
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/174797 

 

 

 
Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/174797
mailto:wrap@warwick.ac.uk


Structural and magnetic investigations of chiral

magnets

by

Amelia Elisabeth Hall

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

in Physics

Department of Physics

July 2022



Contents

List of Tables ii

List of Figures iii

Acknowledgments iv

Declarations vi

Abstract ix

Abbreviations x

Chapter 1 Introduction 1

1.1 Intercalated transition metal dichalcogenides . . . . . . . . . . . . . 3

1.2 The Mn3XY family . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Chapter 2: Theory . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Chapter 3: Experimental details . . . . . . . . . . . . . . . . 10

1.3.3 Chapter 4: Neutron diffraction study of V1/3NbS2 . . . . . . 10

1.3.4 Chapter 5: A comparative study of the magnetic properties

of Mn1/3NbS2, Cr1/3NbS2 . . . . . . . . . . . . . . . . . . . . 10

1.3.5 Chapter 6: Neutron diffraction studies of Mn3IrSi and Mn3RhGe 10

1.3.6 Chapter 7: Conclusions and further work . . . . . . . . . . . 11

Chapter 2 Theory 12

2.1 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Neutron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 18

i



2.2 Magnetism on the atomic level . . . . . . . . . . . . . . . . . . . . . 19

2.3 Exchange interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Direct exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Indirect exchange . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Dzyaloshinskii-Moriya interaction . . . . . . . . . . . . . . . . 24

2.3.4 Zeeman energy . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Long range magnetic ordering . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Antiferromagnetism . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Ferrimagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Spin glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.5 Chiral magnetism . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.6 Frustrated magnetism . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Topological magnetic spin structures . . . . . . . . . . . . . . . . . . 31

2.5.1 The chiral soliton lattice . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 3 Experimental Details 35

3.1 Sample synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Solid state synthesis . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Arc melting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Chemical vapour transport . . . . . . . . . . . . . . . . . . . 37

3.1.4 Modified Bridgman growth . . . . . . . . . . . . . . . . . . . 38

3.2 Energy dispersive x-ray analysis . . . . . . . . . . . . . . . . . . . . . 40

3.3 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Diffraction techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Neutron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 dc susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 Magnetisation as a function of field . . . . . . . . . . . . . . . 50

3.5.3 ac susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Lorentz transmission electron microscopy . . . . . . . . . . . . . . . 51

Chapter 4 Neutron diffraction study of V1/3NbS2 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ii



4.3 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Laue x-ray diffraction . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Single crystal x-ray diffraction . . . . . . . . . . . . . . . . . 56

4.4 Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 dc susceptibility and magnetisation . . . . . . . . . . . . . . . . . . . 59

4.6 ac susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Powder neutron diffraction . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Single crystal neutron diffraction . . . . . . . . . . . . . . . . . . . . 71

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 5 A comparative study of the magnetic properties of Mn1/3NbS2,

Cr1/3NbS2, and Cr1/3TaS2 76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Cr1/3NbS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.3 Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.4 dc susceptibility and magnetisation . . . . . . . . . . . . . . . 81

5.2.5 ac susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.6 LTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Cr1/3TaS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 dc susceptibility and magnetisation . . . . . . . . . . . . . . . 94

5.3.4 ac susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Mn1/3NbS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.3 Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.4 dc susceptibility and magnetisation . . . . . . . . . . . . . . . 105

5.4.5 ac susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.6 LTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 6 Magnetisation studies of Mn3IrSi, Mn3RhGe, and Mn3RhSi119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Mn3IrSi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

iii



6.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.2 Energy Dispersive X-ray Analysis . . . . . . . . . . . . . . . . 120

6.2.3 Powder x-ray diffraction . . . . . . . . . . . . . . . . . . . . . 121

6.2.4 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.5 dc magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.6 Powder neutron diffraction . . . . . . . . . . . . . . . . . . . 125

6.3 Mn3RhGe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.2 Enery dispersive x-ray analysis . . . . . . . . . . . . . . . . . 130

6.3.3 Powder x-ray diffraction . . . . . . . . . . . . . . . . . . . . . 132

6.3.4 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3.5 dc magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.6 Powder neutron diffraction . . . . . . . . . . . . . . . . . . . 135

6.4 Mn3RhSi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.2 Energy dispersive x-ray analysis . . . . . . . . . . . . . . . . 143

6.4.3 Laue diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4.4 Powder x-ray diffraction . . . . . . . . . . . . . . . . . . . . . 145

