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Abstract

In non-centrosymmetric superconductors, the lack of inversion symmetry along

with anti-symmetric spin-orbit coupling, allow the Cooper pairs to be an admix-

ture of spin-singlet and spin-triplet states. The Niobium-Rhenium system is inter-

esting as it crystallizes in two different structures, the σ structure and the non-

centrosymmetric α-Mn type. α-Mn structure has a homogeneity range of 0.38 to

0.13 Niobium. The NbxRe1−x compounds have been investigated previously for x =

0.18, 0.25, 0.29 and 0.31 with more in-depth research done on Nb0.18Re0.82. In this

study, the superconductivity of non-centrosymmetric polycrystalline annealed and

as-cast samples of NbxRe1−x when x = 0.22, 0.29 and 0.34 were investigated using

resistivity, magnetic susceptibility, magnetization and specific heat measurements of

each composition as a function of temperature and applied field. The superconduct-

ing transition temperature, (Tc) is seen to decrease as x increases. The ρ(T) data

exhibits metallic behaviour. The lower critical field, (Bc1) and the upper critical

field, (Bc2) also decrease as x increases. These are used to determine κ, ξ and λ

which indicate the materials are strong type-II superconductors. The critical fields

observed in the annealed samples were higher than those observed in as-cast samples.

The specific heat (C/T ) measured on one of the samples, the as-cast polycrystalline

Nb0.22Re0.78 sample demonstrates exponential behaviour at low temperatures and

can not be fitted by one-gap BCS model. The Sommerfeld coefficient γ in the super-

conducting state shows a linear field dependence. Some observations indicate that

the materials are type-II superconductors for NbxRe1−x (0.22 ≤ x ≤ 0.34).
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Chapter 1

Introduction

“Superconductivity remains one of the most fascinating and intriguing phases of

matter even a hundred years after its first observation.” as Manfred Sigrist stated

in 2011 [1]. Since the discovery of superconductivity in mercury in 1911 by the Dutch

scientist Heike Kamerlingh Onnes, many other superconducting materials have been

discovered and the theory of superconductivity has been developed. Superconduc-

tivity results from the condensation of pairs of electrons, bound by an attractive

interaction [2, 3]. Superconductivity is the complete disappearance of electrical re-

sistance in a substance below a particular temperature called the superconducting

transition temperature, Tc and for a material to behave as a superconductor, low

temperatures are usually required. After the discovery of the isotope effect [4, 5],

the idea that the electron phonon interaction was responsible for the formation of

the superconducting condensate, was strongly supported. The superconductivity of

some materials with different isotopes of the element or one of the elements if it is a

compound suggests that there is a change in the transition temperature associated

with the increase in atomic mass [6, 7].

The description of superconductivity according to the microscopic theory of Bardeen,

Cooper and Schrieffer (BCS) has been successfully used to explain the occurrence

of superconductivity of many materials [8]. In this theory, key element is the pair-

ing of electrons close to the Fermi level into Cooper pairs through interaction with

the crystal lattice. An isotropic energy gap opens in the single particle excitation

system as a result of the formation of the electron pairs in the spin singlet s-wave.

In 1957 Matthias proposed a number of empirical rules that explained the variation

of superconductivity in the elements and the alloys in the periodic table. This set of

empirical rules explained the variation of transition temperatures (Tc) of elements
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and alloys [9, 10]. These rules stated that superconductivity can be observed only for

metallic systems and that the transition temperature (Tc) depends on the average

number of valence electrons (z) and the electron density (Ne) in the solid. Elements

for which 2 < z < 8 or with z approximately 2 or slightly greater than 8 can be

superconductors. Transition temperature increases for a given average number of

valence electrons (z) as the power of the inter-electron spacing, rs, increases. For

metals with z = 2 or 8 these rules are not applied. It is important to note that some

of these empirical rules have not been able to explain the superconductivity in some

materials discovered since.

Superconductivity was reported in several non-centrosymmetric compounds with

α-Mn and hexagonal structures [11]. Although, the crystal structure was consid-

ered to be less important in determining the superconducting properties, cubic or

hexagonal structures were more preferable. After BCS theory was introduced, most

of the Matthias rules could be explained using this theory [9].

1.1 Unconventional superconductivity

Conventional superconductors are materials that display superconductivity as de-

scribed by BCS theory and they can be either type-I or type-II [12]. Superconductors

can be penetrated by a strong magnetic field and a phenomenon called Meissner ef-

fect occurs when the magnetic flux is expelled from a superconductor during its

transition to the superconducting state. When the applied magnetic field exceeds

a certain value, superconductivity breaks down. In type-I superconductors, super-

conductivity is destroyed via a first order phase transition when the strength of the

applied field rises above a critical value (Bc). This type of superconductivity is

exhibited by pure metals like aluminium, zinc, tin etc. When a field is applied to a

type-I superconductor and increased gradually, the magnetization increases linearly

with the field up to a critical value, Bc as shown in the left side of fig. 1.1. The

superconductor is in the superconducting state between zero and the critical field

value and after this, it is in the normal state. The temperature dependence of the

applied field for a type-I superconductor is shown in the right side of fig. 1.1. At

zero temperature the applied field reaches the critical value, where in contrast at

the transition temperature it reaches zero.

For type-II superconductors, there are two critical fields, the lower Bc1 and the

upper Bc2. These superconductors are characterized by the formation of magnetic
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(a) (b)

Figure 1.1: (a) Magnetization as a function of the applied field and (b) the applied
field as a function of temperature for a type-I superconductor.

vortices in an applied magnetic field, which occurs above the lower critical field,

Bc1. The vortex density increases as field strength increases and at a higher critical

field, Bc2, superconductivity is destroyed as shown in fig. 1.2 (a) [13]. The magnetic

flux is completely expelled only up to the lower critical field. Below Bc1, type-

II superconductor shows the same behaviour as type-I superconductor below Bc.

Type-II superconductors exhibit a partially completed Meissner effect. For applied

fields greater than the lower critical field, Bc1 the magnetic flux partially penetrates

into the material up to the upper critical field, Bc2. Above this critical field and up

to the upper critical field, Bc2, the superconductor is in the mixed state. Above Bc1

and generally in the mixed state, there are superconducting vortices in the material.

The temperature dependence of the applied field for a type-II superconductor is

shown in fig. 1.2 (b). At zero temperature the applied field reaches a lower critical

value, Bc1 and decreases non-linearly as it approaches the transition temperature.

As you can see in fig. 1.2, below the lower critical field the Meissner effect occurs.

For applied fields above the upper critical field, the superconductor returns to the

normal state. Most compounds and alloy superconductors are type-II materials.

The Ginzburg-Landau theory is based on a phenomenological order parame-

ter [14], which can solve many problems including the spatial variation of the order

parameter. Order parameter is usually considered as a variable which describes

changes in temperature below a transition temperature or changes in magnetic field

below a critical field. The success of BCS theory is based on a controlled expan-
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(a)

(b)

Figure 1.2: (a) The magnetization as a function of the applied field and (b) the
temperature dependence of the applied field for a type-II superconductor.

sion of the electron-phonon interaction [15]. BCS theory introduced the concept of

Cooper pairs [16]. In a Cooper pair, a weak attractive interaction between electrons

could result in the formation of quasi-bound electron pairs. The existence of an

energy gap can be explained using Cooper’s suggestion [17]. Cooper pairs can be

constructed in momentum space, where one pair relates an electron at k with its

time reversed partner at −k. In real space, pairs extend to a distance called coher-

ence length. In momentum space, the formation of Cooper pairs exist in an energy

shell close to the Fermi surface. The BCS theory is the heart of weak coupling field

theory.
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In the BCS theory the important mechanism is the electron-phonon interaction.

An electron polarizes the surrounding lattice of phonons. The polarization continues

as the electron moves away. Therefore, a second electron can move in the system

and take the advantage of this attractive polarization. Ignoring the large Coulomb

repulsion, the electrons can attract each other. The electrons can stay at the same

position at different times which consequently predicts that the electrons are in

an s-wave pair state. In that case, the large Coulomb repulsion is normalised to

a smaller value when moving from an energy scale EF (Fermi level energy) down

to a scale h̄ωD (ωD is the Debye frequency) [18] allowing an overall attraction.

This procedure limits transition temperature, Tc. In conventional superconductors,

inversion symmetry is important for the formation of the Cooper pairs [4] due to an

attractive interaction among electrons.

A superconducting function has both a spin and an orbital component. The spin

component can be in a singlet state or in a triplet state. The Cooper pairs have

opposite spin, S = 0 in a singlet state and same spin, S = 1 in a triplet state. The

orbital component can have angular momentum l = 0 (s), l = 1 (p). An s-wave

superconductor has an isotropic superconducting gap in all directions, Cooper pairs

of opposite spin S = 0 and an orbital component of angular momentum l = 0. A p-

wave superconductor has Cooper pairs of same spin S = 1 and an orbital component

of angular momentum l = 1.

The superconductivity observed in the most superconductors before the discovery

of the cuprate superconductors could be broadly explained by the electron-phonon

coupling mechanism [1]. In 1963, Balian and Werthamer considered superconductors

with non-zero angular momentum [19]. As a consequence, there is interest in the

unconventional superconductivity which is condensation of Cooper pairs of lower

symmetries. The term ‘unconventional’ indicates a pair state that is not isotropic

s-wave state and/or where the interaction is different to the conventional electron-

phonon interaction was described in the 1950s [20]. The strong coupling theory was

developed by Schrieffer in order to describe pairing in some real systems [20]. The

prediction of anomalies in tunnelling spectra produced by the frequency dependence

of the pairing self-energy connected with phonons is the proof that conventional

superconductivity is originated from the electron-phonon interaction [21]. Using

this theory the superconducting transition temperatures could be estimated [22].
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In 1987, superconductivity was observed in cuprates giving the requirement to

include new mechanisms due to the high transition temperature observed in these

materials [23]. Many classes of cuprates superconductors were investigated with

high transition temperature [13, 12, 23]. The discovery of superconductivity in

cuprates violates most of Matthias’ rules. According to Scalapino, Cooper pairs can

be found in the quasi-two-dimensional systems which are called spin singlet dx2−y2

wave structures [24]. If the spins are aligned, there is no gain in the free energy

by the Pauli exclusion principle. If the spins are anti-aligned, one of the spins can

gain energy by virtual jumps. Superconductivity is also observed in electron doped

cuprates [25]. The origin of superconductivity in the electron doped side is the same

as the hole doped as the properties of the two are similar. The magnetic correlations

are responsible for the pairing supported by the statement above. The crystal

structure can have great influence on superconductivity, if inversion symmetry is

missing. Inversion symmetry associated with the time reversal invariances plays

an important role for Cooper pair formation [1]. Unconventional superconducting

phases are responsible for the material disorder effect.

1.2 Non-centrosymmetric superconductors

Superconductors without inversion symmetry in their crystal structure are called

non-centrosymmetric superconductors (NCS) [26]. The lack of inversion symmetry

in a crystal structure can influence superconductivity. The non-centrosymmetric

superconductors can break the gauge symmetry due to electrons pairing but also

inversion symmetry, which allows several physical effects that were previously for-

bidden. A variety of unconventional features can be observed such as line nodes

in the superconducting gap function or the involvement of spin-triple pairs in the

superconductor condensate. In non-centrosymmetric superconductors the lack of

inversion symmetry along with an antisymmetric spin-orbit coupling (ASOC) lifts

the degeneracy of the conduction band electrons [27]. This in turn can produce su-

perconducting states that are spin-singlet (even-parity), spin-triplet (odd-parity) or

admixture of the two [28, 29]. In the presence of a finite ASOC, parity is no longer

a good quantum number and as a result the superconducting states may no longer

be classified as spin-singlet or triplet but an admixture of the two [2]. Mixed pairing

allows NCS to show unusual phenomena including critical fields exceeding the Pauli

limit and time-reversal symmetry breaking [30]. Materials explored until now can be

distinguished in groups where strong correlations occur between electrons and those

which behave like simple metals. Superconductivity has been observed in several
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non-centrosymmetric compounds with cubic α-Mn and hexagonal structures [11].

Many of the recently discovered non-centrosymmetric superconductors are heavy

fermions like CePt3Si which was the first non-centrosymmetric heavy fermion super-

conductor to be studied in detail [2]. This material is an antiferromagnetic heavy

fermion that has a magnetic ordering temperature TN of 2.2 K and a superconduct-

ing transition temperature Tc of 0.75 K. Heavy fermion materials are a subset of

the intermetallic compounds containing f -electron elements [31]. Most of the heavy

fermion non-centrosymmetric superconductors investigated consist of 4f electron

elements like Ce [32]. In heavy fermion materials, the 4f electrons might mask the

effects of broken inversion symmetry. Additionally, the only known heavy fermion

non-centrosymmetric superconductors are CePt3Si, CeTGe3 (T = Rh, Ir), CeXSi3

(X = Pt, Pd) and UIr as stated in Ref. [2]. Some difficulties were faced previously in

order to separate the effects of unconventional pairing states and coexistent magnetic

order or strong electronic correlations. In CePt3Si, line nodes and measurements

of spin susceptibility may indicate mixed singlet or triplet pairing states. The line

nodes can also be a result of coupling with magnetic order [33]. Furthermore strong

electronic correlations enhance the spin susceptibility to the normal state value in

all directions [34]. In order to avoid these effects, the present work is based on some

weakly correlated non-centrosymmetric materials.

1.2.1 Weakly correlated non-centrosymmetric superconductors

The properties of weakly correlated non-centrosymmetric superconductors will

be explained in this section. Mixed pairing states result from the loss of inver-

sion symmetry. A considerable number of NCS superconductors which have simple

metallic normal state without any evidence of magnetic ordering or strong electron

correlations have been investigated previously [2, 11, 26, 30].

The observations of a spin-singlet state in an s-wave superconductor have been

the ‘precursor’ of the study of superconductivity lacking inversion symmetry. Stan-

dard examples of such compounds are Li2Pd3B and Li2Pt3B with transition tem-

peratures 7 and 2.7 K, respectively which are also good examples for studying the

effect of antisymmetric spin-orbit coupling (ASOC) on superconductivity and the

related phenomena which may show novel properties. Both compounds crystallize

in the cubic non-centrosymmetric perovskite type structure indicating an absence

of strong electron correlations. There is an increase in ASOC by the substitution of

the heavier Pt for Pd [35]. They also exhibit a quadratic temperature dependence of
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the electronic specific heat and a linear temperature dependence of the penetration

depth, at low temperatures which indicates the presence of line nodes. The magnetic

penetration depth for these two compounds is modelled with a superconducting gap

which consists of an admixture of an isotropic singlet and a triplet state [36]. This

in turn agrees with the spin-orbit coupling of the crystal structure. Additionally,

in the orthorhombic compound LaNiC2, unconventional superconductivity was re-

ported. The transition temperature of this compound is 2.7 K [37]. The presence

of point nodes [38] and a fully two gap structure [39] was indicated by the magnetic

penetration depth measurements. The nodal gap structure is very interesting in

metallic NCS superconductors because it indicates the unconventional nature of the

superconductivity.

One of the important consequences of the coupling is the upper critical field. In

NCS superconductors the upper critical field can not be explained using the weak-

coupling Werthamer-Helfand-Hohenberg (WHH) model. For example, for Li2Pd3B

and Li2Pt3B the H − T phase diagram for different Pt-contents remains the same

although the pairing state changes with the Pt-doping concentration [40]. As a

result, the upper critical field could be scaled with Tc. According to Ref. [40], the

upper critical field increases linearly with decreasing temperature near Tc and at

low temperatures it shows an upturn in the curvature. These features indicate the

importance of broken inversion symmetry on superconductivity in which the spin-

triplet state can increase the upper critical field.

