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Extremely well isolated two-dimensional spin-% antiferromagnetic Heisenberg layers
with a small exchange coupling in the molecular-based magnet CuPOF
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We report on a comprehensive characterization of the newly synthesized Cu**-based molecular magnet
[Cu(pz),(2-HOpy),](PFs), (CuPOF), where pz = C4H4N, and 2-HOpy = CsH4NHO. From a comparison of
theoretical modeling to results of bulk magnetometry, specific heat, ©*SR, ESR, and NMR spectroscopy, this
material is determined as an excellent realization of the two dimensional square-lattice S = % antiferromagnetic
Heisenberg model with a moderate intraplane nearest-neighbor exchange coupling of J/kg = 6.80(5) K, and
an extremely small interlayer interaction of about 1 mK. At zero field, the bulk magnetometry reveals a
temperature-driven crossover of spin correlations from isotropic to XY type, caused by the presence of a
weak intrinsic easy-plane anisotropy. A transition to long-range order, driven by the low-temperature XY
anisotropy under the influence of the interlayer coupling, occurs at Ty = 1.38(2) K, as revealed by u"SR.
In applied magnetic fields, our 'H-NMR data reveal a strong increase of the magnetic anisotropy, manifested
by a pronounced enhancement of the transition temperature to commensurate long-range order at 7y = 2.8 K

and 7 T.

DOI: 10.1103/PhysRevB.102.064431

I. INTRODUCTION

The study of critical phenomena, related to phase transi-
tions between exotic ground states that emerge from com-
plex underlying electronic correlations, is a subject of high
importance in the research of low-dimensional magnetism.
As has been established by extensive theoretical work, in
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contrast to the cases of one- and three-dimensional magnetic
lattices, the critical behavior and ground-state properties of
two-dimensional (2D) lattice systems are strongly dependent
on the symmetry of the interactions between the magnetic
moments, e.g., Ising, XY, and Heisenberg types [1]. For
instance, in accordance with Onsager’s exact solution [2],
the 2D spin-% Ising antiferromagnet undergoes a Néel-type
transition to long-range order at 7y = 1.06J/kg [3], where
J is the exchange strength between neighboring magnetic
moments. In contrast, thermal fluctuations in the 2D quantum
Heisenberg antiferromagnet (2D QHAF) prevent long-range
order at any finite temperature, as was rigorously proven by
Mermin and Wagner [4]. The 2D planar, or XY, magnetic
lattice does not exhibit Néel-type order, despite the diver-
gence of the susceptibility at finite temperatures. Instead, an
unusual topological order with characteristic algebraic decay
of the spin correlations was proposed by Berezinskii [5] and
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Kosterlitz and Thouless [6]. Here, the formation of bound
pairs of topological excitations, called vortex and antivortex
states, characterizes the ordered state, where the unbinding
of the vortex-antivortex pairs constitutes the Berezinskii-
Kosterlitz-Thouless (BKT) transition, which occurs at Tgxt =
0.353J/kg for the § = 1 case [7].

Advancing the experimental research of phase transitions
and critical phenomena relies on the availability of well-
defined model systems. In particular, a targeted synthesis and
characterization of materials with interaction parameters that
closely approximate those of theoretical model systems and
yield energy scales of temperature and magnetic field that are
accessible by existing experimental infrastructures is required.
The effective Hamiltonian to describe a quasi-2D QHAF in an
applied magnetic field is

H=0) [SIS5+8S)+ (1 - A)SisT]
ij
+J/ZSiSi/ - glLBMOHZSi» (H

where J and J' are the intra- and interlayer exchange cou-
plings, and A scales the deviation from an ideal Heisenberg
interaction to an easy-axis or easy-plane characteristic. The
first sum in Eq. (1) is taken over nearest-neighbor (NN)
spins in the quasi-2D planes, the second summation is over
NN spins in adjacent layers, and the Zeeman term applies
to all moments. For external magnetic fields smaller than
the anisotropy field Hy and T < J/kg, the formation of
anisotropic magnetic correlations is driven by the intrinsic
anisotropy A. Conversely, for fields exceeding Hy = A X Hgy,
where Hg,; denotes the saturation field, the anisotropy of mag-
netic correlations is mainly determined by the strength and
direction of the applied magnetic field. In the Hamiltonian (1),
a positive J corresponds to an antiferromagnetic exchange,
and 0 < A < 1 describes the degree of easy-plane, or XY,
anisotropy.

The discovery of the high-temperature cuprate supercon-
ductors attracted great attention to the 2D spin-% Heisenberg
model [8-16]. Some of the undoped parent compounds, such
as Sr,CuCl,0, and La,CuQ,4, are known to be excellent
realizations of 2D spin—% Heisenberg antiferromagnets with
large nearest-neighbor exchange couplings of the order of
1000 K [17-20]. However, in contrast with the ideal 2D
Heisenberg model, a transition to a Néel-type state at finite
temperatures is observed for all materials reported up to now.
This transition is often discussed in terms of finite inter-
layer interactions [21-24], spin anisotropy [3,25,26], dipolar
anisotropy, and other symmetry-allowed contributions to the
Hamiltonian [27].

Whereas the critical phenomena of several systems were
mapped onto the BKT theory, such as the superfluid transition
of thin “He films [28], the solid-on-solid model [29], the
two-dimensional melting [30], the superconducting transition
of Josephson junctions [31], the collision physics of 2D
atomic hydrogen [32], the loss of quasicoherence of a trapped
degenerate quantum gas of rubidium atoms [33], and the
magnetic van der Waals antiferromagnet in the atomically
thin limit [34], a very clean bulk realization of the square
2D XY Heisenberg lattice is lacking up to now. There are

two main obstacles for the experimental realization of a 2D
XY antiferromagnet. One challenge relates to the unavoidable
existence of finite interlayer interactions. In case of the 2D
Heisenberg magnets, even an infinitesimal interlayer inter-
action is sufficient to perturb the critical behavior of the
system and stabilize a conventional type of Néel order below a
transition temperature 7y [35]. Second, a weak intrinsic easy-
plane anisotropy constraints the temperature range of XY -type
correlations. For the case of crystalline magnetic lattices of
Cu’" ions, the exchange coupling between spin moments as
well as the single-ion properties are almost isotropic.

