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Spin correlations in Ca3Co2O6: Polarized-neutron diffraction and Monte Carlo study
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We present polarized-neutron diffraction measurements of the Ising-type spin-chain compound Ca3Co2O6

above and below the magnetic ordering temperature TN. Below TN, a clear evolution from a pure spin-density
wave (SDW) structure to a mixture of SDW and commensurate antiferromagnet (CAFM) structures is observed
on cooling. For a rapidly cooled sample, the majority phase at low temperature is the SDW, while if the
cooling is performed sufficiently slowly, then the SDW and the CAFM structure coexist between 1.5 and 10 K.
Above TN, we use Monte Carlo methods to analyze the magnetic diffuse scattering data. We show that both
intrachain and interchain correlations persist above TN, but are essentially decoupled. Intrachain correlations
resemble the one-dimensional ferromagnetic Ising model, while interchain correlations resemble the frustrated
triangular-lattice antiferromagnet. Using previously published bulk property measurements and our neutron
diffraction data, we obtain values of the ferromagnetic and antiferromagnetic exchange interactions and the
single-ion anisotropy.
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I. INTRODUCTION

The spin-chain compound Ca3Co2O6 offers a rare op-
portunity to investigate the interplay of frustration and low
dimensionality in a triangular lattice of Ising chains. Some
of the most interesting observations of Ca3Co2O6 have been
made in an applied magnetic field, where the appearance of
magnetization plateaus [1] at low temperature has been linked
to a quantum tunneling mechanism [2]. However, even in zero
field Ca3Co2O6 demonstrates very complex and unexpected
behavior. Below TN = 25 K, Ca3Co2O6 undergoes an unusual
order-order transition, an ultraslow magnetic relaxation, and
a coexistence of several magnetic phases [3], while above
TN the persistence of dispersive spin-wave excitations in-
dicates that strong spin correlations remain present [4]. A
substantial and prolonged theoretical interest in this compound
[5–9] is thus not unexpected (see Ref. [10] for a recent
review).

The crystal structure of Ca3Co2O6 is rhombohedral (space
group R3̄c) and consists of chains made up of alternating
face-sharing octahedral (Co3+

I ; S = 0) and trigonal prismatic
(Co3+

II ; S = 2) CoO6 polyhedra [11,12]. The chains are di-
rected along the c axis and are arranged on a triangular lattice in
the ab plane. The trigonal crystal field and spin-orbit coupling
generate an Ising-type magnetic anisotropy at the Co3+

II site,
with the easy axis parallel to the chains [5,13]. Spins are
coupled by ferromagnetic (FM) interactions within the chains,
while much weaker antiferromagnetic (AFM) interactions
couple adjacent chains along helical pathways [14,15]. Below
TN, a magnetic order is stabilized in the form of a longitudinal
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amplitude-modulated spin-density wave (SDW) propagating
along the c axis with a periodicity of about 1000 Å. There
is a phase shift of 120◦ in the modulation between adjacent
chains [16–18]. Recent powder neutron diffraction results [3]
revealed an order-order transition from the SDW structure
to a commensurate antiferromagnetic (CAFM) phase. This
transition occurs over a time scale of several hours and is
never complete.

Despite longstanding interest in Ca3Co2O6, a detailed
understanding of zero-field spin correlations as a function
of temperature has not yet been achieved. Here, we attempt
to address three outstanding questions: (i) What is the
temperature dependence of the fractions of SDW and CAFM
phases below TN? (ii) What is the nature of the spin correlations
in the paramagnetic phase above TN, and how are these
correlations related to reported anomalies in thermodynamic
(bulk) measurements [2,19–21]? (iii) Can the temperature-
dependent behavior of Ca3Co2O6 be explained in a consistent
way using an effective spin Hamiltonian?

To address these questions, we have performed polarized-
neutron scattering measurements on a polycrystalline sample
of Ca3Co2O6 above and below TN. We employ Monte Carlo
methods to interpret our data above TN and to calculate
thermodynamic quantities. Our paper is structured as follows.
Details of our experiments and analysis methods are given in
Sec. II. In Sec. III A, we address the effect of temperature and
sample cooling rate on the coexistence of magnetic phases
below TN. In Sec. III B, we use Monte Carlo methods to
extract the spin correlation functions along and between the
chains above TN. Finally, in Sec. IV we develop a model of
the magnetic interactions which is compatible both with our
neutron data and with previously reported measurements of
thermodynamic properties [2,20,21].
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II. EXPERIMENTAL AND TECHNICAL DETAILS

A polycrystalline sample of Ca3Co2O6 of mass 3.6 g was
synthesized via a solid-state method [13,22,23]. The magnetic
properties of the sample were checked by magnetization
measurements and agree with those reported previously
[13,21–24].

We performed polarized-neutron diffraction experiments
using the D7 instrument at the ILL in Grenoble, France. D7 is
a cold-neutron diffuse scattering spectrometer equipped with
xyz polarization analysis [25], which uses 132 3He detectors
to cover a scattering range of about 140◦. We used neutrons
monochromated to wavelengths of 4.8 and 3.1 Å, allowing the
scattering to be measured in the range 0.34 < q < 2.48 Å−1

and 0.53 < q < 3.46 Å−1, respectively. In order to avoid
possible complications from the influence of the out-of-plane
components to forward scattering [26], the data for scattering
angles less than 20◦ have been ignored in the refinements.

