Elliptical hole pockets in the Fermi surfaces of unhydrated and hydrated sodium cobalt oxides

J. Laverock and S. B. Dugdale
H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

J. A. Duffy, J. Wooldridge, G. Balakrishnan, and M. R. Lees
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

G.-q. Zheng
Department of Physics, Okayama University, Okayama 700-8530, Japan

D. Chen and C. T. Lin
ISEM, University of Wollongong, Wollongong, NSW 2522, Australia

A. Andrejczuk, M. Itou, and Y. Sakurai
Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5198, Japan

DOI: 10.1103/PhysRevB.76.052509 PACS number(s): 71.18.+y, 71.27.+a, 74.70.–b

Hydrated sodium cobalt oxides (Na$_x$CoO$_2$ · 1.3H$_2$O), for a certain range of Na concentrations, exhibit superconductivity at a temperature of 5 K. 1 Although many analogies have been drawn with the high-T_c cuprates (for instance, as being possibly the only other example of a Mott insulator becoming superconducting under doping 1–3), the sodium cobaltate system exhibits its own unique set of anomalous behaviour such as unusually high thermopower 4 and T-linear resistivity 5, distinctly indicative of strongly correlated electron behavior. In a conventional superconductor, electrons at the Fermi surface form Cooper pairs under an attractive interaction mediated by lattice vibrations. The manner in which electrons form these pairs can be strongly influenced by the shape of the Fermi surface. Questions regarding the origin of the pairing interaction and the nature of the superconductivity in the cobaltates has stimulated significant theoretical speculation, most of which has focused heavily on the properties of some small elliptically shaped pockets predicted to be the electronically dominant Fermi surface sheet, but direct attempts to look for them have instead cast serious doubts over their existence. Here we present evidence that these pockets do indeed exist, based on bulk measurements of the electron momentum distribution in unhydrated and hydrated sodium cobalt oxides using the technique of x-ray Compton scattering.

The surprise discovery of superconductivity below 5 K in sodium cobalt oxides when hydrated with water has caught the attention of experimentalists and theorists alike. Most explanations for its occurrence have focused heavily on the properties of some small elliptically shaped pockets predicted to be the electronically dominant Fermi surface sheet, but direct attempts to look for them have instead cast serious doubts over their existence. Here we present evidence that these pockets do indeed exist, based on bulk measurements of the electron momentum distribution in unhydrated and hydrated sodium cobalt oxides using the technique of x-ray Compton scattering.

The structure of Na$_x$CoO$_2$ comprises hexagonal planes of electronically active edge-sharing CoO$_6$ octahedra. 6 These planes are separated by insulating layers of Na and, in the hydrated samples, water, that serve as spacers (resulting in electronic two dimensionality) and charge reservoirs. The intercalation of water, at a concentration of $y \sim 1.3$, has a dramatic effect on properties of the compound. It is accompa-
a representative set of compositions of the unhydrated parent compound Na$_{0.74}$CoO$_2$ ($x=0.38$, 0.51, and 0.74) and a hydrated (actually deuterated) sample at a superconducting composition Na$_{0.35}$CoO$_2$·1.3D$_2$O. For these measurements, single crystals of $x \sim 0.75$ were grown in Warwick using the floating-zone technique. Samples of lower sodium concentration were then obtained by a chemical deintercalation method, immersing the crystals in solutions of Br$_2$ and acetonitrile. The lattice parameters were obtained by x-ray diffraction; the relationship between Na doping and the crystal structure is well characterized by powder neutron diffraction measurements and ICP-AES techniques and so the sodium concentrations for the three crystals used in this study were determined as 0.74(1), 0.51(1), and 0.38(1). The macroscopic properties (magnetic susceptibility, heat capacity, and transport measurements) are identical to those previously reported for similar compositions. The superconducting sample was produced by the chemical intercalation of deuterium oxide (D$_2$O was used rather than H$_2$O to allow future neutron experiments on the same sample) by submersion in liquid D$_2$O for three months at 5 °C. Subsequent to the Compton experiment, a measurement of its magnetisation showed that it was superconducting at a temperature of 3.5 K.

FIG. 1. (Color online) The experimental Fermi surface of Na$_x$CoO$_2$ for (a) $x=0.74$, (b) 0.51, and (c) 0.38, and for Na$_{0.35}$CoO$_2$·1.3D$_2$O (d) obtained from the reconstruction of five Compton profiles for each composition. The boundary of the first Brillouin zone is indicated.

A Compton profile represents a double integral (one-dimensional projection) of the full three-dimensional electron momentum density. For each composition, five Compton profiles equally spaced between Γ-M and Γ-K were measured on the high-resolution Compton spectrometer of beamline BL08W at the SPring-8 synchrotron. The unhydrated measurements were made at room temperature, while those on the hydrated sample were at 11 K. The hydrated sample was transferred from a D$_2$O bath directly onto a cryostat precooled to \sim250 K under a helium atmosphere in order to preserve the hydration. On removal at the end of the measurement, the sample was observed to be still in its hydrated state. The spectrometer consists of a Cauchois-type crystal analyzer and a position-sensitive detector, with a resolution FWHM at the Compton peak of 0.115 a.u. (1 a.u. of momentum = 1.99 \times 10$^{-24}$ kg m s$^{-1}$). For each Compton profile, \sim600 000 counts in the peak data channel were accumulated, and each Compton profile was corrected for possible multiple-scattering contributions. A two-dimensional momentum density, representing a projection down the c axis of the full three-dimensional density, was reconstructed from each set of five profiles using tomographic techniques and then folded back into the first BZ using the Lock-Crisp-West procedure to obtain the occupation density from which the occupied parts of the BZ could be inferred. The occupation density is shown for each composition in Fig. 1, where black represents the lowest occupancy and white the highest.