Several non-centrosymmetric superconductors have been reported with similar

superconducting properties as BCS s-wave superconductivity. Some of these com-

pounds are LaPt3Si [41], Re3W [42], Re24Ti5 [43] and X2Ga9 where X = Rh,

Ir) [44, 45]. Some type-II superconductors containing 5d transition metals are

SrPdGe3, SrPtGe3 [46], BaPtSi3 [47], CaPtSi3, CaIrSi3 [48] and LaIrSi3 [49] with

transition temperatures 1.49, 1, 2.25, 2.3, 3.6 and 0.9 K, respectively. The normal

and superconducting state properties of these compounds are given in table 1.1. The

compounds BaPtSi3, CaPtSi3 and CaIrSi3 have specific heat values consistent with

an isotropic superconducting gap of the magnitude predicted by BCS theory. The

presence of 5d states may indicate that the bands will be significantly affected by

spin-orbit coupling. For BaPtSi3, the relativistic calculations indicated that there

is significant spin-orbit splitting of the bands at approximately -1.5 eV [47]. In

the latter, electrons are condensed to form Cooper pairs and as a result spin-orbit

coupling does not need to be considered in order to determine the superconducting
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properties of this compound.

The weakly correlated NCS superconductors can give information about the role

of broken symmetry. The superconducting pairing state may change by increasing

the ASOC strength due to the broken symmetry. The range of the properties ob-

served in the weakly correlated non-centrosymmetric superconductors is explained

above. This range varies from systems where spin-orbit coupling leads to unusual

nodal gap structures, to those where fully gapped, two-band behaviour is observed

and those which are single band BCS superconductors [2]. A two gap structure

was expected to be a general characteristic of non-centrosymmetric superconduc-

tors but for a weak spin-orbit coupling both gaps can be isotropic and have similar

magnitudes. For example, LaNiC2 shows unconventional behaviour but this is not

because of strong ASOC. Also theoretical calculations show that the non-unitary

state is permitted only when the ASOC is weak. However, the studies of weakly

correlated non-centrosymmetric superconductors allowed progress to be made in the

effects of electron correlations and inversion symmetry breaking.

1.2.2 Time-reversal symmetry breaking

Time-reversal symmetry breaking is an interesting property of superconductors.

The spin or orbital moments of the Cooper pairs are non-zero in superconductors

with broken time-reversal symmetry. Evidence of time-reversal symmetry breaking

is the existence of a small spontaneous magnetic field for a superconductor in zero

field. The inhomogeneous ground state of a superconductor may be increased by a

finite hyperfine field. Time-reversal symmetry breaking has been observed in only

a few non-centrosymmetric compounds, Re6Zr [50], LaNiC2 [37, 38, 39, 51] and

La7Ir3 [52]. Table 1.2 shows information about these compounds such as the crystal

structures, the space groups, and the transition temperatures.

Time reversal symmetry breaking is a result of a subset of spin-triplet states

known as non-unitary and the Cooper pairs are spin polarised [53]. Although there

are three non-unitary states which agree with the crystal structure, none of these are

allowed if there is a sizeable ASOC [51]. LaNiC2 is in a superconducting state below

its transition temperature which is 2.7 K and crystallizes in a non-centrosymmetric

CeNiC2-structure. In this compound, the spin-orbit coupling is weak and the un-

conventional pairing state occurs despite the non-centrosymmetric crystal structure.

The potential gap functions indicated by a point group analysis for this compound

are 12 but only 4 of them allow the time-reversal symmetry breaking. The al-
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Compounds
Transition

Temperature
Tc (K)

Space Group Crystal Structure Structure Type References

LaNiC2 2.7 Amm2 Orthorombic CeNiC2 37, 38, 39, 50

Re6Zr 6.75 I 4̄3m Cubic α-Mn 54

La7Ir3 2.25 P63mc Orthorombic Th7Fe3 51

Table 1.2: Non-centrosymmetric superconductors with broken time-reversal sym-
metry.

lowed potential gap functions describe only a non-uniform superconductor with a

weak spin-orbit coupling [51, 54]. The appearance of nodes in the superconduct-

ing gap functions identify the unconventional behaviour of the superconductivity in

LaNiC2 [38].

Time reversal breaking was also reported for non-centrosymmetric Re6Zr with

the α-Mn structure [50]. The crystal structure contains a large number of heavy

atoms which are located in non-centrosymmetric positions and as a consequence, a

negligible ASOC is unlikely. In this case if there is ASOC, the non-unitary subset

of singlet states is protected, as a result of the higher symmetry of the cubic α-Mn

structure and a state with the mixture of singlet and triplet states was indicated.

The non-centrosymmetric Re6Zr has a transition temperature of 6.75 K and it crys-

tallizes in a non-centrosymmetric α-Mn cubic structure. The group representation

analysis of this compound also shows unconventional behaviour [50]. In Re6Zr ev-

idences of strong electron-phonon coupling and of broken time-reversal symmetry

were observed [50].

1.3 Niobium Rhenium Series

1.3.1 α-Mn and σ structures

In 1961, Matthias reported several superconducting compounds, with a non-

centrosymmetric cubic α-Mn structure [55]. These compounds include Re3Ta, Re6Zr

and NbRe with transitions temperatures 1.46, 7.4 and 9.7 K, respectively [11].

Transition temperatures reflect the influence of the valence electron concentration.

The Niobium-Rhenium series is particularly interesting. In this system two phases

occur, one with σ structure and the other with an α-Mn type [56]. The non-

centrosymmetric composition investigated in the present work is NbxRe1−x for x

= 0.22, 0.29 and 0.34. The σ structure forms at around 0.57 Rhenium and exists

over a small range of composition and temperatures at 2450 ◦C as shown in Fig. 1.3.

A flat minimum produced close to 0.5 Niobium corresponding to the eutectic tem-
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Figure 1.3: A Niobium-Rhenium system diagram indicating the melting points and
eutectic temperatures.

perature between the Niobium based solid solution and the σ phase. A second small

minimum occurs near 0.12 Niobium corresponding to the eutectic temperature be-

tween the Niobium and the α-Mn phase (Fig. 1.3). The α-Mn structure melts at

approximately 2800 ◦C and has a homogeneity range of 0.13 to 0.38 Niobium as

illustrated in Fig. 1.3. Above 0.48 Niobium, there is a coexistence of a solid solu-

tion with Niobium with the eutectic temperature at 1000 ◦C [56]. The maximum

solid solubility of Rhenium in Niobium is 0.46 at the eutectic temperature falling at

0.43 at 1000 ◦C. Below 0.13 Niobium, there is a solid solution with Rhenium and

the eutectic temperature at 2730 ◦C. The maximum solid solubility of Niobium in

Rhenium is very low. The melting points of Niobium and Rhenium are 2468 ◦C and

2800 ◦C.

Western and Phragmen are the prime investigators of α-Mn structure [57]. Ac-

cording to their research and experimental data, this structure has a cubic cell whose

side is 8.894 Å and each unit cell contains 56 atoms. Subsequently, these results

were proved to be inaccurate as stated in [58]. Using the data collected previously,

an accurate analysis was made by Bradley and Thewlis [58]. They determined that

the number of atoms per unit cell is 58 as the α-Mn structure is body centred with

an even number of atoms per unit cell. The atoms positions depend on a large num-

ber of parameters. The structure of α-Mn is stable for Niobium-Rhenium system

at room temperature. The data shown in Ref. [58], suggested that the planes with
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Figure 1.4: Crystal structure of NbxRe1−x corresponding to x = 0.17, where the Re
atoms located at 24g sites are represented in green and yellow. Nb atoms of sites
2a and 8c are shown in blue and red, accordingly.

(h+ k + l) equals to an odd number have their spacings halved compared with the

planes with even number and all other spacings are normal. Therefore, there is a

limited number of space groups applicable which are T3, T5
h, T3

d, O5 and O9
h. The

positions of the atoms are defined by five parameters which are denoted as a, d, e, f

and g states. The interatomic distances vary between 2.75 Å to 2.95 Å, indicating

an unequal distribution of electrons between the atoms.

In the α-Mn structure the 58 atoms in the unit cell have four distinct crystallo-

graphic sites of 2, 8, 24 and 24 atoms [58]. Two of these sites have positions of 2a and

8c which according to Ref. [56, 58] are occupied by niobium atoms. The remaining

sites have the label 24g and are occupied by a distribution of niobium and rhenium

atoms. Rhenium atoms are all placed in non-centrosymmetric positions [58]. The

space group (No. 217) is I 4̄3m and the structure is based on a single body centred

cubic lattice but each lattice point is substituted by atoms with tetrahedral symme-

try [58]. Fig. 1.4 shows the crystal structure for composition NbxRe1−x for x = 0.17

[2] where both sites of 24g are occupied by rhenium atoms only.

1.3.2 Niobium-Rhenium compounds

Only a few papers have been published on the physical properties of the various

compositions in this system. Superconductivity in non-centrosymmetric compounds
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Compounds Tc (K)
GL Theory
Bc2(0) (kG)

BCS Theory
Bp

c2(0) (kG)
WHH Model
Borb

c2 (0) (kG)
γn

mJ/molK2

Nb0.18Re0.82 8.8 230 166 161 4.8
Nb0.25Re0.75 6.5 145 126 105 4.2
Nb0.29Re0.71 5.1 118 104 86 3.5
Nb0.31Re0.69 4.4 90 91 63 3.0

Table 1.3: Magnetic and thermodynamic properties of the non-centrosymmetric
polycrystalline compounds NbxRe1−x in the range 0.13≤ x ≤0.38. Data taken from
Refs. [2, 28, 59].

NbxRe1−x in the range 0.13 ≤ x ≤ 0.38 according to BCS theory was reported in

2013 and Tc ranges from approximately 8.8 K for x = 0.18 to around 3.5 K for

x = 0.38 [28]. Some of the reported compounds are Nb0.18Re0.82, Nb0.25Re0.75,

Nb0.29Re0.71, Nb0.31Re0.69, with transitions temperatures of 8.8, 6.5, 5.1, 4.4 K, re-

spectively [2, 28, 29, 59]. The critical temperature Tc of the constituent materials

Nb and Re are 9.3 and 2.42 K [60]. NbxRe1−x is reported to exhibit an isotropic

s-wave superconducting state according to the investigations presented in these ref-

erences. Table 1.3 below shows the magnetic and thermodynamic properties of the

compounds reported in Ref. [28].

The upper critical field, estimated according to the Ginzburg-Landau (GL)

theory, BCS theory and Werthamer-Helfand-Hohenberg (WHH) model for x =

0.18, 0.25, 0.29, 0.31 are given in Table 1.3. According to WHH model, Borb
c2 val-

ues are smaller than the Bc2 values estimated by GL theory. Similar values were

estimated for Bp
c2 according to BCS theory and they are presented also in Table 1.3.

Additionally, the Sommerfeld coefficient, γn, which can be derived from the first

term in the polynomial fits of the normal-state specific heat which is known as

the electron contribution, Ce, is also presented in Table 1.3 for the compounds

x = 0.18, 0.25, 0.29, 0.31. The Sommerfeld coefficient value decreases with increas-

ing x.

1.3.3 Nb0.18Re0.82

More in-depth research was reported on the physical properties of polycrystalline

and single crystals of Nb0.18Re0.82 [59, 2]. These properties are illustrated in Ta-

ble 1.4. The transition temperature of this compound is found to be 8.8 K in

good agreement with magnetization and resistivity measurement with which the

compound is confirmed as a type-II superconductor. The X-ray diffraction mea-

surements showed that the compound has a non-centrosymmetric α-Mn structure
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Properties Units
Polycrystalline
Nb0.18Re0.82

Single Crystal
Nb0.18Re0.82

Tc K 8.8± 0.1 8.8± 0.2
Bc1(0) G 55.67± 0.68 55± 2
ρ0 µΩ/cm 189± 1.89 135± 2.30

Bc2(0) kG 173 148
γ(0) mJ/mol K2 4.8± 0.17 5.4± 0.6

Table 1.4: Superconducting and other physical properties of non-centrosymmetric
polycrystalline and single crystal of Nb0.18Re0.82 [2, 27, 28, 61].

type. The lower critical field, Bc1 was extracted from the magnetization measure-

ments to be approximately 55 G [2, 27]. The single crystal of this compound was

aligned along the [100] direction. Fig. 1.5 shows the magnetization measurements

and the extracted lower critical field for a single crystal of Nb0.18Re0.82.

According to Werthamer-Helfand-Hohenberg (WHH) model in the dirty limit, the

upper critical field, Bc2 of this compound is estimated from the resistivity measure-

ments. The upper critical field estimations for the single crystal are presented in

Fig. 1.6 (a).The dashed line curve follows the WHH model when the Maki parame-

ter, αm and the spin orbit coupling parameter, λso are zero and the solid line is the

fitting when the parameters are non-zero but follows the WHH model in the dirty

Figure 1.5: (Left) Magnetization as a function of field of a single crystal Nb0.18Re0.82.
(Right) Lower critical fields, Hc1 extracted from the data on H (Left) as a function of
temperature, corrected with the demagnetization factor. The diagram was adapted
from Ref. [2].

15



limit. By assuming, αm = 0 and λso = 0, Bc2 was estimated to be 169 kG. According

to the solid line, the αm and λso were obtained to be 1.52 ± 0.2 and 2.2 ± 0.6 and

the estimated value for the upper critical field, was approximately 148 kG while the

value estimated for the polycrystalline sample was approximately 173 kG.

The specific heat of the Nb0.18Re0.82 crystal in zero field and an applied field

of 90 kOe is shown in Fig. 1.6 (b).The specific heat in zero field shows the onset

bulk superconductivity with Tc = 8.8 K. In an applied 90 kOe, Tc was smaller

than the one determined at zero field applied but a bulk superconductivity was

still observed. The inset shows C/T against T 2. Linear behaviour of specific heat

was not observed in zero field data above Tc. In an applied field of 90 kOe, linear

behaviour of C/T against T could be fitted and the Sommerfeld constant, γ value

was obtained [59, 2, 27]. γ value is allowed to vary with recorded values 5.49 and

4.94 mJ/molK2.

For polycrystalline and single crystal samples of Nb0.18Re0.82, γ = 4.8± 0.17 and

5.4 ± 0.6 mJ/molK2, respectively. The jump in the specific heat at the transition

is ∆C = 82.53 mJ/molK and ∆C
γTc

is 1.75 and 1.91for γ = 5.40 and 4.94 mJ/molK2,

respectively. In 2015 point contact spectroscopy was combined with specific heat

measurements to investigate the superconducting state of a single crystal of this

composition [61]. The conductance spectra exhibited a two-peak structure which

was in good agreement with a two-band model with isotropic gaps. The analysis of

the specific heat derivative at low temperatures and close to the transition temper-

ature in the normal state, confirmed the observations made from the point contact

spectroscopy. As a result, the analyses provided strong evidence of double-gap su-

perconductivity in non-centrosymmetric Nb0.18Re0.82 single crystals.

Following the work done on Nb0.18Re0.82, several compounds of Niobium-Rhenium

system will be investigated in this project.This will include investigations of poly-

crystalline samples of Nb0.22Re0.78, Nb0.29Re0.71 and Nb0.34Re0.66
1.