Standard data analysis techniques (which included detector
efficiency normalization from vanadium standards and po-
larization efficiency calculations from an amorphous silica
standard) were used to calculate the magnetic, nuclear, and
spin-incoherent scattering components from the initial data.
The diffraction data obtained below TN were refined using the
FULLPROF program [27]. D7 is also equipped with a Fermi
chopper, which permits inelastic scattering measurements
with a resolution of 3% of the incident energy, thereby
giving the ability to differentiate between elastic and inelastic
contributions [25]. All attempts to detect an inelastic signal
at any temperature were unsuccessful; therefore, within D7’s
resolution of about 0.15 meV, the signal should be presumed
to be totally elastic.

We refined the magnetic diffuse scattering patterns obtained
above TN using the SPINVERT program [28], which implements
a reverse Monte Carlo (RMC) algorithm [29,30]. In the RMC
refinements, a supercell of the crystallographic unit cell is
first generated, a classical Ising spin with random orientation
(up/down) is assigned to each Co3+

II site, and the sum of squared
residuals is calculated:

χ2 = W
∑

q

[
sIcalc(q) − Iexpt(q)

σ (q)

]2

, (1)

in which I (q) denotes a powder-averaged magnetic scattering
intensity, subscripts “calc” and “expt” denote calculated and
experimental values, σ (q) is an experimental uncertainty, W is
an empirical weighting factor, and s is a refined overall scale
factor. A randomly chosen spin is then flipped, the change
in χ2 is calculated, and the proposed spin flip is accepted or
rejected according to the METROPOLIS algorithm. This process
is repeated until no further reduction in χ2 is observed. The
scattering pattern is calculated from the spin configuration
using the general expression of Ref. [31] which takes magnetic
anisotropy into account. In our refinements, we used periodic
spin configurations of size 12 × 7 × 11 orthorhombic unit
cells (N = 11 088 spins), which represented a compromise
between maximizing the simulation size and keeping the
computer time required within reasonable limits. Refinements
were performed for 100 proposed flips per spin, and all
calculated quantities were averaged over 10 independent spin
configurations in order to minimize the statistical noise.

We performed direct Monte Carlo (DMC) simulations using
the classical Ising Hamiltonian

H = −1

2

∑
i,j

Jij S
z
i S

z
j , (2)

in which the z component of spin Sz = ±S, where S = 2 is
the spin length, and the transverse couplings are neglected
(i.e., Sx

i Sx
j = S

y

i S
y

j = 0). We also considered the anisotropic
Hamiltonian

H = −1

2

∑
i,j

Jij S
z
i S

z
j − D

∑
i

(
Sz

i

)2
, (3)

in which the transverse coupling terms are again neglected and
Sz

i can take now five values: Sz
i = ±2, ± 1,0. For T � DS2,

only the Sz = ±2 states are occupied, and Eq. (3) is equivalent
to Eq. (2). We finally investigated the classical anisotropic
Heisenberg Hamiltonian

H = −1

2

∑
i,j

Jij Si · Sj − D
∑

i

(
Sz

i

)2
, (4)

in which the Si are three-component vectors having length S

and z component Sz
i . In all models, Jij is a general interaction

between pairs of spins i,j , D is a single-ion anisotropy term,
and the factor of 1

2 corrects for the double counting of pairwise
interactions. In Sec. III B, we consider specifically interactions
between nearest-neighbor and third-neighbor spins, which we
label J1 and J3, respectively.

Direct Monte Carlo simulations were performed using
a simulated annealing algorithm in which a periodic spin
configuration was initialized with random spin orientations
and slowly cooled. The initial temperature was T = 15J1S

2 for
the Ising model and T = 60J1S

2 for the anisotropic models,
and ratio of adjacent temperatures was equal to 0.96. At
each temperature, 104 moves per spin were proposed for
equilibration, followed by at least 105 proposed moves for
calculations of the bulk properties. For the Ising model, a
proposed spin move involved choosing a spin at random and
flipping its orientation. For the five-state model, a proposed
spin move involved choosing one of the five possible states
at random. For the anisotropic Heisenberg model, two kinds
of move were alternated: randomly choosing a new spin
orientation on the surface of a sphere, and a simple spin flip
(Si → −Si), where the latter is used to allow the simulation
to move rapidly between Ising-type states at low T [32]. Each
proposed spin move was accepted or rejected according to
the METROPOLIS algorithm. To simulate diffraction patterns,
we used five independent spin configurations, each of size
18 × 10 × 16 orthorhombic unit cells (N = 34 560 spins); an
approximately cubic supercell was used because calculating
powder diffraction patterns involves spherically averaging spin
correlation functions in real space [31]. For bulk-properties
calculations, we used a spin configuration of size of 5 × 3 × 64
orthorhombic unit cells (N = 11 520 spins); these dimensions
were chosen since the correlation length along c is longer than
in the ab plane (Sec. III B). The magnetic susceptibility per
spin χ and heat capacity per spin Cmag were calculated from
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the fluctuation-dissipation relations

χT = 1

N

(〈
M2

z

〉 − 〈Mz〉2
)
, (5)

Cmag = 1

NT 2
(〈E2〉 − 〈E〉2), (6)

where Mz = ∑
i S

z
i /S is the total magnetization (normalized

by spin length), E = ∑
i Ei the total energy, and angle brackets

denote the time average. For comparison with experimental
data, χT is converted into units of K m3 mol−1 by multiplying
by NAμ0μ

2
effk

−1
B , with the effective magnetic moment μeff =

(2Sz + Lz)μB, and Cmag is converted into J K−1 mol−1 by
multiplying by NAkB.