Another approach to realize a well-defined investigation of
the magnetic correlations in low-dimensional spin systems is
by tuning the Zeeman terms of the effective Hamiltonian with
the application of an external magnetic field. This gives rise to
the unique possibility of probing a quasi-2D spin system with
well-defined XY anisotropy in the experiment. It was shown
by quantum Monte Carlo calculations that the application of a
magnetic field to an isotropic 2D Heisenberg antiferromagnet
can be mapped onto the anisotropic 2D XY model in zero
field, where the strength of the spin-exchange anisotropy can
be continuously tuned by the external field [36,37]. This
overall context has triggered extensive and ongoing efforts
to synthesize novel quasi-2D Heisenberg model materials
with highly isolated layers and relatively small antiferro-
magnetic interaction energies, allowing for the investigation
of field-induced effects in moderate applied magnetic fields.
Molecular-based materials consisting of 3d transition-metal
ions, such as copper, embedded into an organic matrix are of
particular interest. The combination of different ligands gives
the opportunity to engineer a wide range of materials with
well-defined magnetic properties [38—48].

In this paper, we report a comprehensive investigation of
the magnetic properties of the newly synthesized compound
[Cu(pz),(2-HOpy)21(PF¢), (CuPOF), where pz = C4H4N,
and 2-HOpy = CsH4NHO. The material is characterized
by magnetometry, ESR, specific heat, u"SR, and NMR.
CuPOF is shown to be a very clean realization of the square
2D spin-% Heisenberg lattice with moderate intralayer anti-
ferromagnetic NN exchange, J/kg = 6.80(5) K, and highly
isolated magnetic layers, with J'/J ~ 107*. A weak intrin-
sic easy-plane anisotropy, revealed by bulk magnetometry,
yields a temperature-driven crossover of the spin-correlation
anisotropy from isotropic Heisenberg to anisotropic XY -type
behavior, which, under the influence of a finite interlayer
coupling J’, constitutes a driving mechanism for a transition
to long-range commensurate order. A strong increase of the
transition temperature upon application of a magnetic field
from 1.38(2) K at zero field to 2.8 K at 7 T is caused by the
field-driven increase of the anisotropy of spin correlations.

II. EXPERIMENTAL

The compound [Cu(pz),(2-HOpy),](PFs), was synthe-
sized by using conventional solution chemistry techniques,
described in detail in the Supplemental Material (SM) [49].
Slow evaporation of methanol solutions of the product,
[Cu(pz)2(2-HOpy)21(PF¢)2, (pz = pyrazine, 2-HOpy = 2-
pyridone) produces thin, rectangular, green plates, typically
3 to 5 mm on a side and about 1 mm thick. The crystals
extinguish well under polarized light and are dichroic.
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X-ray data were obtained by using an Agilent Tech-
nologies Gemini Eos CCX-ray diffractometer using Cu-K«
radiation (A = 1.5418 A) with @ scans using CrysAlisPro
software [50] refined cell parameters and SCALE3 ABSPACK
[51] scaling algorithm defined absorption corrections. Data
were collected at 120 K. SHELXS97 [52] was used to solve
the structures, which were refined via least-squares analy-
sis using SHELXL-2016 [53]. All non-hydrogen atoms were
refined anisotropically. Hydrogen atoms bonded to nitrogen
atoms were located in the difference Fourier maps and their
positions refined with fixed isotropic thermal parameters. The
remaining hydrogen atoms were geometrically located and
refined by using a riding model with fixed isotropic thermal
parameters. The structure has been deposited with the Cam-
bridge Crystallographic Data Centre (CCDC) (1553982). A
Bruker D8 powder x-ray diffractometer was used to confirm
the purity and phase of powdered samples prior to magnetic
measurements.

Measurements of magnetic bulk properties between 1.8
and 310 K were carried out by using a Quantum Design
MPMS-XL SQUID magnetometer with a 5 T magnet, as well
as a vibrating sample magnetometer (VSM) Quantum Design
PPMS with a 14 T magnet. Corrections were made to the data
for the background signal of the sample holder, as well as
diamagnetic contributions. Studies below 2 K were performed
by employing a *He cooling stage.

The high-field magnetization of CuPOF single crystals in
pulsed fields up to 35 T and at temperatures of 0.37 and 1.4 K
were performed at the Dresden High Magnetic Field Labora-
tory (HLD) at the Helmholtz-Zentrum Dresden-Rossendorf.
Additional measurements of a polycrystalline sample in DC
fields up to 35 T were done by using a vibrating sample mag-
netometer at the National High Magnetic Field Laboratory
(NHMFL) in Tallahassee, as well as in pulsed fields up to
25 T at the NHMFL facility in Los Alamos. The results are
fully consistent with the data from the HLD and can be found
in the SM [49].

Room-temperature electron-spin resonance (ESR) studies
were performed on polycrystalline material and single crystals
of CuPOF, using a commercially available X-Band Bruker
ESR spectrometer operating at 9.8 GHz at Clark Univer-
sity. EASYSPIN [54] was used to determine the g factors
and linewidths. Additional ESR measurements of angular-
dependent spectra, as well as temperature-dependent spectra
for field parallel to the ¢ axis, were performed at the HLD
between 3 and 300 K at 9.4 GHz, employing an X-band
Bruker ELEYSYS E500 ESR spectrometer. The obtained
values of the anisotropic g factor are consistent with the
results measured at Clark University and are presented in
the SM [49]. High-frequency ESR measurements along the
crystallographic c axis at 1.5 K and fields up to 16 T were per-
formed at the HLD by using a home-built transmission-type
tunable-frequency ESR spectrometer, similar to that described
in Ref. [55], with a probe in Faraday configuration. These
results can also be found in the SM [49].

Heat-capacity measurements between 1.8 and 300 K were
performed by using a Quantum Design PPMS system. Fur-
thermore, a *He insert was used to record the heat capacity at
temperatures down to 0.4 K. Powdered samples with masses
of 1.065(5) and 1.832(5) mg, for measurements at “He and

3He temperatures, respectively, were pressed into pellets and
attached to the sample platforms by using Apiezon N grease.
The addenda was determined from measurements with an
empty sample holder and subtracted from the data to obtain
the heat capacity of the sample.

Zero-field muon-spin relaxation (u+SR) measurements on
a polycrystalline sample were carried out by using the EMU
spectrometer at the ISIS facility at the Rutherford Appleton
Laboratory. The sample was mounted on a Ag backing plate
and covered with a 12.5-pum-thick Ag foil mask before being
inserted into a dilution refrigerator. Further technical details
are provided in the SM [49].

