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Fourfold Basal Plane Anisotropy of the Nonlocal Magnetization of YNi2B2C
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Studies of single crystal YNi2B2C have revealed a fourfold anisotropy of the equilibrium magn
tization in the square crystallographic basal plane. Thisp�2 periodicity occurs deep in the super
conductive mixed state. In this crystal symmetry, an ordinary superconductive mass anisotropy
usual London theory) allows only a constant, isotropic response. In contrast, the experimental
are well described by generalized London theory incorporating nonlocal electrodynamics, as need
this clean, intermediate-k superconductor.

PACS numbers: 74.25.Ha, 74.25.Bt, 74.70.Dd
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Borocarbide superconductors have received consi
able recent attention, due in part to the interaction betw
magnetism and superconductivity. A rich supercondu
ing phase diagram, including transitions between hexa
nal, rhombohedral, and square vortex lattices, has b
observed [1–4]. The existence of vortex lattices with n
hexagonal symmetry has been attributed to nonlocality
fects on the superconducting electrodynamics [4,5], wh
arise from the large electronic mean free path� of these
clean superconductors. Geometrically, a vortex direc
along the tetragonalc axis has squarelike current contou
[6]. It has been shown [7] in the nonmagnetic borocarb
YNi 2B2C that the deviations from the standard (local) Lo
don magnetic field dependence of the equilibrium mag
tization Meq ~ ln�H� can be quantitatively accounted f
by introducing nonlocal electrodynamics into the Lond
model [8]. Traditionally, it was widely thought that non
locality effects should be significant only in materials w
a Ginzburg-Landau parameterk � l�j � 1, wherel is
the London penetration depth andj is the superconduct
ing coherence length [9]. Those materials, e.g., Nb, w
clean enough to have� ¿ j, but the large vortex core
with j � l make theoretical analysis very difficult. Wit
the development of clean intermetallics and compoun
e.g., YNi2B2C wherek � 10 15, core effects are muc
smaller. Thus a more tractable nonlocal London formal
has been recently developed [8] for understanding th
intermediate-to-highk materials.

In the local London model of superconducting vortic
the material anisotropy is introduced via a second r
mass tensormij. In tetragonal materials such as YNi2B2C
or LuNi2B2C, the masses in both principal directions
the square basal plane are the same,ma � mb; thus the
superconducting properties are isotropic in thea-b plane.
In contrast, nonlocal corrections are expected to introd
[10] a fourfold anisotropy as a function of the magne
field orientation within thea-b plane. A temperature
dependent in-plane anisotropy of the upper critical fi
Hc2 has been observed [11] in the nonmagnetic boro
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bide LuNi2B2C and described within a Ginzburg-Landa
framework incorporating nonlocal effects. However, a
rect observation of the in-plane anisotropy deep in the
perconducting phase, where the nonlocal London mo
applies and unusual vortex lattices are observed, has
been reported until now.

In this Letter we show that, in the superconducti
mixed state of YNi2B2C, the reversible magnetizatio
oscillates with ap�2 periodicity when the applied field is
rotated within thea-b plane. The amplitude of the angula
oscillation decreases with field, passes through zero,
thenreverses signat a field well belowHc2. The results
are in good quantitative agreement with the nonlo
London description introduced by Koganet al. [8].

The 17 mg single crystal of YNi2B2C investigated in
this study is the same as that previously used by Songet al.
[7] to explore the magnetic response when the applied fi
H is parallel to thec axis. The critical temperature isTc �
14.5 K, defined as the point at which the linearly varyin
magnetizationM�T� extrapolates to zero; this ignores
slight “tail” extending to 15.6 K. The crystal is a slab o
thicknesst � 0.5 mm, whose shape and size in the ba
plane are sketched in Fig. 1. It will be useful to appro
mate such a shape by an ellipse of axesLx andLy . X-ray
diffraction shows that the crystallographicc axis is normal
to the slab, and the two equivalent (110) axes of
tetragonal structure very approximately coincide with t
axes of the ellipse.