Considering first the unhydrated parent compound, the contours associated with the hexagonal a_{1g} hole sheet can be clearly identified for $x=0.74$, but the hexagonal shape becomes progressively less clear and is significantly distorted in the $x=0.38$ data. We shall argue that this distortion is strong evidence for the presence of e'_g pockets.

To assess the size of the hexagonal Fermi surface of the Na$_{0.74}$CoO$_2$ compound, a method using the extrema in the first derivative of the occupation density was employed (see, for example, Ref. 27). At this composition elliptical pockets are not expected, and so the determination using this method should unambiguously reveal the hexagonal Fermi surface. Figure 2 is the result, and shows a Fermi surface in excellent agreement with LDA calculations.

We can explain the distortion of the hexagonal shape for smaller Na concentrations as being due to the presence of e'_g elliptical hole pockets close to the central a_{1g} Fermi surface.

FIG. 2. Fermi surface obtained by plotting the contour at the maximum of the first derivative of the occupation density for Na$_{0.74}$CoO$_2$.
A simple geometric simulation of such a Fermi surface is shown in Fig. 3 together with the resulting occupation density (convoluted with the experimental resolution), illustrating how the presence of small pockets distort the hexagonal appearance of the a_{1g} Fermi surface. The experimental occupation density for the hydrated $\text{Na}_{0.35}\text{CoO}_2 \cdot 1.3\text{D}_2\text{O}$ (Fig. 1) is also strongly suggestive of the presence of small hole pockets, which can be discerned close to the central hexagon; it is also worth remarking that the a_{1g} sheet retains a strong hexagonal shape, whereas electronic structure calculations in the hydrated structure (although without the actual presence of water) predict something more circular. The results suggest that the effects of hydration on the Fermi surface are in fact rather modest, and perhaps not as drastic as suggested by Xiao et al. An estimate of the areas of the hexagonal a_{1g} sheet and (where appropriate) the six elliptical e_g' pockets based on a comparison of simulations to the experimental data (with the total area constrained by the appropriate Na concentration) is presented in Table I. That the pockets consistently appear rather close to the a_{1g} sheet is also noteworthy.

Recent measurement of Shubnikov–de Haas oscillations in $\text{Na}_{0.35}\text{CoO}_2$ indicate the presence of some unidentified Fermi surface pockets occupying approximately 0.6 and 1.4 \% of the BZ, which is consistent with our estimate of the size of each pocket we observe occupying about 0.8\% (Table I). In addition, an examination of phonon softening in this system by Rueff et al. is interpreted by those authors as strong evidence for the existence of nested pockets.

The question of why the ARPES experiments have consistently not observed these e_g' pockets remains. Issues such as surface sensitivity, including possible surface relaxations of CoO$_6$ octahedral contractions that destroy the pockets, as well as matrix-element effects or Na disorder must be possibilities. However, at least in the superconducting compound, it is very difficult to reconcile the observed behavior of the specific heat, or even understand the presence of superconductivity without the presence of the e_g' pockets. Moreover, in an attempt to take into account Coulomb correlations not included in the LDA, calculations based on the LDA+U approach, have suggested that for a sufficiently large Coulomb energy ($U > 3 \text{ eV}$) the e_g' band is pulled below the Fermi level, eliminating these smaller Fermi surface pockets for all Na concentrations. However, other studies have put an upper limit of about 2.3 \text{ eV} on U and when dynamical Coulomb correlations are incorporated the effect is to stabilize the e_g' pockets. The theoretical debate rages on, with predictions in support of (Ref. 38) and contrary to (Ref. 39) the existence of these pockets.

In conclusion, we have presented the Fermi surface of several members ($x=0.38, 0.51, \text{and} 0.74$) of the dehydrated sodium cobalt oxide Na_xCoO_2 and of a hydrated composition $\text{Na}_{0.35}\text{CoO}_2 \cdot 1.3\text{D}_2\text{O}$. Reasonable qualitative agreement is observed between our experimentally determined Fermi surfaces and the LDA predictions, and there is clear evidence for the smaller e_g' elliptical hole pockets which develop at lower Na concentrations than $\text{Na}_{0.74}\text{CoO}_2$. For $\text{Na}_{0.38}\text{CoO}_2$, their presence is clearly indicated in experimental maps of the occupancy within the Brillouin zone. Most importantly, however, the occupancy map for $\text{Na}_{0.35}\text{CoO}_2 \cdot 1.3\text{D}_2\text{O}$ also shows the presence of small e_g' elliptical hole pockets. While alternative models that describe the superconductivity arising as a consequence of frustration on the triangular lattice, nesting across the large, hexagonal sheet, or spin fluctuations enhanced by the dopant dynamics are not (and cannot be) ruled out, the observation of the pockets lends strong support to theories based on their special nesting properties.

We acknowledge the financial support of the Royal Society (S.B.D.) and the UK EPSRC, and invaluable discussions with Igor Mazin, Michelle Johannes, and Zahid Hasan. This experiment was performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI, proposal Nos. 2005A0092-ND3a-np and 2005B0182-ND3a-np). This work was partially supported by a Grant-in-Aid for Scientific Research (Grant No. 18340111) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.