6.4.5 dc magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter 7 Conclusions and further work 148

iv



List of Tables

1.1 Magnetic ordering and transition temperatures of several interca-

lated transiton metal dichalcogenides. Materials that form in the

non-centrosymmetric hexagonal P6322 space group of stoichiometry

M1/3XY2 and tha form in the centrosymmetric hexagonal P63/mmc

space group of stoichiometryM1/4XY2, whereM is a transition metal,

X = Nb, Ta and Y = S, Se, are tabulated. . . . . . . . . . . . . . . 4

1.2 Magnetic ordering and transition temperatures of several members of

the Mn3XY family. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 A list of Lifshitz invariants for several different relevant crystallo-

graphic point groups [76], with the vorticity ω and helicity γ for each

noted as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Growth conditions for the transiton metal dichalcogenides. . . . . . 39

4.1 Atomic positions and occupancies for V1/3NbS2 refined using single

crystal x-ray diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Atomic coordinates for V1/3NbS2 extracted from the powder neutron

diffraction refinement at 60 K and 5 K in the hexagonal space group

P6322. The reliability factors for each nuclear phase are RBragg =

7.978% and RBragg = 6.1%, respectively. The magnetic reliability

factors for the phase at 5 K are found to be RMag = 19.2% and 30.9%

for the magnetic phases associated with the k0 and k1 propagation

vectors, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Atomic components of the basis functions localised on the 2c Wyckoff

position of the P6322 paramagnetic space group and transformed by

the irreducible representations associated with k0 = (0, 0, 0) (mΓ2

and mΓ5) and k1 = (0, 0, 1
3) (m∆1 and m∆2) propagation vectors. . 67

v



5.1 Atomic positions and occupancies for Cr1/3NbS2 . . . . . . . . . . . 80

5.2 Atomic positions and occupancies for Cr1/3TaS2. . . . . . . . . . . . 93

5.3 Atomic positions and occupancies for Mn1/3NbS2. . . . . . . . . . . 102

5.4 Summary of properties of the transiton metal dichalcogenides Mn1/3NbS2,

Cr1/3NbS2, and Cr1/3TaS2. . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Energy dispersive x-ray analysis spectra measured from Mn3IrSi with

associated errors of ±1 %. . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Atomic coordinates used for powder x-ray diffraction Rietveld refine-

ment for Mn3IrSi for the cubic space group P213. A refined lattice
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Abstract

Investigations of the magnetic structures and phase diagrams of chiral mag-
netic materials has led to the discovery of topological magnetic phenomena such
as skyrmions and the chiral soliton lattice, which are of interest for spintronics
device applications. In this thesis, the structural and magnetic properties of sev-
eral chiral magnetic materials are explored, focusing on the intercalated transition
metal dichalcogenides and the frustrated antiferromagnetic Mn3XY (X =Rh,Ir,
Y =Si,Ge) families of materials.

Firstly, the magnetic structure of V1/3NbS2 is studied and found to display
behaviour consistent with a canted antiferromagnet. Two propagation vectors are
required to index all the magnetic Bragg peaks present in powder neutron diffrac-
tion data; the k0 = (0,0,0) propagation vector is associated with an in-plane A-type
antiferromagnetic ordering, while the k1/3 = (0,0,1/3) magnetic propagation vec-
tor can be associated with an up-down-down configuration of moments along the
c axis. A ferromagnetic component too small to be resolved in these measurements
is expected from magnetisation data.

This thesis goes on to describe a detailed structural and magnetic investiga-
tion to compare single crystals of Mn1/3NbS2, Cr1/3NbS2, and Cr1/3TaS2. Lorentz
transmission electron microscopy measurements show the presence of helimagnetic
ordering in Cr1/3NbS2 below TC = 111 K, while there is no evidence that Mn1/3NbS2

exhibits helimagnetic ordering below TC = 45 K. An analogue is drawn between the
magnetic phase diagrams of Cr1/3NbS2, Cr1/3TaS2, and Mn1/3NbS2, constructed
from ac susceptibility measurements.

Finally, this thesis describes an investigation into Mn3IrSi, Mn3RhGe, and
Mn3RhSi. A single crystal of Mn3RhSi has been successfully grown and its mag-
netic properties investigated with dc susceptibility measurements to show a mag-
netic transition at 228 K. Powder neutron diffraction investigations into polycrys-
talline Mn3IrSi and Mn3RhGe reveal a three-dimensional frustrated antiferromag-
netic ground state for both materials, while Mn3RhGe exhibits an incommensurate
helical magnetic phase at 200 K.
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ac alternating current

dc direct current

CSL chiral soliton lattice

CSL-1 Highly helical chiral soliton lattice phase

CSL-2 Highly field polarised chiral soliton lattice phase

CVT chemical vapour transport

PND powder neutron diffraction

XRD x-ray diffraction
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MPMS magnetic property measurement system

QDPPMS Quantum Design physical property measurement system
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Chapter 1

Introduction

This thesis contains an investigation into several materials that display, or have

the potential to display, exotic magnetic phenomena. Recent advancements in the

sensitivity of instruments and the capability to effectively measure subtle magnetic

effects has led to a surge of interest in topological magnetic phenomena and the

advancement of spintronics as a field of study. This has increased interest in the

discovery of new materials that display interesting and novel magnetic textures.

