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Antiferroquadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7
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We present an experimental study of the quantum spin ice candidate pyrochlore compound Pr2Zr2O7 by means
of magnetization measurements, specific heat, and neutron scattering up to 12 T and down to 60 mK. When
the field is applied along the [111] and [11̄0] directions, k = 0 field-induced structures settle in. We find that
the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization.
Interestingly, for H ‖ [11̄0], the ordered moment appears on the so-called α chains only. The spin excitation
spectrum is essentially inelastic and consists in a broad flat mode centered at about 0.4 meV with a magnetic
structure factor which resembles the spin ice pattern. For H ‖ [11̄0] (at least up to 2.5 T), we find that a well-defined
mode forms from this broad response, whose energy increases with H , in the same way as the temperature of
the specific-heat anomaly. We finally discuss these results in the light of mean field calculations and propose
an interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this
picture, the spin ice pattern appears shifted up to finite energy because of those interactions. We then propose
a range of acceptable parameters for Pr2Zr2O7 that allow to reproduce several experimental features observed
under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar
liquid with spin-ice-like excitations.
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I. INTRODUCTION

The concept of geometrical frustration has attracted much
attention in physics. It covers a wide variety of situations
where a local configuration, stabilized by a given scheme
of interactions, cannot extend simply over the whole system.
Numerous examples can be found in pentagonal or icosahedral
lattices, metallic binary alloys, liquid crystals, the bistable
states of metal organic networks, the packing of molecules on
triangular lattices, among others [1].

In condensed matter physics, the archetype of geometrical
frustration in three dimensions is the problem of Ising spins
that reside on the vertices of the pyrochlore lattice, built from
corner-sharing tetrahedra [2–4]. If the spins are constrained to
lie along the local axes which link the center of a tetrahedron to
its summits (denoted hereafter �zi , see Fig. 1), and experience
ferromagnetic interactions (for example, due to the magnetic
dipolar interaction), a disordered highly degenerate ground
state, the spin ice state, develops at low temperature [5–8].
The nearest-neighbor ferromagnetic coupling favors local
configurations where in each tetrahedron, two spins point
into and two out of the center (“2-in-2-out” configurations),
forming a magnetic analog of the water ice. One of the clear
proofs of this physics came with the observation of magnetic
diffuse scattering in Ho2Ti2O7 and Dy2Ti2O7, characterized
by armlike features in reciprocal space along with specific
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bowtie singularities also called pinch points [9,10], in excellent
agreement with theoretical calculations [11–13].

While thermal heating naturally melts the spin ice, the
possibility that quantum fluctuations might also melt spin ice
is a topical and fascinating issue. Provided that transverse
terms, as opposed to the “classical” ferromagnetic interaction
between Ising spins, are not too large, several theoretical
works have claimed that the physics can be described by
an emergent electrodynamics with new deconfined particles
[4,14,15]. Recently, several theoretical studies [16–18] have
proposed the Pr3+-based pyrochlore magnets like, for instance,
Pr2Zr2O7 as good candidates. A light rare earth is indeed
expected to enhance transverse interactions because of a large
overlap between 4f and oxygen orbitals.

Experiments on Pr2Sn2O7 [19,20], Pr2Zr2O7 [21–23],
Pr2Ir2O7 [24], and more recently Pr2Hf2O7 [25] have shown
that the Pr3+ moment has a strong Ising character, described by
a non-Kramers magnetic doublet. As in spin ice, no magnetic
long-range ordering is observed down to dilution temperature,
and magnetic specific heat shows a broad peak at about 2 K
[21,22,24–27], similar to what is observed in the classical spin
ice Dy2Ti2O7.

At T ≈ 0.1 K, neutron scattering measurements in
Pr2Zr2O7 reveal that fluctuating magnetic correlations de-
velop, with a very weak elastic component representing less
than 10% of the response [22]. Their wave-vector dependence
shows features similar to the spin ice pattern, yet the pinch
points appear broadened. These results were interpreted as
the evidence of quantum dynamics in a new class of spin ice
system.
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FIG. 1. Local �zi anisotropy axes in a tetrahedron of the pyrochlore
lattice. The green disks represent the local xy planes. For ions located
at (1/4,1/4,1/2) and related symmetry positions �zi = (1,1,−1)/

√
3

for (1/2,1/2,1/2), �zi = (−1,−1,−1)/
√

3 for (1/2,1/4,1/4), �zi =
(−1,1,1)/

√
3 and (1/4,1/2,1/4), �zi = (1,−1,1)/

√
3.

Nevertheless, in Pr2Zr2O7 and Pr2Hf2O7 the Curie-Weiss
temperature inferred from magnetic susceptibility is negative
[21–23,25], thus indicating antiferromagnetic interactions,
which is a priori not consistent with the spin ice picture. In
addition, the fact that most of the neutron scattering signal
in Pr2Zr2O7 has an inelastic character calls for peculiar
spin dynamics, different from conventional spin ice. These
issues are still to be answered and a key ingredient to
clarify them may be the quadrupolar degrees of freedom.
Indeed, the latter are known to play an important role in
the physics of non-Kramers ions such as Pr3+. Quadrupole
(and even multipole) interactions in rare-earth magnets are
naturally induced by superexchange and electrostatics [28–30]
and were put forward as an essential ingredient to describe
Pr2Zr2O7 from a theoretical point of view [16].

The aim of this work is to shed light on the peculiar ground
state of Pr2Zr2O7. First, we address the non-Kramers ion (like
Pr3+) specificities in the context of pyrochlore magnets. We
especially point out the need for special care to interpret
neutron data because the moment of non-Kramers doublets
has different properties from usual magnetic moments. With
this result in hand, we explore the ground state and magnetic
excitations in Pr2Zr2O7 by means of magnetization, specific
heat, neutron diffraction, and inelastic neutron scattering.
In particular, we investigate the field-induced properties,
in macroscopic and neutron scattering measurements. We
determine the magnetic-field-induced structure, and show the
existence of a magnetic excitation whose energy is shifted by
the magnetic field.

Using a mean field treatment of the minimal Hamiltonian
widely accepted in the literature for these materials [4],
it emerges that these observations can be understood by
considering that the dominant coupling at play is an effective
quadrupolar interaction and not the “classical” ferromag-
netic dipolar one as expected in spin ice. We show that
effective quadrupolar interactions stabilize at this level of
approximation, and for moderate positive or negative values
of the interactions between Ising spins, an “all-in-all-out”
quadrupolar phase reminiscent of the antiferroquadrupolar

Higgs phase found in more elaborate theories [18]. From this
analysis and the comparison with the set of experiments, we
propose a range of acceptable parameters for Pr2Zr2O7. We
conclude that the actual ground state of this material supports
antiferroquadrupolar correlations.

II. PYROCHLORE MAGNETS AND NON-KRAMERS IONS

A. Crystal electric field

In pyrochlore magnets, the crystal electric field Hamiltonian
HCEF is of fundamental importance as it determines the
properties and symmetries of the lowest onsite energy states.
In Pr3+-based systems, some studies have modeled this crystal
field Hamiltonian by taking into account the set of electronic
multiplets [20,25,31]. Yet, for the sake of simplicity, we
consider here the ground multiplet J = 4 only and write
HCEF = ∑

m,n BnmOnm where the Onm are the Wybourne
operators [32]. The quantization axes are the �zi axes (black
arrows in Fig. 1). The Bnm coefficients have been determined
in Ref. [22] and revisited in Ref. [31] (see also Appendix A). In
this approach, the CEF ground state is a non-Kramers doublet
|↑,↓〉, well separated from the excited levels, with the general
form (in the |Jz = −J, . . . ,J 〉 space)

|↑〉 = (a,0,0,b,0,0,c,0,0),

|↓〉 = (0,0,c,0,0,−b,0,0,a).

The first excited state is a singlet:

|1〉 = (0,−d,0,0,e,0,0,d,0).