III. RESULTS AND DISCUSSION

A. Low-temperature data

The CAFM phase detected previously in Ca3Co2O6 has
been proven to be metastable in nature [3]. Given this, we
have experimented using two different protocols for cooling
the sample, denoted slow cooling and rapid cooling. For the
slow cooling, the sample was initially cooled to 30 K; the
temperature was then reduced down to 5 K in steps of 5 K, and
finally to the base temperature of 1.5 K. Diffraction patterns
were recorded at each temperature step with a data collection
time of 4 to 5 h; therefore, the total cooling time to base
temperature was more than 24 h. For the rapid cooling, the
sample was quickly (within a few minutes) cooled from just
above the ordering temperature (∼ 25 K) down to the base
temperature of the cryostat and equilibrated for 15 min. The
measurement time at the base temperature was 4 h. The sample
was then warmed up to 5, 7.5, 10 and 15 K with 4-h-long
measurements at each temperature. The neutron diffraction
patterns recorded with 4.8-Å neutrons following these two
protocols are shown in Figs. 1(a) and 1(b), respectively.

The most intense magnetic Bragg peaks corresponding to
the SDW and CAFM phases appear at 0.79 and 0.69 Å−1,
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FIG. 1. (Color online) Magnetic powder neutron diffraction in-
tensity profiles of Ca3Co2O6 measured with 4.8-Å neutrons on
warming after rapid cooling (a) and on slow cooling (b). The curves
are offset for clarity.

respectively. The presence of these two magnetic phases can
therefore be easily followed in Fig. 1.

The SDW phase is the majority phase at all temperatures.
The CAFM phase is present at temperatures below and
including 10 K, but for the rapid cooling protocol it is barely
visible at lower temperatures (1.5 and 5 K). On the other hand,
for the slow cooling protocol intense and narrow magnetic
reflections from the CAFM phase can be observed even at
the lowest temperatures. These results provide evidence that
the extremely slow dynamics existing below 10 K hamper the
development of the long-range CAFM phase in the case of a
fast cooling procedure. Apart from the long-range SDW and
CAFM phases, a short-range magnetic component is clearly
present at T < 15 K for both cooling protocols, in agreement
with the previous unpolarized neutron diffraction data [3,16]
and a recent magnetocaloric study [33]. In the refinement, it
is rather difficult to distinguish this short-range component
from a background signal that varies slightly as function of
scattering angle. Figures 2(a) and 2(b) illustrate this point by
showing the refinement of the T = 5.0 K data for rapid and
slow cooling regimes using both flat and variable backgrounds.

The actual numbers for the phase fraction of the short-range
component vary considerably depending on the presumed
shape of the background. The temperature dependence of the
magnetic fractions are shown in Figs. 2(c) and 2(d) for both
cooling regimes.

The slow cooling procedure results in the simultaneous
presence of both magnetic long-range-ordered phases at low
temperature (from 1.5 to 10 K), while at higher temperatures
(at 15 and 20 K) only the SDW phase is visible. In contrast
to the rapid cooling data, for the slow cooling procedure
the fraction of the CAFM phase does not show a maximum
around 10 K but monotonically increases, at the expense of the
SDW phase, as the temperature is further reduced. This result
shows that the particular protocol used for cooling the sample
strongly affects the evolution of the order-order transition
between the SDW and CAFM phases. This observation is
an effect of the rapid increase of the characteristic time of the
transition process between the SDW and CAFM phases as the
temperature is decreased [3]. The dependence on the cooling
procedure shown by ac susceptibility measurements [24] is
probably related to the particular dynamics of the long-range
magnetic order in Ca3Co2O6.

Further systematic measurements would be required to
investigate whether the presence of the maximum found at
about 10 K in the temperature dependence of the CAFM
fraction for the rapid cooling protocol is correlated with the
amount of time the sample is kept at low temperatures. These
measurements (not attempted here) would be better suited for
an unpolarized neutron high-intensity diffractometer capable
of much faster data collection rates.

Due to the relatively low q-resolution of the D7 diffractome-
ter, it was not possible to detect a small (∼ 0.01 Å−1) [16,17]
incommensuration in the magnetic reflections associated with
the long-period modulation of the SDW magnetic structure
along the c axis.

Additional data were collected using the slow cooling
protocol with 3.1-Å neutrons. The higher-energy incident
neutrons allowed for diffraction up to a higher maximum q,

014411-3



JOSEPH A. M. PADDISON et al. PHYSICAL REVIEW B 90, 014411 (2014)

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

 SDW  CAFM
 short-range order

(c)

(d)

Ph
as

e 
fr

ac
tio

n

Temperature (K)

0

1

2

3

 variable BG
 flat BG

(b)

(a)Rapid cooling   T = 5.0 K

0.5 1.0 1.5 2.0
0

1

2

3

In
te

ns
ity

 (a
rb

. u
ni

ts
)

q (Å-1)

Slow cooling   T = 5.0 K

FIG. 2. (Color online) Top panels: Magnetic component of pow-
der neutron diffraction patterns of Ca3Co2O6 collected at 5.0 K (a) on
warming to this temperature after rapid cooling to 1.5 K and (b) on
slow cooling to this temperature. Dots represent the experimental
data, while the lines show the calculated patterns and difference
curves. Bottom panels: Temperature dependence of the fractions of
the SDW, CAFM, and short-range order phases for (c) rapid cooling
and (d) slow cooling protocols. Solid (open) symbols correspond to
the refinement which includes (excludes) a variable background.

but the data collected essentially followed the same trend as in
Fig. 1(b) and are therefore not shown here.