1The polycrystalline annealed sample of Nb0.22Re0.78 and non-annealed samples of Nb0.29Re0.71
and Nb0.34Re0.66 were synthesised by M. Smidman [61].
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Figure 1.6: (a) Temperature dependence of the upper critical field of a single crystal

of Nb0.18Re0.82 for fields applied along [100]. The values were extracted from the

onset of the resistivity measurements. The dashed line indicates an estimation of

Bc2 using the WHH model with αm = 0 and λso = 0, while the solid line shows a

fit with non-zero αm and λso. (b) Specific heat as a function of temperature for a

single crystal of Nb0.18Re0.82 in zero field and an applied field of 90 kOe. The red

curve shows the fit to BCS theory for a single gap. The inset shows C/T against T 2

with a linear fit to the 90 kOe data in the normal state. The diagrams were adapted

from Ref. [2].
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1.4 Summary and Thesis Outline

This section introduced the concept of unconventional superconductors with par-

ticular attention given to the class of non-centrosymmetric superconductors. The

superconducting properties of the non-centrosymmetric superconductors are dis-

cussed taking into account weakly correlated non-centrosymmetric superconductors

and superconductors with broken time reversal symmetry as they are directly rele-

vant to this project. The superconductors in Niobium-Rhenium series are presented

in detail with attention given to the α-Mn and σ structures which are the reported

structures in this system. Additionally, the previous work done, including magnetic,

transport and thermal properties of several non-centrosymmetric compositions in

NbxRe1−x for 0.13 ≤ x ≤ 0.34 were presented, with a more in-depth presentation

of the previously research on the composition Nb0.18Re0.82 which was observed to

have the highest value of transition temperature (Tc = 8.8 K) compared with the

other superconductors investigated in the range 0.13 ≤ x ≤ 0.34.

To be precise, the magnetic susceptibility, resistivity and specific heat capacity

measurements were previously investigated for the polycrystalline compositions of

Nb0.18Re0.82, Nb0.25Re0.75, Nb0.29Re0.71, Nb0.31Re0.69 and the single crystal com-

position of Nb0.18Re0.82. In the following work, the thermal and superconducting

properties of polycrystalline non-centrosymmetric compositions of NbxRe1−x for x

= 0.22 (annealed and as-cast), 0.29 and 0,34 will be discussed. The magnetic,

thermal and transport properties of the polycrystalline compositions Nb0.22Re0.78

and Nb0.34Re0.66 will be introduced for the very first time. However, a satisfying

comparison between the previously reported superconducting properties and those

presented in this work for the polycrystalline composition Nb0.29Re0.71 will be dis-

cussed in the following sections. Additionally, the fact that the non-centrosymmetric

composition NbxRe1−x (0.13 ≤ x ≤ 0.34) is considered as an s-wave BCS-type su-

perconductor with negligible contributions from the spin-triplet component, despite

of the heavy atomic mass of Re will be also investigated along with the previously

published observation of s-wave superconductivity with a very large upper critical

field (Bc2(0)) in the composition NbxRe1−x (0.13 ≤ x ≤ 0.34).

The outline and the layout of the thesis are presented below. Chapter 2 contains

the background theory required for this project including a discussion of supercon-

ductivity with a focus on non-centrosymmetric unconventional phenomena. Chapter

3 describes the various scientific experimental techniques used to collect the data

presented in this research. Chapter 4 presents the superconducting properties of
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several non-centrosymmetric compositions of NbxRe1−x for x = 0.22, 0.29 and 0.34.

Finally, Chapter 5 will provide a summary of the concepts covered and the conclu-

sions extracted from the results obtained. In this section, the future investigations

which need to be carried out in order to improve the results of this work will also

be discussed.
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Chapter 2

Theoretical Background

Heike Kamerlingh-Onnes, in 1908 liquified helium which gave the ability to cool

materials down to temperatures very close to absolute zero [3] and the discovery of

superconductivity followed. Walther Meissner and Robert Ochsenfield, observed in

1933, a phenomenon known as the Meissner effect which occurs when an applied field

is expelled from a superconductor on cooling through the transition temperature for

a material [62]. A few years later, in 1950, Ginzburg and Landau introduced an

approach to superconductivity based on Landau’s theory of a second order phase

transitions [63]. Finally, in 1957, Bardeen, Cooper and Schrieffer introduced the

BCS theory which gives a good explanation of conventional superconductors and

provide a complete microscopic description of superconductivity [5, 8].

In this chapter, an overview of the superconductivity of non-centrosymmetric su-

perconductors will be given and the phase transitions in superconductors will be

discussed. A discussion on Ginzburg-Landau and BCS theories will be presented.

The aim is to provide a good understanding of the superconducting and thermo-

dynamics properties of superconductors, concentrating more on the effects that a

non-centrosymmetric structure has on their behaviour.

2.1 Introduction to superconductivity

Early studies of superconductivity were motivated by the key experimental sig-

natures such as perfect diamagnetism [2] and the loss of resistivity [3]. In the case

of perfect diamagnetism, an applied field is unable to penetrate beyond the surface

of superconducting material but during cooling through the transition temperature,

Tc, magnetic flux is expelled from the bulk of the sample. In the absence of a ther-

modynamic or microscopic theory of the superconducting state, the electrodynamic
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properties were modelled by London equations 2.1 and 2.2,

E =
m

nse2

dJs

dt
, (2.1)

∇× Js = −nse
2

m
B, (2.2)

where E is the electric field, B is the magnetic flux density, Js is the supercurrent

density, ns is proportional to the superfluid density, m is the electron mass and e

is the charge of an electron and proton [64]. Eq. 2.1 describes a perfect conductor,

since in the absence of an electric field, a finite current solution is allowed. Electric

fields are required to change the current. The usefulness of the second equation is

found from substituting in Amperes law for Js which results in

∇2B =
B

λ2
L

, (2.3)

where λL is London penetration depth and is given by

λ2
L =

mec
2

4πnse2
. (2.4)

If the magnetic field applied to an infinite superconducting solid is constant, then

the solution is a decaying exponential of the internal magnetic field with a decay

constant λL [2]. Except from a region at a depth of order λL from the surface,

magnetic fields were excluded completely.

2.2 Phase transitions

The nature of superconducting phase transition can give important information

about the material. The Ginzburg-Landau theory follows from the Landau theory

of phase transitions which describes the change from an ordered to a disordered

system. For a system that orders, the order parameter, M is zero in the disordered

phase and non-zero in the ordered phase. Each state of a system corresponds to a

minimum in the free energy, F [65]. At the transition temperature, Tc, the minimum

in the free energy moves from a disordered state with M = 0 to an ordered state

with M 6= 0. The order parameter changes continually at Tc in a second-order phase

transition, and as a result, F can be expanded in even powers of M as shown in

F = a(T − Tc)M2 + bM4 + ..., (2.5)
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where it is assumed that M is homogeneous and a, b > 0 [65]. The free energy for

T > Tc is minimized only for M = 0. On the other hand, for T < Tc there is a

non-zero solution given by the following equation,

M2 =
a(Tc − T )

2b
. (2.6)

According to this equation, on cooling below the transition, M increases from zero

and M ∝ (Tc − T )
1
2 . The magnetization in the mean field model of an anti-

ferromagnet close to the second order phase transition should dhow this behaviour.

When fluctuations cannot be neglected, there is a different temperature dependence

but it follows M ∝ (Tc − T )β, where β is a critical exponent available for a wide

range of phase transitions with the same dimensionality of the system and order pa-

rameter [65]. There is a continuity in the first derivative of Eq. 2.5 with respect to

magnetization at the phase transition and a discontinuity in the second derivative,

which results in a discontinuity at a second order transition in quantities dependent

on the second derivative of free energy like specific heat. The first order transition

can be described by Eq. 2.7, where b < 0 and c > 0, if the order parameter is enough

small close to the transition.

F = a(T − Tc)M
2 + bM4 + cM6 + ..., (2.7)

At high temperatures, the free energy has a minimum only at M = 0. At lower

temperatures the minima do not develop continuously from zero and at the phase

transition the order parameter jumps from zero to a finite value. For the above

model if B2 > 3α(T − Tc), there are local

Figure 2.1: The free energy of the first order phase transition described by
eq. 2.7.The minima exist first at finite M .The green lines show curves with
metastable states.There is coexistence between ordered and disordered phases.The
red lines show curves with the only minimum at M = 0. The blue lines show minima
only at M 6= 0. Taken from [2].
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Figure 2.2: The free energy of the second order phase transition described by eq. 2.5.
The minima exist continuously from M = 0. The red lines show curves with the
only minimum at M = 0. The blue lines show minima only at M 6= 0. Taken
from [2].

minima for M = 0 and M 6= 0. As a consequence, there are metastable states which

is the origin of superheating and supercooling phenomena, where the system does

not exist in a global minimum of the free energy but in a metastable local minimum.

Figs. 2.2 and 2.1 show the free energies for the first and second order transitions,

respectively. From Fig. 2.1, it can be observed that the minima emerge initially at

finite M and a jump exists from M = 0 to finite M . From Fig. 2.2, it is clear that

below Tc, the minima begins at M = 0 and increase continuously. In the regions of

coexistence shown in green, there are local minima at both zero and non-zero order

parameter.

2.3 Ginzburg-Landau theory

Ginzburg-Landau suggested a phenomenological approach to understand super-

conductivity, which was based on Landau’s theory of second order phase transitions.

This theory introduced an expansion of the free energy, which describes isotropic

superconductors and superconductors with a spatially varying superfluid density.

Using this theory the penetration depth (λ), the coherence length (ξ) and the criti-

cal fields can be derived with suitable boundary conditions and they are considered

as ‘natural’ parameter of the theory. In Ginzburg-Landau theory, a complex order

parameter ψ is assumed by applying a similar principle to the superconducting tran-

sition. The free energy has a similar form to Eq. 2.5 but with extra terms considering

the gradient of ψ and the coupling to the magnetic field. According to Refs. [2, 66],

the Gibbs free energy density of the superconducting state fs is represented by
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fs = fn + α|ψ|2 +
β

2
|ψ|4 +

1

2m

∣∣∣∣∣
(
h̄

ı̇
∇− 2e

c
A

)
ψ

∣∣∣∣∣
2

+

(
B−Bapp

)2
2µ0

, (2.8)

where fn is the normal state free energy density, B is the total magnetic field,

Bapp is the contribution from the external magnetic field, A is the magnetic vector

potential and α, β are independent variables of temperatures [66].The gradient term

is negligible for a homogeneous solution and the minimum solution similar to Eq. 2.6

can be determined. The substitution of the minimum solution to the Eq. 2.8 shows

that there is a critical field Bapp = Bc at which the free energy of the Meissner state

is larger than fn. This results in a phase transition from the superconducting to

the normal state at Bc, which is the thermodynamic critical field. Eq. 2.9 gives the

temperature dependence of this critical field [23, 67].

Bc1

(
T
)

= Bc1

(
0
)[

1−

(
T

Tc

)2]
. (2.9)

The Ginzburg-Landau theory introduced two length scales, the London penetration

depth, λL and the Ginzburg-Landau coherence length, ξ. If |ψ|2is considered as

corresponding to the superfluid density, then an effective penetration depth, λeff is

connected to λL which introduces the theory via Eq. 2.4 [2]. In the superconduct-

ing state, ns is non-zero and a relationship between ns and the order parameter is

expected. However, since ψ is a complex number, the order parameter is not the

density of superconducting electrons but it is describing currents in the supercon-

ducting state. The Ginzburg-Landau coherence length is the characteristic distance

over which ψ varies. Both length scales are proportional to |ψ|−2 and therefore

they diverge approaching the transition temperature, Tc. The Ginzburg-Landau

parameter, κ is given by Eq. 2.10 and it is almost temperature independent in this

theory.

κ =
λeff

ξ
, (2.10)

The form of F in Eq. 2.8 does not necessary include the existence of a supercon-

ducting state with internal magnetic fields. As mentioned previously, at Bapp = Bc,

the energetic cost of producing the Meissner state is great. In the case of a non-zero

B, the superconducting state can remain energetically favourable even for large ap-

plied fields and this depends on the value of κ. The boundary energy between the

superconducting and normal states is positive if κ > 1√
2

and this exists in type-II
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superconductors. If κ < 1√
2
, then the material is a type-I superconductor while

when κ ≈ 1√
2
, then there is an attractive interaction between magnetic fields and

the material is considered as a type 1.5 superconductor [68]. For type-I supercon-

ductors, the reduction in energy from the increased penetration of flux does not

reduce the order parameter to zero. The samples exhibit a first order transition

from the Meissner state to the normal state when the applied field is large enough.

Demagnetization factors can be finite according to Ref. [69] and for this case, there

is an intermediate state with macroscopic domains between the superconducting

and normal phases.

For type-II superconductors, there is no limitation to the boundary area between

the normal and the superconducting state, when the boundary energy is negative.

Because of the complex nature of ψ, the flux passing through a normal region must

be a multiple of the magnetic flux quantum, Φ0 = 2.067834 × 10−15 Wb. There is

a Meissner state for applied fields less than the lower critical field given by

µ0Bc1

(
T
)

=
Φ0

4πλ2
eff

(
lnκ+ α

(
κ
))
, (2.11)

which is valid for type-II superconductors, where α
(
κ
)

is an independent variable

of κ and can be calculated by Ref. [63, 67]. If the magnetic field is greater than this

value, flux can penetrate through the sample via thin tubes and the mixed state

occurs.There is a repulsive force between flux lines which are placed in the mini-

mum energy configuration [70]. In 1957 Abrikosov found an approximation of the

Ginzburg-Landau equations corresponding to homogeneous type-II superconductors

in magnetic fields below the upper critical field, Bc2 [71]. When the orbital upper

critical field, Borb
c2 is reached, the flux lines overlap, which means that all the ma-

terial is in the normal state (100%). The orbital upper critical field Borb
c2 is given

by Eq. 2.12 and its relationship with the critical field in type-I superconductor, Bc

is shown in Eq. 2.13, which illustrates how the mixed state remains energetic for

type-II superconductors for applied fields higher than Bc considerably. According

to Ref. [72, 73], Eq. 2.14 is estimating the Ginzburg-Landau parameter, κ using the

lower (Bc1) and upper critical field (Bc2).

Borb
c2 =

Φ0

2πξ2
, (2.12)

Borb
c2 =

√
2κBc, (2.13)
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Figure 2.3: Magnetization as a function of internal field for an ideal type-I supercon-
ductor.The red curve shows the behaviour when demagnetization factor, D is zero
and green curve shows non-zero D, where the curve has been shifted by an amount
of dB indicated by the blue arrow.

Borb
c2

Bc1
=

2κ2

lnκ
, (2.14)

The magnetic properties of type-I and type-II superconductors are particularly

interesting, including the magnetization and the internal magnetic field distribution.

For a type-I superconductor, according to Fig. 2.3, in the absence of demagnetiza-

tion effects, there is a discontinuity in the magnetization at Bc. However, this is

only the case when a field is applied parallel to the surface of an infinitely thin

superconducting sheet. In reality, a sample has a finite demagnetization factor, D.

For a uniform magnetization, M when Eq. 2.15

Bc = H−DM. (2.15)

is valid, flux penetrates the sample and it enters the intermediate state. For the

Meissner state, M = H which occurs when
(
1−D

)
H = Bc, where H is the applied

field.The magnetization as a function of the applied fields for an ideal type-II super-

conductor is illustrated in Fig. 2.4. Up to Bc1, the magnetization is linear. Above

Bc1 flux penetrates the sample until the magnetization reaches zero at Bc2.

The existence of type-I and type-II superconductivity depends only on the value

of the dimensionless parameter κ. Ginzburg-Landau theory can be used to quanti-

tatively describe inhomogeneous systems which in this case is the mixed state of a

type-II superconductor. However, Landau theory is valid when the order parameter

is small and as a result it may not be applicable away from the phase boundary.
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Figure 2.4: Magnetization as a function of internal field for an ideal type-II super-
conductor.