The normalization condition assumes a2 + b2 + c2 = 1 and
2d2 + e2 = 1. Using this explicit formulation, it is possible to
calculate the projection of the magnetic moment �J onto the
2 × 2 subspace spanned by |↑,↓〉:

Jx = 0,

Jy = 0, (1)

Jz =
(−μ 0

0 μ

)

with μ = 4a2 + b2 − 2c2. In other words, the components of
�J can be written using an effective anisotropic g factor defined

within the ground-state doublet:

g⊥ = gx = gy ≡ 0,

g‖ = 2gJμ.

where gJ is the Landé factor. It is also possible to calculate
the quadrupolar operators. Their projection onto the subspace
spanned by |↑↓〉 leads to

J 2
+ + J 2

− = 2(−20b2 + 8
√

7ac)

(
0 1/2

1/2 0

)
,

JxJy + JyJx = 2(−10b2 − 4
√

7ac)

(
0 i/2

−i/2 0

)
,

(2)

JxJz + JzJx = −18
√

2bc

(
0 1/2

1/2 0

)
,

JyJz + JzJy = −18
√

2bc

(
0 i/2

−i/2 0

)
.
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Note that the fifth quadrupolar operator 3J 2
z − J (J + 1) is

proportional to the identity in this subspace and thus not
relevant. As shown by the above matrix representation of
Eq. (1), it is clear that fluctuations within the ground doublet
cannot be induced by magnetic exchange since 〈↑| �J |↓〉 ≡ 0.
This is the key property of non-Kramers doublets. However,
Eqs. (1) and (2) form together the set of Pauli matrices of
a pseudospin 1

2 , �σ = (σx,σ y,σ z). Those pseudospins reside
on the pyrochlore lattice sites. The z components describe
the Ising magnetic moments pointing along the �zi axes and
the x and y components (hence, σ+

i and σ−
i ) correspond

to the quadrupolar “degrees of freedom.” Fluctuations within
the ground doublet are thus naturally reintroduced by those
degrees of freedom.

B. General Hamiltonian

On this ground, a general Hamiltonian has been proposed
in Refs. [33,34] and adapted to the case of non-Kramers ions
in Refs. [16–18,35,36]. It is bilinear in terms of the local
components of pseudospins 1

2 :

H = 1

2

∑
〈i,j〉

J zzσ z
i σ

z
j +

∑
i

(g‖μB�zi · �h)σ z
i

+ 1

2

∑
〈i,j〉

−J ±(σ+
i σ−

j + σ−
i σ+

j )

+ 1

2

∑
〈i,j〉

J ±±(γijσ
+
i σ+

j + γ ∗
ij σ

−
i σ−

j ). (3)

The γij parameter is defined in Ref. [33]. J ± and J ±± are
effective quadrupolar exchange terms, compatible with the
local symmetry of the rare earth. Note that information on the
actual microscopic interactions between the 4f Pr3+ electrons
is lost through the projection into the ground doublets [30].
From a physical point of view, J ± and J ±± promote
quadrupolar states with orientations of σ perpendicular to
the local �z axis. They correspond to so-called transverse or
quantum terms, in contrast to the Ising coupling J zz. The
latter couples the local z components only and derives from
the combination of the original exchange coupling J and of
the dipolar interaction truncated to nearest neighbors:

J zz = g2
‖

g2
J

(−J + 5D
3

)

with D = μo(gJμB)2

4πr3
nn

(rnn is the nearest-neighbor distance
between rare-earth ions). When it is positive, i.e., when
the dipolar term overcomes the antiferromagnetic exchange,
the spin ice state develops, while in the opposite situation, the
“all-in-all-out” antiferromagnetic state is expected [37].

Note that a magnetic field �h would couple to σ z only,
while a strain (or distortion) would couple to the quadrupolar
electronic degrees of freedom; this would be taken into account
by an effective “strain” field vi coupled to σ+ and σ−:

Hv = H +
∑

i

viσ
+
i + v∗

i σ
−
i . (4)

C. Consequences for the interpretation of magnetic
measurements

Magnetic measurements, especially macroscopic magneti-
zation or neutron scattering, are however not sensitive to the
pseudospin σ but to the actual magnetic moment operators
�J . This has consequences when interpreting the data. To

illustrate this point, we determine the formal expression of the
dynamical spin-spin correlation function S(Q,ω) measured by
neutron scattering.

In a classical picture, the ground state |�G〉 of the
above Hamiltonian (4) can be described as a state where on
each site of the pyrochlore lattice, the expectation value of
the pseudospin �σ = (σx,σy,σz) is oriented in the direction
specified by local spherical angles θi and φi : θi defines the
polar angle relative to the local CEF axes; φi is the angle
within the xy plane (green disks in Fig. 1):

|�G〉 = |φG,1 . . . φG,i . . . φG,N 〉,
where N is the (infinite) number of sites. Those angles depend
on the parameters of the Hamiltonian but it is not necessary
to specify them at this step. Then, as expected for instance
in the random phase approximation (RPA) or spin-wave
approximation, the lowest-energy excited states |�1〉, with
energy E1 above the ground state, should contain one flip
of the pseudospin, possibly delocalized over the lattice. |�1〉
is thus constructed as

|�1〉 =
∑

i

Ci |φG,1 . . . φ1,i . . . φG,N 〉,

where |φ1,i〉 describes a flip of the pseudospin σ at site i. The
values of the Ci coefficients depend on the Hamiltonian and
remain to be determined.

At low temperature, keeping the ground and first excited
states, S(Q,ω) can be approximated by (see Appendix B for
details)

S(Q,ω = 0) ≈ μ2

∣∣∣∣∣
∑

i

eiQRi cos θi�z⊥,i

∣∣∣∣∣
2

,

S(Q,ω = E1) ≈ μ2

∣∣∣∣∣
∑

i

Cie
iQRi eiφi sin θi�z⊥,i

∣∣∣∣∣
2

,

hence, to an elastic contribution at ω = 0, and an inelastic one
at ω = E1. The symbol ⊥ indicates that one must consider the
components perpendicular to the scattering wave vector Q.

1. Magnetic states

It is first instructive to examine the case of “magnetic” states
(θi = 0,π ), where the pseudospins point along the �z directions.
The elastic contribution S(Q,ω = 0) writes

S(Q,ω = 0) ≈ μ2

∣∣∣∣∣
∑

i

eiQRi εi�z⊥,i

∣∣∣∣∣
2

with εi = ±1 (depending on the values of θi). Spin ice
corresponds to the case where, in each tetrahedron, there are
two sites with θi = 0 and two with θi = π . Then, S(Q,ω = 0)
has armlike features along (00�) and (111) with pinch points at
(002), and (111) positions in reciprocal space [11]. In contrast,
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it is clear from the above formula that the non-Kramers
nature of the moments cancels the inelastic contribution:
S(Q,ω = �) = 0.

2. Quadrupolar states

In the case of quadrupolar states θi = π/2, the opposite
situation is obtained. The elastic contribution is zero, as
expected since the ground state is not magnetic, while the
inelastic contribution S(Q,ω = �) is finite. The dynamical
part becomes observable because it corresponds to mag-
netic transitions from the ground state. Further, provided
Cie

iφi sin θi = ±1 as the εi do in the case of spin ice, the
spin ice pattern will appear shifted towards finite energy. We
shall come back to this point in the discussion presented in
Sec. IV.

With these results in hand, which specify the context of
our study, we now turn to the description of the experimental
results.

III. EXPERIMENTAL RESULTS

A. Crystal growth

A single crystal was synthesized at the Physics Department
of Warwick University from feed rods of Pr2Zr2O7 compo-
sition using the floating zone technique. The crystal growth
was conducted in air, using a four-mirror xenon arc lamp
optical furnace (CSI FZ-T-12000-X-VI VP, Crystal System
Incorporated, Japan) [23,38]. The as-grown crystal, dark
brown in color, was annealed for two days in Ar (10% H2)
flow at 1200 ◦C and became bright green. This color change
is associated, as suggested by Nakatsuji et al. [24], with the
modification of the oxidation state of Pr4+ ions present in very
small quantities in the dark-brown sample, to Pr3+ ions (see
Fig. 2).

The structural x-ray analysis [23] points to a stoichiometry
close to the ideal pyrochlore composition (2:2:7) and is
similar to those published in Ref. [39]. Small deformations
of the Bragg peaks have nevertheless been observed by means
of diffuse neutron scattering experiments, which correspond
to a local volume variation at the Pr site of about 1‰.
These inhomogeneities, even small, could affect the magnetic
properties, due to the sensitivity of non-Kramers doublets to
local perturbations [4,40–42]. Further studies are ongoing
to investigate in details these inhomogeneities and their
consequences.

FIG. 2. Picture of the single crystal, as grown (top) and annealed
(bottom) used in this study.

B. Macroscopic measurements

1. Experimental details

Magnetization and specific-heat measurements were per-
formed on a single crystal of 14.24 mg. Its nonregular
shape prevented us from making accurate demagnetization
measurements. The results are thus presented without de-
magnetization corrections. Nevertheless, it is expected that
the demagnetization factor is in the same range for the three
measured directions.

Magnetization and ac susceptibility measurements were
performed in the 85 mK–4.2 K temperature range on a SQUID
magnetometer equipped with a dilution refrigerator developed
at the Institut Néel [43]. The magnetization was measured
along the [111], [110], and [100] directions of the sample.
Specific-heat measurements were performed on a Quantum
Design PPMS with a 3He option. In these experiments, the
field was applied along the [110] direction.