Magnetic materials have been used for centuries, with Fe3O4, also known

as magnetite and lodestone, and its ability to attract iron documented as long as

2500 years ago [1], and eventually inspiring the creation of compasses. In 1820, the

discovery of the relation between magnetism and electric current led to the ability to

produce more powerful magnetic fields than those created from Fe3O4, and the study

of magnetism and magnetic properties progressed in leaps and bounds, eventually

leading to successes such as the creation of magnetic storage hard drives.

A material can be considered magnetic if its magnetic moments are ordered

in some fashion. There are many types of magnetism, from paramagnetism, where

magnetic moments align with an applied field; to ferromagnetism, where magnetic

moments preferentially orientate in the same direction; to antiferromagnetism, where

nearest neighbour magnetic moments preferentially align themselves opposite to

one another; and more. The ground state magnetism of a material will be its

lowest energy state, and what this lowest energy state is will vary depending on the

parameters of the material.

Magnetic ordering can also be chiral; that is, magnetic moments can order in

such a way that the holistic magnetic structure of the magnetic moments cannot be

superimposed onto its mirror image. There are multiple types of chiral magnetic or-

derings, such as chiral helimagnetism, where the magnetic moments curl around in a
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(a) Helimagnetism

(b) Chiral soliton lattice                H  

(c) Tilted chiral soliton lattice      H

Figure 1.1: Visualisation of (a) chiral helimagnetism, (b) a chiral soliton lattice
(CSL), and (c) a tilted chiral soliton lattice in Cr1/3NbS2, with the helical axis
stretching along the c axis of the material, taken from [5]. The period of the chiral
soliton lattice is increased relative to the period of the helical state. The chiral
soliton lattice and the tilted chiral soliton lattice are stabilised on the application of
an external field, the direction of which is marked in the figure for each phenomenon
respectively.

helical winding. Chiral helimagnetism arises in these materials from the competition

between symmetric ferromagnetic exchange interactions which align neighbouring

moments in the same direction and the Dzyaloshinskii-Moriya exchange interaction

that can arise in non-centrosymmetric materials that aligns neighbouring moments

antiparallel with each other. The magnetic spins can then form a spiral, conical, or a

helical structure [2] in response to this competition. In addition to helical windings,

where the magnetic moments rotate in a plane perpendicular to the helical axis,

there additionally exists cycloidal, where the magnetic moments rotate in a plane

aligned with the cycloidal axis, and conical windings, where the magnetic moments

rotate in a three-dimensional manner, too.

Topological phenomena that can be stabilised with the application of a mag-

netic field, such as the chiral soliton lattice (CSL), are common in chiral magnetic

materials. The CSL takes the form of an array of ferromagnetic domains separated

by 360o domain walls that can occur in strongly anisotropic chiral magnets upon

application of a magnetic field applied perpendicular to the helical axis[3]. Fig. 1.1

illustrates helimagnetism as it evolves into a CSL with increasing magnetic field as

well as a tilted chiral soliton lattice, which can instead be stabilised in materials such

as Cr1/3NbS2 by applying a magnetic field at some angle inbetween perpendicular

or parallel to the c axis of the material [4].

Another example of a novel magnetic texture stabilised by magnetic fields are

magnetic skyrmions, which were originally proposed by Tony Skyrme to explain the

2



stability of hadrons [6]. The first experimental evidence for skyrmions was found

in the chiral non-centrosymmetric B20 materials, such as MnSi [7]. Since their

discovery, there has been a push to find whether skyrmions can present in other

kinds of materials. Skyrmions are novel magnetic vortices which are topologically

protected and robust, and thus of interest for potential future device applications [8].

The discovery of skyrmions in thin films [9, 10, 11, 12, 13] as well as bulk chiral

magnetic materials has led to a renewed interest in 2D materials due to the ease of

using these 2D materials to make heterostructures [14, 15, 16, 17].

There are different mechanisms for the formation of skyrmions, one of which

is their formation upon the application of a magnetic field to a chiral helimag-

netic material. One example of a skyrmionic family of materials are Co-Zn-Mn

alloys, which form skyrmions due to the DMI mechanism, and can in fact form

skyrmions up to room temperature [18]. This set of alloys adopt the same structure

as β−manganese. Magnetic investigations into β−manganese reveal it to be a Pauli

paramagnet that is strongly enhanced to the point of almost ferrimagnetism [19],

with NMR and polarised neutron scattering measurements revealing strong spin cor-

relations in β−Mn despite it being paramagnetic down to 1.4 K [20]. This complexity

and the high transition temperature of the Co-Zn-Mn alloys makes the β−manganese

structure type interesting for further research.

The following sections of the introduction go on to describe the two families

of materials investigated as part of this thesis.