Measurements were performed in a Quantum Des
SQUID magnetometer with a 50 kOe magnet. Two s
of detection coils allow us to measure both the lon
tudinal (parallel toH) and transverse (perpendicular
H) components of the magnetization vectorM, but only
the longitudinal component (denoted hereafter as sim
the magnetizationM) will be discussed in this Letter. Th
crystal was mounted into a previously described [1
homemade rotating sample holder with the rotation a
perpendicular toH. Thec axis was aligned with the rota
tion axis, so thatH could be rotated within the basal plan
© 1999 The American Physical Society
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FIG. 1. Equilibrium magnetization Meq at T � 7 K, as a
function of the angle w between the applied field H (contained
in the a-b plane) and the a axis, for (a) H � 45 kOe and
(b) H � 30 Oe. The inset shows a sketch of the crystal
shape and crystallographic orientation in the basal plane, super-
imposed to an ellipse with the same demagnetizing factors.

Figure 1 shows M as a function of the angle w between
H and the a axis (see sketch in Fig. 1), at T � 7 K and
two values of H. The crystal was initially cooled in zero
field, H was then applied, and the sample was subsequently
rotated in steps of Dw � 3.1±. Each data point was taken
at fixed w.

We first discuss the low field curve of Fig. 1b. As
H � 30 Oe is well below the lower critical field Hc1 for
all w, this curve represents the total flux exclusion of the
Meissner state. The oscillatory behavior with periodicity
p (twofold symmetry) originates from purely geometrical
effects. Indeed, a field applied at any orientation within
the basal plane can be decomposed in Hx � H cos�w 1

45±� and Hy � H sin�w 1 45±�. If we approximate the
crystal shape by the ellipse, the Meissner response asso-
ciated with each component is 4pMi � 2Hi��1 2 ni�,
where i � x; y, and ni � t�Li are the demagnetizing
factors; thus 4pM � 2H�cos2�w 1 45±���1 2 nx� 1

sin2�w 1 45±���1 2 ny��. The best fit to this expression
gives nx � 1�4 and ny � 1�5. This corresponds to the
ellipse of axes Lx � 2.0 mm and Ly � 2.5 mm shown in
the sketch of Fig. 1.

We now turn to the high field data of Fig. 1a. The ap-
plied field, H � 45 kOe, is well above Hc2 � 35 kOe at
this temperature (which is only weakly w dependent, see
below); thus in this case M�w� � Mns�w� is the normal
state paramagnetic response. We again observe an oscil-
latory behavior, but in this case the periodicity is p�2. By
combining the information provided by the x rays with the
geometrical effects on the Meissner response, we conclude
that the maximum normal state magnetization occurs at
the crystallographic orientations �110	 and �110	, while the
minimum corresponds to �100	 and �010	. No hint of the
geometry-originated twofold symmetry is observed. This
is to be expected, as demagnetizing effects vanish in the
limit jM�Hj ø 1. Further analysis of Mns suggests that
it arises from a low concentration, �0.001 molar fraction,
of rare earth ions, most likely from impurities in the yttrium
starting metal. As shown below, Mns is much smaller than
the superconducting contribution, except close to Hc2.

The above procedure cannot be used in the supercon-
ducting mixed state, due to the appearance of magnetic
hysteresis arising from vortex pinning. The critical current
density Jc is very small in this crystal [7]. As a result, the
magnetic hysteresis �M# 2 M"� ~ Jc, where M# and M"

are, respectively, the magnetizations measured in the field-
decreasing and field-increasing branches of an isothermal
M�H� loop, is small as compared to the equilibrium or re-
versible magnetization, Meq � �M# 1 M"��2. In spite of
this, the residual hysteresis strongly affects the response
obtained by rotating the crystal at fixed T and H, by su-
perimposing a periodicity p (related to shape effects on the
critical state magnetization) that almost completely hides
the intrinsic p�2 periodicity of fundamental interest.

To solve this difficulty, we performed magnetization
loops at T � 7 K at a set of fixed angles and then cal-
culated Meq�H� for each w. In all cases we extended the
loops up to H � 50 kOe; thus we could repeat the mea-
surement of Mns in the normal state and compare the data
with those obtained by rotating at fixed H. Because of the
absence of hysteresis, both determinations of Mns�H, w�
should coincide. This is indeed the case, as seen in Fig. 1a,
where the open circles represent the data at H � 45 kOe
obtained from the M�H� loops.