2. Magnetic measurements

Magnetization as a function of temperature shows a
continuous increase when the temperature decreases, and
no signature of magnetic transition, nor zero-field-cooled–
field-cooled effects down to 90 mK. Note, however, that
below 200 mK, equilibrium times become very long (about
500 s) which can lead to apparent hysteretic behavior. The
susceptibility can be fitted to a Curie-Weiss law down to
about 700 mK (see inset of Fig. 3) which gives an effective
moment μeff = 2.45 ± 0.02μB and a Curie-Weiss temperature
θCW = −790 ± 5 mK. The value of the effective moment is
in agreement with the value obtained in the CEF calculations
in other Pr-based pyrochlores taking into account the whole
set of multiplets [20,25] as well as other magnetization
measurements. The negative Curie-Weiss temperature is in
the range of reported values for Pr2Zr2O7, although some
distribution is observed in the literature [21–23], probably due
to slightly different compositions between the samples [23].
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FIG. 3. H ‖ [111]: M vs H for several temperatures. Inset: H/M

vs T in μ0H = 9 mT. The line is a fit to the Curie-Weiss law between
1 and 4.2 K: H/M = 1.055 + 1.328 T .
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FIG. 4. M vs H at 90 mK for the field applied along the [111]
(red dots), [110] (green triangles), and [100] (blue squares) directions
of the sample. Inset: zoom on the low field part of the [111]
magnetization showing a hysteretic behavior.

The magnetization curves at 90 mK for the field aligned
along the three main directions of the cube are shown on
Fig. 4. The magnetization is not fully saturated, even at
8 T. The reached magnetization is different along the three
directions, as predicted for such Ising spins with a multiaxis
anisotropy [44]. Nevertheless, the ratio between the obtained
values is smaller than the expected ratio (M[100]/M[111] =
2/

√
3, M[110]/M[111] = 2/

√
6), suggesting that the apparent

anisotropy is reduced compared to the case of classical Ising
spins. In addition, the absolute values themselves are smaller
than expected with an effective moment of 2.45μB: for
example, M[111] ≈ 1μB should be about 1.2μB. The reason for
this discrepancy between the saturated and effective moments
is not understood at the moment.

It is worth noting that a hysteretic behavior is observed
at finite fields (see inset of Fig. 4), which reminds some
bottleneck effects [45], but, in zero field, there is no remanent
magnetization.

The ac susceptibility measurements show a freezing as
previously reported [21,22], which is characterized by a large
signal in the dissipative part χ ′′, and peaks in both χ ′ and
χ ′′ which move with frequency. The frequency dependence
of the dissipative part of the susceptibility can be fitted by an
Arrhenius law, as reported by Kimura et al. [22]. Although
in the same range, the obtained energy barrier, about 1 K
(see inset of Fig. 5), is smaller while the characteristic time
τ0 ≈ 5 × 10−7 s is larger.

3. Specific heat

Specific-heat measurements show a broad peak around 2 K,
in quantitative agreement with previous studies [21,22] (see
Fig. 6). This feature has been attributed to the development
of a collective spin ice state. It should be noted, however,
that the shape is quite different from canonical spin ices
[6,22]. In addition, the peak temperature (about 2.2 K) is

0

0.001
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0.005

0 0.2 0.4 0.6 0.8
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 (

em
u/
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T (K)

0.57 Hz

570 Hz

'

''

5 7 9 11
10-4

10-3

10-2

10-1

 (
s)

1/T (K
-1

)

FIG. 5. In-phase χ ′ and out-of-phase χ ′′ parts of the ac suscep-
tibility as a function of temperature, with Hac = 0.55 mT, parallel to
the [111] axis, for frequencies f between 0.57 and 570 Hz. Inset:
τ = 1/2πf as a function of the inverse temperature of the χ ′′ peak
in a semilogarithmic scale. The line is a fit to the Arrhenius law:
τ = 5.1 × 10−7 exp(1.05/T ).

larger than the range of exchange interactions that can be
inferred from magnetization measurements (which are a priori
antiferromagnetic, contrary to the case of classical spin ice),
which suggests that this anomaly may originate in another
physical process, as will be discussed in Sec. IV.

When a magnetic field is applied along [110], the amplitude
of the peak increases, but its position is almost constant (ac-
tually, it seems to slightly move towards lower temperatures)
for fields below 1 T. At larger fields, the peak broadens and
moves to larger temperatures. The field dependence of the
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FIG. 6. Specific heat C vs T in zero field and various applied
fields along [110]. Inset: temperature dependence of the peaks as a
function of field. The line is a guide to the eye. Specific-heat data
from Ref. [21] on La2Zr2O7 were subtracted to determine the value
of the peak temperature.
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FIG. 7. (a) Sketch of the field-induced structure for H ‖ [11̄0]
at T = 50 mK. The red lines highlight the direction of the field.
Green spheres illustrate the absence of magnetic moment. (b) Field
dependence of the Pr3+ ordered moments (mα, m, and m′ defined in
the text). (c) Magnetization calculated from diffraction results along
with the macroscopic measurements at 90 mK (blue line).

peak is shown in the inset of Fig. 6. For fields larger than
1 T, it can be reproduced by the linear equation Tpeak(K) =
1.2 + 1.08μ0H (T).

C. Neutron diffraction

To get more insight into the absence of quick saturation
of the macroscopic magnetization, the field-induced mag-
netic structures have been investigated by means of neutron
diffraction up to 12 T. The data were collected using the
D23 single-crystal diffractometer (CEA-CRG, ILL France)
operated with a copper monochromator and using λ = 1.28 Å.
The field was applied successively along the [11̄0] and [111]
directions. Refinements were carried out with the FULLPROF

software suite [46].
When the field is applied along a [11̄0] axis, the pyrochlore

lattice splits into different sublattices, the so-called α and β

chains, which are, respectively, parallel and perpendicular to
the field direction [see Fig. 7(a) and Table I (this nomenclature
was introduced in Ref. [47])]. The local anisotropy axes �zi are,
respectively, at 35◦ ( �m3,4) and 90◦ ( �m1,2) of the applied field.

In Ho2Ti2O7, Dy2Ti2O7, and Tb2Ti2O7, neutron diffraction
measurements [48–51] have shown that the α moments
align along their anisotropy axis with a net ferromagnetic
component along the field. The β chain moments adopt,
however, different specific relative orientations described by

TABLE I. Direction of the magnetic moments in the different
models discussed in the text for the magnetic field applied along
[11̄0].

Site �zi Model 1 Model 2

1 (β) (1,1,−1) (0,0,0) (0,0,0) + m�h/h

2 (β) (−1,−1,−1) (0,0,0) (0,0,0) + m�h/h

3 (α) (−1,1,1) −mα�z3 −mα�z3 + m′ �h/h

4 (α) (1,−1,1) +mα�z4 +mα�z4 + m′ �h/h

Magnetization mα/
√

6 mα/
√

6 + (m + m′)/2

a k = (0,0,1) propagation vector, giving rise to magnetic
intensity on the “forbidden” Q vectors positions of the Fd3̄m

space group.
In the present case of Pr2Zr2O7, no additional peaks have

been observed when ramping the field between 0 and 9 T.
The intensity remains zero on the “forbidden” Q vectors
[see Figs. 8(a)–8(c)], which implies that the field-induced
structure is described by a k = (0,0,0) propagation vector
(see Appendix C). The refinement leads to the conclusion
that the α moments behave as in conventional spin ices so that
the corresponding ordered moment mα = m3 = m4 increases
with magnetic field [see Fig. 7(a) and Table I, Model 1] while,
in contrast, along the β chains (sites 1 and 2 in Table I),
the ordered moment mβ remains essentially zero up to 12 T. A
slightly better fit is obtained by adding to this model additional
components parallel to the applied field m�h/h and m′ �h/h

for α and β sites, respectively (see Table I, Model 2). Both
remain small, of the order of 0.2μB. They involve the rise
of transverse components with respect to the local anisotropy
axis, which are induced by a mixing with the excited CEF

FIG. 8. Field dependence of the structure factor obtained from
neutron diffraction for selected Bragg peaks and measured at T =
50 mK. The field is applied along [11̄0]. (001̄), (110), and (112̄) are
“forbidden” in the Fd3̄m space group and have essentially a zero
intensity. The other ones are allowed and indeed have a significant
intensity.
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FIG. 9. (a) Sketch of the “1-out-3-in” structure. (b) Field de-
pendence for H ‖ [111] of the magnetic moments m1,3,4, m2, and m

based on diffraction and magnetization results obtained at T = 50 and
90 mK, respectively (see also Table II). (c) Calculated magnetization
along with the macroscopic measurements (blue line).

levels due to the applied magnetic field. It is worth noting that
their order of magnitude is consistent with recent calculations
of the CEF [31] taking into account the complete basis of 4f

states and not restricted to the ground spin-orbit multiplet of
Pr3+ (3H4). As shown in Fig. 7(b), mα struggles to grow and
never saturates, even at 12 T. The calculated magnetization
based upon this field-induced structure smoothly increases
with increasing field, in good agreement with the macroscopic
magnetization reproduced as a blue curve in Fig. 7(c).