1.1 Intercalated transition metal dichalcogenides

The transition metal dichalcogenides (TMDCs) are a family of materials that have

attracted considerable interest over the years due to the properties they exhibit such

as superconductivity [28, 29, 30], charge density waves [31, 32], and even defect-

induced magnetism in Mo-based TMDCs [33, 34]. The subset of this family that

adopts the hexagonal 2H-X S2 polytype, where X is a transition metal, crystallises

in structures formed of layers bound together by the weak van der Waals force,

allowing thin layers (monolayers, bilayers, etc.) to be isolated via mechanical exfo-

liation [35]. These layers have been found to exhibit different and sometimes more

exotic properties that differ from that of the bulk crystal behavior and have been

used to successfully synthesize different heterostructures [36].

In this family of materials, magnetic atoms can be intercalated between the

layers and, at the critical concentration of M 1/3XS2, where M is a 3d transition

metal; X = Nb, Ta; and Y = S, Se; the compounds transform from the hexagonal

3
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M 

Figure 1.2: Structure of M1/3NbS2 which crystallises in the hexagonal, chiral, non-
centrosymmetric P6322 space group, viewed along the a∗ direction. The intercalate,
M , is shown in dark (red) between layers of S and Nb. The octahedra around the
M atoms are shown.

centrosymmetric space group P63/mmc to the hexagonal non-centrosymmetric chi-

ral space group P6322. The intercalated atoms occupy octahedral 2c or 2d Wyckoff

positions [37] and form a superlattice of a kind determined by the stoichiometry of

the material, with the M 1/3X S2 family hosting a
√

3 ×
√

3 superstructure. These

materials tend to display radically different behaviour to the pristine TMDCs. The

crystal structure showing the arrangement of the atoms intercalated in NbS2, typical

of most members of this family of TMDCs, is shown in Fig. 1.2.

In the 2H polytype, the magnetic exchange interactions between the inter-

calant atoms could be due to the superexchange interactions across the S atoms, the

antisymmetric Dzyaloshinskii-Moriya interaction (DMI) due to the non-centrosymmetric

structure of the material, or the Ruderman–Kittel–Kasuya–Yosida mechanism through

the conduction electrons. The differing strengths of these interactions give rise to

the observation of a variety of magnetic phases in the family. This can vary from an-

tiferromagnetism to chiral helimagnetism depending on the nature of the transition

metals present in the material [21, 38, 39], see Table 1.1.

Many of these intercalated transition metal dichalocogenides display com-

5



plex electronic and magnetic behaviours. As an example, Fe1/3NbS2 exhibits anti-

ferromagnetic behavior at temperatures below 42 K [40, 41], with the intercalated

Fe atoms forming a triangular array. Optical measurements of Fe1/3NbS2 suggest

that it contains a nematic phase that breaks rotational symmetry, with an in-plane

nematic director existing in addition to the out-of-plane magnetization [42]. This in-

plane component of the magnetic ordering can be rotated using current pulses, which

is particularly interesting for spintronics applications [41]. Meanwhile, Co1/3NbS2

is found to be a canted antiferromagnet at temperatures below 26 K, with a small

ferromagnetic component of 0.0013 µB per Co atom [43]. Addtionally, Co1/3NbS2

displays a large anomalous hall effect that cannot be explained by this ferromagnetic

component alone, and is instead attributed to either the effect of this intrinsic mo-

ment on the band structure or some complex magnetic texture. Finally, V1/3NbS2

was originally reported as a ferromagnet [21], but has recently been found to display

behaviour more consistent with a canted antiferromagnet [24].

Of particular interest for exotic magnetic textures are the Cr1/3NbS2, Cr1/3TaS2,

and the Mn1/3NbS2 compounds, which have been reported to display chiral helimag-

netic behavior [44, 45, 26]. Of the intercalated TMDCs, to date only Cr1/3NbS2 and

Cr1/3TaS2 have been proven to host a CSL [3, 46, 26]. It has been suggested that this

CSL, rather than skyrmions, is formed due to a combination of chiral helimagnetism

and a strong magnetic anisotropy.

The wide variation in the behaviors of the intercalated TMDCs, depending

on the intercalate, has led to great interest in this family. The discovery of which

materials might display a chiral soliton lattice, and why some materials might not,

requires further investigation, which is carried out in this thesis.

1.2 The Mn3XY family

Manganese has long been an interesting material presence in many different com-

pounds, due to how often it induces non-collinear magnetism [19, 49]. The less

common β−type Mn allotropy, meanwhile, has been of especial interest for its own

peculiar properties. The NMR and NQR measurements on β−Mn even raise the

possibility that it might be an itinerant antiferromagnet with a Nèel temperature of

0 K [50]. This Mn type has a complex structure that crystallizes in the cubic P4132

space group with a unit cell containing 20 atoms [51], with the Mn atoms occupying

two different sites, the 8c and 12d Wyckoff positions, and the atoms filling the latter

sites forming a sublattice of corner-sharing triangles, which has been theorised to

be a source of geometrical frustration in β−Mn.