Figure 2 shows Meq (obtained from averaging M# and
M") as a function of w for several H. All of the data have
the same scale, but the curves at different H have been
vertically shifted to accommodate the whole field range
within the plot. For H , 1.5 kOe, the irreversibility be-
comes large enough to introduce a significant uncertainty
in the determination of Meq; consequently, those data have
been disregarded. It is apparent that a fourfold symme-
try exists in the whole field range of the measurements.
To quantify the amplitude of the oscillations, we fitted the
curves by Meq�H, w� � �Meq	 1 dMeq�H� cos�4w�.

The oscillation amplitudes dMeq�H� so obtained are
plotted in Fig. 3, while the values of �Meq	 �H� are shown
in the inset. A remarkable fact, clearly visible in Figs. 2
and 3, is that dMeq�H� crosses zero and it reverses sign at
some intermediate field ��12 kOe� well within the super-
conducting mixed state. Another interesting observation
is that the amplitude of the oscillations at H � 1.5 2 kOe
is as large as that at H � 50 kOe.

The above results show that a p�2 basal plane aniso-
tropy exists both in the normal and in the superconducting
states. It is also clear from Fig. 3 that a change in the
behavior of dMeq�H� takes place at the superconducting
transition at Hc2 � 35 kOe. This observation, together
3921
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FIG. 2. Reversible magnetization Meq at T � 7 K, as a
function of the angle w between the applied field H (contained
in the a-b plane) and the a axis. The fields (in kOe) are
indicated next to each curve. The scale is the same for all of
the curves, but data at different H have been vertically shifted.

with the sign reversal and the large amplitudes at low
fields, points to the existence of a second source of in-
plane anisotropy that, in addition to the normal state one,
turns on in the superconducting phase.

Prior to analyzing the superconducting basal-plane
anisotropy it is necessary to subtract the normal state

FIG. 3. Amplitude dMeq of the fourfold oscillations of the
basal plane magnetization, as a function of the applied field
H. The dotted line is the normal state contribution dMns

obtained from the fit shown in Fig. 4. The solid line is the
fit to dMsc

eq 1 dMns using Eq. (2) with e1 as the only fitting
parameter. Inset: Average in-plane magnetization �Meq	, as a
function of applied field (see text).
3922
contribution, which persists within the superconducting
phase. To that end we performed rotations at fixed H, as
those shown in Fig. 1a, at several T and H above Hc2�T �.
We found a paramagnetic response that exhibits a fourfold
symmetry, with the minimum at w � 0 in all cases, i.e.,
Mns�w � 45±� . Mns�w � 0±� . 0 for all T and H.
We thus have a well-defined set of data dMns�H, T �
which exhibits no sign reversal. The extrapolation is not
obvious, however, as dMns is not linear in H. Figure 4
shows all of the dMns data collected at various tempera-
tures 5 # T # 16 K and H # 50 kOe, as a function of
H�T . We found that, when plotted in this way, all of the
data points collapse on a single curve.

The dotted line in Fig. 4 is a fit to the dMns�H�T � data.
The same fit, for the case of T � 7 K, is also shown as
a dotted line in Fig. 3. We can now subtract that curve
from the total dMeq shown in Fig. 3, to isolate the super-
conducting contribution dMsc

eq. Note that, as dMns is al-
ways positive and increases monotonically with H, both
the sign reversal and the nonmonotonic behavior immedi-
ately below Hc2 exhibited by dMeq must arise from the
dMsc

eq contribution.
We now show that the fourfold symmetry of Msc

eq, as
well as the field dependence of dMsc

eq, can be well de-
scribed using the nonlocal modifications to the London
electrodynamics introduced by Kogan et al. [8]. Accord-
ing to that model, for Hc1 ø H ø Hc2,

Msc
eq � 2M0

∑
ln

µ
H0

H
1 1

∂
2

H0

H0 1 H
1 z

∏
. (1)

Here M0 � F0�32p2l2, the new characteristic field H0 �
F0�4p2r2 is related to the nonlocality radius r, and z �
h1 2 ln�H0�h2Hc2 1 1�, where h1 and h2 are constants
of order unity.