B. High-temperature data

High-temperature magnetic diffuse scattering data were
collected at six temperatures above TN and are shown in
Fig. 3. No appreciable dependence of the scattering intensity
on sample history was observed at any temperature above TN.
At T = 25, 30, and 35 K, the magnetic diffuse scattering is
dominated by a broad peak, which decreases in intensity and
shifts from q = 0.8 to 0.7 Å−1 with increasing temperature.
At T � 50 K, the scattering patterns show no pronounced
features in the q range probed, but even at 100 K there
are small differences between the experimental data and the
paramagnetic Co3+ form factor which would be observed for
entirely random spin orientations. We use two approaches to
analyze the high-temperature data. First, we fit the data using

FIG. 3. (Color online) Magnetic diffuse scattering patterns from
Ca3Co2O6 at six temperatures above TN. Filled black symbols
represent experimental data. The dotted green lines show reverse
Monte Carlo fits (see main text for details). The solid red lines are
calculated using direct Monte Carlo simulations of the Ising model
with exchange interactions J3/J1 = −0.10 (J1S

2 = 22.9 K), and the
dashed blue lines for J3/J1 = −0.02 (J1S

2 = 36.8 K). The curves
for different temperatures are consecutively offset by 0.5 units for
clarity. The paramagnetic squared form factor for Co3+ (adjusted
by the overall intensity scale determined from RMC refinement) is
shown as a dashed black line for comparison.

reverse Monte Carlo refinement: this approach determines the
paramagnetic correlations but does not model the magnetic
interactions. Second, we consider the extent to which our
data are consistent with different sets of interactions in a
simple magnetic Hamiltonian. Throughout, we assume that
only the Co3+

II (S = 2) sites are magnetic with no magnetic
moment present on the Co3+

I (S = 0) sites (in agreement with
NMR evidence [34]), and find that this assumption is entirely
consistent with the data.

We performed RMC refinements of the high-temperature
data using the SPINVERT program [28]. Technical details of
the refinements were given in Sec. II. The most important
assumption is that the spins behave as purely Ising variables,
which is expected to be valid for T � DS2. Measurements of
the magnetic heat capacity [20] and our own analysis in Sec. IV
suggest that the Ising approximation is valid at least for T �
50 K, where the diffuse scattering shows the most pronounced
features. We make the usual assumption that the magnetic form
factor is given by the dipole (low-q) formula f (q) = j0(q) +
C2j2(q), where j0(q) and j2(q) are tabulated functions [35]
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(a)

(b)

FIG. 4. (Color online) (a) Radial spin correlation function at
T = 25 K. Results from reverse Monte Carlo fits to the T = 25 K data
are shown in black. Values from the direct Monte Carlo simulations
with J3/J1 = −0.10 (J1S

2 = 22.9 K) and J3/J1 = −0.02 (J1S
2 =

36.8 K) are colored red and blue, respectively. Correlations within the
Ising chains (intrachain correlations) are shown as open symbols and
correlations between different Ising chains (interchain correlations)
are shown as closed symbols. (b) Temperature evolution of the
ferromagnetic intrachain correlation length ξ (colors as above).
The solid lines show the exact expression [Eq. (7) in the text] for
independent ferromagnetic Ising chains for J1S

2 = 22.9 K (red line)
and J1S

2 = 36.8 K (blue line).

and the factor C2 = Lz/(2Sz + Lz) accounts for the orbital
contribution to the magnetic moment; we take C2 = 0.25 as
an average of the literature values for Ca3Co2O6 [1,2,5,36].
All fits are modified by an overall intensity scale factor in
order to match the data. The optimal value of the scale factor
was obtained by fitting the 25-K data and then fixed at this
value when fitting the higher-temperature data sets. The fits we
obtain are shown in Fig. 3, and represent excellent agreement
with the data.

The radial spin correlation function 〈S(0)S(r)〉 obtained
from RMC refinement of the 25-K data is shown in Fig. 4(a).
Correlations along the Ising spin chains 〈S(0)S(rz)〉 are
FM and decay with distance rz along the chains. This
distance dependence can be fitted by an exponential decay
〈S(0)S(rz)〉 = exp(−rz/ξ ), in agreement with the theoretical
calculation for the one-dimensional (1D) FM Ising model (i.e.,

independent chains) [37]. By contrast, correlations between
different chains are AFM, of smaller magnitude than the
intrachain correlations, and are not well described by an
exponential decay; we consider them in more detail below.
The temperature dependence of the FM correlation length ξ

is shown in Fig. 4(b). The values shown were determined
by fitting 〈S(0)S(rz)〉 with an exponential for each of the six
measured temperatures. The fitting range was 0 < r < 30 Å
(except at 100 K where the upper limit was reduced to
r = 20 Å due to the rapid decay of the correlations); in all
cases, the quality of the fit was similar to that obtained at 25 K.
The value of ξ falls rapidly with increasing temperature just
above TN, but decreases more slowly at higher temperatures.
Here again we note a similarity with the theoretical expression
for the 1D Ising model [37]

ξ = c

2 ln[coth(J1S2/T )]
, (7)

where c = 10.367 Å, which also has a “long tail” at high
temperature.

We note two qualifications regarding the RMC refinements.
First, since RMC refinement is a stochastic process, the
values of ξ obtained from RMC represent lower bounds
on the true values. Second, we found that making small
changes to refinement parameters (in particular the intensity
scale) resulted in significant variations in the absolute values
obtained for the FM correlation length. In order to estimate the
uncertainties shown in Fig. 4 for 〈S(0)S(r)〉 and ξ , we therefore
considered the effect of changing the scale by a small amount
δs from its refined value s, where δs = 0.1s was chosen as the
range over which it was possible to obtain reasonable fits to
the data.