6
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Mn

X = Co / Ir

Y = Ge / Si

[001]

[100]

Figure 1.3: The nuclear structure for the Mn3XY family. The corner-sharing
triangles formed by the Mn atoms are shown.

The Mn3XY family of materials, where X = Co, Ir and Y = Si, Ge, are a

group of materials that adopt an ordered form of the β−Mn structure. This struc-

ture crystallises in the P213 space group, with the Mn occupying the sublattice

postions where antiferromagnetically ordered moments experience geometric frus-

tration [52, 48]. This structure can be seen in Fig. 1.3. Despite the similarities in the

structures of the Co-Zn-Mn alloys and this family of materials, they display very dif-

ferent magnetic behaviours. Mn3CoGe, Mn3IrSi, and Mn3IrGe materials have been

investigated with powder neutron diffraction measurements and have been found

to share very similar frustrated antiferromagnetic orderings [52, 48, 53, 47] with

120◦ between these magnetic moments, which are associated with the Mn atoms.

It is clear, then, that any skyrmions present in these ternary materials must arise

from mechanisms different to those in the Co-Zn-Mn alloys, such as the frustrated

skyrmions found in Gd2PdSi3 [54] and Gd3Ru4Al12 [55]. This makes them interest-

ing candidates for skyrmions - especially as Mn is well-known for its presence causing

non-collinear magnetic ordering [56], though it should be noted that non-collinear

states are possible for any element or compound with correctly tuned band filling

and exchange splitting, so Mn is not in fact unique in this [57].

The magnetic structure of Mn3CoSi has also been investigated with neutron

powder diffraction, and was found to be different to the other members of this

family and harder to identify. Noncollinear linear-muffin-tin orbital calculations
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showed that for Mn3CoSi a ferrimagnetic ordering could be stabilised in addition to

the non-collinear antiferromagnetic phase otherwise common to this family. These

two magnetic structures competing may have led to the difficulty in identifying the

magnetic structure of Mn3CoSi in the literature study [48], which critically showed

the presence of broad magnetic shoulders to several Bragg peaks at temperatures

below 70 K. In addition, similar calculations for Mn3CoGe indicated the presence

of a small (0.3 µB) magnetic moment present on the Co atom, though this moment

was in fact too small to be measured with the neutron diffraction [48].

A study on a series of solid solutions of the form Mn3Ir1−yCoySi found that

doping Ir with Co had an effect on the magnetic structure. The common non-

collinear antiferromagnetic ground state was found for compositions with y = 0.2 as

well as pure Mn3IrSi, while incommensurate short-range magnetic orderings were

found for y = 0.8 − 1.0. Meanwhile, further studies into the series of solid solu-

tions of the form Mn3Ir(Si1−xGex) found a linear variation of the unit cell with

silicon content, but no change in the magnetic ordering of the frustrated antiferro-

magnetic materials or the TN = 225(10) K magnetic transition temperature [47].

Doping Mn3CoSi with Ge in the form Mn3Co(Si1−xGex) for x = 0.5 resulted in the

non-collinear antiferromagnetic ground state shared by Mn3CoGe, Mn3IrGe, and

Mn3IrSi.

There is interest in synthesising Mn3RhY materials to investigate how this

might effect the magnetism displayed. This thesis reports on synthesis Mn3RhSi and

Mn3RhGe, and compares the magnetism of Mn3RhGe and Mn3IrSi as investigated

with powder neutron diffraction.

1.3 Overview

The thesis will focus on the structural and magnetic investigation into several mem-

bers of the intercalated transition metal dichalcogenide and Mn3XY families.

1.3.1 Chapter 2: Theory

The theoretical considerations for this project are detailed in Chapter 2, which

focuses on the mechanisms of magnetism, especially the formation of exotic chiral

textures and geometric frustration. The theoretical underpinning of electron, x-

ray, and neutron diffraction techniques, which were central to this project, are also

discussed at length.
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1.3.2 Chapter 3: Experimental details

This thesis goes on to describe the techniques used in this project in Chapter 3.

Here, the methods used to synthesise polycrystalline and single crystal samples of

different materials are explained, as are the techniques used to make a detailed

investigation into the materials studied.

1.3.3 Chapter 4: Neutron diffraction study of V1/3NbS2

Chapter 4 is the start of the chapters detailing the results. This chapter focuses on

the magnetic and structural investigation of V1/3NbS2 using dc and ac susceptibility

measurements and powder and single crystal neutron diffraction studies to explore

its ground state magnetic structure. Single crystal x-ray diffraction measurements

were also performed to characterise the structure of this material.