'"H nuclear magnetic resonance (NMR) spectra were
recorded using a commercial solid-state spectrometer. A stan-
dard Hahn spin-echo pulse sequence with stepped sweep of
the carrier frequency was employed to record the broad-
bandwidth spectra. The NMR probe was equipped with a
single-axis goniometer for precise orientation of the magnetic
field parallel to the crystallographic c¢ axis. The measurements
at 1.6 K and above were performed in a 8§ T high-resolution
magnet equipped with a “He flow cryostat.

III. RESULTS

a. Crystal structure. [Cu(pz),(2-HOpy),](PFg), crystal-
lizes in the orthorhombic space group Cmca. The asym-
metric crystallographic unit comprises one Cu’* ion, two
half-pyrazine molecules, one 2-pyridone molecule and two
PF¢ ions. The local coordination sphere of the Cu®* ion is
presented in Fig. S1 in the SM [49]. The Cu®* ion sits on
a twofold axis (parallel to ), one coordinated, dissymmetric
(N11/N14) pyrazine sits on the same twofold axis while the
other pyrazine molecule (N21) lies across a mirror plane nor-
mal to the a axis. The two PF, ions also lie on mirror planes
such that there are five independent fluoride ions in each.
The Cu’* coordination sphere exhibits a classic distorted
Jahn-Teller octahedral geometry with four bridging pyrazine
molecules in the equatorial plane [Cu-N = 2.05(1) A] and
elongated Cu-O bonds [2.285(1) A] in the axial sites. The
copper ion and all four bound nitrogens are coplanar as re-
quired by symmetry. The Cu—O1 bond is nearly perpendicular
to the plane, making an angle of 1.0° with the normal to
the plane. Crystal data and structure refinement parameters,
as well as selected bond lengths and angles of CuPOF, are
presented in Tables S1 and S2 in the SM [49].

The bridging pyrazine ligands link the Cu®* ions into a
nearly square layer, see Fig. 1(a). The pyrazine rings exhibit
a propeller twist relative to the Cu plane, with the N11 rings
canted 66.9° and the N21 rings canted 53.1° out of the plane.
This results in slightly different Cu—Cu distances of 6.676 A
through the N11 ring and 6.680 A through the N21 ring. The
layers are further separated by the PF, anions, which are lo-
cated in the pockets between the 2-pyridone ligands, resulting
in a minimum Cu—Cu distance in adjacent layers of 13.097 A.

The structure of CuPOF possesses a hidden canting, see
Fig. 1(b). The Cu-pyrazine layers lie in the ab plane (into the
page and horizontal) while the Cu-oxygen bonds are nearly
parallel to the ¢ axis but canted by £1.0° towards b. Within
each layer, the canting is in the same direction but adjacent
layers are canted in the opposite direction. A similar canting
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FIG. 1. (a) View of the Cu-pyrazine layers of CuPOF along the ¢
axis. The 2-pyridone molecules extend normal to the planes and are
coordinated to the copper atoms through the oxygens. The uncoordi-
nated PF anions occupy vacancies in the lattice. (b) View of CuPOF
along the a axis. The Cu-pyrazine layers extend horizontally and into
the page. The interdigitation of the 2-pyridone molecules leads to the
extreme isolation of the layers. The 2-pyridone molecules within one
layer are all canted in the +b direction while the molecules in the
adjacent layers cant in the —b direction.

is seen in the orientation of the pyridone rings; they are alter-
nately tilted by 8.7° away from the normal to the Cu-pyrazine
planes. The chemical equivalence of the 2-pyridone molecules
is confirmed by our '*C magic-angle spinning (MAS) NMR
spectroscopy (see Fig. S11 in the SM [49]).

b. Magnetometry. The magnetic susceptibility of a poly-
crystalline sample of CuPOF is shown in Fig. 2 and yields a
rounded maximum near 6.8 K. At higher temperatures (7 >
40 K), the data are well described by a Curie-Weiss law with
a Curie constant of 0.440(5) emuG~' mol~' K and a Curie-

004 #& 1
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*
003 . 1

°
o
N)

% (emu G mol™"), Intensity (arb. units)

°
o
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FIG. 2. Temperature dependence of the powder susceptibility
(circles) in emuG~!'mol~! and the integrated ESR intensity at
9.4 GHz (diamonds) in arbitrary units. The red line shows the best fit
of the 2D QHAF model calculations to the magnetic susceptibility of
a polycrystalline sample. The black dash-dotted line represents the fit
of the same model to the integrated ESR intensity of a polycrystalline
CuPOF sample.

Weiss temperature Ocw = —5.2(6) K, indicating a small
antiferromagnetic interaction. Accordingly, the data were
compared with the susceptibility of a 2D S = % Heisenberg
antiferromagnet [56] in which the Curie constant, exchange
strength J, and small paramagnetic impurity fraction were
adjusted. The best agreement between data and the model
calculations, denoted by the red curve in Fig. 2, is obtained
with C = 0.445(5) emuG~! mol ™' K, J/kg = 6.80(5) K, and
1.1(1)% paramagnetic contribution. The agreement between
the Curie constants from the Curie-Weiss model and the 2D
QHAF model is excellent, with their values corresponding to
an average g value of 2.17. The average g factor has been
determined at room temperature by using ESR and was found
tobe (g) = 2.15.

The existence of two distinct pyrazine molecules in the unit
cell allows for the possibility of a rectangular magnetic lattice
in which the exchange strengths (J and o/, 0 < o < 1) along
the a and b axes are different. This possibility has been tested
by comparing the susceptibility data to the susceptibilities of
a rectangular 2D QHAF [57,58] for various values of J and
a. The square-lattice (o = 1) case gives by far the best fit
and it is possible to rule out any rectangular contribution with
a < 0.96.

The low-temperature static susceptibility of a single crys-
tal of CuPOF at 0.1 T is shown in the inset of Fig. 3.
The out-of-plane DC susceptibility (H || ¢) has a minimum
at 1.86(5) K, whereas, for a field applied in the ab plane
(H L c), the DC susceptibility steadily decreases to the low-
est measured temperature. The minimum in the out-of-plane
susceptibility at T, indicates the presence of XY anisotropy,
where, with decreasing temperature, the correlation of spin
moments crosses from isotropic to easy-plane behavior. The
temperature-dependent out-of-plane susceptibility at different
magnetic fields is presented in the main panel of Fig. 3. With
increasing magnetic field, the broad minimum of the static
susceptibility shifts to higher temperatures, as indicated by the
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FIG. 3. Temperature dependence of the out-of-plane molar sus-
ceptibility of a single-crystalline sample of CuPOF at different
magnetic fields. The solid black triangles in the main panel indicate
the crossover temperature T, as discussed in the main text. The
inset shows the low-temperature susceptibility of a single crystal of
CuPOF. The data were collected in a field of 0.1 T. The susceptibili-
ties normal to the plane and within the ab plane are represented by the
open triangles and circles, respectively. The vertical arrow indicates
the crossover temperature T, for M/H || ¢ at 1.86(5) K. The broad
anomaly of the in-plane static susceptibility at about 1.6(1) K is
attributed to a background contribution.

triangles. At fields above around 4 T, the minimum broadens
and cannot be observed anymore.