We now consider the extent to which the magnetic diffuse
scattering data above TN can be modeled using a magnetic
Hamiltonian. Following previous work [15], we consider a
model of Ising spins coupled by interactions between nearest
neighbors (J1 at 5.18 Å), next-nearest neighbors (J2 at 5.51 Å),
and third neighbors (J3 at 6.23 Å). Our initial calculations
revealed that the 25-K data can be well described by at least
two different sets of parameters: either J1 and J3 (with J2 = 0),
or J1 and J2 (with J3 = 0). An independent determination of
both J2 and J3 is therefore not possible using only the diffuse
scattering data. However, it has been argued that J3 should be
of significantly greater magnitude than J2, based on the shorter
O–O bond distance for the J3 pathway [14] and on spin-dimer
calculations [15]. We therefore assume initially that J2 = 0
and attempt to determine the values of only J1 and J3. These
interaction pathways are shown in Fig. 5. To this end, we
performed direct Monte Carlo (DMC) simulations of the Ising
Hamiltonian [Eq. (2)] as described in Sec. II. For each ratio
of J3/J1 that we considered, we determined the ratio T/J1S

2

for which the calculated I (q) most closely matched the 25-K
data. This procedure fixes the absolute value of J1 and hence
allows model and experimental data to be compared for each
of the measured temperatures. The values of J3 obtained in this
way can probably be interpreted as an overall AFM exchange
interaction J2 + J3, since our simulations of the paramagnetic
phase are insensitive to whether the AFM coupling is J2, J3,
or a combination of both.
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J1

J3

b

a
c

FIG. 5. (Color online) Magnetic interaction pathways in
Ca3Co2O6 (only Co3+

II ,S = 2 are shown). Ferromagnetic intrachain
couplings J1 are shown as red lines and antiferromagnetic (AFM)
interchain couplings J3 are shown as blue lines [38]. Light and
dark blue circles indicate the long-range magnetic ordering which
would be obtained in the hypothetical case that J1 = 0 with AFM
J3. Yellow lines show the shortest path between two sites within the
same Ising chain if only J3 pathways are used.

Results of our simulations are shown in Figs. 3 and 4.
We present results for J3/J1 = −0.02, which is the ratio
suggested in Ref. [15], and for J3/J1 = −0.10, for comparison
with our analysis of thermodynamic data in Sec. IV. At most
temperatures, both sets of interactions show good agreement
with the data. There is a slight tendency for all the model
calculations to lie below the data at low q and above the data at
high q, which may indicate a small inaccuracy in the assumed
magnetic form factor. The J3/J1 = −0.02 model appears to
fit the data better at 25 K, but the J3/J1 = −0.10 model is
more successful at reproducing the shape of the main peak
at 35 K (Fig. 3). The spin correlations for both models are
shown in Fig. 4 and demonstrate the same qualitative features
as the RMC results. The largest difference between the two
models occurs in the region q � 0.5 Å−1, with smaller values
of |J3/J1| associated with increased scattering intensity as
q → 0. Figure 4(b) shows that this increased intensity at low
q is associated with a larger value of the FM correlation
length ξ . Unfortunately, since the low-q region is not accessed
experimentally, the diffraction data are relatively insensitive
to the values of ξ and J3/J1. In order to place a stronger
restriction on J3/J1, it is necessary to consider thermodynamic
data together with diffraction, an approach we will follow in
Sec. IV.

Despite these limitations, it is possible to draw some general
conclusions about the intrachain correlations from Fig. 4(b).
Most significant is that, for the values of J3/J1 considered
here, the values of ξ from DMC simulation agree with the
exact result for independent FM Ising chains [Eq. (7)] with no
fitting parameters. This result suggests that the FM correlations

are strongly 1D above TN. Hence, the J3 interaction, which
couples intrachain spins by the indirect pathway shown in
Fig. 5, has a negligible effect on the intrachain correlations
for small |J3/J1| � 0.10. A small J3/J1 ratio is a prerequisite
both for 1D behavior and frustration since in the opposite limit
|J3/J1| � 1 the conventional three-dimensional order shown
in Fig. 5 would occur. Further evidence for 1D behavior comes
from the correlation strength. At the nearest-neighbor distance,
we obtain 0.1 � 〈S(0)S(c/2)〉 � 0.35 at 100 K (lower bounds
are RMC results and upper bounds are for J3/J1 = −0.02);
although small in absolute terms, these values are at least
double the result for a three-dimensional Ising model at
T ≈ 4Tc [39]. Mindful that our assumption of Ising spins
may be less accurate for T � 50 K, we also considered
a Heisenberg model with J3/J1 = −0.10 and finite single-
ion anisotropy D/J1 = 32 (discussed further in Sec. IV),
which showed the same behavior except for slightly reduced
correlation lengths at high T (ξ around 90% of the Ising
result at T = 100 K). The presence of 1D FM correlations
well above TN has been inferred (although not modeled) using
other experimental techniques: Mössbauer studies on 159Eu-
doped Ca3Co2O6 indicate a progressive increase in linewidth
below T ≈ 150 K [40]; μSR data indicate exponential-like
relaxation to T ≈ 150 K [41]; and inelastic neutron scattering
(INS) measurements show that dispersive magnetic excitations
persist to T ≈ 150 K [4].

We now turn to the interchain correlations, which we probe
by calculating the Fourier transform of the spin correlation
function in the (hk0) plane. This quantity I (q) is of topical
interest because it can be measured by neutron diffraction on a
suitable arrangement of single crystals, which has recently
been reported for Ca3Co2O6 [4]. In Fig. 6, we show the
calculated I (q) in the (hk0) reciprocal space plane for three
models of Ca3Co2O6 at T = 25 K: the DMC model with
J3/J1 = −0.10 in Fig. 6(a); the DMC model with J3/J1 =
−0.02 in Fig. 6(b); and the RMC model obtained from fitting
the powder data in Fig. 6(c). In each case, the magnetic diffuse

I(q)

1

0

(200)

(020)

(hk0)

(a)

(b)

(c)

(d)

FIG. 6. (Color online) Calculated single-crystal diffuse scatter-
ing patterns at T = 25 K for models of Ca3Co2O6 discussed in
the text: (a) direct Monte Carlo, J3/J1 = −0.10 (J1S

2 = 22.9 K);
(b) direct Monte Carlo, J3/J1 = −0.02 (J1S

2 = 36.8 K); (c) reverse
Monte Carlo, from fitting T = 25 K powder data; (d) Wannier model
of Ising spins on the triangular lattice calculated using Monte Carlo
simulation at T = 1.5|J |, where J is the nearest-neighbor AFM
interaction. All panels show the (hk0) reciprocal-space plane. The
intensity scales are chosen so that the most intense feature in each
panel is normalized to 1.