1.3.4 Chapter 5: A comparative study of the magnetic properties

of Mn1/3NbS2, Cr1/3NbS2

The results continue in Chapter 5, which compares three materials that have been

reported to display chiral helimagnetic ground states. Lorentz transmission electron

microscopy (LTEM) and dc and ac susceptibility measurements display a signifi-

cant difference between the magnetic behaviours of Mn1/3NbS2 and Cr1/3NbS2 and

may explain why the former does not seem to display a chiral soliton lattice like

Cr1/3NbS2 and Cr1/3TaS2. Electron and single crystal x-ray diffraction measure-

ments also reveal extra sublattice reflections in Mn1/3NbS2 indicative of extreme

twinning effects.

1.3.5 Chapter 6: Neutron diffraction studies of Mn3IrSi and Mn3RhGe

In the final results chapter, the magnetism of Mn3IrSi and Mn3RhGe is compared

using powder neutron diffraction measurements. The dc susceptibility measure-

ments were found to be dominated by small amounts of magnetic impurities in

these materials, so heat capacity measurements were used to determine transition

temperatures for these materials. Additionally, a large single crystal of Mn3RhSi

is successfully synthesised, and characterisation measurements are performed on its

polycrystalline counterpart.
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1.3.6 Chapter 7: Conclusions and further work

Finally, this thesis concludes with Chapter 7. Here, the results are summarised and

compared, and points that require further investigation are elucidated.
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Chapter 2

Theory

2.1 Diffraction

Diffraction refers to the tendency of certain waves or particles to spread out and

self-interfere when propagating through an aperture of similar size to the wavelength

of the propagating wave or particle. Electrons, neutrons, and electromagnetic waves

such as x-rays are all capable of diffraction and are of use in multiple techniques that

give detailed information about the nuclear and magnetic structure of a material.

In this section, useful crystallographic terms that are helpful when consid-

ering nuclear and magnetic structures are first reviewed, after which the theory

underpinning x-ray, electron, and neutron diffraction techniques are considered.

2.1.1 Crystals

Crystal lattice and reciprocal space

Crystals form many different types of structure. Crystal structures can be described

by one of 230 space groups, which can be further separated into 32 different crys-

tallographic point groups. A set of mathematical tools are needed to understand

the nuclear structure of different crystals and the crystal field that magnetic atoms

exist in.

A crystal can be defined as a lattice of mathematical points upon which

a basis of groups of atoms can be placed. Crystals are therefore fundamentally

periodic structures, which can be defined by

r′ = r + u1a1 + u2a2 + u3a3, (2.1)

i.e. one set of points r can be transformed into a new set of points r′ by the
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addition of the product of some integers ui and some translation vectors ai. For a

three dimensional lattice, there are three possible translation vectors; one for each

direction [58].

From this, we can see that the smallest possible repeatable unit that can be

used to describe the lattice, the unit cell, must have a primitive volume:

Vp = a1 · a2 × a3. (2.2)

Lattice vectors can then be defined in reciprocal space, which is very useful for

Fourier analysis.

G = hb1 + kb2 + lb3, (2.3)

where the integers (hkl) are known as the Miller indices, bi are the three recipro-

cal lattice vectors, and G is the set of these vectors. The interplanar spacing is

dependent on this set of vectors, which, in the physics convention, can be written

as:

dhkl =
2π

|G|
(2.4)

and the reciprocal lattice vectors can be defined separately as:

b1 = 2π
a2 × a3

a1 · a2 × a3
, (2.5)

b2 = 2π
a3 × a1

a1 · a2 × a3
, (2.6)

and

b3 = 2π
a1 × a2

a1 · a2 × a3
. (2.7)

Crystalline anisotropy

The crystal environment that magnetic ions are situated within can often affect

the magnetism displayed due to the effect of spin-orbit coupling. Here, uniaxial

anisotropy will be discussed, which describes a strong preference for the system to

magnetise along one particular direction.

For the uniaxial case, the magnetocrystalline anisotropy energy density, W ,

can be written:
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W = K1 sin2 θ +K2 sin4 θ... (2.8)

where K is the anisotropy constant, and θ is the angle between the magnetisation

direction and the easiest axis to magnetise. The sign of K indicates whether the easy

axis lies along the principal axis or in the plane perpendicular to the principal axis.

The sin2 θ term shows that the anisotropy is independent with respect to rotations

around the principal axis and is only reliant on θ [59].

2.1.2 X-ray diffraction

Due to the periodicity inherent to crystals, incident x-rays interact with the electrons

orbiting the atoms of the basis and are diffracted, due to the interplanar spacing

being of the same magnitude as the wavelength of the x-ray. This is very useful

for extracting information about the nuclear and magnetic structure of different

crystalline materials.