2.4 BCS Theory

In this section the microscopic BCS theory will be explained. In 1957, the micro-

scopic theory of superconductivity was developed by Bardeen, Cooper and Schrieffer

(BCS). This theory describes well conventional superconductors. After its proposal,

it was clear that the Ginzburg-Landau equations could be derived from BCS theory

in a temperature region close to Tc [74] which shows a relation between the phe-

nomenological parameters in the Ginzburg-Landau free energy and the microscopic

BCS parameters. One result is the identification that |ψ|2 is proportional to the

superfluid density ns [65, 75]. The microscopic BCS theory of superconductivity

needs a system at which the ground state of a metal is not the normal state and

as a result, it will be possible to look for means at which electrons in a free band

can exhibit a phase transition to an ordered system. According to Ref. [76], when

an attractive interaction exists between two electrons just above the Fermi level,

there can be a bound state between them. In conventional superconductors there

is an attractive interaction between the electrons rising from interactions with the

lattice (electron-phonon interaction). In the simplest BCS models, there is a con-

stant attractive interaction within h̄ωD of the Fermi surface, where ωD is the Debye

frequency which is the maximum phonon frequency. The BCS wave function is given

in Eq. 2.16 [5, 8, 62],

| BCS >=
∏

k

(
uk + eiθvkc

†
k+s,↑c

†
−k+s,↓

)
| 0 > . (2.16)

where θ is the angle between uk and υk, c is the electron creation operator of

momentum k and spin s which is either up (↑) or down (↓).
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The normalization of the wave function postulates that u2
k+2 = 1, where u2

k and

υ2
k are the Bogoliubov coherence factors. The pairs of electrons with opposite crystal

momenta k and −k, a centre of mass momentum 2h̄s and opposite spins known as

Cooper pairs in the s-wave state, are described by the second term of the equation,

υ2
k. That is valid for an isotropic interaction where the lowest energy wave function

is spherically symmetric. The Cooper pairs require opposite spins in order to show

that the overall pair wave function is antisymmetric under particle exchange. The

quasi-particle excitation energy
(
Ek

)
is illustrated in

Ek =
√
ε2k + ∆2

k, (2.17)

where εk is the band energy measured from the chemical potential. The excitation

spectrum is gapped with a k dependent energy gap ∆k which is determined by

solving the gap equation shown in

∆k = −
∑
k′

(
1− 2fk′

) ∆k′

2Ek′
Vkk′ , (2.18)

where f is the Fermi-Dirac function, Vkk′ is the matrix element for the interaction

between electrons in the k and k′ states. The Fermi-Dirac function is shown in

f =

(
1 + e

E
kBT

)−1

. (2.19)

Considering the isotropic weakly coupled BCS theory, an attractive potential −V
within h̄ωD of the Fermi surface is observed. The energy gap is independent of k

within this region and at T = 0 the magnitude of the gap
(
∆0

)
is given by

∆0 = 1.764kBTc. (2.20)

An approximate formula of ∆
(
T
)

for non-zero T given in Ref. [77] is presented in

Eq. 2.21 and shown schematically in Fig. 2.5.

∆
(
T
)

= 1.764kBTc tanh

(
1.82

[
1.018

(
T

Tc
− 1

)]0.51)
, (2.21)

It is desirable to calculate the gap function for superconductors with anisotropic

gaps or for stronger coupling, which requires a self consistent solution to Eq. 2.18

for an approximate value of Vkk′ . Experimental data are analysed usually using

the α-model of superconductivity [2, 5]. The temperature dependence of the gap

is the same as in weakly coupled isotropic BCS theory, but in this situation the
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factor of 1.764 is replaced by a variable α as shown in Eq. 2.22, where αBCS = 1.764

corresponds to BCS theory.

∆0 = αkBTc. (2.22)

As shown in Ref. [78], α > αBCS corresponds to strong electron-phonon coupling

and α < αBCS indicates an anisotropic superconducting gap. The electron-phonon

coupling parameter, λep gives the strength of the attractive interaction for BCS su-

perconductors [12, 13]. The weak coupling limit is determined by λep << 1.However,

superconductors with λep < 0.5 are weakly coupled. The transition temperature can

be obtained using Eq. 2.23 for strong coupling theory,

Tc =
ΘD

1.45
exp

[
−

1.04
(
1 + λep

)
λep − µ∗

(
1 + 0.62λep

)], (2.23)

where µ∗ is a constant produced due to Coulomb repulsion normally varying between

0.1 and 0.15 and ΘD is the Debye temperature which is given by:

ΘD =

(
12π4Rn

5β

) 1
3

, (2.24)

where β is the Debye T3-law latice heat capacity coefficient, R is the molar con-

stant and n is the number of atoms per formula unit (f.u). Important limits on

the transition temperatures of conventional BCS superconductors are deduced from

Eq. 2.23 [79].

For an isotropic attractive potential, an isotropic s-wave state with even parity(
meanfreepath(l) = 0

)
is formed by the Cooper pairs. The spin component of the

pairing wave function must be antisymmetric under particle exchange as discussed

previously and as a result this is a spin singlet state. Other pairing mechanisms

might be able to pair states with higher values of l. For example, in p-wave super-

conductors, odd parity states
(
l = 1

)
are formed by the Cooper pairs and therefore

this is a spin triplet configuration, where pairs consists of two electrons in an S = 1

state [2]. In this situation, the pairing state is indicated by a vector d(k) and the

gap is determined by |d(k)|2 [1, 80] which will be explained in the following section.

For triplet superconductors, the superconducting gap can be anisotropic becoming

zero at certain points of the Fermi surface. Furthermore, it can be non-unitary triplet

state which breaks time reversal symmetry in the superconducting state, where the
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Figure 2.5: The approximation of the normalized temperature dependence of the
BCS gap as a function of the reduced temperature t = T/Tc, according to Eq. 2.21.

Cooper pairs are spin polarised. On the other hand, there can be spin triplet states

with higher order pairing angular momenta. Spin singlet state is formed by the fact

that d-wave superconductors have even parity pairing l = 2. This is the pairing state

for the cuprate superconductors which have nodes in the superconducting gap [81].

2.5 The gap structure of non-centrosymmetric super-

conductors

The paring states can be classified as either spin singlet or spin triplet. This

is valid where the orbital part of the pair wave functions have either even or odd

parity. The Cooper pairs may be singlet or triplet, as the wave function must

be antisymmetric. In the presence of a finite antisymmetric spin-orbit coupling

(ASOC) for non-centrosymmetric superconductors, the pairing states are classified

as an admixture of singlet and triplet [82]. Eq. 2.25 shows the superconducting

parameter ∆(k) for this case, where ψ is the singlet component and d(k) · σ is the

triplet component.

∆(k) = i(ψ + d(k) · σ)σy. (2.25)

The antisymmetric spin-orbit coupling (ASOC) is splitting the spin degenerate con-

30



duction band and the resulting superconducting gaps are given by

∆±(k) = ψ ± | d(k) |. (2.26)

As a result the two gaps are given by the constructive and destructive interference

of the singlet and triplet terms.

2.6 Thermodynamic properties of superconductors

Following the discussion made for the Ginzburg-Landau theory and BCS theory,

the thermodynamic properties of superconductors can be examined. Many ther-

modynamic properties are influenced by the gap ∆k which affect the density states

around the Fermi level. For a metal, Eq. 2.27 determines the temperature depen-

dence of the electronic contribution to the specific heat of a normal state, where
π2

3 N
(
EF

)
k2

B is usually written as a constant γ.

Cel =
π2

3
N
(
EF

)
k2

BT, (2.27)

The total specific heat at low temperatures includes the electronic and the phonon

contributions is given by

C = γT + βT 3, (2.28)

where γ is the Sommerfeld electronic heat capacity coefficient and β is the Debye T3-

law lattice heat capacity coefficient which is related to ΘD by Eq. 2.24 (see Section

2.5).

In order to determine the expression below Tc, the entropy of the superconducting

state needs to be considered [83] and the expression is shown in

S

γTc
= − 6∆0

π2kBTc

∫ ∞
0

[f ln f +
(
1− f

)
ln
(
1− f

)
]dy, (2.29)

where f is the Fermi-Dirac function with E = ∆0

√
y2 + δT 2. In this equation, y is

the energy of the normal state electrons and δ(T ) is the temperature dependence of

the superconducting gap. The left hand side of Eq. 2.29 is normalised to the normal

state entropy at Tc.

As explained in Section 2.2, the first derivative of the free energy is continuous for

a second order phase transition, which means that the left hand side of this equation
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is unity at the transition in zero-field. As a consequence, the electronic contribution

to the specific heat is presented by Eq. 2.30 and it is discontinuous at the transition.

Csc

γT
=
d
(
S/γTc

)
dt

. (2.30)

∆C
γTc

= 1.426 gives the magnitude of the jump in BCS theory. Generally, in the

α-model, this magnitude is proportional to α2 and the equation is modified to

Eq. 2.31 [84].

∆C

γTc
= 1.426

(
α

αBCS

)2

, (2.31)

At low temperatures, there are no states within ∼ kBT of the Fermi level for a

fully gapped superconductor and as a result there are no states for electrons to be

excited. Therefore, the specific heat at low temperatures has a dependence with

C ∝
(
∆0/kBT

) 3
2 e−
(

∆0/kBT
)

[8].

2.7 The clean and dirty limits

A microscopic theory which can reproduce the Ginzburg-Landau theory close to

Tc was obtained and as a result it is of interest to relate the characteristic length

scales of this theory to microscopic properties. ξ is a characteristic length with

which the order parameter ψ varies. It should be related to a characteristic length

of the extent of the Cooper pair wave function which is the BCS coherence length,

ξ0 given by

ξ0 =
h̄υF

π∆0
, (2.32)

where υF is the Fermi velocity. This quantity is related to the coherence length in

Ginzburg-Landau theory by ξ ∼ 0.74ξ0 if the elastic scattering of electrons from

the lattice is negligible [1, 5, 8]. This is valid if the scattering rate is low and as

a consequence the electrons have a long mean free path, l between the scattering

events. If ξ0 << l, the system is in this clean limit. If the scattering rate is high, ξ

will change. In this case, the system is in the dirty limit where l << ξ0, ξ ∝
√
ξ0l.

In the clean limit, λeff is given by

λeff =
λL√

2
. (2.33)

In the dirty limit,λeff is given by
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λeff = λL

√
ξ0

1.33l
. (2.34)

λeff increases due to the effect of strong scattering and as a result the effectiveness

of the screening of the magnetic fields reduce from the expected. Considering the

number of superconducting electrons, κ is given by

κ = 0.96
λL

ξ0
, (2.35)

in the clean limit and by Eq. 2.36 in the dirty limit.

κ = 0.715
λL

l
, (2.36)

In the dirty limit, κ is independent of ξ0 and it is inversely proportional to the mean

free path.

2.8 Upper Critical Field

An applied field can destroy superconductivity in a type-II superconductor using

one of two pair-breaking mechanisms. One is the orbital pair breaking, which exists

when there is overlap of vortex cores and the orbital upper critical field is given by

Eq. 2.12. The paramagnetic limiting effect also occurs and it can be understood by

taking into account the effect of an applied field on a band of electrons [30]. The

degenerate bands are split into spin-up and spin-down bands. This decreases the

energy of the system by the Zeeman energy given by χnH
2/2, where χn is the normal

state susceptibility known as the Pauli susceptibility for an electron gas. Cooper

pairs with spin-singlet behaviour have opposite spins, which means that χs = 0 if at

T = 0, the electrons on the Fermi surface are paired. As a result, there is an applied

field at which there is a reduction in energy larger than the Zeeman energy. At this

point the system will become normal. This field is known as the Pauli paramagnetic

limit,Hp which is given by

µ0Hp =

√
2∆0

gµB

√(
1− χs

χn

) , (2.37)

where g = 2 for free electrons [30]. In the case of a spin triplet superconductor,

χs = χn and therefore, there is no Pauli paramagnetic limiting.
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The upper critical field, Bc2 within BCS theory in the dirty limit can be anal-

ysed using the Werthamer-Helfand-Hohenberg (WHH) model which considers both

orbital and Pauli paramagnetic pair breaking effects [85, 86]. For several materials

ξ0 is large so that Borb
c2 << µ0Hp in the clean limit and therefore the dirty limit can

be used in most cases where the paramagnetic limiting is considerable. In the dirty

limit, because of the reduced l, ξ will be reduced and as a result Borb
c2 is large and

the Pauli paramagnetic limiting should be considered. In the case of a supercon-

ductor which obeys the BCS theory in the dirty limit, the upper critical field can

be calculated using

ln
1

t
=

(
1

2
+
iλso

4δ

)
Ψ

(
1

2
+
h+ 0.5λso + iδ

2t

)
+

(
1

2
− iλso

4δ

)
Ψ

(
1

2
+
h+ 0.5λso − iδ

2t

)
−Ψ(0.5),

(2.38)

where t = T/Tc and h is a dimensionless form of the upper critical field given by

h =
4Bc2

π2

(
dBc2

dt

)−1

t=1

, (2.39)

Ψ(x) is the digamma function and δ is given by

δ =
√

(αMh)2 − 0.25λ2
so, (2.40)

where αM is the Maki parameter and λso is the spin-orbit scattering parameter.

These two parameters determine h.

A measure of the corresponding influence of Pauli paramagnetic pair breaking

compared to orbital limiting is given by

αM =
√

2

(
Borb

c2

µ0Hp

)
. (2.41)

When there is no paramagnetic limiting or Borb
c2 << µ0Hp, αM = 0. As a conse-

quence, the upper critical field is given by

Borb
c2 ≈ −0.693

(
dBc2

dt

)
t=1

. (2.42)

When αM increases, the effect of paramagnetic pair limiting increases and as a

consequence the upper critical field reduces below the orbital value. The scattering

rate for spin flip processes is determined by λso. The paramagnetic limiting effect
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is reduced by the effect of spin flip scattering. When αM = 0, the upper critical

field is not affected by λso. When αM increases, the upper critical field reduces

and the value of λso increases and as a result Bc2 is moving towards the orbital

value. By determining the gradient of the upper critical field close to the transition

temperature from Eq. 2.39, the absolute values of the upper critical field within the

WHH model can be obtained. The gradient is related to αM by

αM = 0.52758

(
dBc2

dT

)
T=Tc

, (2.43)

where the slope is given in units of T/K. The WHH model can examine the role

of paramagnetic limiting. When there is absence or decrease in Hp, evidence for

unconventional pairing symmetries can be provided. The WHH model is derived

from one band, weak coupling BCS theory and according to Eq. 2.37, Hp is more

likely to increase in a strongly coupled system. Consequently, in order to decide

whether paramagnetic pair breaking effects have been suppressed, a great orbital

upper critical field is required.

2.9 Summary

This chapter outlines some of the properties of superconductors, focusing on the-

oretical ideas relevant to non-centrosymmetric superconductors. A brief overview of

the phase transitions was provided in order to give a good understanding of ordered

and disordered systems. The Ginzburg-Landau (GL) theory was presented and the

BCS theory was introduced. This thesis is based on studies of non-centrosymmetric

superconductors and as a consequence this chapter focuses on ideas relevant to

studies undertaken in this area. The gap structure of non-centrosymmetric super-

conductors was presented briefly. The background theory of the thermodynamics

properties of superconductors and the clean and dirty limits were explained. Lastly,

the upper critical field was introduced in order to explain the general idea behind

this term and state the main equations involved. This theoretical background chap-

ter, together with the next one which introduces the experimental techniques used

in this thesis, set the scene for the work presented in Chapter 4.
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Chapter 3

Experimental Techniques

3.1 Sample Preparation

Polycrystalline samples of Nb0.22Re0.78 were produced by arc melting the con-

stituent elements using a Centorr model 5TA tri-arc furnace. This furnace consists

of upper and lower water-cooled sections separated by a pyrex observation tube.