The magnetization of a single crystal of CuPOF has been
measured up to 1 T at 0.5 K, see the insets of Figs. 4(a)
and 4(b). For a field parallel to the ¢ axis, the magnetization
monotonically increases over that range. In contrast, when
the field is applied in the ab plane (H L c), a small spin-flop
anomaly is observed at around 0.36(1) T.

The relative magnetization of single crystals of CuPOF was
determined at several temperatures for fields up to 35 T both
parallel to the ¢ axis (H || ¢) and within the layers (H L ¢).
The experimental values at 0.37 K are presented in Figs. 4(a)
and 4(b). The absolute values of the magnetization were
obtained from a direct comparison with the magnetization
recorded at 4 K for H || ¢ (at 2 K for H L ¢) up to 14 T,
by using a VSM magnetometer; see Fig. S3 in the SM [49].
For both magnetic-field orientations, the saturated moment is
about 1 pup per formula unit, as expected for the Cu>* ion.
The experimental data (symbols) are compared with quantum
Monte Carlo (QMC) simulations (lines) for the 2D QHAF at
the relative temperature kg7 /J = 0.05. Excellent agreement
between the experimental data and the QMC simulations is
found for both field orientations. Over the full field range,
the deviation between experimental and theoretical data is
below £1% for H || ¢ and below £2% for H 1 c¢. The in-
and out-of-plane saturation fields were determined as 17.6
and 19.6 T for H || c and H L c, respectively. In the mean-
field approximation, the saturation field Hg, is defined by the
exchange strength J,

guBioHsy = 22JS, (2)

where z = 4 is the number of nearest-neighbor magnetic mo-
ments. The exchange strength can be computed from Eq. (2)

toH (T)

M (ug / f.u.)

M (ug / f.u.)

FIG. 4. Magnetization of single-crystalline CuPOF at 0.37 K
in (a) out-of-plane and (b) in-plane direction and comparison with
the respective QMC calculations (red line). The insets show the
magnetization at 0.5 K in magnetic fields up to 1 T in an enlarged
scale. The vertical arrow indicates the anisotropy field at woH, =
0.36(1) T. The bottom axis represents the relative magnetic field
H/Hg,. The corresponding absolute values of the magnetic fields are
shown in the upper axis.

by using the experimentally determined saturation fields and
the respective g values g. =2.29(1) at 1.5 K and g, =
2.070(7) at room temperature; see the ESR section below. The
obtained values, J/kg = 6.75(5) and 6.78(5) K, are in very
good agreement with each other and with those determined
from the susceptibility and specific-heat measurements.

c¢. Electron-spin resonance. The anisotropy of the room-
temperature ESR spectrum of a single-crystalline CuPOF
sample was investigated at 9.8 GHz. A single ESR line was
observed for each field orientation; see Fig. S6 in the SM [49].
The resonance field, used to extract the electronic g factor and
the spectral linewidth, was determined by modeling a nearly
Lorentzian function to the experimentally obtained spectra
[54,59,60]. The angular dependence of the g factor in the ac,
bc, and ab planes indicates a strong planar-like anisotropy
(Fig. S7 in the SM [49]), with g, = 2.073(2), g, = 2.066(4),
and g. = 2.298(2).!

'The average values of the g factors from two independent ESR
measurements on the single-crystalline CuPOF samples are pre-
sented here; for details see the SM [49].
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FIG. 5. (a) Temperature dependence of the normalized specific
heat of CuPOF denoted as open black circles, with the black line
representing the best fit to these data by a sum of magnetic (solid
red line) and phonon (black dashed line) contributions, Cyho. (b) The
black solid triangles represent Cp,g, Which is the difference between
C and Cppo.

The temperature-dependent integrated ESR-line intensity,
scaling as the bulk susceptibility of the sample [61] is shown
in Fig. 2 for temperatures between 3 and 50 K with the field
applied along the ¢ axis. Analogously to the modeling of the
DC susceptibility, the integrated ESR intensity was modeled,
varying only the Curie constant, with fixed exchange coupling
of J/kg = 6.80(5) K and a paramagnetic impurity percentage
of 1.1(1)% (black dash-dotted line in Fig. 2).

High-frequency ESR spectroscopy at 1.5 K in the fre-
quency range between 52 and 500 GHz revealed a single
resonance mode with a linear frequency-field dependence
(Fig. S9 in the SM [49]), yielding g, = 2.29(1).

d. Specific heat. The specific heat was measured be-
tween 0.4 and 300 K. The data increase smoothly from
about 0.2 Jmol~! K~! at 1 K, approaching 640 Jmol~! K~!
at 300 K. No sharp anomalies, corresponding to structural
changes or ordering transitions, were observed in this range
(Fig. S10 in the SM [49]). The data between 1 and 9 K are
shown in Fig. 5(a) (black open circles) revealing a broad hump
exceeding the normal phonon contribution. The data in this
temperature range were analyzed as a sum of the magnetic
specific heat of a 2D QHAF and a phononic contribution. The
low-temperature lattice contribution to the specific heat, stem-

ming from a complex phononic spectrum in the molecular-
based material CuPOF, is best approximated by choosing a
three-term polynomial with Cypho = AT® + BT> + CT". The
magnetic specific heat was represented as a ratio of polynomi-
als, similar to the approach used in a previous study [62], but
is based on recent QMC simulations of the magnetic specific
heat [63] that extended to lower relative temperatures. The
range of validity for the square lattice is 0.15 < kg7 /J < 5.0
(see SM and Table S4 therein [49]).