For elastic scattering, Bragg’s law [60, 58, 61] describes the constructive

interference of x-rays that occurs when the path difference is an integral number, n,

of wavelengths, λ, apart. It can be written as:

2dhkl sin θ = nλ, (2.9)

where dhkl is the interplanar spacing and θ is the incident angle of the x-rays with

respect to the plane it is reflecting from. This reflection is specular, i.e. the incident

angle is equivalent to the angle of the ‘reflected’ x-ray with respect to the plane. In

actuality, x-rays that are incident upon electrons cause them to oscillate and emit

another coherent x-ray. The intensity of the scattered ray from an individual atom

with spherical electron density can be written as:

I = I0

(µ0

4π

)2
(

e4

m2
er

2

)
sin2 α, (2.10)

where I0 is the intensity of the incident x-ray beam, e is the charge of the electron,

and α is the angle between the direction the beam is scattered in and the direction

of the acceleration of the electron.

The difference between the phase factors of two x-ray beams scattered from

elements a distance r apart can be written as ei(k−k′)·r, where k and k′ are the

wavevectors of the incident and outgoing x-rays, respectively, and the difference

between them, ∆k, is indicative of the momentum transfer. This relation can be

used to define a scattering amplitude, F , such that
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Fx−ray =

∫
n(r)ei∆k·r dV, (2.11)

where the electron number density n(r) can be written as

n(r) =
∑
G

nGeiG·r. (2.12)

This scattering amplitude is therefore only of significant magnitude under the special

condition

∆k = G, (2.13)

and it can therefore be seen that special directions are required for measurable

scattering cross-sections.

Another geometrical representation of diffraction theory can be achieved by

taking the dot product of ∆k and G with the lattice vectors, resulting in the Laue

equations:

a1 ·∆k = 2πν1, (2.14)

a2 ·∆k = 2πν2, (2.15)

and

a3 ·∆k = 2πν3. (2.16)

where νi are integers. ∆k must satisfy all of these equations at once, i.e. it must lie

in a common intersection of three cones, each cone about a1, a2, and a3, respectively.

The Ewald construction visualises the requirements for this condition by drawing a

sphere of radius k = 2π
λ about the origin of k. A diffracted beam, directed along k′,

is formed at any point where this sphere intersects with a lattice point. The Ewald

sphere construction is useful for the visualisation of crystal structures in reciprocal

space.

To describe the efficiency of the scattering of the incident x-ray from an atom

in a given direction, the atomic scattering factor, also known as the atomic form

factor, is used . It is essentially a ratio of the amplitude of the wave scattered by

an atom to the amplitude of the wave as scattered by a single electron. It is given

by the equation:
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Figure 2.1: A vector diagram for elastic scattering through an angle of 2θ. Using this
diagram, ∆k can be related to θ, and it can also be related to wavelength λ using k = 2π

λ .

fj =

∫
nj(ρ)e−iG·ρdV =

sin Gr

Gr
, (2.17)

where ρ = r−rj. This can be written in sinusoidal form due to the following relation

for elastic scattering:

∆k =
4π sin θ

λ
, (2.18)

where θ is half the angle between each value of k and the scattering plane [See

Fig.2.1]. The scattered wave can then be expressed in the form:

Aeiφ = fe2πi(G·r), (2.19)

where A is some constant.

To extend this view to all atoms of the unit cell, the structure factor can be

used. Analogously to the atomic form factor, the structure factor is a ratio of the

amplitude of the wave scattered by all the atoms of the unit cell to the amplitude

of the wave scattered by a single electron. It can be written as:

SG =
∑
j

fje
−iG·rj . (2.20)

Finally, the measurable quantity extracted from diffraction experiments is

the differential cross-section. This is defined as a ratio of R(2θ, φ) the number of
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x-rays deflected by (2θ, φ) per unit solid angle Ω to the number of incident particles

per unit area of beam Φ per number of scattering units of interest N . This can be

expressed as follows:

dσ

dΩ
=
R (2θ, φ)

NΦ∆Ω
. (2.21)

where

R (2θ, φ) ∝ |SG|2. (2.22)

2.1.3 Electron diffraction

Electron diffraction [62] can be considered in a similar manner to x-ray diffraction.

Electrons are tiny (me = 9.1 × 10−31 kg), negatively charged particles that are

incredibly important to the field of magnetism. They can be represented by the

wave function:

Ψ = Ψ0e
iφ, (2.23)

where Ψ0 is the amplitude of the wave and φ is its phase. The change in phase of

an electron can be expressed as a function of path difference ∆x as follows:

∆φ =
2π

λ
∆x, (2.24)

where λ is the electron wavelength.

A useful tool for describing electron scattering behaviour is the Rutherford

scattering cross-section, which describes differential scattering from the nucleus, and

can be modified to include screening and relativistic effects like so:

σR =
Z2λ4

R

64π4a2
0

dΩ

[sin2
(
θ
2

)
+

θ2
0
4 ]2

, (2.25)

where Z is the atomic number, λR is the relativistically-corrected electron wave-

length, θ is the angle the electron is scattered through, θ0 is the screening parameter

given by:

θ0 =
0.117Z

1
3

E
1
2
0

, (2.26)

where E0 is the energy of the electrons in keV, and a0, the Bohr radius, can

be defined as:
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a0 =
h2ε0
πmee2

, (2.27)

where ε0 is the dielectric constant.