Three copper stinger rods are placed at the top section which carry tungsten elec-

trodes. Each of these rods is mounted into a swivel ball in order to allow angular

and vertical movement. The lower section has an opening allowing insertion of a

variety of copper hearths as illustrated in Fig. 3.1 [2]. The appropriate amounts of

the constituent materials corresponding to each compound, were placed on a water

cooled copper hearth. The sample chamber was evacuated with a rotary pump and

Figure 3.1: An annotated photograph of the Centorr model 5TA tri-arc furnace.
The diagram was adapted from Ref. [2].
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flushed with argon several times before melting began. A titanium (Ti) getter was

melted before melting the constituent materials in order to ensure any oxygen is

removed from the chamber. The samples were melted under a positive pressure of

argon. The constituent materials of 99.99% purity are melted. Samples were flipped

and remelted several times to improve homogeneity.

3.2 Sample Characterisation

There are several characterisation techniques that are used to identify the quality

of the polycrystalline samples produced with the method introduced in the previous

section. Two of the main techniques used are discussed in this section, Energy

Dispersive X-ray Analysis (EDAX) which is used to determine the composition of

the crystals and Powder X-ray Diffraction (XRD) which can be used to determine the

structure including lattice parameters of carefully selected polycrystalline samples

and also to check the phase purity of the materials.

3.2.1 Energy Dispersive X-ray Analysis

Energy Dispersive X-ray Analysis (EDAX) was used to determine the elemental

composition of the alloys. EDAX measurements of the compounds were performed

by Steve York at the University of Warwick using a JOEL6100 scanning electron

microscope (SEM). The EDAX GENESIS analytical system was used and the spec-

tra were taken at 10 kV, 2000 cps (cycles per second) and a count time of 100 s. The

principle that this is based on is that the atoms of each cell have a unique electronic

structure with characteristic binding energies of the electrons in different electronic

levels. The number of x-ray photons and the energy of the same are measured with

an energy dispersive analyser. The information from the analyser is used to provide

a quantitative analysis of the elemental composition of the sample.

3.2.2 Powder X-ray Diffraction

Equipment Description

Powder X-ray Diffraction (XRD) was used to ascertain the phase purity and the

lattice parameter, a, from a powder crystal diffractogram. The experiments on the

materials were performed with the help of Simon Riberolles. For the presented

diffractograms, a Bruker D5005 diffractometer was used which produces Cu Kα

radiation. The average Kα wavelength of Cu element is around 1.5406 Å. The

Bruker D5005 is equipped with standard Bragg-Brentano geometry, a diffracted
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beam graphite monochromator and an Oxford Cryosystems PheniX low temperature

stage which allows measurements to be carried out at down to room temperature.

A typical 2θ scan ranged from 10 to 100 deg. The solid polycrystalline samples were

ground into a fine powder by manually grinding them. The powder was carefully

placed and packed into the sample holder.

Bragg’s Law

The incident radiation is reflected by the parallel planes of atoms as given by

Bragg’s theory of diffraction. According to Bragg’s law, constructive interference

occurs when two waves are scattered in phase. In Fig. 3.2, a diagram of this principle

is illustrated. If two waves, which penetrate a crystal lattice, are separated by an

integer number of wavelengths, nλ and the path difference of the two waves between

the adjusted planes is δL, then the two waves will be in phase. The separation

between successive planes is a distance indicated as d. The angle, θ of the incident x-

ray is defined and as a result the scattering angle, 2θ can be calculated. Considering

all of these statements, Eq. 3.1 illustrates Bragg’s law and consequently, Bragg

condition for constructive interference is:

nλ = 2d sin θ. (3.1)

Figure 3.2: Two beams of x-rays scatter from atoms which are located on parallel
planes within the crystal lattice and constructive interference occurs if 2d sin θ is
equal to an integer value of the wavelength of the incident radiation.
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3.3 Magnetization

3.3.1 SQUID Magnetometer

In the present work, magnetization measurements were carried out using a 50 kOe

Quantum Design Magnetic Property Measurement System (MPMS-5S) Supercon-

ducting Quantum Interference Device (SQUID) magnetometer. The system was

used to make high sensitivity DC magnetisation measurements in the temperature

range 1.8 to 400 K. The system consists of a probe mounted in a dewar of helium-4,

surrounded by a jacket filled with liquid nitrogen. Samples were mounted in a straw

and were attached using Kapton tape and inserted vertically into the probe. The

measurement system is illustrated in Fig. 3.3. The sample is moved in a second order

gradiometer coil made of superconducting wire inducing a current. A typical mea-

surement consists of measuring 32 points across a scan length of 4 cm. The change

in current at each step is converted by the SQUID to an accurate voltage [87]. The

output voltage as a function of position is fitted with a model of the response to

a dipole field. The magnetization collected by the device was normalised for the

density and mass of the sample. The maximum applied field that can be reached in

the MPMS is 50 kOe.

Figure 3.3: Schematic of the experimental configuration of the detection system in
the MPMS-5S SQUID magnetometer. The green and red arrows show the flow of
the induced current. The sample is placed between the two detection coils. The
circuit is made of superconducting wire which is kept in the superconducting state,
except when the heater is engaged [2].
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3.3.2 Vibrating Sample Magnetometer

Magnetization versus field measurements at different temperatures were per-

formed using an Oxford Instruments Vibrating Sample Magnetometer (VSM) with

a 120 kOe superconducting solenoid. The system makes use of Oxford Instruments

ITC503 temperature controller, IPS120 power supply and a Stanford Research Sys-

tems SR830 lock-in amplifier. The VSM can operate between 1.4 and 320 K using a

standard Variable Temperature Insert (VTI). The sample is attached with General

Electric (GE)-varnish to the Polyether Ether Ketone (PEEK) sample rod and then

wrapped in Polytetrafluoroethylene (PTFE) tape to ensure that sample will remain

in place. The sample oscillates vertically in a uniform magnetic field applied along

the axis of vibration as shown in Fig. 3.4. The default settings of the sample’s vibra-

tion frequency and amplitude are 55 Hz and 1.5 mm, respectively. The vibration of

the sample causes a change in magnetic flux which induces a voltage in the detection

coil. A lock-in technique is used in order to measure the induced voltage. Data were

typically collected at a field sweep rate of 2.5 kOe/min.

There are many advantages of using the Vibrating Sample Magnetometer instead

of the SQUID Magnetometer. The maximum applied field that can be reached

Figure 3.4: Schematic of the experimental configuration in the Vibrating Sample
Magnetometer (VSM).
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in the SQUID (50 kOe) is smaller than the one reached in the VSM (120 kOe).

Additionally, the temperature range in the SQUID is 1.8 to 400 K while in the

VSM is 1.4 to 320 K. However, it is quicker to change the applied field in the

VSM compare with the SQUID. For example, if magnetisation measurements will

be collected between 0 kOe to a maximum applied field and then from zero to

a minimum applied field, it is preferable to use the VSM instead of the SQUID

Magnetometer.

3.4 AC Resistivity

AC resistivity measurements were carried out using a Quantum Design Physical

Properties Measurement System (AC Transport PPMS). The maximum field used

was 90 kOe and the measurements were performed in the range 1.8 to 300 K. In

this project, the four-probe technique is used. The materials were cut in bar shaped

samples. Four silver wires of diameter 0.05 mm were attached to the surface, as

illustrated in Fig. 3.5, using DuPont 4929N silver paste. Alternating current of

10 mA passes between the two outer contacts and the voltage is measured over a

distance L between the two inner wires. According to Ohm’s law, voltage, V equals

Figure 3.5: Schematic diagram of the sample for four probe resistivity measurement.
Concept adapted from Ref. [2].
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IR where I is the current and R is the resistance (Eq. 3.2). The resistivity (ρ)

is calculated using the resistance (R) and the cross sectional area (A) as shown in

Eq. 3.3.

R =
V

I
(3.2)

ρ =
RA

L
(3.3)

3.5 Specific Heat Capacity

The specific heat capacity was measured using a commercial Heat Capacity Quan-

tum Design Physical Properties Measurement System (Heat Capacity PPMS). The

temperatures used were between 1.8 and 300 K using a conventional Helium-4 sys-

tem. Measurements were extended down to 0.4 K using a Helium-3 insert. Applied

fields of up to 90 kOe were used with both set ups. The relaxation technique was

used, whereby the sample is mounted on a sapphire platform using thermally con-

ducting grease as illustrated in Fig. 3.6. This platform is supported by thin wires

attached to a heat sink and a temperature sensor is mounted on the platform in

order to monitor the temperature. A second thermometer is located in the puck

frame. The wires allow an electrical connection to the components on the puck and

also they create a thermal link between the isolated platform and the heat sink. The

whole arrangement is covered by a thermal shield. The experiment is carried out in

high vacuum.

Figure 3.6: Schematic diagram of the sample mounting on the puck in PPMS Heat
capacity. This diagram was adapted from Ref. [88].

42



The samples were polished in order to ensure that at least one face was completely

flat. This flat polished face was mounted on the stage using Apiezon N grease to

ensure a good thermal contact. The measurements were carried out by switching

on the heater to heat the platform. The platform temperature was measured during

the heating and cooling stages [2]. The relaxation of the platform and the sample

can be fitted using exponential functions. In order to measure the accurate specific

heat, addenda measurements of the stage and grease were made. The sample heat

capacity was obtained by subtracting the measurements of heat capacity of the

addenda from the total (stage+grease+sample). This procedure was repeated for

each of the different fields applied.
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Chapter 4

The compositions NbxRe1−x in

the range 0.22 ≤ x ≤ 0.34.

4.1 Introduction

The non-centroymmetric compounds are interesting as they are good candidates

for unconventional superconductors as explained above in Sections 1.1 and 1.2.

The properties of polycrystalline NbxRe1−x have been studied for some values of

x [28, 59, 29] and indicated that NbxRe1−x compounds display an isotropic s-wave

superconducting state. The transition temperature ranges from around 3.5 K for x

= 0.38 to around 8.8 K for x = 0.18. A moderately enhanced gap in Nb0.18Re0.82

was reported in Refs. [28, 59]. When the triplet component in non-centrosymmetric

superconductors is small, the two gaps might be fully gapped and of a similar magni-

tude. In order to find out the gap structure in these materials, the superconducting

and normal state properties of several compositions of NbxRe1−x will be investi-

gated.

In this chapter, carefully selected compositions of NbxRe1−x for 0.22 ≤ x ≤ 0.34

were prepared and their structure was investigated using powder x-ray diffrac-

tion. Additionally, the magnetic susceptibility, the lower critical field Bc1, the

upper critical field Bc2 and the thermal superconducting properties of these non-

centrosymmetric compounds were studied using polycrystalline annealed and as-cast

samples.
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4.2 Sample preparation

Three compositions of NbxRe1−x with close to the optimum transition temper-

atures, Tc were produced. Nb0.18Re0.82 has the highest obtained value of Tc com-

pared with the other compositions when x > 0.18 [28, 2]. Polycrystalline samples

of NbxRe1−x for x = 0.22, 0.29, 0.34, where produced by arc-melting stoichiometric

quantities of the constituent materials of 99.99% purity, in an argon atmosphere on

a water cooled copper hearth as discussed in Section 3.1. The resulting samples

were flipped and remelted to improve homogeneity. During arc-melting, the loss

of mass of the materials was found to be negligible. The polycrystalline as-cast

samples of NbxRe1−x for x = 0.29, 0.34 and the polycrystalline annealed sample of

Nb0.22Re0.78 were synthesized using the same method described by M. Smidman in

reference [61]. The polycrystalline annealed sample was wrapped in tantalum foil

and annealed at 900 ◦C for a week under a dynamic vacuum, better than 10−6 torr.

4.3 Sample characterization

4.3.1 Composition analysis

Composition analysis using EDAX was carried out on small pieces of polycrys-

talline samples in order to check that the samples produced were formed with the

right amount of constituents. Data were obtained from different regions of each

sample to ensure the homogeneity of the stoichiometry. Table 4.1 shows the results

for NbxRe1−x polycrystalline compounds with the nominal composition x = 0.22

(as cast and annealed), 0.29 and 0.34. The data suggested that the samples were

formed with the correct stoichiometry for all the compositions.

Composition, x Nb Re

0.22 (as-cast) 21.7± 0.4 78.3± 1.6

0.22 (annealed) 20.5± 0.4 79.5± 1.6

0.29 (as-cast) 29.1± 0.6 70.9± 1.4

0.34 (as-cast) 33.3± 0.7 66.7± 1.3

Table 4.1: Representative compositions of polycrystalline samples of NbxRe1−x,

where x = 0.22 (as-cast and annealed), 0.29 and 0.34. All values are given in atomic

percentages.

45



4.3.2 Structural characterization

In Ref. [28], powder x-ray diffraction (XRD) patterns were taken on the NbxRe1−x

samples with various x in the range 0.13 ≤ x ≤ 0.93 at room temperature. According

to these patterns, it was concluded that NbxRe1−x crystallizes in three different

structures. The three regions indicated are 0.13 ≤ x ≤ 0.38 (region I), 0.38 <

x ≤ 0.52 (region II) and 0.55 ≤ x ≤ 0.93 (region III). For region II, Ref. [56] states

that the Nb7Re8-type phase dominates (tetragonal, P42/mnm). The XRD patterns

showed a Niobium phase with cubic Im3̄m space group for the region 0.55 ≤ x ≤
0.93 determining a maximum solubility of 46% Rhenium in Niobium. The region

of interest is 0.13 ≤ x ≤ 0.38 (region I) as the compounds produced in this project

are in the range 0.22 ≤ x ≤ 0.34. For this region, it was suggested that the XRD

patterns showed that the samples had a single phase with a cubic Ti5Re24 structure

which was shown to be incorrect a few years later after an in-depth investigation

of polycrystalline and single crystals of the composition Nb0.18Re0.82. As stated in

Section 1.3, in Niobium-Rhenium series there are two phases occur, the σ and α-Mn

structures. The α-Mn structure has a homogeneity range of 0.13 ≤ x ≤ 0.38 [56].

As a result, the compounds investigated in this project are expected to have a single

phase with cubic α-Mn structure.

In order to plot the unit cell volume as a function of x for various samples, the

data from the patterns reported in Ref. [28] were used as the lattice parameter was

only investigated for the as-cast polycrystalline sample of Nb0.22Re0.82 reported in

this project. These data were extracted from the Rietveld refinements as shown

in Ref. [28]. Fig. 4.1 represents the unit cell volume, V and the lattice parameter

as a function of x. The unit cell volume is equal to the a3 where a is the lattice

parameter. In this project, the compounds used were Nb0.22Re0.78, Nb0.29Re0.71 and

Nb0.34Re0.66. In Table. 4.2, the unit cell volume and the lattice parameter are shown

for those compounds including the compound Nb0.18Re0.82.

Composition, x
Volume, V

(Å3)

Lattice parameter, a

(Å)

0.18 898± 2.79 9.65± 0.01

0.22 910± 2.83 9.69± 0.01

0.29 920± 2.86 9.73± 0.01

0.34 930± 2.89 9.76± 0.01

Table 4.2: Unit cell volume and lattice parameter as a function of x for compositions

NbxRe1−x when x = 0.18, 0.22, 0.29 and 0.34.
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(a)

(b)

Figure 4.1: (a) Unit cell volume as a function of x for compositions NbxRe1−x in the
range 0.13 ≤ x ≤ 0.38. The data were collected from Ref. [28]. (b) Lattice parameter
as a function of x for compositions NbxRe1−x in the range 0.13 ≤ x ≤ 0.38.