When the field is applied along the [111] axis, the field-
induced structure can also be described by a k = (0,0,0)
propagation vector. In that case, one should distinguish �m2,
which has its anisotropy axis along the field, from the three
left moments �m1,3,4 that are at 71◦ off (or 109◦ depending on
their direction). From the diffraction data only, we could not
refine a unique magnetic structure. We thus chose to constrain
the magnetic moments to match the magnetization obtained in
macroscopic measurements. This leads to a structure which
resembles the “1-out-3-in” structure [see Fig. 9(a)] except
that �m2 and �m1,3,4 have different amplitudes. In addition,
a component of 0.2μB parallel to the field, similar to what
has been obtained when H ‖ [11̄0], is needed [see Fig. 9(b)
and Table II]. The calculated magnetization based upon this
field-induced structure is shown in Fig. 9(c). Importantly, for
both magnetic field directions, the diffraction data confirm that
the system hardly magnetizes as a function of field.

D. Spin dynamics

We finally investigate the spin dynamics, both in zero
and applied field, that emerge from these ground states
(note that we study here the very low-energy response, well
below the first CEF level located at 10 meV). To this end,

TABLE II. Direction of the magnetic moments for the magnetic
field applied along [111].

Site �zi Model

1 (1,1,−1) +m1�z1 + m�h/h

2 (−1,−1,−1) −m2�z2

3 (−1,1,1) +m1�z3 + m�h/h

4 (1,−1,1) +m1�z4 + m�h/h

Magnetization (m1 + m2)/4 + 3m/4

inelastic neutron scattering experiments were conducted at low
temperature T = 60 mK on a large Pr2Zr2O7 single crystal
(Fig. 2) mounted in order to have the (hh0) and (00�) reciprocal
directions in the horizontal scattering plane. The sample was
attached to the cold finger of a dilution insert, and the magnetic
field was applied along [11̄0]. Time-of-flight measurements
were carried out on the IN5 spectrometer operated by the
Institut Laue Langevin (France). A wavelength λ = 4.9 Å
was used yielding an energy resolution of about 80 μeV.
The data have been processed with the HORACE software [52],
transforming the time of flight, sample rotation, and scattering
angle into ω energy transfer and Q vectors. We then took
constant energy slices and constant Q cuts in (Q,ω) space
to show, respectively, the Q and energy dependence of the
response. The integration range around a given (Q,ω) point
was (�h,��,�ω) with �h = �� = 0.05 and �ω = 0.1 meV
(h and � are in reduced reciprocal lattice units). The rather
large value of �ω, roughly the energy resolution, was chosen
to offer a better statistics. Triple-axis measurements (TAS)
were also carried out at the 4F2 cold spectrometer installed

at LLB (France). We used a final wave vector kf = 1.2 Å
−1

,
leading again to an energy resolution of about 80 μeV.

In zero applied magnetic field, the present data show that
the spin dynamics consists in a broad low-energy response
whose structure factor resembles the specific pattern observed
in classical spin ice, with armlike features along the (00�)
and (hhh) directions. This is illustrated in Fig. 10(a) which
shows a slice taken at ω = 0.3 meV. The Q width of the signal
is obviously smaller at the pinch point positions (002) and
(111) (labeled with blue arrows). Turning now to the energy
dependence of the response, the TAS data [see Fig. 10(f)]
can be accounted for by a Lorentzian profile describing an
overdamped mode at the characteristic energy � with a lifetime
1/�:

I (Q,ω) = A

1 − e−ω/T

×
(

�

(ω − �)2 + �2
− �

(ω + �)2 + �2

)
. (5)

We find � ≈ � ≈ 0.4 meV. This mode can be compared
to the discrete excitation measured at low temperature in
Pr2Hf2O7 [25] and centered at � ≈ 0.2 meV, as well as to
the profile observed in Pr2Sn2O7 [27]. The broadening in the
case of Pr2Zr2O7 could be due to chemical inhomogeneities
or disorder [41,42].

It should be stressed that our results are consistent with
the INS data reported by Kimura et al. [22]. Our experiments
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FIG. 10. Inelastic neutron data at 60 mK. (a) Q-vector map in zero field of the inelastic neutron intensity at 0.3 meV. Blue arrows indicate
the pinch point positions. The black dotted lines delineate the area actually measured, and the data have been symmetrized. (b)–(d) Q-vector
maps of the inelastic neutron intensity at 0.3, 0.5, and 0.9 meV and 2.5 T applied along [11̄0]. The dashed line corresponds to the direction
of Q in map (e). (e) [ω,Q = (11�)] map measured at 2.5 T showing the flat dispersionless mode at about 0.9 meV and highlighted by the
dashed rectangle. (f) Representative triple-axis spectra carried out at Q = (1,1,1). The lines are fits according to a Lorentzian profile, showing
a strong mode at the energy �H . (g) Field dependence of �H ; the red and black points correspond to the experimental data at Q = (1,1,1.5)
and (1,1,1), respectively.

especially confirm that the spectrum is mostly inelastic. In
Ref. [22], the elastic scattering is estimated to be 10% of the
total response, and we note that according to their energy
resolution (0.12 meV), it cannot be excluded that at least
part of this very weak elastic response might come from the
inelastic channel. In our experiments, any elastic contribution,
if it exists, could not be detected because of the large elastic
incoherent background of the cryomagnet.

New information is obtained from INS results performed
under a magnetic field applied along the [11̄0] axis. The
response encompasses a first contribution visible at low
energies. A slice taken at 0.3 meV and 2.5 T, presented in
Fig. 10(b), displays a single arm along (00�). Some intensity
is visible along (hhh) but strongly weakened compared to
zero field [note that the color scales of (a) and (b)–(d) are
different in Fig. 10]. This resembles much the rodlike diffuse
scattering observed in Ho2Ti2O7 [51] under an applied field,
except that the signal is inelastic in the case of Pr2Zr2O7.
No spin-wave dispersion could be detected from these data,
perhaps because of the weakness of the signal. With increasing
the energy transfer ω, the slice shown in Fig. 10(c) shows
that the intensity of the arm feature along (00�) progressively
weakens. As explained in Sec. II, owing to the non-Kramers
nature of the Pr3+ ion, the inelastic rodlike signal observed
at 2.5 T suggests that the ground state of these moments is
quadrupolar. The specific Q dependence (rodlike) denotes that
the magnetic excitations built above the quadrupolar state are
formed within the β chains. This picture is consistent with the
diffraction data obtained for H ‖ [11̄0] (Sec. III C) showing the
lack of elastic response at the Bragg positions and that would

have indicated a long-range order of magnetic moments (as in
Ho2Ti2O7).

Interestingly, with further increase of the energy transfer,
a second contribution arises, which takes the form of a
dispersionless mode at ω = �H . This character is illustrated
in Fig. 10(e). It displays an intensity map taken as a function
of energy and wave vector along (1,1,�) at 2.5 T. Here,
the mode appears as a roughly flat and broad excitation at
a characteristic energy �H ≈ 0.9 meV. To the accuracy of
the experiment, the intensity of the mode does not depend
on Q [see Fig. 10(d)]. TAS measurements show that this
mode emerges from the zero-field broad response for fields as
small as 0.5 T. This is illustrated in Fig. 10(f) which features
spectra taken at Q = (1,1,1) for various fields. Fitting the
data through the Lorentzian profile [Eq. (5)], we find that the
characteristic energy �H strengthens upon increasing field, as
shown in Fig. 10(g). Concomitantly, the amplitude weakens
while the damping increases. Interestingly, �H shows a similar
field dependence as the peak temperature of the specific heat
(see Fig. 6), suggesting that the two phenomena are likely
connected.

IV. DISCUSSION

A. Role of quadrupolar degrees of freedom

As described above (Sec. III D and in Ref. [22]), the zero-
field neutron scattering signal is essentially inelastic. It can
be described by a flat mode, whose width might be induced
by inhomogeneities in the sample. This observation reminds
the case of the kagome antiferromagnet KFe3(OH)6(SO4)2

[53], and more recently the pyrochlore system Nd2Zr2O7 [54],
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in which an inelastic flat mode was interpreted as a zero-
energy mode (the kagome weather vane mode and the spin ice
pattern, respectively) lifted up to finite energy by an additional
term in the Hamiltonian (a Dzyaloshinskii-Moriya term and
an octopolar term, respectively).