The resulting best fits to Cppo and Cpae are shown in
Fig. 5(a). The sum of the two individual contributions ap-
pears as the solid black line and shows very good agree-
ment with the experimental data. The modeling parameters
are J/kg = 6.75(5) K, A =20.2x10"3 Jmol ! K™, B =
16.6x107> Tmol ' K=°, and C = —23.7x 107 Jmol~! K~8.
As seen in Fig. 5(a), the magnetic contribution dominates at
lower temperatures. Including data at higher temperatures in
the fitting process did not change the value of the exchange
strength, since Cp,, is a rapidly decreasing fraction of the total
specific heat. Figure 5(b) shows a direct comparison of the
calculated magnetic specific heat (red line) to the difference
between the total and estimated lattice specific heat (black
triangles). The obtained exchange strength of J/kg = 6.75(5)
K is in excellent agreement with that obtained from the sus-
ceptibility and magnetization results. Similar to the analysis of
the bulk susceptibility, the specific-heat data were investigated
in terms of the possibility of a rectangular magnetic lattice
[63]. The results are consistent with a magnetic square lattice.

e. Muon-spin relaxation. Zero-field muon-spin relaxation
(T SR) spectra [64] for CuPOF are shown in Fig. 6(a). Spon-
taneous oscillations in the asymmetry function A(¢), which is
proportional to the spin polarization of the muon ensemble,
see SM [49], were observed at low temperatures. An oscillat-
ing behavior of the muon-spin polarization is characteristic of
the presence of quasistatic long-range magnetic order (LRO).
The local magnetic field that results from LRO causes those
muons with spin perpendicular to the local field to precess
coherently at the frequency v;, where v; is proportional to
the magnitude of the local field B; at the ith muon site.
Changes in the spectra are observed in measurements across
the temperature range 0.1 < T < 2 K, which is parametrized
by modeling the asymmetry A(z) with the relaxation function

A(t) = (Ag — Apg) cOs Qmvt)e ™™ + Abgef’\ﬂ, 3)

where Ay is the initial asymmetry at ¢+ = 0, the parameters
v and A, are the precession frequency and relaxation rate of
the oscillatory component, respectively. The parameters Apg
and A, account for the background muons and those with spin
initially parallel to the local magnetic field.

The evolution of the parameters Ag, A;, and v are shown
in Figs. 6(b)-6(d). The precession frequency, see Fig. 6(d),
which is proportional to the magnitude of internal magnetic
field probed by the muon spins, shows a monotonic decrease
from base temperature up to 1.4 K, but starts to rise again
before becoming roughly constant above 1.5 K. A sharp
maximum of Ay and discontinuity of A; are observed just
below T = 1.4 K, coincident with the minimum of v.

The behavior of v, together with the peak of Ay and the
discontinuity of X;, suggest that CuPOF undergoes a mag-
netic phase transition around 1.4 K. However, unlike many
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FIG. 6. (a) Representative u*SR spectra of CuPOF at 0.30 and
1.60 K. Solid lines are fits to the data using Eq. (3). (b)-(d) Temper-
ature dependence of the parameters Ao, A;, and v. The blue dashed
line indicates Ty = 1.38(2) K.

magnetic systems where the precession vanishes above Ty,
the asymmetry still appears to show oscillatory behavior.
Such an oscillatory signal is common in similar materials
containing fluorine nuclei in the paramagnetic phase [65]. It
arises because the electronic moments fluctuate outside of the
muon time window and are consequently removed from the
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FIG. 7. (a) '"H-NMR spectra of CuPOF at selected tempera-
tures in the regime of magnetic order, recorded at woH || c =7 T.
Temperature-dependent peak positions v,,, at out-of-plane fields of
(b) 2 and (c) 7 T. Vertical arrows mark the onset temperature of
LRO. The inset of panel (c) shows a typical '"H-NMR spectrum at
7 T and 3.5 K. Two nonequivalent hydrogen sites can be assigned in
the paramagnetic regime.

spectrum, leaving the muon sensitive to the nuclear magnetic
moments. In fluorinated materials, there are frequently muon
sites where the positive muon sits close to the electronegative
fluorine and enters a dipole-dipole coupled entangled state,
leading to heavily damped, low-frequency oscillations [65]. A
similar scenario for CuPOF is suggested, allowing identifica-
tion of the antiferromagnetic transition temperature with the
discontinuities in the modeled parameters.

To study the critical behavior close to the phase transition,
we exclude the data above 1.4 K. To extract the critical
exponent of the order parameter, the temperature dependence
of the precession frequency was modeled by

7\%7”
W(T) = v(0)|:1 — (-) ] . 4)
N

The best fit with this model gives an ordering temperature
Tn = 1.38(2) K, a critical exponent 8 = 0.37(2), and a phe-
nomenological parameter ¢ = 1.4(2). The resulting curve is
shown in Fig. 6(d). Fixing « to unity and fitting the data
between 0.85 and 1.40 K, i.e., closely below the transition
temperature, results in very similar values for the critical
exponent 8 = 0.344(30) and the transition temperature Ty =
1.382(10) K. Note that the critical temperature is consistent
with the discontinuities found in Figs. 6(b) and 6(c).

f. Nuclear magnetic resonance. Selected 'H-NMR spectra,
recorded for an out-of-plane field of 7 T and temperatures in
the regime of long-range order, are presented in Fig. 7(a). Due
to several nonequivalent hydrogen sites in the crystallographic
unit cell, the resulting '"H-NMR spectrum is composed of
many resonance peaks, and, therefore, rather complicated.
Since the same qualitative temperature dependence was ob-
served for all 'H lines of the spectrum, we consider in the
following only selected lines with comparably little overlap.
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TABLE 1. Selected quasi-2D spin—% Heisenberg square-lattice antiferromagnets with relevant exchange and anisotropy parameters.
The exchange interaction J, ordering temperature 7y, g factor, anisotropy field H4, and saturation field H, are experimentally determined.
The inter- to intralayer coupling ratio J'/J is estimated by the use of Eq. (5). The easy-plane anisotropy parameter A is calculated from the
out-of-plane static susceptibility minimum by the use of Eq. (7). A direct estimate of A from ESR measurements in the ordered state [42] is

denoted by @,

J/ks  Tx woHs  poHsa

Compound Ref. K  K) kgTy/J TR (T) (T Hy/Hy  kgTeo/J AP
[Cu(pz),(2-HOpy)>1(PFs )2 . 4 176 || ¢ Y -
(CuPOF) This work 6.8 138 0.203 1.4x10 0.36 105 | ¢ 1.85x10 0.274  0.9x10
(1) Cu(pz),(ClOy), [40] 175 425 0243 8.8x10™* 0.26 49 53x107% 0257 4.6x1073
(2) Cu(pz),(BF,), [40] 153 3.8 0248 1.1x107> 025 43 5.8x1073 0263 5.8x107?
(3) [Cu(pz),(NO;3)](PFg) [40] 10.8 3.05 0282 3.3x1073 0.007 30 23x107* 0282 1.2x1072
(4) [Cu(pz),(HF,)](PFs) [42] 128 438 0342 1.4x1072 Na. 3373 58 li N.a. Na.  3x1073®
(5) [Cu(pz),(HF,)](ClOy) [47] 72 191 0265 19x107> 0.08 20.2 4.0x1073 N.a. N.a.
(6) [Cu(pz),(pyNO),1(ClO4), [47] 7.7 170 0220 3.3x107* 0.11 21.9 5.0x1073 N.a. N.a.
(7) [Cu(pz),(4-phpyN0),](ClO,) [47] 75 1.63 0217 2.8x10™* 0.11 21.1 5.2x1073 N.a. N.a.
(8) Sr,Cu0,Cl, [71,72] 1450 255 0.176 2.4x10° 0.7 4000¢ 1.8x10™* 0221 8.3x10*

*Assuming A = 0.
>Assuming J' = 0.
“Estimated value.