014411-6



SPIN CORRELATIONS IN Ca3Co2O6: . . . PHYSICAL REVIEW B 90, 014411 (2014)

scattering pattern was calculated from the spin configurations
using the general equation [42]

I (q) = [f (q)]2
∑
i,j

S⊥
i · S⊥

j exp[iq · (ri − rj )], (8)

where f (q) is the Co3+ magnetic form factor [35], q is the
scattering vector, and S⊥

i is the spin vector located at ri ,
projected perpendicular to q. The sum is taken over all pairs
of spins separated by distances |ri − rj | � 45 Å. In all cases,
the diffuse scattering takes the form of triangle-shaped peaks
at the corners of the second Brillouin zone. The fact that
similar results are obtained from both RMC refinement and
a physically sensible set of magnetic interactions suggests
that our prediction of I (q) is robust. Our calculations also
indicate that a single-crystal neutron-scattering measurement
of the (hk0) plane would provide rather little information on
the relative strength of FM and AFM interactions. Instead, it
would probably be necessary to measure one of the diffuse
peaks along c∗ in order to obtain the FM correlation length as
a function of temperature. Finally, in Fig. 6(d) we show the
calculated I (q) for the nearest-neighbor Ising antiferromagnet
on the triangular lattice [43] (henceforth “Wannier model”)
which has previously been applied in several theoretical studies
of Ca3Co2O6 (see, e.g., Refs. [6–8]). We find close agreement
between Figs. 6(a)–6(c) and the Wannier model for T ∼ |J |
(the calculation shown is for T = 1.5|J |). The extent of this
agreement is rather surprising since the modulation of the
diffuse scattering is sensitive to small changes in the magnetic
interactions [44]. Hence, although the Wannier model can
provide no information on the intrachain correlations, it seems
to provide a good qualitative description of the interchain spin
correlations.

In summary, our results indicate a physical picture of
paramagnetic Ca3Co2O6 in which weak interchain correlations
resemble the Wannier model, and the length scale ξ over which
these correlations remain coherent along the c axis can be
calculated as if the chains behave independently. In this sense,
above TN, the correlations along c are effectively decoupled
from those in the ab plane.

IV. MODELING OF BULK PROPERTIES

In this section, we employ direct Monte Carlo simulations
to calculate bulk properties of Ca3Co2O6 in the paramagnetic
phase. Our motivation for considering bulk properties is the
strong dependence of the limiting value I (q → 0) on the ratio
J3/J1, which suggests that the bulk susceptibility is sensitive
to the strength of both FM and AFM interactions. Here, Monte
Carlo simulation has two important advantages over traditional
approaches to fitting the susceptibility [2,13,45,46]: first, it is
not limited by the number or type of interactions which can be
modeled; second, it is not restricted to the high-temperature
limit, remaining accurate until the correlation length becomes
of the order of the simulation size.

In Fig. 7(a), the product of the magnetic susceptibility per
spin and temperature χT is shown for different values of
J3/J1. The susceptibility is calculated parallel to the direction
of the chains (i.e., along c) as described in Sec. II. The results
show two main features. First, there is an anomaly at the
Néel temperature TN ∼ J1S

2. The value of TN decreases with

(a)

(b)

FIG. 7. (Color online) (a) Magnetic susceptibility per spin of
Ca3Co2O6 parallel to the Ising chains. Results from DMC simulations
are shown for the Ising model with J3/J1 =−0.02 (blue circles);
J3/J1 =−0.06 (gray triangles); J3/J1 =−0.10 (red squares), five-
state model with J3/J1 =−0.08 and D/J1 =17 (cyan dotted line),
and anisotropic Heisenberg model with J3/J1 =−0.10 and D/J1 =32
(brown dotted-dashed line). The exact result [37] for FM J1 only,
χT =exp(2J1S

2/T ), is shown for comparison (dashed magenta line).
Experimental data (from Ref. [2]) are shown as solid black lines, and
have been scaled to match the fits for the anisotropic models. (b)
Magnetic heat capacity per spin of Ca3Co2O6. Results from DMC
simulations have the same symbols as in (a). The exact result [37] for
FM J1 only, Cmag = (J1S

2/T )2/cosh2(J1S
2/T ), is shown as a dashed

magenta line. Data from Refs. [20,21] are shown as dashed and solid
black lines, respectively.

decreasing |J3/J1|, as one expects, since TN = 0 in the limit
of independent chains [37]. (We note that a value TN = 0 can
not be obtained in Monte Carlo simulation due to the finite
simulation size; for a model with only FM J1 interactions,

014411-7



JOSEPH A. M. PADDISON et al. PHYSICAL REVIEW B 90, 014411 (2014)

ξ approaches the size of our simulation at T ≈ 0.4J1S
2,

which is significantly below the transition temperatures we
observe for the J1-J3 model.) Second, there is a broad peak
at T ′ > TN, which sharpens and moves closer to TN as
|J3/J1| is decreased. In this respect, our simulations reproduce
experimental measurements of the parallel susceptibility,
which also show a broad peak at T ′ ≈ 40 K (= 1.6TN) [2,19].
From Fig. 7(a), the experimental location of T ′ implies that
0.06 � |J3/J1| � 0.10. Our results show that the T ′ peak
arises from the development of AFM interchain correlations
since the diffraction measurements show the development
of an AFM peak close to T ′ (Fig. 3), while the intrachain
correlations remain FM throughout the measured temperature
range [Fig. 4(b)].