In Pr2Zr2O7, the quadrupolar degrees of freedom, which
are expected to play an important role [16], could be the key
ingredient to explain this flat mode at finite energy. Indeed,
the Pr3+ ion is a non-Kramers ion. As discussed in Sec. II,
the presence of an inelastic signal can thus be interpreted
as the signature that the main components of the pseudospins
lie, in the ground state, within the local xy plane, and not in the
magnetic z direction. This would correspond to a quadrupolar
ground state, from which magnetic excitations emerge and
are revealed through the inelastic signal. In that context, the
dynamical rodlike signal observed at 2.5 T when H ‖ [11̄0]
can be interpreted as magnetic fluctuations emerging from the
state formed by the quadrupolar moments within the β chains.

This proposal is consistent with the shape of the measured
magnetization curves. When a field is applied, the magnetiza-
tion increases much more slowly than what would be expected
for classical Ising spins in presence of small antiferromagnetic
interactions. This smooth increase can be understood as a
competition between the magnetic field and the quadrupolar
correlations: the magnetic field component along the local �z
axis promotes the rise of magnetic moments to the detriment
of the quadrupoles.

In that picture, the broad peak observed in the specific
heat would involve the quadrupolar degrees of freedom. It is
worth noting that the description of the specific heat in terms
of monopoles is hard to reconcile with the energy ranges
present in the system: the temperature of the specific-heat
anomaly (about 2 K) is larger than the Curie-Weiss temperature
(|θCW| < 1 K) characterizing the magnetic interaction range.
The specific-heat anomaly temperature is especially larger
than the “canonical” spin ice (Ho2Ti2O7 and Dy2Ti2O7) one,
despite a larger Curie-Weiss temperature in these systems
[3]. In addition, the negative Curie-Weiss temperature in
Pr2Zr2O7 suggests antiferromagnetic interactions, in contrast
with the spin ice description which calls for positive J zz

interactions.

B. Input of the mean field approximation

To go a step further, and understand qualitatively how
these quadrupoles might be correlated, we now examine the
Hamiltonian (3) at the mean field level. The spin dynamics is
calculated in the RPA, a method that has been developed at
length in the context of pyrochlore magnets [55–58].

1. Phase diagram

We first look at the phase diagram computed as a function of
J zz, J ±, andJ ±± (Fig. 11). In agreement with Ref. [17], four
different phases are obtained: an antiferromagnetic “all-in-
all-out” phase (AIAO), a ferromagnetic “2-in-2-out” ordered
spin ice phase (SI), and two quadrupolar phases (denoted with
a “Q” prefix). It is worth noting that the ordered SI phase
obtained at this level of approximation is replaced by the
classical spin ice for J ±± = 0, J ± = 0, and by a U(1) spin
liquid phase in more elaborate theories [18]. Both quadrupolar

FIG. 11. Mean field phase diagram of the model defined by
Eq. (4). The SI and AIAO phases correspond, respectively, to the
ordered spin ice phase and to the “all-in-all-out” antiferromagnetic
phase. Both of them are magnetic, with pseudospins ordered along
the local �z axes. In the Q-AIAO phase, the pseudospins are ordered
and parallel to the same (symmetry-equivalent) local axis within
the xy plane (“ferropseudospin order”). In this sense, this phase is
characterized by an antiferroquadrupolar order. The Q-SI phase is
characterized by a ferroquadrupolar order. In (a), J ±± = 0, while in
(b), J zz = 1. The dashed rectangle shows the region of interest for
Pr2Zr2O7.

phases correspond to an ordering of the pseudospin σ within
the xy plane (θi = π/2). They carry a zero magnetic moment
and have either the “spin ice” nature, with alternate directions
of σ , or an AIAO nature (the pseudospins point along the same
local direction). In the latter case, the mean field approximation
leads to an ordered phase, but owing to the xy symmetry, it is
likely that it remains disordered in more elaborate approaches.
Note that the present Q-AIAO and Q-SI quadrupolar phases
are the mean field variants of the “antiferroquadrupolar”
and “ferroquadrupolar” Higgs phases of Ref. [18] (yet the
boundaries between the different phases are slightly different).

2. Spin dynamics in the Q-AIAO phase

The Q-AIAO phase is particularly relevant for our purpose.
Throughout this phase only (our calculations are restricted to
J ±± = 0 for simplicity), the RPA spin dynamics consists in
a dispersionless excitation at an energy Eo [labeled with an
“A” in Fig. 12(a)], whose neutron structure factor is the spin
ice pattern [see Fig. 12(b)]. Analytical calculations based on a
spin-wave expansion around the Q-AIAO order allow one to
better understand the physical essence of this dispersionless
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FIG. 12. Spin dynamics calculated in the RPA. The ground state is
the antiferroquadrupolar phase Q-AIAO, characterized by an ordering
of the pseudospin σ along the x local axes. (a) [ω,Q = (hh2)]
map calculated for J ± = 0.7 K and J zz = −0.5 K showing the
presence of the dispersionless mode at Eo = 0.45 meV (labeled by
an “A”). (b) Zero-field Q-vector map taken at Eo. (c) Precession of
the pseudospins (illustrated by cones) in the dispersionless mode.
The blue arrows feature a snapshot of the relative orientation of the
pseudospins. Projecting those pseudospins along the �z axis directions
(red arrows) gives two projections pointing into and two out of the
center of the tetrahedron. As a function of time, the spins oscillate in
a manner that fulfils the “2-in-2-out” ice rule.

mode. We find that it corresponds to a precession of the
pseudospins at a frequency Eo/� around their equilibrium
direction with

Eo = 4
√
J ±(3J ± − J zz/2). (6)

The eigenvectors of this mode are such that in each tetrahedron,
the four spins can be divided into two pairs, characterized by
a phase shift of π (see also the Appendix E). For instance, the
dynamical magnetization on the summits of a tetrahedron can
be written as

�m1,2(t) = g‖σ cos (Eo/�t)�z1,2,

�m3,4(t) = g‖σ cos (Eo/�t + π )�z3,4,

which is nothing but the “2-in-2-out” ice rule. It also can
be understood as a dynamical divergent-free magnetization,
hence leading to the spin ice dynamical structure factor.
Figure 12(c) shows a sketch of the relative orientations of
the pseudospin in this particular mode. Finally, we observe
that Eo goes to zero at the boundary with the SI phase (see
Appendix D).

The RPA also reveals collective excitations [labeled with a
“B” in Fig. 12(a)]. Their dispersion lies below or above the flat
mode depending on the values of the parameters (see Appendix
D). With decreasing J zz (becoming strongly negative), these
dispersing branches go soft at the Bragg positions of the AIAO

phase, signaling the phase transition towards this magnetic
state.

The spectra and the spin ice pattern shown in Fig. 12
have been obtained for J ± = 0.7 K, J zz = −0.5 K. These
parameters have been chosen so that Eo corresponds to the
experiment energy scale � (see below).

When a magnetic field is applied along [11̄0], our calcu-
lations carried out in the Q-AIAO phase show that a static
magnetic moment on the α sites is restored, while the β

sites remain quadrupolar in nature, in agreement with what
we have observed in neutron diffraction. In addition, the
energy of the dispersionless mode increases with increasing the
field [see Figs. 13(a)–13(c)] and its structure factor becomes
less featured, as illustrated in Fig. 13(f). Concomitantly,
the characteristic energy of the dispersing branches softens.
Integrating this low-energy part of the response up to 0.3 meV
gives the map shown in Fig. 13(e) and characterized by a single
arm along (00�). It is worth noting the close correspondence
with the experimental data reported in Fig. 10(b).

We also determined the temperature and magnetic field
dependence of the magnetic specific heat. The latter was
computed above the transition towards the ordered Q-AIAO
state. It shows a maximum, similar to what is found in
experiment. We find that this maximum shifts linearly to higher
temperature with increasing field, as shown in Fig. 13(g).

Finally, we have calculated the susceptibility and the
magnetization (M vs H ) curves. In contrast with experiment,
in presence of quadrupolar terms, the susceptibility saturates
when decreasing the temperature, and remains smaller than the
measured one. The quadrupolar terms slow down the increase
of the magnetization with magnetic field compared to a model
without these terms, making the calculated curves closer to
the experimental ones. The latter are, however, smoother
and the saturation values are smaller. This might be partly
explained by the mixing with excited states of the crystal
field in presence of magnetic field which tends to decrease the
effective moment, and cannot be taken into account in such
pseudospin 1

2 approach (with or without quadrupolar terms).

3. Proposal

The above mean field approach shows that the Eo mode can
be induced in presence of a positive J ± coupling between the
xy components of the pseudospins. This occurs provided that
J ± is strong enough with respect to the magnetic exchange
J zz, precluding the stabilization of the conventional SI and
AIAO magnetic phases (the mean field energy of the Q-AIAO
is −6J ± to be compared with −2J zz which is the energy of
the SI phase).