At temperatures above Ty and an out-of-plane field of 2 T, a
single, slightly nonsymmetric Gaussian-like line is observed.
The larger field of 7 T allows one to assign two nonequivalent
hydrogen sites with Gaussian lineshape in the paramagnetic
regime, as exemplified by the blue and red fits to the spectrum
at 3.5 K in the inset of Fig. 7(c).

As shown in Figs. 7(b) and 7(c), with decreasing tem-
perature, the 'H-NMR line splits into two sets of doublets,
revealing a phase transition to long-range order at 2.3 and
2.8 K for uoH || c =2 and 7 T, respectively. The splitting
of the NMR spectrum is a clear signature of commensu-
rate antiferromagnetic order, where each of the two lines
represents a sublattice magnetization of opposite local spin
polarization. The observation of multiple doublets is caused
by several nonequivalent hydrogen sites in the lattice, with
coincidental overlap of the nuclear resonance frequency in
the paramagnetic temperature regime. Due to the different
hyperfine coupling constants of the corresponding 'H sites,
this overlap is lifted in the ordered state. Considering the
quasi-2D, almost-square structure of the Cu>* ions in CuPOF,
the commensurate antiferromagnetic order is presumably of
checkerboard type.

We note that the temperature dependence of the sublattice
magnetization curves deviates from the mean-field-type be-
havior probed by the ;™SR precession frequency at zero field.
The details of this field-induced behavior will be a subject of
future, more detailed investigations by local-probe techniques.

As part of a thorough characterization of CuPOF, addi-
tional room-temperature '*C magic-angle spinning (MAS)
NMR and 3'P cryo-MAS NMR studies [66] were performed,
and are presented in the SM (Figs. S11-S15) [49].

IV. DISCUSSION

The ideal 2D QHAF is described by the Hamiltonian (1)
for the case J' = A = 0. Without applied field, the thermal

fluctuations at arbitrarily low temperatures prevent a semi-
classical order, regardless of the strength of the intralayer
interaction J [4]. Any small perturbations, such as a finite
interlayer coupling or spin-exchange anisotropy, give rise to
quasi-long-range order below a nonzero transition tempera-
ture. Hence, the ratio kgTy/J can be treated as a measure
of perturbations to the pure 2D QHAF [35]. It varies be-
tween zero for the 2D and 0.946(1) for the three-dimensional
(3D) isotropic spin—% Heisenberg model [67]. For typical
molecular-based Cu-pyrazine materials, the reported values of
kgTn/J are between about 0.2 and 0.3, see Table 1. The low-
est ratio kg7n/J = 0.176 yet found applies to the inorganic
material Sr,CuO,Cl,, with a strong intralayer coupling of
J/kg >~ 1450 K.

The nature of the transitions induced by finite J' or A
are fundamentally different. Whereas the interlayer coupling
J’ induces a Néel state [35], a finite easy-plane or XY -like
anisotropy yields a temperature-driven crossover of the spin
correlations from isotropic Heisenberg to anisotropic XY -type
behavior at a finite temperature T,, predicted to lead to a
topological BKT transition at Tgxr < T¢o [25,26,68].

In all bulk materials, finite interlayer couplings and mag-
netic anisotropies are present; see Table I for some selected
cases. However, until now, there has been no theoretical
framework that allows for an accurate experimental deter-
mination of J' in the presence of a nonzero anisotropy A
[40]. Still, the challenges associated with a clean experimental
realization of the 2D QHAF can be discussed as follows:
Predicted critical temperatures for the two limiting cases of
a finite J/ with A =0, as well as that of a finite A with
J' = 0 are presented in Fig. 8 as functions of the perturbation
parameter, J'/J or A, respectively. The black curve represents
the normalized Néel temperature, kgTn/J, of a 3D array of
isotropic square 2D spin-% Heisenberg planes with a coupling
J' between adjacent layers as a function of the exchange ratio
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FIG. 8. Normalized Néel temperature as a function of J'/J (black
solid line), as well as the normalized crossover (blue dash-dotted
line) and BKT transition temperatures (red dashed line) as functions
of the anisotropy parameter A. The normalized Néel temperature,
ksTn/J, as a function of intrinsic easy-plane anisotropy, A, for
various Cu-pyrazine 2D QHAFs (O, @, ©, %) and Sr,CuO,Cl,
(&) [71,72]. The values indicated by O are for CuPOF, @ are from
Ref. [40], © is from Ref. [42], and % are from Ref. [47]. The
numbers denote 2D QHAF compounds according to the labeling in
Table I. The two distinct values for CuPOF and Sr,CuO,Cl, denote
slightly different values of A, determined from the DC susceptibility
and low-field magnetization measurements, respectively.

J'/J from Ref. [35]:

47 ps

T 2B - )

ksTn
where p; = 0.183J is the renormalized spin-stiffness con-
stant. Note that the vertical axis is linear, whereas the hor-
izontal axis is logarithmic and spans three orders of mag-
nitude. The very weak decrease of the ordering temperature
with reduction of the ratio J'/J results from the exponential
divergence of the correlation length of the 2D QHAF at low
temperatures [17,69].

In the other limiting case with J' = 0 and finite A > 0,
quantum Monte Carlo calculations showed that, even for
anisotropies as small as 1073, the critical behavior of the
magnetic lattice resembles that of the Berezinskii-Kosterlitz-
Thouless universality class. A slow logarithmic decrease of
the Tkt temperature with reduction of the spin-exchange
anisotropy was determined as [68]

2.22J

In (330/A)’ ©

kgTpkr =
as depicted by the red dashed line in Fig. 8.