Song et al. [7] have shown that the magnetization of
this same crystal is very well described by Kogan’s model,

FIG. 4. Amplitude dMns of the fourfold oscillations of the
basal plane magnetization in the normal state, as a function of
H�T . The dotted line is a polynomial fit.
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when H k c-axis. A fingerprint of the nonlocality effects
is the deviation from the Meq ~ ln�H� behavior predicted
by the local London model. The curvature clearly visible
in the inset of Fig. 3 is thus a strong indication that non-
locality also plays a major role when H � c-axis. It is
worth mentioning that, although a quantitative analysis
of the curve in the inset of Fig. 3 in terms of Eq. (1)
would require removal of the normal state magnetization,
its contribution is small and would not significantly modify
the curvature seen in the Meq vs ln�H� data.

We now apply Eq. (1) to the analysis of our data. In
principle, the basal plane anisotropy could be ascribed
to the material parameters M0, H0, and Hc2. However,
M0 ~ l22 is isotropic within the a-b plane of a tetragonal
structure. On the other hand, fourfold variations of Hc2
within the basal plane have been observed in LuNi2B2C
and attributed to nonlocality [11]. We then assume that
both H0 and Hc2 have p�2 periodicity, H0�w� � �H0	 1

dH0 cos�4w� and Hc2�w� � �Hc2	 1 dHc2 cos�4w�. To
first order in dH0 and dHc2 we obtain

dMsc
eq � 2M0

"√
1

�1 1
H

�H0	 �2
2 a

!
e1 1 ae2

#
, (2)

where

a �
1

1 1 h2
�Hc2	
�H0	

; e1 �
dH0

�H0	
; e2 �

dHc2

�Hc2	
.

Experimentally, we have determined �Hc2	 � 35 kOe
and dHc2 � 0.4 kOe (at T � 7 K), so we can fix e2 �
0.01. We could also attempt to determine M0 and �H0	
by fitting our Meq data with Eq. (1). However, this is a
difficult task that requires [7] the measurement of a large
set of temperatures to check the consistency of the results.
Instead, we decided to use the results of Song et al. [7]
(for H k c-axis) as good estimates. For T � 7 K, we take
�H0	 � 56 kOe and M0 � 5.2 G. (Here we scaled down
M0 ~ 1�lalc by the experimental mass anisotropy, g �
1.15, between the c axis and the a-b plane, which is close
to the value g � 1.1 obtained from band structure calcu-
lations [13].) In any case, small variations in any of these
parameters will not significantly affect the rest of the
analysis. If we also assume h2 � 1, we obtain a � 2�3.
With these fixed parameters, we fit our dMsc

eq�H� data with
Eq. (2), with the single free parameter e1. We obtain
e1 � 0.14. The fitted curve (for dMsc

eq 1 dMns) is shown
as a solid line in Fig. 3.

The very good coincidence between our data and the
model is remarkable. With a single fitting parameter e1,
which is field independent, we have been able to account
for the nontrivial H dependence of dMsc

eq, including the
sign reversal at intermediate fields. Of course, the fit de-
viates from the data close to Hc2, where the London model
fails. These experimental results show that nonlocality ef-
fects have a profound effect on these clean, intermediate-k
superconductors and they underscore the remarkable utility
of the generalized London theory.

In summary, we have demonstrated a fourfold aniso-
tropy in the square basal plane of clean single crystal
YNi2B2C. This superconducting response is inconsistent
with conventional local London theory, but it is well
explained by a generalized London model incorporating
nonlocal electrodynamics, with parameters based largely
on complementary experiments. These observed effects
of nonlocality persist deep in the superconducting state,
where complex, evolving vortex lattices occur.
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a UTK Faculty Research Fund. Research at the ORNL
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Note added.—While preparing this manuscript, we
learned that P. C. Canfield et al. at the Ames Laboratory
have observed similar oscillations of the basal plane
magnetization of LuNi2B2C.
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