Based on these results, we propose that the mode observed
at � in Pr2Zr2O7 can be interpreted in terms of the dynamical
spin ice mode at Eo of the Q-AIAO phase. The data in presence
of a magnetic field are consistent with this proposal, suggesting
that �H follows the field dependence of Eo.

To estimate a range of coupling parameters of the
Pr2Zr2O7 Hamiltonian that would qualitatively describe the
experimental observations, a systematic exploration of the Q-
AIAO phase has been carried out, assuming howeverJ ±± = 0
for the sake of simplicity. We determined numerically the
field-induced structure, the spin dynamics, especially the
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FIG. 13. Spin dynamics calculated in the RPA for J ± = 0.7 K and J zz = −0.5 K and under a field applied along [11̄0]. (a)–(c) [ω,Q =
(hh2)] maps at different fields. Note that the energy of the mode at Eo progressively increases with increasing field. (d) Field dependence of
Eo. The lines are results from RPA calculations with J ± = 0.7 K and J zz = −0.5 K (red line), J zz = 0.1 K (green line) and J zz = 1 K (blue
line), and J ± = 0.8, J zz = 1 K (magenta line). The red and black points correspond to the experimental �H at Q = (1,1,1.5) and (1,1,1),
respectively. (e) Map of the energy integrated response up to ω = 0.3 meV at 2.5 T. It nicely compares with Fig. 10(b). (f) Map taken at 2.5 T
and ω = Eo, to compare with the experimental data shown in Fig. 10(c). (g) Calculated specific heat above the transition towards the ordered
Q-AIAO state. It features a Schottky-type anomaly, similar to what is found in experiment (see Fig. 6). (h) Field dependence of the temperature
at which the specific heat is maximum. The magenta line is a linear fit to the calculations performed with J ± = 0.8 K and J zz = 1 K. The
green one was calculated with J ± = 0.7 K and J zz = 0.1 K. The red line is the fit of the experimental data (black points) presented in the
inset of Fig. 6.

field dependence of Eo [see Fig. 13(d)], and calculated
the instantaneous magnetic correlations by integrating this
spectrum over the energy. We also determined the temperature
and magnetic field dependence of the magnetic specific heat
[see Fig. 13(h)]. This systematic survey of the Q-AIAO phase
yields a good qualitative agreement with the experimental data
for

0.7 � J ± � 0.8 K,

−0.5 � J zz � 1 K

along with J ±± = 0 which was our initial simplifying
assumption.

These parameters are quite different from those proposed in
Refs. [16,17], which tentatively locate Pr2Zr2O7 in the Q-SI
phase. With a negative value of J ±, however, the spin-spin
correlation function does not display the icelike pattern (see
Fig. 11 in this Ref. [17]), in contradiction with experiments.

Our calculations with the above parameters confirm that, in
presence of quadrupolar interactions, a spin ice pattern can be
obtained despite a negative J zz, which is usually expected to
stabilize an AIAO phase. This pattern is, however, shifted in
the inelastic channel. This picture where quadrupolar degrees
of freedom are at play thus resolves the apparent contradiction
between the negative Curie-Weiss temperature, suggesting
antiferromagnetic interactions, and the spin-ice-like structure
factor observed in neutron scattering.

Nevertheless, no transition towards a quadrupolar ordered
state, predicted in this mean field approach, is observed
in specific heat which suggests that the ground state of

Pr2Zr2O7 is rather a quadrupolar liquid with correlations
typical of the Q-AIAO phase. In addition, the low-temperature
susceptibility behavior suggests that additional fluctuations
between the quadrupolar and magnetic components have to
exist in the ground state, so that the moment is not purely
quadrupolar even at very low temperature, and which may
prevent the quadrupolar ordering. The spin ice mode at Eo

appears strongly broadened in the experiments, maybe due to
these fluctuations but likely also because of inhomogeneities.
From the structure of the mean field equations [see Eq. (4)], we
anticipate that a strain field such that vi ≡ v � 0 for all sites
would spread the values of Eo, accounting for a significant
broadening.

V. CONCLUSION

We have performed a detailed study of the properties of the
quantum spin ice candidate Pr2Zr2O7 using macroscopic and
neutron scattering measurements. In particular, magnetization
and diffraction measurements show that the system hardly
magnetizes at very low temperature. k = 0 field-induced
structures are obtained when the field is applied along the
[11̄0] and [111] directions. Along [11̄0], the magnetization
and diffraction data are consistent with a structure where the
ordered moment is carried by the so-called α chains only.
Along [111], we find a “1-out-3-in” structure with moments of
different amplitude. For both directions, the spins align along
their local anisotropy axis with, however, a small transverse
component.
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TABLE III. Ground-state wave functions of Pr3+ in Pr2Zr2O7. The Wybourne coefficients (in μeV) reproduced from Ref. [31] are
B20 = −631, B40 = −32.36, B43 = −467.4, B60 = 0.245, B63 = 1.464, and B66 = −1.907.

−4 −1 2
Jz a −3 −2 b 0 1 c 3 4

|↑〉 0.894 0 0 0.448 0 0 −0.024 0 0
|↓〉 0 0 −0.024 0 0 −0.448 0 0 0.894
|1〉 0 0.299 0 0 −0.909 0 0 −0.299 0

The specific-heat measurements show that above 1 T,
the broad anomaly reported in Refs. [21,22] shifts to larger
temperatures. Our inelastic scattering measurements show that
the spectrum can be viewed as a broad flat mode centered
at about 0.4 meV with a magnetic structure factor which
resembles the spin ice pattern. These data confirm that the
response is mostly dynamical [22]. When a magnetic field is
applied along [11̄0] (at least up to 2.5 T), the Q structure
of the response at low energy changes to a rodlike pattern,
similar to what was observed in Ho2Ti2O7 [51]. In addition,
a well-defined mode forms, whose energy increases when the
field increases, in the same way as the temperature of the
specific-heat anomaly, and which is featureless in Q at 2.5 T.

This set of experiments can be qualitatively understood
by introducing a coupling between quadrupolar degrees of
freedom in the Hamiltonian widely accepted for pyrochlores
magnets. These terms lift the “spin ice” diffuse pattern up
to finite energy. Using a mean field approach that takes into
account these quadrupolar terms, we show that the field-
induced behavior can be qualitatively understood, and propose
a set of exchange parameters able to account qualitatively for
the data in this approximation. Our analysis points out that the
ground state of Pr2Zr2O7 might support antiferroquadrupolar
correlations [16–18], from which emerge magnetic-ice-like
excitations.

Phenomenologically, we propose that Pr2Zr2O7 could be
described as a quadrupole liquid, characterized by short-range
Q-AIAO correlations. The spin-ice-like excitations are shifted
to finite energy, highlighting the fact that the quadrupolar state
is “protected” from the spin ice state. The fact that pinch
points may exist in the elastic channel [22] as well as the low-
temperature behavior of the magnetic susceptibility suggest
that some magnetic moments can reform to the detriment
of the quadrupolar state. In this picture, the actual ground
state would consist of an assembly of both quadrupoles and
magnetic moments, i.e., to a state characterized by fluctuations
between the quadrupolar liquid with Q-AIAO correlations and
the spin ice phase. The dispersionless mode would probably
broaden in energy, acquiring a finite lifetime, so that the pinch
points would also exist at zero energy. Further theoretical
studies, beyond the mean field approach, are thus needed to
give a more complete picture of the Pr2Zr2O7 ground state and
analyze quantitatively our observations.
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APPENDIX A: CRYSTAL ELECTRIC FIELD

The CEF coefficients determined in Ref. [31] are repro-
duced in Table III. With these values, one obtains the Landé
factors g‖ = 5.5 and g⊥ = 0. CEF levels are found at 10, 57,
82, 93, and 109 meV.

APPENDIX B: SPIN-SPIN CORRELATION FUNCTION

Let us write formally the dynamical spin-spin correlation
function S(Q,ω) measured by neutron scattering, in terms of
the actual eigenstates |�n〉 with energies En (above the ground
state):

S(Q,ω) =
∑
i,j

eiQ(Ri−Rj )
∑
n,m

e−En/kBT

Z

×〈�n| �J⊥,i |�m〉〈�m| �J⊥,j |�n〉δ(ω − En + Em)

with Z = ∑
n exp (−En/kBT ) and where the symbol ⊥

indicates that one must consider the components perpendicular
to the scattering wave vector Q. At low temperature, keeping
the ground and first excited states, this reduces to

S(Q,ω) ≈
∣∣∣∣∣〈�G|

∑
i

eiQRi �J⊥,i |�G〉
∣∣∣∣∣
2

δ(ω)

+
∣∣∣∣∣〈�1|

∑
i

eiQRi �J⊥,i |�G〉
∣∣∣∣∣
2

δ(ω − E1)

hence to an elastic contribution at ω = 0, and an inelastic one
at ω = E1.