From the comparison of these results, it is apparent that
the interlayer interaction determines the ordering process for
equal magnitudes of J'/J and A. Upon cooling from 7T >
J/kg, the onset of the 3D long-range order occurs before
any signatures of the exchange anisotropy can be observed.
The influence of the spin anisotropy is only relevant if the
interlayer interaction J'/J is significantly smaller than A.
Therefore, minimizing the interlayer spin interaction is of key
importance for developing any material approximation to the
ideal 2D QHAF.

In contrast to a strongly anisotropic spin system with
A ~ 1, where the topological excitations of unpaired vortices
and antivortices are formed well above Tgkr, a qualitatively
different behavior is expected for a weakly anisotropic system
with A <1 [26]. At high temperatures, the spin correla-
tions can be well approximated as isotropic. With decreas-
ing temperatures, the XY anisotropy becomes relevant and
stabilizes a planar spin configuration. The formation of vor-
tices and antivortices starts in the regime of the temperature
T, which indicates the crossover between isotropic and XY
behavior. Quantum Monte Carlo calculations revealed that
the uniform susceptibility is very sensitive to this crossover
phenomenon [26,68,70]. Whereas the in-plane susceptibility
monotonically decreases with temperature below about J/kg,
a characteristic minimum of the out-of-plane susceptibility
marks the crossover from isotropic to anisotropic behavior
at T.,. The dependence of the crossover temperature on
the spin anisotropy A can be described by the empirical
expression [26]

2.697
In (160/A)’

and is depicted by the dash-dotted blue line in Fig. 8.

Furthermore, in the presence of XY spin anisotropy, the
field-dependent magnetization is expected to yield a qualita-
tively different behavior for in- and out-of-plane orientations
of the field at T < Tg,. Below T, the antiferromagnetically
coupled magnetic moments preferably fluctuate in the easy
plane. The application of a magnetic field suppresses longi-
tudinal spin fluctuations, effectively inducing an easy-plane
anisotropy of spin correlations perpendicular to the field di-
rection. For a field applied perpendicular to the intrinsic easy
plane, this yields a monotonic increase of the magnetization.
On the other hand, for a magnetic field applied in plane, when
the Zeeman term becomes larger than the intrinsic anisotropy
energy, the total spin polarization in the field direction is
enhanced, yielding a slope increase of the magnetization curve
at the anisotropy field Ha. Therefore, Ha represents a measure
of the spin-anisotropy parameter and can be estimated as
A = Hp / Hgyt.

It is worth noting that, for most bulk realizations of the
2D QHAF model, the weak intrinsic XY anisotropies do
not stem from anisotropic exchange interactions. For the
prevalent case of 2D QHAF materials based on Cu®t ions,
the exchange between spins is almost isotropic. Typically, a
weak anisotropy of a few percent of the isotropic superex-
change interactions stems from crystal electric-field effects
and related nonquenched orbital contributions. Commonly,
the magnetic properties are then described by an effective-spin
formalism, yielding an anisotropic g factor. Equivalently, this
anisotropy can be treated in terms of an anisotropic exchange
of isotropic effective spin moments, as described by the
Hamiltonian (1) [73].

Since the impact of a finite interlayer interaction J’ and
spin anisotropy A on the critical behavior differ significantly
[35,68], both parameters need to be experimentally deter-
mined for a newly synthesized compound to be accurately
described as a quasi-2D QHAF. The strength of the antifer-
romagnetic exchange, J, as well as confirmation of lattice
and exchange geometry being square rather than rectangular,

kgTeo = (N
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are of key importance. Secondary considerations include the
possible existence of any next-nearest-neighbor interactions
and spin-canting terms.

For the present case of CuPOF, from the comparison
of theoretical modeling to our experimental results of DC
susceptibility, specific heat, and high-field magnetization, a
leading intralayer exchange constant J/kg = 6.80(5) K is
consistently determined. All magnetic properties are in excel-
lent agreement with theoretical predictions for the 2D square-
lattice spin-% Heisenberg antiferromagnet; see Figs. 2, 4, and
5. The resulting values of J, independently obtained by means
of the aforementioned techniques, are in excellent agreement
within experimental error. Additionally, the results of DC
susceptibility and magnetic specific heat were analyzed in
terms of a possible rectangular rather than a square magnetic
in-plane structure [57,58] and are both fully consistent with
the square-lattice case.

To further characterize CuPOF, the anisotropy of the elec-
tronic g factor was investigated by means of ESR spec-
troscopy. A very weak in-plane anisotropy was found, with
g« = 2.073(1) and g, = 2.066(3), in contrast with the out-
of-plane g factor g. = 2.298(2). Overall, the electronic g
factor anisotropy evinces a planar-like magnetic structure,
with half filled d,>_,» orbitals oriented in the crystallographic
ab plane. The integrated ESR intensity, recorded for the
out-of-plane field orientation at 9.4 GHz, is in excellent
agreement with the bulk magnetic susceptibility, see Fig. 2,
and confirms the intralayer antiferromagnetic coupling as
J/kg = 6.80(5) K. Moreover, the linear frequency-field de-
pendence of the ESR spectrum at 1.5 K, observed in the
frequency range between 52 and 500 GHz, indicates the ab-
sence of a notable energy gap upon approaching the zero-field
limit.

The absence of any specific-heat anomaly, see Fig. 5,
which would be associated with the transition to long-range
order at Ty = 1.38(2) K, as determined by 1SR, indicates a
high isolation of the magnetic layers and related small change
of the residual entropy at Ty [74]. This sets the upper limit
of the interlayer coupling as J'/J < 1072 [74]. Due to its pro-
nounced low dimensionality, the thermodynamic properties of
CuPOF show a very good agreement with those for an ideal
isotropic 2D QHAF, where both the magnetic susceptibility
and the specific heat exhibit a broad maximum at temperatures
of the order of the nearest-neighbor exchange interaction
J/kg. On the other hand, the local-probe techniques SR and
NMR are highly sensitive to the onset of static internal-field
components that are associated with long-range order. u*SR
was successfully used to determine the long-range-ordering
temperature 7y for a wide range of quasi-2D square-lattice
quantum Heisenberg antiferromagnets [44,46,47,62].

In the case of CuPOF, the temperature evolution of the
asymmetry parameter, precession frequency, and the relax-
ation rate of the oscillatory component of the SR asym-
metry relaxation function (3) revealed a zero-field transition to
long-range order at Ty = 1.38(2) K, see Fig. 6. Thus, the ratio
kgTn/J is found to be 0.203 for CuPOF, which is the smallest
among all yet-characterized molecular-based materials with
a magnetic lattice of Cu?* ions, compare Table I. By use of
the empirical formula (5), the inter- to intralayer exchange
ratio is obtained as J'/J = 1.4x 1074, with J/~1 mK.