Although simulations of the Ising model show qualitative
agreement with the experimental data for T � TN, it proved
impossible to obtain a satisfactory fit overall: the problem is
that the gradient of the Ising curve is too shallow at higher
temperatures [Fig. 7(a)]. This is a likely consequence of the
failure of the Ising approximation for T � 50 K. To quantify
the effect of finite D in addition to J3, we considered the
two candidate anisotropic models introduced in Sec. II: the
five-state model [Eq. (3)] and the anisotropic Heisenberg
model [Eq. (4)]. For each model, we used a grid search to fit
the values of J3 and D to the experimental susceptibility data
of Ref. [2] for T > TN. (We note that the susceptibility data of
Ref. [2] agree with Ref. [46] and with data collected on powder
samples, but do not appear to correspond to the data of Ref. [19]
at higher temperatures; the reason for this discrepancy is
unclear at present.) For a given set of interaction parameters,
the calculated curve was first normalized horizontally by the
position of TN and a linear least-squares fit was then performed
to determine the vertical scale factor. The success of this
procedure relies on the fact that J3 and D are weakly correlated
since the effect of J3 is most important just above TN, whereas
the effect of finite D is evident at high temperature.

Fits of the two anisotropic models are shown in Fig. 7(a).
In both cases, quantitative agreement with the data is obtained
throughout the paramagnetic regime. The fitted values of J1,
J3, and D are given in Table I, where we have placed the
interaction parameters on an absolute scale using the value
of TN/JS2, taking S = 2. We note that (by convention) the

TABLE I. Values of magnetic exchange interactions J1 and J3,
single-ion anisotropy D, and effective magnetic moment μeff obtained
by fitting the experimental magnetic susceptibility data of Ref. [2].
The two models fitted are the five-state model [Eq. (3)] and the
anisotropic Heisenberg model [Eq. (4)]. Conservative error bars were
estimated from two points adjacent to the best-fit point on our grid
(δJ3 = 0.1J1, δD ≈ 3J1).

Fit of Eq. (3), Fit of Eq. (4)
J3 = −0.08J1 J3 = −0.10J1

Parameter D = 17J1 D = 32J1

J1 (K) 6.3 ± 0.3 6.0 ± 0.2
J3 (K) −0.50 ± 0.04 −0.60 ± 0.04
D (K) 190 ± 30 110 ± 20
μeff/μB 4.8 ± 0.2 5.3 ± 0.2

orbital contribution to the magnetic moment is not included
here, even though it represents a significant fraction of the total
moment in Ca3Co2O6 [36]. The fitted values of the exchange
constants J1 ≈ 6 K and J3 ≈ −0.6 K are nearly consistent
for both anisotropic models, but the value of D shows a
significant model dependence (Table I). This difference is
perhaps not unexpected given that D has a different meaning
in the two models. We also obtain the length of the effective
magnetic moment μeff from the vertical scale factor using the
relation (χT )expt = 0.375(μeff/μB)2 (χT )MC, where (χT )expt

is given in K emu mol−1. The fitted values are given in Table I
and are consistent with theoretical studies (∼5.7μB) [5],
magnetization measurements (∼4.8μB) [2], and an x-ray
circular dichroism study (∼5.3μB) [36].

Since considering a finite anisotropy term introduces an
extra parameter compared to an Ising model, it is important
to ask whether this explains any measurements beyond the
susceptibility. One such measurement is the magnetic heat
capacity Cmag. In addition to the expected peak at TN, the
experimental Cmag shows a broad high-T peak between 80
and 160 K [20,21]. Although the presence of this peak is not
in doubt, its intensity is quite uncertain due to the effect of the
lattice subtraction, as a comparison of data from Refs. [20,21]
shows [Fig. 7(b)]. In Ref. [21], the high-T peak was ascribed to
the development of short-range intrachain correlations, which
release all the entropy in a fully 1D model. If this explanation
is correct, then the large separation between the high-T
peak and TN would suggest that Ca3Co2O6 has much more
1D character than the canonical Ising spin-chain compound
CoCl2 · 2NC5H5, for which the high-T peak is nearly obscured
by the TN peak [47]. In Fig. 7(b), we plot the magnetic
heat capacity from DMC simulations of the Ising model
for J3/J1 = −0.10 and J3/J1 = −0.02. For J3/J1 = −0.10,
the high-T peak is obscured by the TN peak, and even for
J3/J1 = −0.02 it is only just visible as a shoulder on the TN

peak. Therefore, an Ising model can only explain the existence
of the high-T peak if |J3/J1| � 0.02. We now consider the two
anisotropic models with the interaction parameters given in
Table I. The five-state model shows a broad peak at T ≈ 140 K
(=1.3D), in qualitative agreement with the experimental data
[Fig. 7(b)]. This agreement provides strong evidence that the
high-T peak is actually a magnetic Schottky anomaly resulting
from the temperature-dependent population of the Sz states.
Our results are supported by quantum calculations of the
anisotropic S = 2 Heisenberg chain, which predict an extra
peak in Cmag at T = 1.4D for large but finite D [48]. For
completeness, we also show the anisotropic Heisenberg Cmag

curve in Fig. 7(b). The less satisfactory agreement with the
data is due to the failure of the vector-spin approximation of
Eq. (4), which permits magnetic excitations which cost an
infinitesimal amount of energy and leads to a diverging value
of the magnetic entropy [49]. By contrast, the five-state model
has the correct value of the entropy for S = 2 spins (ln 5 per
spin) in the high-temperature limit.