In a classical picture, the ground state |�G〉 of the
above Hamiltonian (4) can be described as a state where
on each site of the pyrochlore lattice, the expectation value
of the pseudospin �σ = (σx,σy,σz) is oriented in the direction
specified by local spherical angles θi and φi (see Fig. 1): θi

defines the polar angle relative to the local CEF axes and φi is
the angle within the xy plane:

|�G〉 = |φG,1 . . . φG,i . . . φG,N 〉,

|φG,i〉 = cos
θi

2
|↑〉i + eiφi sin

θi

2
|↓〉i ,

where N is the (infinite) number of sites. Those angles depend
on the Hamiltonian. As expected, for instance, in the RPA
or spin-wave approximation, the lowest-energy excited states
should contain one flip of the pseudospin, possibly delocalized
over the lattice. |�1〉 is thus constructed as

|�1〉 =
∑

i

Ci |φG,1 . . . φ1,i . . . φG,N 〉,
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where |φ1,i〉 describes such a flip of the pseudospin σ at site i.
The values of the Ci coefficients depend on the Hamiltonian
and remain to be determined. Written in the |↑,↓〉 subspace,
|φ1,i〉 must be normalized and orthogonal to |φG,i〉, and thus
of the form

|φ1,i〉 = −e−iφi sin
θi

2
|↑〉i + cos

θi

2
|↓〉i .

The relevant matrix elements then write (in the global
coordinates)

〈φG,i | �Ji |φG,i〉 = μ cos θi�zi,

〈φ1,i | �Ji |φG,i〉 = −μeiφi sin θi�zi

leading to the following elastic and inelastic contributions:

S(Q,ω = 0) ≈ μ2

∣∣∣∣∣
∑

i

eiQRi cos θi�z⊥,i

∣∣∣∣∣
2

,

S(Q,ω = E1) ≈ μ2

∣∣∣∣∣
∑

i

Cie
iQRi eiφi sin θi�z⊥,i

∣∣∣∣∣
2

.

APPENDIX C: ANALYSIS OF THE NEUTRON
DIFFRACTION DATA

As explained in the main text, we ramped the field on
various Q position between 0 and 9 T (see Fig. 14). We
observed that the neutron intensity remains zero on the
“forbidden” peaks of the Fd3̄m space group. This implies
that the field-induced structure is described by a k = (0,0,0)
propagation vector.

The analysis of the neutron diffraction data has then
two stages. First, high-temperature (10 K) data have been
recorded and fitted using the Fd 3̄m space group. The free
parameters of the fit were the scale factor, the position of
the oxygen, the isothermal, and the extinction coefficients.
The low-temperature data have then been fitted via a model
containing both the crystalline and k = (0,0,0) magnetic
structures. Yet, the parameters of the crystalline structure were
fixed to the values obtained at 10 K. For the data obtained with
H ‖ [111], the fit was carried out considering the magnetic
structure only and using the difference between the neutron
intensities at 10 K and at low temperature.

APPENDIX D: EVOLUTION OF THE SPIN DYNAMICS
IN THE Q-AIAO PHASE

In this section, we illustrate in Fig. 15 the evolution of the
spin dynamics calculated within the RPA in the Q-AIAO phase.
As explained above, the spin excitation spectrum encompasses
a flat mode at Eo together with dispersive branches below or
above Eo. We observe that Eo goes soft as the border with the
SI phase is approached, i.e., with increasing J zz or decreasing
J ±. In contrast, with decreasing J zz, the dispersing branches
go soft at the Bragg positions of the AIAO phase, signaling
the phase transition towards this magnetic state.

APPENDIX E: DISPERSIONLESS MODE

To better understand the physical origin of the dispersion-
less mode, we proceed with analytical calculations on the basis

FIG. 14. Field dependence of the structure factor obtained from
neutron diffraction for various Bragg peaks. The field is applied along
[11̄0]. The six upper Bragg positions are forbidden in the Fd3̄m space
group and have essentially a zero intensity. The eight lower ones are
allowed and indeed have a significant intensity.

of a spin-wave expansion out of the Q-AIAO order. To this
end, we introduce on each site a+

i and ai bosons that create or
annihilate local deviations of the pseudospin. The spin-wave
Hamiltonian writes [59]

H = a+Ka
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FIG. 15. Spin dynamics calculated within the RPA in the Q-AIAO phase. The spectra are shown along (hh2) for various sets of parameters.

with a+ = (a+
1 ,a+

2 , . . . ,a+
i , . . . ,a+

N,a1,a2, . . . ,ai, . . . ,aN ) and
K is a 2N × 2N matrix:

K =
(−σ�iδi,j + σ

2 siJi,j s̄j + σ
2 siJi,j sj

σ
2 s̄iJi,j s̄j −σ�iδi,j + σ

2 s̄iJi,j sj

)
,

�i =
∑

�

Ri,3Ji,� R�,3,

si = Ri,1 + iRi,2,

where Ri is a three-column matrix Ri = (Ri,1Ri,2,Ri,3) (see
Table IV), Ji,j is the exchange matrix that couples the spins
at sites i and j . Using the Hamiltonian given by Eq. (4),
the definition of the local axes, and owing to the pyrochlore
structure, we find

�i = � = −12J ±,

siJi,j s̄j = εi,j (2J ± − J zz) = εi,jA,

siJi,j sj = εi,j (2J ± + J zz) = −εi,jB

with

εi,j = ±1 (E1)

TABLE IV. Local axes in the pyrochlore lattice.

Site Ri

1

⎛
⎝−1/

√
3 −1/

√
2 −1/

√
6

−1/
√

3 1/
√

2 −1/
√

6
1/

√
3 0 −2/

√
6

⎞
⎠

2

⎛
⎝1/

√
3 1/

√
2 1/

√
6

1/
√

3 −1/
√

2 1/
√

6
1/

√
3 0 −2/

√
6

⎞
⎠

3

⎛
⎝−1/

√
3 −1/

√
2 1/

√
6

1/
√

3 −1/
√

2 −1/
√

6
1/

√
3 0 2/

√
6

⎞
⎠

4

⎛
⎝ 1/

√
3 1/

√
2 −1/

√
6

−1/
√

3 1/
√

2 1/
√

6
1/

√
3 0 2/

√
6

⎞
⎠

for neighboring (i,j ) spins (zero otherwise), and∑
j �=i,j∈�i

εi,j = 1 (E2)

for each spin i in a tetrahedron �i . With the convention of
Table IV, we have ε1,2 = ε3,4 = −1, ε1,3 = ε1,4 = 1, ε2,3 =
ε2,4 = 1.

The spin-wave Hamiltonian is diagonalized by a Bogoli-
ubov transform which involves new boson operators α and
α+. The ground state of the model is then the vacuum of these
operators. The energies of the spin waves and the associated
eigenvectors (. . . ,ui, . . . , . . . ,vi, . . .) must then be solution of

−σ�ui + σ

2

∑
j

(siJi,j s̄j uj + siJi,j sj vj ) = Eoui,

−σ

2

∑
j

(s̄iJi,j s̄j uj + s̄iJi,j sj vj ) + σ�vi = Eovi,

hence,

−σ�ui + σ

2

∑
j

(Aεi,juj − Bεi,j vj ) = Eoui,

−σ

2

∑
j

(−Bεi,juj + Aεi,j vj ) + σ�vi = Eovi.

Taking advantage of (E2), we now look for a particular solution
where in each tetrahedron �i∑

j∈�i

εi,j uj = ui,
∑
i∈�i

εi,j vj = vi. (E3)

Since each site belongs to two tetrahedra, we obtain

−σ�ui + 2
σ

2
Aui − 2

σ

2
Bvi = Eoui,

2
σ

2
Bui + σ�ivi − 2

σ

2
Avi = Eovi.

Solving for Eo, we find a solution which is independent of i

and thus corresponds to a dispersionless mode:

Eo = 2σ × 4
√
J ±(3J ± − J zz/2). (E4)
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FIG. 16. Energy Eo of the dispersionless mode within the Q-
AIAO phase as a function of the parameters of the model; the
analytical expression is given by Eq. (6).

Note that an exhaustive survey of the Q-AIAO phase by
numerical calculations confirms this analytic formula, as
shown in Fig. 16.

Equation (E3) defines the structure of the associated
eigenvectors. Since the u and v’s are identical on each site, the
spins rotate in phase within their local basis at a frequency Eo

around the equilibrium direction. We proceed by calculating
the spin at site i; it is the projection of the pseudospin along
the CEF axes (redefined above as Ri,1):

�Si = (g‖ �Ri,1 · �σi) �Ri,1,

�σi = g‖
√

2σ

2
(s̄iai + sia

+
i ) + g‖Ri,3(σ − a+

i ai).