The structure of the as-cast polycrystalline Nb0.22Re0.78 sample was investigated

using powder x-ray diffraction, in order to verify that the lattice parameter value

reported above in Table 4.2 is consistent with the one obtained for the produced

as-cast polycrystalline Nb0.22Re0.78 sample. A small portion of the polycrystalline

samples of this composition were isolated and ground into a fine powder for charac-

terization. The room temperature powder x-ray pattern for fine powder of as-cast

polycrystalline Nb0.22Re0.78 sample is shown in Fig. 4.2. The experimental data

were analysed using the profile matching method which is based on Bragg’s law

(Eq. 3.1) and requires (i) the space group of the composition (I 4̄3m, No.217) and

(ii) the wavelength of Kα radiation. In the figure, there are several peak positions
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Figure 4.2: Powder x-ray diffraction measurements of as-cast polycrystalline
Nb0.22Re0.78 sample measures using a Bruker D5005 difractometer. The black solid
line through the experimental points show the data produced using profile matching.
The blue solid line shows the differences between the experimental and calculated
intensities.

shown. The profile matching confirmed the reported cubic α-Mn structure and the

lattice parameter value calculated from peak position (330) is 9.67 ± 0.01 Å which

agrees with the value of 9.65± 0.01 cited in literature [28]. The differences between

the observed (Iobs) and calculated (Ical) intensities for the profile matching to be

ideal should be a horizontal straight line. In the figure below, the blue line indicates

this difference (Iobs-Ical). As you can see, it is almost a straight line and as a result

the observed and calculated intensities match one another well.

4.4 Superconducting properties of NbxRe1−x when x =

0.22, 0.29 and 0.34.

In this section, the properties that will be discussed are the transition temper-

atures, the lower and upper critical fields and the specific heat capacity of care-

fully selected compositions of NbxRe1−x in the range 0.22 ≤ x ≤ 0.34. For these

compounds the properties will be compared in order to conclude in some general

statements for the Niobium-Rhenium system.
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4.4.1 Magnetic susceptibility

Magnetic susceptibility measurements as a function of temperature were used in

order to determine the nature of superconducting phase transitions. Measurements

were carried out on small pieces of the polycrystalline samples for each composition

using a Quantum Design Magnetic Property Measurement System (MPMS) SQUID

magnetometer. For more information about this measuring system refer to Section

3.2.1. Magnetization measurements were collected in an applied field of 20 Oe for a

temperature range between 1.8 to 10 K.

Magnetic susceptibility is a dimensionless proportionality constant which indicates

the degree of magnetization of a material with respect to an applied magnetic field

as it is illustrated in the following relation,

χ = M/H, (4.1)

where M is the magnetization, H is the applied magnetic field and χ is the mag-

netic susceptibility. For the magnetization measurements, bar shaped samples were

used which have well-defined dimensions in order to determine the demagnetization

factors using the expression

πDz =
b2 − c2

2bc
ln

(√
a2 + b2 + c2 − a√
a2 + b2 + c2 + a

)
+
a2 − c2
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ln
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+
b
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(
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(
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+
(
a2 + c2

)3/2

3abc
, (4.2)

given in Ref. [69], where Dz is the demagnetization factor in z-axis, 2a, 2b, 2c are

the dimensions of the sample along the x, y, z-axes. The field was applied along

the z-axis. The estimations of demagnetization factors shown in Table 4.3 were

applied to the collected data in order to correct the susceptibility where a value of

-1 indicates the full flux expulsion.

Figure 4.4 shows the zero field cooled (ZFC) curves of the temperature depen-

dence of magnetic susceptibility for annealed and as-cast polycrystalline samples of

the composition NbxRe1−x when x = 0.22, 0.29 and 0.34 without (a) and with (b)

considering the demagnetization factors. The onset of superconductivity was indi-

cated for annealed and as-cast Nb0.22Re0.78 samples at approximately 7.5 ± 0.2 K.

For the as-cast samples of Nb0.29Re0.71 and Nb0.34Re0.66, superconductivity was

observed at 5.1 ± 0.2 and 4.2 ± 0.2 K, respectively. The observed transition tem-

peratures are in good agreement with the literature [28] as you can see in Fig. 4.3.

The data shows that the superconducting transition temperature, Tc decreases with

increasing x, with a maximum of 8.8 K for x = 0.18 reported to date. The transition

Figure 4.3: Illustration of the transition temperatures reported in Ref. [28] and the
values observed in this project for several compositions of NbxRe1−x in the range
0.18 ≤ x ≤ 0.34 as a function of x.
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(a)

(b)

Figure 4.4: Zero field cooled (ZFC) curves of magnetic susceptibility as a function

of temperature for the annealed Nb0.22Re0.78 and as-cast polycrystalline samples of

NbxRe1−x when x = 0.22, 0.29 and 0.34 without (a) and with (b) considering the

demagnetization factors.
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Composition, x 0.22 (as-cast) 0.22 (annealed) 0.29 (as cast) 0.34 (as-cast)

Tc (±0.2 K) 7.5 7.5 5.1 4.2

4πχ at 2 K (±0.02) -1.17 -1.14 -1.03 -1.06

Dz 0.109 0.118 0.112 0.124

4πχ at 1.8 K −1.03± 0.02 −1.03± 0.02 −0.92± 0.07 −0.94± 0.06

Table 4.3: Transition temperatures and magnetic susceptibility values with the es-

timations of demagnetization factors at which the superconducting transitions are

observed for NbxRe1−x in the range 0.22 ≤ x ≤ 0.34.

temperatures of Rhenium and Niobium are 2.42 and 9.3 K which is suggesting that

the transition temperature of the composition NbxRe1−x would increases again until

x = 1 [89].

According to Fig. 4.4(a), the curves reached 4πχ = −1.17 ± 0.02 (x = 0.22

annealed), −1.14 ± 0.02 (x = 0.22 as-cast), −1.03 ± 0.02 (x = 0.29 as-cast) and

−1.06±0.02 (x = 0.34 as-cast) at 2 K. The demagnetization factors were applied to

the curves so that 4πχ = −1.03±0.02 at 1.8 K for both annealed and as-cast samples

of Nb0.22Re0.78 indicating complete flux expulsion. The susceptibility values of the

as-cast Nb0.29Re0.71 and Nb0.34Re0.66 samples changed to 4πχ = −0.92 ± 0.07 and

−0.94±0.06 at 1.8 K, respectively, indicating nearly complete flux expulsion within

the error. A summary of the transition temperatures and the magnetic susceptibil-

ity values at which the superconducting transitions are observed for compositions

NbxRe1−x in the range 0.22 ≤ x ≤ 0.34, are provided in Table 4.3.

4.4.2 Lower critical field

Type-II superconductors have two critical magnetic fields, the lower critical field,

Bc1 and the upper critical field, Bc2. As stated previously in Section 1.1, a supercon-

ductor is in the Meissner state below Bc1 and Tc. The lower critical field indicates

the onset of the mixed state. The lower critical magnetic field at 0 K Bc1(0) can be

estimated. The critical field decreases from this value with increasing temperature,

reaching zero at the transition temperature.

The field dependence of magnetization for low applied fields at several tempera-

tures for annealed and as-cast polycrystalline samples of NbxRe1−x when x = 0.22,

0.29 and 0.34, were determined using a SQUID magnetometer. The data collected

for an as-cast polycrystalline Nb0.22Re0.78 sample are presented in Fig. 4.5, as an

example. The data collected for the four different samples have the same form. The
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Figure 4.5: Magnetization as a function of field for low field applied at several
temperatures for the as-cast polycrystalline Nb0.22Re0.78 sample.

curves are initially linear with gradient equivalent to full flux expulsion, i.e equiva-

lent to a gradient -1 (see Fig. 4.5). When the applied fields exceed the lower critical

field, magnetic flux penetrates the sample, perfect diamagnetism is lost and the sus-

ceptibility (gradient M/H) decreases before the curves eventually change gradient

and turn up as discussed in Section 2.3.

The lower critical field, Bc1 values were determined from the data collected at

different temperatures by taking the field at which the curves deviate from the initial

slope. The lower critical field, Bc1 can be observed as a slight deviation from perfect

diamagnetism. This deviation can be observed in our data by the subtraction of each

point from the initial dependence of the magnetization on field as determined by

the least-squares fit to the low-field data. Fig. 4.6 shows the deviation of magnetism

from the initial linear behaviour for the data collected at 5 K shown in Fig. 4.5. It

can be seen that the first deviation occurs at 29 ± 2 Oe, which is slightly smaller

than the one observed in Fig. 4.5. Similar observations were made for each of the

different temperatures applied for the four samples investigated.

This allowed the temperature dependence of the lower critical, Bc1(T ) to be de-

termined for each composition as shown in Fig. 4.7. The applied field values were

corrected using the demagnetization factors which actually means that the applied
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Figure 4.6: Deviation of the magnetization from the initial linear behaviour for the
data collected at 5 K shown in Fig. 4.5. The inset presents the field dependence
of magnetization at 5 K for the as-cast polycrystalline Nb0.22Re0.78 sample and the
red solid straight line is a linear fit to the data with an initial slope of -0.09.

fields were scaled by a factor of (1−D)−1 to calculate Bc1. According to the well-

defined dimensions the approximated values calculated for demagnetization factor,

D are shown in Table 4.4. Using Eq. 2.9 for temperature dependence of lower critical

field [2, 90] according to Ginzburg-Landau theory, the data were fitted in order to

obtain the experimental values of the lower critical field at 0 K. The experimental

values of Bc1(0) obtained from the fitting for the annealed and as-cast samples of

the compositions NbxRe1−x for x = 0.22, 0.29 and 0.34, with the estimations of

demagnetization factors calculated using demagnetization factor equation, are pre-

sented in Table 4.4. As you can see, there is a large difference at the lower critical

field at 0 K between the annealed and the as-cast sample. This could be explained

Composition, x D-factor, Dz Bc1(0) (G)

0.22 (annealed) 0.118 78± 1
0.22 (as-cast) 0.109 66± 2
0.29 (as-cast) 0.112 47± 1
0.34 (as-cast) 0.124 42± 1

Table 4.4: Experimental values of Bc1(0) for the annealed and as-cast samples of
NbxRe1−x, for 0.22 ≤ x ≤ 0.34 with the estimations of demagnetization factor (Dz).
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Figure 4.7: Lower critical field as a function of temperature for annealed and as-
cast polycrystalline NbxRe1−x samples when x = 0.22, 0.29 and 0.34 considering
the demagnetization factors. The data were fitted using the expression 2.9 which
can be derived using the Ginzburg-Landau theory.

as a result of the exposition of the sample at high temperatures which actually shows

that after the annealing some of the superconducting properties of the sample are

shown to be stronger.

4.4.3 Upper critical field

In this section, the transport properties of the non-centrosymmetric superconduc-

tors of NbxRe1−x in the range 0.22 ≤ x ≤ 0.34 will be discussed. The alternative

current (AC) transport resistivity measurements were carried out using a Quantum

Design Physical Properties Measurement System (PPMS) as explained in detail in

Section 3.3. The resistivity as a function of temperature for several applied fields

for all the samples used, was investigated in order to determine the upper critical

field, Bc2 (see Section 2.7). The applied fields ranged between 0 to 90 kOe. In

Fig. 4.8 (a), the resistivity as a function of temperature for the polycrystalline an-

nealed Nb0.22Re0.78 sample is illustrated as an example of the data collected. The

data were normalised at 7 K for the compositions Nb0.22Re0.78 and Nb0.29Re0.71 in

order to have a maximum normalised resistivity (ρ/ρ7K) of 1. The normalised data

for the polycrystalline annealed Nb0.22Re0.78 sample are presented in Fig. 4.8(b).
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(a)

(b)

Figure 4.8: AC resistivity (a) and the normalised data at 7 K (b) as a function of
temperature at different applied fields for the annealed polycrystalline Nb0.22Re0.78

sample.
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The transition is relatively sharp in zero-field for the polycrystalline annealed

Nb0.22Re0.78 sample (see Fig. 4.8) which within the error agrees with the magnetic

susceptibility data. When the applied field increases, the transition broadens. The

transition temperature Tc decreases as the applied field increases which shows an in-

verted symmetry between these two parameters. For example, when the applied field

is 90 kOe, T onset
c is 3.9± 0.2 K. Consequently, the transition temperature difference

in zero and 90 kOe applied field, ∆Tc for the polycrystalline annealed Nb0.22Re0.78

sample is approximately 4 K. For the as-cast polycrystalline Nb0.22Re0.78 sample,

the transition temperature is lower at around 7.7 ± 0.2 K which also within the

error agrees with the magnetization measurements. This difference in transition

temperature might be due to the variations of stoichiometry of the samples. Ac-

cording to Figs. 4.8(a) and 4.9, the maximum AC transport resistivity of the an-

nealed polycrystalline sample of this composition reached in zero field applied, was

ρ0 = 120± 2 µΩcm which is almost 40% greater than the maximum value observed

for the as-cast polycrystalline Nb0.22Re0.78 sample (ρ0 = 88±1 µΩcm). The annealed

sample has a higher resistivity in zero field applied than the as-cast sample because

It was annealed at 900 ◦C which it is assumed to affect some of the superconducting

properties like this one.

The resistivity (ρ) as a function of temperature (T ) of the annealed and as-cast

polycrystalline samples of composition Nb0.22Re0.78 in zero-field (H = 0 kOe) from

300 K down to 2 K are shown in Fig. 4.9. A sharp zero-field superconducting tran-

sition is observed at 7.4± 0.3 K for both samples. For the annealed polycrystalline

Nb0.22Re0.78 sample, the resistivity at 10 K before entering the superconducting state

is ρ0 = 120±2 µΩcm and the residual resistivity ratio RRR = ρ(300 K)/ρ(10 K) =

1.1. For the as-cast polycrystalline Nb0.22Re0.78 sample, ρ0 = 88 ± 1 µΩcm at

10 K in zero magnetic field applied and RRR = ρ(300 K)/ρ(10 K) = 1.08. The

two residual resistivity ratios are in good agreement with each other. The resid-

ual resistivity ratios are close to 1 which shows that the samples are poor metals

with a lot of disorder hence a lot of disorder scattering. A similar behaviour in

the temperature dependence of resistivity for 0 ≤ T ≤ 300 K it was reported in

recent research findings on other Rhenium compounds including Re6Hf, Re3W and

Re6Zr [42, 50, 91]. For the compound Re6Hf, the resistivity increases with temper-

ature starting at ρ(0) ≈ 100 µΩcm and reaching at around 159 µΩcm at 300 K. For

the composition Re3W two different phases were observed; however, the behaviour

shown in Fig. 4.9 agrees only with the non-centrosymmetric cubic phase shown in

Ref. [42].

57



Figure 4.9: Electrical resistivity, ρ of annealed and as-cast polycrystalline
Nb0.22Re0.78 samples versus temperature, T measured in zero applied magnetic field
in the temperature range 2-300 K.

For the annealed and as-cast polycrystalline Nb0.22Re0.78 samples, the field de-

pendence of resistivity was investigated at 8 and 10 K (see Figs. 4.10 and 4.9). At

8 K, the data were collected for the 0, 1, 2, 5, 10, 20, 40, 50, 70, 80 and 90 kOe fields

applied and the curves are parabolic with positive gradient. Consequently, as the

applied field increases, the AC resistivity decreases non-linearly. At 10 K, the curve

shows only two points for low fields applied (0-50 kOe) and for high fields applied

(50-90 kOe), the curve shows only 4 points. As a result it is difficult to comment

on the form of the curve. When the applied field was 0 kOe and T = 10 K, the

AC resistivity (ρ0) is approximately 120 ± 2 and 88 ± 1 µΩcm for the annealed

and as-cast polycrystalline Nb0.22Re0.78 samples, respectively. At T = 8 K and in

zero field applied the AC resistivity (ρ0) is approximately 119± 2 and 87± 1 µΩcm

for the annealed and as-cast polycrystalline Nb0.22Re0.78 samples, respectively. The

values of ρ(0) at 8 and 10 K for both samples are in good agreement with the values

observed from Figs. 4.8 and 4.9 above. The resistivity increases with applied field

and as a result there is a small positive magnetoresistance (MR) of about 2% which

is quite normal for this materials [92].
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(a)

(b)

Figure 4.10: AC resistivity as a function of applied field at (a) 8 K and (b) 10 K
when fields applied range between 0 and 90 kOe for the annealed and as-cast poly-
crystalline Nb0.22Re0.78 samples.
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Figure 4.11: Temperature dependence of the normalised AC transport resistivity
measurements at different applied fields range between 0 and 90 kOe for the as-cast
polycrystalline Nb0.29Re0.71 sample. The data were normalised at 7 K.

