_2$CuO$_6 + \delta$ sample with $T_c = 82$ K, the signatures of Josephson coupling disappeared above 45 K. This was attributed to thermal fluctuations reducing the Josephson coupling, but the present results imply that it may also be connected with the crossover in magnetization behavior at $2\xi_s \approx s = 2.8$ Å.

In conclusion, we have found a simple technique, using successive low-field magnetization curves, to investigate the nature of the interlayer coupling in several high-T_c cuprate single crystals. Systems of low anisotropy (YBa$_2$Cu$_3$O$_7$ and La$_{1.89}$Sr$_{0.11}$CuO$_4$) show essentially the same $M(H)$ behavior on successive cycles both for $H||ab$ and $H||c$, implying that the screening currents flowing in and out of plane are similar in nature, albeit with anisotropic effective masses. In the more anisotropic Tl$_2$Ba$_2$CuO$_6 + \delta$ and Bi$_2$Sr$_2$CaCu$_2$O$_8$, however, significantly different behavior is observed with $H||ab$, which, we believe, can only result from the different properties of the screening currents that flow across the layers, in particular, the stronger effects of trapped flux on Josephson currents. Rather surprisingly, on subsequent field sweeps, various features of the (Josephson) vortex lattice in the parallel field orientation, namely its structure and dynamics, seem to show similarities with that observed for Abrikosov vortices.

By studying systems of different anisotropy, we have been able to determine an experimental criterion defining the crossover from anisotropic 3D to quasi-2D behavior in the cuprates. Further systematic studies are envisaged to investigate the sharpness of this crossover in various compounds. Finally, it should be noted that any other layered type-II superconductor could also be investigated using the same procedure. By making successive (zero-field-cooled) field sweeps with the field applied both parallel and perpendicular to the superconducting planes, one should be able to determine whether the material is Josephson coupled or three dimensional. Such knowledge would be extremely useful for understanding its behavior in subsequent experiments.

ACKNOWLEDGMENTS

We wish to acknowledge helpful and stimulating discussions with Dr. J. D. Johnson and Dr. V. N. Zavaritsky and thank Dr. A. P. Mackenzie and Dr. Y. Yagil for assistance in this collaborative work. In addition, we are very grateful to Dr. D. Pilgram of Twickenham Scientific Instruments and P. D. Hunneyball for invaluable technical assistance and D. M. Astill for EPMA analysis of the La$_{1.89}$Sr$_{0.11}$CuO$_4$ crystal. This work was supported by EPSRC.
On connecting the magnet current leads, a current leakage from
G. Balakrishnan, D. McK. Paul, M. R. Lees, and A. T. Boothroyd,
T. Shibauchi, H. Kitano, K. Uchinokura, A. Maeda, T. Kimura,
K. Kadowaki, S. L. Yuan, K. Kishio, T. Kimura, and K. Kitazawa,
Phys. Rev. B 50, 7230 (1994). See also D. H. Kim, K. E. Gray,
R. T. Kampwirth, J. C. Smith, D. S. Richeson, T. J. Marks, J. H.
R. A. Doyle et al. (unpublished).
G. Balakrishnan, D. McK. Paul, M. R. Lees, and A. T. Boothroyd,
R. S. Liu, S. D. Hughes, R. J. Angel, T. P. Hackwell, A. P. Macken-
C. T. Lin, W. Zhou, W. Y. Liang, E. Schonherr, and H. Bender,
On connecting the magnet current leads, a current leakage from
the magnet power supply meant that the lowest field attainable
during a field sweep was 0.4 G not zero. However, we believe
this does not affect any of the features discussed in the paper.
915 (1993).
V. N. Zavaritsky and N. V. Zavaritsky, Physica C 185-189, 1869
E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Konczkowski, D.
Majer, B. Khaykovich, V. M. Vinokur, and H. Shtrikman, Phys.
Rev. Lett. 73, 1428 (1994).
See, for example, M. Tinkham, Introduction to Superconductivity
Lett. 64, 1063 (1990).
A similar distinction between Josephson junctions and conven-
tional type-II superconductors has been postulated theoretically
V. V. Moshchalkov, J. Y. Henry, C. Marin, J. Rossat-Mignod,
R. A. Doyle, J. D. Johnson, N. E. Hussey, A. M. Campbell, G.
F. Zuo, S. Khizroev, V. N. Kopylov, and N. N. Kolesnikov,
L. N. Bulaevskii, M. Zamora, D. Baeriswyl, H. Beck, and J. R.
F. Zuo, S. Khizroev, Xiuguang Jiang, J. L. Peng, and R. L. Green,
Y. Shimakawa, Y. Kubo, T. Manako, H. Igarashi, F. Izumi, and H.
V. G. Kogan and J. R. Clem, in Concise Encyclopedia of Mag-
etic and Superconducting Materials, edited by J. E. Evetts
For $\xi_{ab}(0)$ of Bi$_2$Sr$_2$CaCu$_2$O$_8$, see T. T. M. Palstra,
B. Batlogg, L. F. Schneemeier, R. B. van Dover, and J. V. Waszczak,
Phys. Rev. B 38, 5120 (1988). For $\xi_{ab}(0)$ of NbSe$_2$, see M.
Ikebe, N. Kobayashi, K. Katagiri, and Y. Muto, Physica B 105,
435 (1980).
J. W. Loram and J. M. Wade (private communication).
When ξ_c becomes very short, the material should no longer be
considered as an anisotropic homogeneous superconductor but
as a stack of superconducting layers separated by nonsupercon-
ducting regions. Even in the latter case, however, ξ_c still rep-
sents the spatial extent of the superconducting coherence volume
along the c axis.