Since strictly isotropic exchange interactions, A = 0, are as-
sumed in the derivation of Eq. (5), J'/J = 1.4x107* sets an
upper limit to the effective interlayer coupling. The dipolar
interaction between nearest-neighbor Cu>* ions in adjacent
layers, with a Cu—Cu distance of 13.097 A, is estimated as
about 1 mK. Therefore, the interlayer interaction likely stems
from dipole-dipole coupling, rather than superexchange via
the interlayer molecules. A planar magnetic structure with
highly isolated layers is further supported by our density-
functional theory (DFT) calculations [75,76]; see the SM [49].
Both the interlayer interactions and the next-nearest-neighbor
intralayer interactions are negligible in comparison with the
antiferromagnetic in-plane coupling mediated by the pyrazine
molecules.

As discussed above, the anisotropy parameter A can be
estimated from the low-temperature magnetization or low-
field susceptibility measurements [26,40,47,68,72,77]. From
the anisotropy field uoHa = 0.36(1) T, see inset of Fig. 4(b),
the exchange anisotropy in CuPOF is evaluated as A =
Hy/Hg = 1.85(5)x1072. This results in the largest ratio
Hy /Hgy yet found for Cu-pyrazine-based layered materials;
compare Table I. A slightly smaller anisotropy parameter
is estimated from the out-of-plane DC susceptibility at 0.1
T; see inset of Fig. 3. Employing the empirical Eq. (7),
derived for the case of J' =0, the anisotropy parameter
A =0.9(2)x 1072 is determined. The qualitative behavior of
the field-dependent magnetization (Fig. 4) and temperature-
dependent DC susceptibility (Fig. 3) are in very good agree-
ment with calculations for a 2D QHAF with an XY anisotropy
of 1%—2% of the intralayer coupling [26,68], and resembles
the characteristic behavior of previously studied Cu-pyrazine-
based compounds [40,47,72].

To evaluate the relevant perturbations with respect to the
ideal 2D QHAF and to shed light on the driving mechanism
of the long-range order in CuPOF, the normalized Néel tem-
perature kg7x/J is shown as a function of the evaluated spin
anisotropy A in Fig. 8 and compared with other molecular-
based quasi-2D QHAFs. Where possible, the parameter A
was determined from experimental values of Hy /Hsy for the
compounds labeled by black solid circles and stars. The two
values for the inorganic compound Sr,CuO,Cl, are based on
Hp/Hg = 1.8x107* [19] and the minimum of the out-of-
plane DC susceptibility kgT.,/J = 0.221 [72], which corre-
sponds to A = 8.3x107*, see Table I. The experimental val-
ues are compared with the theoretical expectation of the BKT
transition temperature for a weakly anisotropic 2D QHAF,
described by the empirical function (6).

For highly isolated quasi-2D materials, such as
Sr,Cu0,Cl, with J'/J =3x107>, the experimentally
observed value of kg7y/J is very close to the prediction
of kgTskr/J (red dashed line in Fig. 8). Although the
transitions to long-range and topological order at 7y and
Tk, respectively, are of a different nature, it was argued that,
due to the exceptional low dimensionality of Sr,CuO,Cl,,
the long-range order is triggered by the inceptive BKT-type
topological transition at Tgxt < Ty [25,26]. Due to the finite
interlayer coupling, a Néel-type antiferromagnetic order is
stabilized at Ty, before the topological transition is completed.
A very similar scenario is proposed for CuPOF, motivated
by the close agreement between the experimentally obtained
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value of 7y and the theoretically predicted value of Tgkr.
Moreover, the larger ratio kg Ty /J = 0.203 as compared with
kgTn/J = 0.176 for Sr,CuO,Cl,, is attributed only to the
stronger intrinsic spin anisotropy in CuPOF.

Furthermore, the field-driven increase of the crossover tem-
perature T;,, observed by DC susceptibility, see Fig. 3, reveals
the corresponding increase of the effective spin anisotropy.
This field-induced spin anisotropy is evinced as well by
the strong increase of the ordering temperature 7Ty in ap-
plied magnetic field, as found by 'H-NMR spectroscopy,
see Fig. 7. This strong increase of Ty is attributed to the
exceptional two-dimensionality of CuPOF, as compared with
other less-isolated quasi-2D Cu-pyrazine-layered compounds,
for which weaker field-induced changes of Ty were reported
[42,45,78,79]. The splitting of the 'H-NMR spectrum below
the transition to long-range order is a clear signature of
commensurate antiferromagnetic order.

In conclusion, we present a comprehensive characteriza-
tion of the newly synthesized molecular-based compound
[Cu(pz),(2-HOpy)»]1(PF¢), (CuPOF). Employing bulk mag-
netometry, specific heat, density-functional theory calcula-
tions, ESR, u*SR, and NMR spectroscopy, CuPOF is char-
acterized as an excellent realization of the 2D square-lattice
spin-% Heisenberg model with a moderate nearest-neighbor
exchange interaction of J/kg = 6.80(5) K, and well-separated
magnetic layers. The intralayer interaction is about four orders
of magnitude larger than the estimated upper limit on the
interlayer interaction, J' >~ 1 mK. A weak intrinsic easy-
plane anisotropy, revealed by bulk magnetometry, yields a
temperature-driven crossover of the spin correlations from
isotropic Heisenberg to anisotropic XY -type behavior and
constitutes the driving mechanism of a transition to magnetic
long-range order at Ty = 1.38(2) K, as revealed by u*SR
spectroscopy. The application of a magnetic field normal to
the easy plane yields a field-driven increase of the magnetic
anisotropy, as shown by the evolution of the crossover tem-
perature T, in the DC susceptibility data. The application of
magnetic fields of several tesla leads to a strong increase of
Ty, as revealed by 'H-NMR spectroscopy, in agreement with

the pronounced two dimensionality of the magnetic lattice in
CuPOF. As an outlook, our comprehensive characterization
of [Cu(pz),(2-HOpy),1(PFs), as a clean realization of a 2D
square-lattice spin—% Heisenberg antiferromagnet with mod-
erate intralayer coupling and highly isolated magnetic layers
calls for further studies of the field-induced effects on the
anisotropy of the magnetic correlations [37], in particular by
scattering and local-probe techniques.

Data presented in this paper resulting from the UK effort
will be made available [80].
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