For the as-cast polycrystalline Nb0.29Re0.71 sample, the resistivity normalised data

as a function of temperature are illustrated in Fig. 4.11. The curves show similar

behaviour with Fig. 4.8(b) for lower fields applied and slightly different behaviour

for higher applied fields such as 90, 80 and 70 kOe. For this composition there is

a sharp onset of superconductivity at around 5.5 ± 0.3 K which within the error

it is consistent with magnetization data and the data reported in Ref. [28]. This

composition has a lower transition temperature than the one observed for x = 0.22.

Because of this, the form of the curves in Fig. 4.11 is different than the format

observed for the x = 0.22 when large magnetic fields applied. To be precise, when

the applied fields are above 70 kOe, the onset of superconductivity occurs below

the minimum available temperature on AC Transport PPMS which is 2 K. The

maximum AC transport resistivity value observed at zero field applied for the as-

cast polycrystalline Nb0.29Re0.71 sample is ρ0 = 76±3 µΩcm which is half the value

reported in Ref. [28] which may be a result of the homogeneity this sample has.

This sample is more homogeneous than the one investigated in Ref. [28].

Finally, the AC transport resistivity of the as-cast polycrystalline Nb0.34Re0.66

was investigated. In this case, the data were normalised at 6 K as the transition

temperature of this compound is lower. For this compound, there is an onset of
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Figure 4.12: Temperature dependence of the normalised AC transport resistivity
measurements at different applied fields range between 0 and 90 kOe for the as-cast
polycrystalline Nb0.34Re0.66 sample. The data were normalised at 6 K.

superconductivity at around 4.7 ± 0.4 K as shown in Fig. 4.12, which agrees with

the magnetic susceptibility and magnetization measurements within the error. The

resistivity never reaches zero. Even at low applied fields the data are reaching a

minimum of ρ/ρ6K = 0.02. The origin of this effect is still not known. At an applied

field of 20 kOe, there is a jump to a higher ρ/ρ6K value. This shows that as the

alternative current increases, the resistance increases according to Ohm’s law.

The upper critical field can be verified by measuring the magnetization as a func-

tion of applied fields for constant temperatures using a Vibrating Sample Magne-

tometer(VSM). As an example, the magnetization as a function of applied fields

at several temperatures for the annealed polycrystalline Nb0.22Re0.78 sample was

investigated. The magnetization measurement collected at 5, 6, 6.5 and 7 K for this

sample are presented in Fig. 4.13. The system is shown to be in a superconducting

state up to 50 kOe at 5 K. There is a hysteresis loop of a type-II superconductor up

to 5 kOe. In this field regime between 5 and 50 kOe the magnetization is reversible.

The upper critical field, Bc2 from these data can be determined by indicating the

field at which the gradient of the loops change. This procedure was repeated for

each different temperature used. At these temperatures, the upper critical field
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Figure 4.13: Magnetization as a function of applied field for an annealed polycrys-
talline sample of Nb0.22Re0.78 at 5, 6, 6.5 and 7 K. The arrows on the figures show
how the data were collected starting from the first loop between 0 to 50 kOe, then
50 to 0 kOe (second loop), 0 to -50 kOe (third loop) and -50 to 0 kOe (fourth loop).

values determined for 6, 6.5 and 7 K are in good agreement with the values observed

from resistivity measurements at these temperatures. For lower temperatures than

6 K, the upper critical field was located at fields outside the range of fields studied.

The upper critical field values for each different field applied were determined by

the temperature at the onset of superconductivity (T onset
c ) for all the samples. The

data were analysed using two different theories, the Ginzburg-Landau theory and

the Werthamer-Helfand-Hohenberg (WHH) model in the dirty limit. By fitting the

data according to the Ginzburg-Landau theory and consequently using equation,

Bc2(T ) = Bc2(0)

(
1− T

Tc

2

1 + T
Tc

2

)
, (4.3)

from Refs. [28, 63, 67, 70], the upper critical field values at 0 K, Bc2(0) were deter-

mined. Fig. 4.14 shows the temperature dependence of upper critical field according

to Ginzburg-Landau theory and Werthamer-Helfand-Hohenberg (WHH) model for

62



Figure 4.14: Temperature dependence of the upper critical field according to
Ginzburg-Landau theory (GL Theory) and Werthamer-Helfand-Hohenberg (WHH)
model for polycrystalline annealed and as-cast samples of composition of NbxRe1−x
in the range 0.22≤ x ≤0.34. The upper critical field values observed from magneti-
zation measurements for the annealed polycrystalline Nb0.22Re0.78 sample were also
included in the plot. For the rest of the compounds, the upper critical field values
plotted were collected only from resistivity measurements. In this figure simulations
using the WHH model in the dirty limit when α = 0, λ = 0 and dBc2/dT = 1 for
the temperature dependence of the upper critical field are shown.

annealed and as-cast composition NbxRe1−x for x = 0.22, 0.29 and 0.34 using the

data collected from all the methods described above. The B2(0) values obtained

from the GL theory fitting for each compound are 181 ± 1, 160 ± 2, 97 ± 1 and

64± 2 kG for x = 0.22 (annealed and as-cast), 0.29 and 0.34, respectively. For the

Ginzburg-Landau theory to fit the data the initial slope required is 1, consequently

a straight line. As you can see, the formula generally fits the data for slightly lower

temperatures than the transition temperature, (Tc). As it approaches Tc, the data

are not fitted properly as they show a curvature.

As a consequence, a different approach to fit the upper critical field data was

required. The WHH model in the dirty limit can be calculated using Eq. 2.38, as it

is described in Section 2.8. A simulation of the model when α = 0, λ = 0 and the
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gradient of the data (dBc2/dT ) equals to 1, was created. Using this simulation and

Eq. 2.42, an approximate value of the gradient for each set of data collected and

the data were forced to fit the simulation of the model. The simulations with the

experimental data collected for each composition used in this project are shown in

Fig. 4.14. The values for upper critical field at 0 K, Borb
c2 (0) for the four samples

are 153± 17, 144± 14, 88± 17 and 60± 10 kG for x = 0.22 (annealed and as-cast),

0.29 and 0.34, respectively. In Ref. [28], the B2(0) and Borb
c2 (0) values calculated for

x = 0.29 were 118 kG and 86 kG, respectively. B2(0) value is greater than the one

observed in the present work and Borb
c2 (0) value agrees with the one observed. The

upper critical field value using the Ginzburg-Landau theory reported in literature

was calculated using the appropriate expression while in the present work this value

was observed from the fittings. As you can see, the data are following the WHH

model only for temperatures close to Tc for the annealed and as-cast samples of

Nb0.22Re0.78. For the as-cast polycrystalline Nb0.29Re0.71 and Nb0.34Re0.66 samples,

it is obvious that even when the data are forced to follow the WHH model in the

dirty limit, they show a slightly different behaviour. This is more visible for the

data collected for the as-cast polycrystalline Nb0.34Re0.66.

A number of important parameters can be calculated using the lower and upper

critical fields such as coherence length (ξ), Ginzburg-Landau parameter (κ) and pen-

etration depth (λ). Using the upper critical field values and Eq. 2.12, the Ginzburg-

Landau coherence length ξ was calculated for the annealed and as-cast polycrys-

talline NbxRe1−x samples for x = 0.22, 0.29 and 0.34. The coherence lengthvalues

obtained for all the compounds investigated in this section are listed in Table 4.5.

Using both critical fields (lower and upper), the Ginzburg-Landau parameter κ could

be estimated. Parameter κ is exponentially proportional to the ratio of the lower

Composition
x

Coherence length,
ξ (nm)

Ginzburg-Landau parameter
κ (no units)

Penetration depth
λ (nm)

0.22 (annealed) 4.27± 0.02 70± 1 300± 6
0.18 (as-cast) 4.00± 0.02 79± 1 318± 2
0.22 (as-cast) 4.54± 0.06 72± 3 327± 7
0.29 (as-cast) 5.83± 0.06 66± 2 383± 5
0.34 (as-cast) 7.17± 0.22 55± 3 397± 4

Table 4.5: Derived superconducting and normal-state parameters for the annealed
and as-cast polycrystalline NbxRe1−x samples for x = 0.18, 0.22, 0.29 and 0.34 using
the magnetization and AC transport resistivity data. The values presented for the
polycrystalline as-cast Nb0.18Re0.82 sample are collected from Ref. [28]. ξ: Ginzburg-
Landau coherence length; κ: Ginzburg-Landau parameter; λ: London penetration
depth.
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Figure 4.15: Ginzburg-Landau parameter, κ dependence of the fraction 2κ2/ lnκ for
5 ≤ κ ≤ 75.

and upper critical fields Borb
c2 /Bc1 as shown in Eq. 2.14. Using this ratio and Fig. 4.15

which shows 2κ2/ lnκ as a function of κ for 5 ≤ κ ≤ 75, κ value were estimated for x

= 0.22 (annealed and as-cast), 0.29 and 0.34 (see Table 4.5). In order to determine

the penetration depth λ, the coherence length and parameter κ are required along

with Eq. 2.10. The penetration depth values for the compounds NbxRe1−x when x

= 0.22 (annealed and as-cast), 0.29 and 0.34 are also presented in Table 4.5. The

values of these parameters estimated for each of the compounds investigated in this

Section are presented in Table 4.5. As the composition, x increases the values of

these parameters increase as well.

4.4.4 Specific heat capacity

The specific heat capacity as a function of temperature for different applied fields

of as-cast polycrystalline Nb0.22Re0.78 sample was investigated using a heat capacity

Physical Properties Measurement System (Heat Capacity PPMS) which is discussed

in Section 3.4. The applied fields range between zero and 90 kOe. In zero applied

field, there is a jump in the specific heat as shown in fig. 4.16 which indicates the

onset of bulk superconductivity with transition temperature, Tc = 7.4± 0.3 K. This

value is in good agreement with the magnetization and resistivity measurements

reported in the previous sections. As the applied field increases, the transition
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temperature decreases but a superconducting transition is still observed even at

90 kOe, which indicates that the upper critical field exceeds this value at 0 K.

Fig. 4.16(a) shows C/T against T for the as-cast polycrystalline Nb0.22Re0.78 when

the applied fields are 0, 10, 30, 50, 70 and 90 kOe. C/T against T 2 is shown

in Fig. 4.16(b). For higher fields the peak shifts to lower temperatures and the

Tc(H) values agree well with the critical temperatures extracted from the resistivity

measurements. At very low temperatures and in higher fields there is an upturn

in C/T at base temperature. This appears most clearly in the 90 kOe data and is

attributed to a hyperfine contribution to the heat capacity from the Rhenium [93].

A linear behaviour is observed in C/T versus T 2 above the transition temperature,

Tc for each field applied. The data between 3.8 and 10 K were collected and presented

in Fig. 4.17 with the appropriate fits. As you can see the jump shown in Fig. 4.16 is

not visible in Fig. 4.17 because it exists at very small temperatures and at very small

C/T ratios. If the figure was zoomed between 0 to 10 mJ/molK2 and between 0 to

10 K, this jump will still be visible. The data were fitted using a slightly different

version of Eq. 2.28. In this case the data were fitted using,

C = γT + βT 3 + δT 5, (4.4)

where δ is an additional constant term. As you can see the data were fitted for

different temperature ranges in order to determine the heat capacity coefficients γ,

β and δ. Sommerfeld electronic heat capacity coefficient, γ ranges between 4.00 ±
0.03 and 4.67 ± 0.04 mJ/molK2, while Debye T 3-law lattice coefficient, β is in the

range 0.06± 0.01 ≤ β ≤ 0.04± 0.01 mJ/molK4. The additional constant coefficient,

δ values range between 1.01 ± 0.01 × 10−4 and 2.26 ± 0.0001 × 10−4 mJ/molK6.

These values are shown in Tab. 4.6.

Using the β values, the Debye temperature (ΘD) can be calculated using Eq. 2.24,

yielding ΘD values that vary between 319 ± 20 to 365 ± 30 K for β equal to 0.06

± 0.01 and 0.04 ± 0.01 mJ/molK4, respectively. Fig. 4.18 shows the temperature

dependence of the specific heat capacity of a polycrystalline as-cast Nb0.22Re0.78

sample for temperatures in the range 1.5 to 300 K. The measured normal state

specific heat capacity at 300 K, Cp(T = 300 K) = 24.07± 0.26 J/molK in Fig. 4.18

is close to the expected Dulong-Petit high-T limiting value Cv = 3nR = 3R =

24.93 J/molK.
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(a)

(b)

Figure 4.16: Temperature dependence of specific heat capacity of a polycrystalline
as-cast sample of Nb0.22Re0.78 in applied fields between 0 to 90 kOe. C/T against
T is illustrated in (a) and C/T against T 2 in (b). The purple arrow in (a) shows
where the jump ∆C was obtained.
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Figure 4.17: Temperature dependence of the specific heat capacity for temperatures
in the range 3.8 ≤ T ≤ 10 K of a polycrystalline as-cast sample of Nb0.22Re0.78 in
applied fields between 0 to 90 kOe. The magenta, blue and black solid lines show
the data fitted to Eq. 4.4 for T 2 = 100, 225 and 400 K2.

Fitting using the full Debye expression gives a Debye temperature of 281± 10 K,

in reasonable agreement with the values obtained from the low temperatures data

discussed above. However, this fit gave a reduced γ value of 1.6 mJ/molK2. Using

the low temperature γ value and the expression

DC(EF) =
3γ

π2k2
B

, (4.5)

from Ref. [94] where kB is the Boltzmann constant, the density of states at the Fermi

energy for spin directions obtained from heat capacity measurements, DC(EF) was

estimated and the observed values are illustrated in Table 4.6. This is also the

density of states that enters the BCS equations for the transition temperature and

for the BCS gap and the thermodynamic properties as a function of temperature.

From Fig. 4.16(a), the jump in the specific heat capacity was obtained as it is

shown on the figure. The height of the jump was extrapolated to take into account

the breadth of the transition. The jump in the specific heat capacity at the transition
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Figure 4.18: Temperature dependence of the specific heat capacity of a polycrys-
talline as-cast Nb0.22Re0.78 sample for 1.5 ≤ T ≤ 300 K in zero magnetic field
applied. The data were fitted using the full Debye expression.

in zero field applied was estimated to be between ∆C/T = 5.3± 0.1 mJ/molK2 and

5.8 ± 0.1 mJ/molK2 leading to values for ∆C(Tc)/γTc of between 1.39 ± 0.13 and

1.18 ± 0.14. The rather large spread of these values is due to the uncertainty of γ

which depend on the fitting range used (400 to 225 and 100 K2) and the estimate

for the magnitude of the jump in C. Using the largest value for the jump in C and

Eq. 2.31, α values were estimated to range from 1.74 ± 0.31 to 1.70 ± 0.28 which

is slightly smaller than the α < αBCS value of 1.76. This means that the electron-

phonon coupling strength is weaker than a conventional material. For x = 0.18, α

was estimated to be between 1.84 and 2.04 which is slightly higher than expected

for a conventional BCS material [2]. However, the reduced α values are in good

agreement with those reported in Ref. [28].