We now present a brief comparison of our values for J1,
J3, and D with literature results. Values of these parameters
have been reported separately, although a simultaneous fit of
all three parameters has not been performed before. In Ref. [2],
a fit to the single-crystal magnetic susceptibility yielded J1 =
13 K; the disagreement with our results is probably due to
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the assumption of an Ising model up to room temperature. We
find better agreement with the results of Ref. [46], in which
the susceptibility was fitted to a model including both J1 and
D. Recently reported INS measurements [4] show a weakly
dispersive spin wave propagating along c∗ with a large spin gap
ω0 ≈ 27 meV (= 310 K). The dispersion was fitted using linear
spin-wave theory to obtain (for isotropic exchange) J1 = 4.9 K
and D = ω0/2S = 79 K (the resolution of the data did not
allow J3 to be determined). We note that taking into account
higher-order corrections to the spin-wave theory leads to a
modified equation for the spin gap D = ω0/(2S − 1) [48],
which would yield D = 105 K for the data of Ref. [4]. These
results are in reasonable agreement (∼ 20%) with our five-state
model. Very recently, values of the exchange interactions were
obtained using 59Co NMR to determine the energy cost of spin
flips in the SDW phase, yielding (in our notation) J1 = 6.0 K
and J2 + J3 = −0.58 K. The good agreement with our results
is striking given the entirely different experimental technique
and modeling approach considered in Ref. [50].

Finally, we consider our results in the context of the
magnetic ordering identified by neutron diffraction. The first
ordered state that develops at TN is a SDW with an incommen-
surate magnetic propagation vector k ≈ (0,0,1.01) [16,17].
Within a mean-field theory, this propagation vector would
require that J3/J1 = −0.02 if J2 is negligibly small [15].
The ratio J3/J1 ≈ −0.10 we have determined would produce
a shorter-wavelength modulation with k ≈ (0,0,1.05). How-
ever, as Fig. 7(a) shows, choosing J3/J1 = −0.02 to agree
with Ref. [15] gives a much less successful description of
the experimental susceptibility data. This discrepancy may
be a consequence of the assumptions of Ref. [15], which
considered a mean-field model without magnetic anisotropy.
Alternatively, J2 may not actually be negligible compared to
J3, which has recently been proposed in the analysis of NMR
data [50]. By choosing J2 and J3 appropriately, both the overall
energy of AFM interactions and the experimental propagation
vector can be reproduced. For J2 + J3 = −0.10J1, this occurs
when J2 = J3 = −0.05J1 [15]. We have checked that these
values yield a χT curve which is qualitatively close to the one
shown previously for J3/J1 = −0.10 (J2 = 0). To the best of
our knowledge, a practical experimental method to determine
J2 and J3 independently has not yet been identified, and this
remains a challenge for future work.

V. CONCLUSIONS

In summary, polarized neutron diffraction measurements
performed on Ca3Co2O6 give clear evidence of the coexistence
of the two different magnetic structures in this compound
below TN: a spin-density wave structure and a commensurate
antiferromagnetic structure. The volume fraction of the phases
is dependent on sample history in general, and on cooling

rates in particular, with slow cooling rates providing easier
access to the commensurate antiferromagnetic phase. Given
that relatively little is known about the behavior of the CAFM
phase in an applied field [3] and that for the SDW phase
the magnetic states for a zero-field-cooled sample and a
sample that has previously been exposed to a high magnetic
field are completely different on a microscopic level [51], it
would be extremely interesting to extend the neutron scattering
measurements to an applied field. Ideally, such an experiment
should be performed on an arrangement of single crystals with
appreciable volume, which has recently been reported [4].

Above TN, we performed reverse Monte Carlo refinements
and direct Monte Carlo simulations to model the magnetic
diffuse scattering data. Our results show that intrachain spin
correlations remain ferromagnetic at all temperatures, decay
approximately exponentially with distance along the chain,
and exhibit a temperature-dependent correlation length which
is well described by the one-dimensional Ising model over
the temperature range studied (TN � T � 100 K). Interchain
correlations are weaker and antiferromagnetic, and have a
diffraction pattern showing strong qualitative similarities to the
nearest-neighbor antiferromagnet on the triangular lattice for
T ∼ |J |. Perhaps our most intriguing result is that important
aspects of these two canonical models are simultaneously
realized in paramagnetic Ca3Co2O6, i.e., intrachain and inter-
chain correlations are essentially decoupled. This conclusion
could be tested further by performing single-crystal neutron
diffraction experiments to measure the magnetic diffuse
scattering above TN.

Finally, we have fitted published measurements of the
single-crystal magnetic susceptibility to obtain the exchange
constants J1 and J3 (assuming J2 = 0) and the single-ion
anisotropy D. Surprisingly, bulk susceptibility data are more
sensitive than the magnetic diffuse scattering data to the values
of J3 and D in this system. For a five-state model, we obtain
J1 ≈ 6 K, J3 ≈ −0.6 K, and D ≈ 110 K (noting, however,
that the value of D is dependent on the assumed form of the
classical Hamiltonian). These values explain two anomalies
in bulk measurements: (i) the high-temperature susceptibility
peak at T ′ ≈ 40 K, and (ii) the broad maximum in magnetic
specific heat at T ∼ 100 K, which we interpret as a magnetic
Schottky anomaly. This three-parameter model is the first to
explain the temperature dependence of bulk measurements
in Ca3Co2O6 between TN and room temperature, and should
therefore provide a useful starting point for quantitative
modeling of the magnetic behavior of Ca3Co2O6 as a function
of temperature and applied magnetic field.
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