Hence,

�Si = g‖
√

2σ

2
(ai + a+

i ) �Ri,1.

The contribution of the dispersionless modes to the spin-spin
correlation function (at ω = Eo) then writes

S(Q,Eo) = g2
‖σ

∑
i,j

eiQ(Ri−Rj )(ui + vi)(uj + vj ) �Ri,1 · �Rj,1

= g2
‖σ (u + v)2|

∑
i

eiQRi �Ri,1|2.

Owing to the definition of the Ri,1 given in Table IV, S(Q,Eo)
has the same structure as the spin ice pattern defined in Sec. II.
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and B. Ouladdiaf, Phys. Rev. B 72, 224411 (2005).

[49] A. P. Sazonov, A. Gukasov, I. Mirebeau, H. Cao, P. Bonville, B.
Grenier, and G. Dhalenne, Phys. Rev. B 82, 174406 (2010).

[50] A. P. Sazonov, A. Gukasov, and I. Mirebeau, J. Phys.: Condens.
Matter 23, 164221 (2011).

[51] J. P. Clancy, J. P. C. Ruff, S. R. Dunsiger, Y. Zhao, H. A.
Dabkowska, J. S. Gardner, Y. Qiu, J. R. D. Copley, T. Jenkins,
and B. D. Gaulin, Phys. Rev. B 79, 014408 (2009).

[52] R. A. Ewings, A. Buts, M. D. Le, J. van Duijn, I. Bustin-
duy, and T. G. Perring, Nucl. Instrum. Methods Phys. Res.,
Sect. A 834, 132 (2016); see also T. G. Perring et al.,
horace.isis.rl.ac.uk/MainPage.

[53] K. Matan, D. Grohol, D. G. Nocera, T. Yildirim, A. B. Harris, S.
H. Lee, S. E. Nagler, and Y. S. Lee, Phys. Rev. Lett. 96, 247201
(2006).

[54] S. Petit, E. Lhotel, B. Canals, M. Ciomaga Hatnean, J. Ollivier,
H. Mutka, E. Ressouche, A. R. Wildes, M. R. Lees, and G.
Balakrishnan, Nat. Phys. 12, 746 (2016).

[55] J. Jensen and A. R. Mackintosh, Rare Earth Magnetism
(Clarendon, Oxford, 1991).

[56] Y. J. Kao, M. Enjalran, A. Del Maestro, H. R. Molavian, and M.
J. P. Gingras, Phys. Rev. B 68, 172407 (2003).

[57] S. Petit, J. Robert, S. Guitteny, P. Bonville, C. Decorse, J.
Ollivier, H. Mutka, M. J. P. Gingras, and I. Mirebeau, Phys.
Rev. B 90, 060410 (2014).

[58] J. Robert, E. Lhotel, G. Remenyi, S. Sahling, I. Mirebeau, C.
Decorse, B. Canals, and S. Petit, Phys. Rev. B 92, 064425 (2015).

[59] S. Petit, Collection SFN 12, 105 (2011).

165153-16

https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevLett.109.167201
https://doi.org/10.1103/PhysRevLett.109.167201
https://doi.org/10.1103/PhysRevLett.109.167201
https://doi.org/10.1103/PhysRevLett.109.167201
https://doi.org/10.1103/PhysRevB.78.094418
https://doi.org/10.1103/PhysRevB.78.094418
https://doi.org/10.1103/PhysRevB.78.094418
https://doi.org/10.1103/PhysRevB.78.094418
https://doi.org/10.1103/PhysRevB.90.214404
https://doi.org/10.1103/PhysRevB.90.214404
https://doi.org/10.1103/PhysRevB.90.214404
https://doi.org/10.1103/PhysRevB.90.214404
https://doi.org/10.1088/0953-8984/10/14/002
https://doi.org/10.1088/0953-8984/10/14/002
https://doi.org/10.1088/0953-8984/10/14/002
https://doi.org/10.1088/0953-8984/10/14/002
https://doi.org/10.1016/j.jcrysgro.2015.01.037
https://doi.org/10.1016/j.jcrysgro.2015.01.037
https://doi.org/10.1016/j.jcrysgro.2015.01.037
https://doi.org/10.1016/j.jcrysgro.2015.01.037
https://doi.org/10.1016/j.jcrysgro.2014.06.037
https://doi.org/10.1016/j.jcrysgro.2014.06.037
https://doi.org/10.1016/j.jcrysgro.2014.06.037
https://doi.org/10.1016/j.jcrysgro.2014.06.037
https://doi.org/10.1021/ic301677b
https://doi.org/10.1021/ic301677b
https://doi.org/10.1021/ic301677b
https://doi.org/10.1021/ic301677b
https://doi.org/10.1103/PhysRevLett.114.017602
https://doi.org/10.1103/PhysRevLett.114.017602
https://doi.org/10.1103/PhysRevLett.114.017602
https://doi.org/10.1103/PhysRevLett.114.017602
https://doi.org/10.1103/PhysRevLett.94.177201
https://doi.org/10.1103/PhysRevLett.94.177201
https://doi.org/10.1103/PhysRevLett.94.177201
https://doi.org/10.1103/PhysRevLett.94.177201
https://doi.org/10.1103/PhysRevLett.81.4496
https://doi.org/10.1103/PhysRevLett.81.4496
https://doi.org/10.1103/PhysRevLett.81.4496
https://doi.org/10.1103/PhysRevLett.81.4496
https://doi.org/10.1103/PhysRev.59.724
https://doi.org/10.1103/PhysRev.59.724
https://doi.org/10.1103/PhysRev.59.724
https://doi.org/10.1103/PhysRev.59.724
https://doi.org/10.1016/0921-4526(93)90108-I
https://doi.org/10.1016/0921-4526(93)90108-I
https://doi.org/10.1016/0921-4526(93)90108-I
https://doi.org/10.1016/0921-4526(93)90108-I
http://www.ill.eu/sites/fullprof/
https://doi.org/10.1143/JPSJ.72.3045
https://doi.org/10.1143/JPSJ.72.3045
https://doi.org/10.1143/JPSJ.72.3045
https://doi.org/10.1143/JPSJ.72.3045
https://doi.org/10.1103/PhysRevB.72.224411
https://doi.org/10.1103/PhysRevB.72.224411
https://doi.org/10.1103/PhysRevB.72.224411
https://doi.org/10.1103/PhysRevB.72.224411
https://doi.org/10.1103/PhysRevB.82.174406
https://doi.org/10.1103/PhysRevB.82.174406
https://doi.org/10.1103/PhysRevB.82.174406
https://doi.org/10.1103/PhysRevB.82.174406
https://doi.org/10.1088/0953-8984/23/16/164221
https://doi.org/10.1088/0953-8984/23/16/164221
https://doi.org/10.1088/0953-8984/23/16/164221
https://doi.org/10.1088/0953-8984/23/16/164221
https://doi.org/10.1103/PhysRevB.79.014408
https://doi.org/10.1103/PhysRevB.79.014408
https://doi.org/10.1103/PhysRevB.79.014408
https://doi.org/10.1103/PhysRevB.79.014408
https://doi.org/10.1016/j.nima.2016.07.036
https://doi.org/10.1016/j.nima.2016.07.036
https://doi.org/10.1016/j.nima.2016.07.036
https://doi.org/10.1016/j.nima.2016.07.036
https://doi.org/10.1103/PhysRevLett.96.247201
https://doi.org/10.1103/PhysRevLett.96.247201
https://doi.org/10.1103/PhysRevLett.96.247201
https://doi.org/10.1103/PhysRevLett.96.247201
https://doi.org/10.1038/nphys3710
https://doi.org/10.1038/nphys3710
https://doi.org/10.1038/nphys3710
https://doi.org/10.1038/nphys3710
https://doi.org/10.1103/PhysRevB.68.172407
https://doi.org/10.1103/PhysRevB.68.172407
https://doi.org/10.1103/PhysRevB.68.172407
https://doi.org/10.1103/PhysRevB.68.172407
https://doi.org/10.1103/PhysRevB.90.060410
https://doi.org/10.1103/PhysRevB.90.060410
https://doi.org/10.1103/PhysRevB.90.060410
https://doi.org/10.1103/PhysRevB.90.060410
https://doi.org/10.1103/PhysRevB.92.064425
https://doi.org/10.1103/PhysRevB.92.064425
https://doi.org/10.1103/PhysRevB.92.064425
https://doi.org/10.1103/PhysRevB.92.064425
https://doi.org/10.1051/sfn/201112006
https://doi.org/10.1051/sfn/201112006
https://doi.org/10.1051/sfn/201112006
https://doi.org/10.1051/sfn/201112006