The thermodynamic critical field, Bc in the α-model when temperature is zero is

given by

Bc(0) =

√
6

π
α
(
γnV T

2
c

) 1
2 . (4.6)
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Fitted to T 2 (K2) 400 225 100
γ (mJ/molK2) 4.00± 0.03 4.49± 0.02 4.67± 0.03
β (mJ/molK4) 0.06± 0.01 0.05± 0.01 0.04± 0.01
δ (mJ/molK6) 1.01± 0.001× 10−4 1.64± 0.001× 10−4 2.26± 0.001× 10−4

ΘD (K) 319± 2 339± 2 365± 3
DC(EF) (states/eVf.u) 1.69± 0.02 1.90± 0.03 1.98± 0.02
∆C(Tc)/γTc (no units) when
∆C/T = 4.4± 0.1 mJ/molK2 1.10± 0.13 0.98± 0.12 0.94± 0.14
∆C(Tc)/γTc (no units) when
∆C/T = 5.5± 0.1 mJ/molK2 1.38± 0.13 1.23± 0.12 1.18± 0.13
α (no units) 1.73± 0.26 1.63± 0.24 1.60± 0.26
Bc (G) 1155± 220 1153± 217 1154± 234
l (nm) 0.69± 0.08 0.55± 0.05 0.50± 0.12

Table 4.6: The Sommerfeld electronic γ, the Debye T 3-law lattice β and additional
δ heat capacity coefficients with measured and derived superconducting and rel-
evant normal-state parameters for the as-cast polycrystalline Nb0.22Re0.78 sample
corresponding to the data fitted at 400, 225 and 100 K2. ΘD: Debye temperature;
DC(EF): density of states at the Fermi velocity; ∆C: heat capacity jump at Tc;
α = ∆0kBTc; Bc: thermodynamic critical field; l: mean free path.

where γnV can be calculated using,

γnV =
γ

VM
, (4.7)

where VM is the molar mass volume [73, 94]. Using Eq. 4.6 and the α values,

the thermodynamic critical field, Bc was found to be 1155 ± 220, 1153 ± 217 and

1154±234 G when the data fitted to 400, 225 and 100 K2, respectively. The normal

state parameters obtained from the above analysis of the specific heat capacity data

for the polycrystalline as-cast Nb0.22Re0.78 sample are summarized in Table 4.6. The

mean free path, l for conduction carrier scattering at low temperatures depends on

the values of DC(EF) and ρ0 according to equation

l =
3m2

eV
2

f.u

e2ρ0π2h̄3DC(EF)2
, (4.8)

where Vf.u = Vcell/2, h̄ = h/2π and h is the Planck’s constant. Using the density of

states at Fermi velocity, DC(EF) and the resistivity values at T = 0, ρ0 the mean

free path l was calculated and its values vary between 0.69± 0.08 to 0.50± 0.12 nm

(see Table 4.6).

The specific heat capacity data below Tc were forced to fit a simple single isotropic

gap BCS model. The energy gap is given by Eq. 2.21. The entropy of the supercon-

ducting state is then calculated using Eq. 2.29. Finally, the electronic contribution
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Figure 4.19: Temperature dependence of the specific heat capacity of a polycrys-
talline as-cast Nb0.22Re0.78 sample for 0 ≤ T ≤ 10 K in zero magnetic field applied.
The data were forced to fit the a simple single isotropic gap BCS model. The green
line shows the fitting using γ, β and δ values obtained from the normal state data
between 10 K and Tc. The red line shows the fitting using a sightly reduced value
for Tc of 7.3 K.

to the heat capacity is derived using Eq. 2.30. Fig. 4.19 shows the fits to a simple

single isotropic gap BCS model for the data collected in zero applied field. In this

work, the heat capacity was fitted firstly using the γ, β and δ values obtained from

the normal state data between 10 K and Tc (green line on Fig. 4.19). A slightly

reduced value for Tc of 7.3 K was used to try to take into account the breadth of

the transition (red line on Fig. 4.19). This led to a BCS parameter of 1.46 ± 0.02.

If we allow the parameters γ, β, δ and Tc to vary the BCS parameter increases to

1.53± 0.02 but Tc is reduced to 7.2 K and δ to 1.20± 0.01× 10−4 mJ/mol6. In both

cases, there is a significant differences between the data and a single gap model

which merit further investigation. The deviation maybe due to small deviations

from the single gap BCS model.

Previous work by Smidman on x = 0.18 sample, revealed that this composi-

tion follows the expected behaviour for a simple BCS model [2]. However, this

fitting required a small background term to be included to take account of a non-

superconducting fraction of around 0.3%. Chen et al. also reported that C(T ) can
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be nicely described by the one gap BCS model where ∆0 = 1.93Tc. They showed

that the temperature dependence of the penetration depth, ∆λ(T ) and the super-

fluid density ρs(T ) are also consistent with the BCS model. However, they only

confirmed this behaviour for the Nb0.18Re0.82 composition and it is clear from their

work that the temperature dependence of the heat capacity below Tc for composi-

tions with higher Niobium content also differ from a simple BCS model.
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Chapter 5

Conclusions and future work

5.1 Summary and conclusions

Unconventional superconductivity has been observed in different classes of com-

pounds and intense studies of these materials have been carried out. Non-

centrosymmetric superconductors are possible candidates for studying unconven-

tional superconductivity. Non-centrosymmetric superconductors exhibiting mixed

parity pairing are interesting system to study because in the superconducting state,

an admixture of spin singlet or triplet pairing may exist. There has been partic-

ular focus on non-centrosymmetric superconductors in Niobium-Rhenium system.

These compounds appear to be conventional type-II superconductors. This the-

sis presents magnetic, thermal and transport superconducting properties of several

non-centrosymmetric compositions in NbxRe1−x for 0.22 ≤ x ≤ 0.34.

In Chapter 4, polycrystalline annealed and as-cast samples of the non-

centrosymmetric compositions of NbxRe1−x when x = 0.22, 0.29 and 0.34, were

studied. The compositions were characterised using composition analysis (EDAX).

From the measurements collected, it is obvious that the polycrystalline annealed

and as-cast samples of compositions Nb0.22Re0.78, Nb0.29Re0.71 and Nb0.34Re0.66

were formed with the correct stoichiometry. The structure of the as-cast polycrys-

talline Nb0.22Re0.78 sample was investigated using powder x-ray diffraction (XRD)

in order to observe the lattice parameter of the compound. Using the space group

of this composition which is I 4̄3m (No. 217) and the wavelength of Kα radiation,

the experimental data were analysed by profile matching method. The analysis

confirmed the sample has a single phase with a cubic α-Mn structure. The lattice

parameter calculated from peak position is 9.67±0.01 Å which agrees with the value

9.65± 0.01 Å cited in literature [28].
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Magnetic susceptibility measurements were made using a SQUID magnetometer in

order to identify the nature of superconducting phase transitions. For polycrystalline

annealed and as-cast Nb0.22Re0.78 samples, the transition temperature is 7.5±0.2 K,

while for the polycrystalline as-cast Nb0.29Re0.71 and Nb0.34Re0.66, the transition

temperatures were found to be 5.1± 0.2 and 4.2± 0.2 K, respectively. These values

are in good agreement with the values reported in Ref. [28]. The experimental data

show that as x increases, the transition temperature, (Tc) decreases with a maximum

at 8.8 K for x = 0.18 reported to date. When the demagnetization factors applied,

the annealed and as-cast polycrystalline Nb0.22Re0.78 samples showed complete flux

expulsion at 1.8 K which agrees with Refs. [2, 59] while the as-cast Nb0.29Re0.71 and

Nb0.34Re0.66 samples showed nearly complete flux expulsion at 1.8 K which is in

good agreement with Ref. [28] (see Table 5.1).

From the field dependence curves of magnetization when low fields applied at sev-

eral temperatures, the lower critical field values were extracted for each of the four

compositions. The magnetization curves showed similar behaviour with the figure

presented in Ref. [2]. The experimental data were fitted to the Ginzburg-Landau

theory. The applied field values were corrected using demagnetization factors. When

these factors applied, the annealed polycrystalline Nb0.22Re0.78 sample has greater

lower critical field value at 0 K, Bc1(0) than the value obtained for the as-cast sam-

ple. As x increases, the lower critical field at 0 K, Bc1(0) decreases. From the fits,

it is obvious that the lower critical field follows the behaviour expected for a super-

conductor with a single gap structure. The same statement was reported in Ref. [2].

The upper critical field values are presented in Table 5.1 and are in good agreement

with the values cited in literature [2, 28, 59]. Magnetization loops as a function

of field at 5, 6, 6.5 and 7 K, up to 50 kOe reveal that the magnetization becomes

reversible above 5 kOe. In Ref. [2], similar magnetization loops were presented for

single crystal of Nb0.18Re0.82 sample which in turn agrees with the present work.

The transition temperatures, Tc obtained from resistivity, magnetic susceptibility

and magnetization measurements were in good agreement for the four polycrystalline

compounds reported [28]. The transition temperature decreases as the applied field

increases which shows an inverted symmetry between these two parameters. The

residual resistivity ratios for the annealed and as-cast polycrystalline Nb0.22Re0.78

samples were 1.1 and 1.08, respectively. In this class of materials the residual re-

sistivity ratio (RRR) is approximately 1 and as a result the RRR values estimated

are in good agreement with the value cited in Ref. [59]. Consequently, the samples
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are poor metals with a lot of disorder scattering. A calculation of orbital limiting

field estimates a higher value for the upper critical field at lower temperatures. As a

result, this value indicates that Pauli paramagnetic limiting appears to be reduced.

The data were initially fitted to the Ginzburg-Landau theory. A good fit could not

be obtained and as a result the WHH model in the presence of Pauli paramagnetic

limiting when λ = 0 and α = 0 was used. Unfortunately, a good fit could not be

obtained although these theories describe one-gap type-II superconductors. This

suggested that the reduction of the Pauli limiting field due to spin-orbit scattering

should be considered. The maximum field which could be applied was 90 kOe. In

order to determine more accurately the role of Pauli paramagnetic limiting and the

suitability of the Ginzburg-Landau theory or the WHH model, it would be a good

suggestion to perform measurements in higher applied fields or in single crystals.

Also, the theory for limits of the upper critical field in dirty two-gap superconductors

could be used to analyse the results in order to investigate which model is more suit-

able. Consequently, the experimental data may be analysed using a theory suitable

for two-gap superconductors like the one introduced in 2007 by A. Gurevich [95].

From the above measurements, the annealed and as-cast polycrystalline NbxRe1−x

samples when x = 0.22, 0.29 and 0.34 were found to be type-II superconductors with

κ = 70±1 (annealed x = 0.22), 72±3 (as-cast x = 0.22), 66±2 (x = 0.29) and 55±3

(x = 0.34) which agrees with the κ values cited in Refs. [2, 28]. Table 5.1 shows the

parameters evaluated for the compositions investigated in this project along with

those cited for the composition Nb0.18Re0.82 in literature. It was observed that the

parameters, κ. ξ and λ increase with increasing Niobium content. These values

suggested that the non-centrosymmetric compositions of NbxRe1−x for x = 0.22,

0.29 and 0.34 are s-wave superconductors.

The specific heat capacity of the as-cast polycrystalline Nb0.22Re0.78 sample was

investigated. The onset of bulk superconductivity was observed at Tc = 7.4± 0.3 K

which agrees with magnetization and resistivity measurements. Linear behaviour is

observed above the transition temperature for each of the fields applied. The γ values

vary from 4.0 to around 4.7 mJ/molK2 which are in good agreement with the value

4.6 mJ/molK2 cited in Ref. [28]. The Debye temperature observed from the fitting of

the C/T versus T data for 1.5 ≤ T ≤ 300 K was found to be in reasonable agreement

with the values obtained from the low temperature data. The heat capacity jump at

transition temperature in zero-field applied, ∆C was not that sharp which allowed

ambiguous analysis of the derived contribution in the superconducting state. The

∆C(Tc)/γTc varies between 1.38± 0.13 and 0.94± 0.14 which are smaller that the
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x
0.18 (as-cast)
single crystal

0.18 (as-cast)
polycrystal

0.22 (annealed) 0.22 (as-cast) 0.29 (as-cast) 0.34 (as-cast)

α (Å) 9.65± 0.07 9.65± 0.07 9.69± 0.01 9.67± 0.01 9.73± 0.01 9.76± 0.01

V (Å
3
) 899± 2.23 899± 2.23 910± 2.83 904± 2.83 920± 2.86 930± 2.89

Tc (K) 8.8± 0.2 8.8± 0.2 7.5± 0.2 7.5± 0.2 5.1± 0.2 4.2± 0.2
4πχ at 1.8K −1.00± 0.01 −0.95± 0.04 −1.03± 0.02 −1.03± 0.02 −0.92± 0.07 −0.94± 0.06
Bc1(0) (G) 55± 2 56± 1 78± 1 66± 2 47± 1 42± 1
Bc2(0) (kG) not reported 230± 2 181± 1 160± 2 97± 1 64± 2
Borb

c2 (0) (kG) 148± 1 161± 2 153± 17 144± 14 88± 17 60± 10
ξ (nm) 4.00± 0.02 4.00± 0.02 4.27± 0.02 4.54± 0.06 5.83± 0.06 7.17± 0.22

κ (no units) 76± 1 79± 2 70± 1 72± 3 66± 2 55± 3
λ (nm) 304± 2 318± 2 300± 6 327± 7 383± 5 397± 4

Table 5.1: Superconducting and normal-state parameters derived using magneti-
zation and resistivity measurements for the annealed and as-cast polycrystalline
NbxRe1−x samples when 0.22 ≤ x ≤ 0.34 and the reported superconducting and
normal-state parameters for the single crystal and polycrystalline Nb0.18Re0.82 sam-
ples. V: volume per unit cell, α: lattice parameter, Tc: transition temperature, 4πχ:
magnetic susceptibility, Bc1(0): lower critical field, Bc2(0): upper critical field using
Ginzburg-Landau theory, Borb

c2 (0): upper critical field using WHH model simula-
tion for α = 0 and λ = 0, ξ: coherence length, κ: Ginzburg-Landau parameter, λ:
penetration depth. The data for the single crystal composition of Nb0.18Re0.82 were
reported in Ref. [2] and the data for the polycrystalline composition were reporten
in Ref. [28].

BCS prediction of 1.43 [94]. It was previously reported that the ∆C(Tc)/γTc varies

from 1.86 to about 0.5 for x = 0.18 to 0.31 and as a consequence the observed

values agree with the literature. Using the largest value for the jump in specific

heat capacity, α values were in the range 1.60 ≤ α ≤ 1.73 which are smaller that

the BCS value (αBCS) of 1.76 and as a result it was suggested that the electron-

phonon coupling strength is weaker than a conventional material. In comparison

with the conclusions made in Ref. [28], these compounds are unconventional s-wave

superconductors with evidence of spin singlet pairing in spite of the heavy atomic

mass of Rhenium residing on the non-centrosymmetric sites.

5.2 Future work

A research is never done until you indicate the fields that need improvements

or further investigation. The presented work contains magnetization, resistivity

and specific heat capacity studies of a few non-centrosymmetric polycrystalline

NbxRe1−x compounds in the range 0.22 ≤ x ≤ 0.34. A comparison of the measure-

ments collected for polycrystalline and single crystal samples would give additional

information about the compounds and lead to better conclusions. Additionally, in

order to investigate and check the presence of superconducting gaps, it would be a
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good idea to carry out muon spectroscopy (µSR) and small angle neutron scattering

(SANS) experiments.
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