We can define a scattering amplitude for electrons using the Mott-Bethe

formula, such that:

F =

(
1 + E0

mec2

)
8π2a0

(
λ

sin θ
2

)2

(Z − Fx−ray) . (2.28)

where Fx−ray is the scattering amplitude factor for x-rays. The structure factor can

be calculated for electrons in the same manner one would use for x-rays.

2.1.4 Neutron diffraction

Neutron diffraction is now considered [61]. The neutron case is slightly different, due

to the fact that neutrons are neutrally-charged particles with an intrinsic magnetic

spin µs = −1.913µN where the nuclear magneton is defined as µN = e~
2mn

and

the mass of a neutron is mn = 1.67 × 10−27. Neutrons are spin-half particles that

can adopt a spin-up or spin-down configuration - the orientation of these spins is

unpolarised in most cases, though at very low temperatures the spin-up case is

slightly energetically favourable.

This leads to neutrons interacting with the nucleus in a manner akin to as

if it was a point source, which itself leads to a form factor that is invariant with

respect to wavelength and angle. This can be written as:

fneutron (λ, θ) = −b, (2.29)

where b is the scattering length and the minus sign is due to convention. There are

a few cases where this does not quite hold true, especially where absorption is likely

to play a large role compared to scattering in the diffraction experiment. These b

values are isotope specific, depend on the spin-up or spin-down state of the atom

the neutron interacts with, and do not scale simply with Z.

Due to the magnetic spin of the neutrons, the magnetic form factor of neutron

diffraction can also be considered. In this case, the magnetic interaction arises from

unpaired electrons in the outer shells of atoms and thus is ion-specific and subject

to a form factor. Neutrons only interact with magnetisation perpendicular to the

momentum transfer ∆k:
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M⊥ = M − (M · ∆̂k)∆̂k, (2.30)

where ∆̂k is a unit vector in the direction of the momentum transfer, M is the

magnetisation, and M⊥ is the component of the magnetisation perpendicular to

∆k. The scattering cross-section for neutrons can be defined as:

σneutron (λ) = 2π

∫ π

2θ=0
|f (λ, θ)|2 sin 2θ dθ, (2.31)

which, in the nuclear case for b values independent of λ and θ, reduces to:

σneutron, nuclear = 4π|b|2. (2.32)

As with the x-ray and electron case, the differential scattering cross section

is proportional to the square of the structure factor.

2.2 Magnetism on the atomic level

In this section, the atomic origins of magnetism are considered. Magnetism can arise

from the spin angular momentum of electrons, which are spin-half fermions, i.e. have

a spin quantum number s = 1
2 . Magnetism is therefore fundamentally quantum

mechanical in nature and has to be treated as such. However, when considering

the magnetic moment, an analogue can be drawn to the classical consideration of a

current loop:

dµ = I dS, (2.33)

where dµ is the magnetic moment, and I is the current around some infinitesimal

loop of area |dS|. This can also be seen to be the magnetic equivalent to an electric

dipole, i.e. two charges of opposite sign separated by some small distance, where

for the magnetic dipole this distance is in the same direction as dS [63].

From this consideration, we can calculate a value for the magnitude of this

atomic magnetic moment, resulting in the Bohr magneton, µB, which is a useful unit

for describing the size of magnetic moments in general. Knowing that the angular

momentum of the electron must be equal to ~ in its ground state, we can state:

µB =
e~

2me
, (2.34)

where e is the charge of the electron, me is the mass of an electron, and ~ = h
2π ,
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where h is Planck’s constant.

On a larger length scale it is useful to define the magnetisation M of a

magnetic material as the magnetic moment per unit volume. On this length scale

we can write:

B = µ0 (H + M) , (2.35)

where B is the magnetic flux density, H is the magnetic field, and µ0 is the per-

meability of free space [1, 63]. We can additionally define a magnetic susceptibility,

χ, which for the case of a material with a magnetisation that scales linearly with

applied magnetic field is simply:

χ =
M

H
. (2.36)

For a more accurate picture of magnetism on the atomic level, a quantum

mechanical view of such a system must be returned to. The quantum mechanical

state of an electron is represented by four quantum numbers: the principal quantum

number n is a discrete variable that describes how tightly bound the electron is to

the nucleus; the azimuthal quantum number l that describes the orbital angular

momentum of the electron, with a maximum value of n−1 due to the Pauli exclusion

principle and a minimum value of zero; the magnetic quantum number ml, which

defines the number of orbitals available for each electron shell and can thus be

defined solely between +l and −l; and finally the spin magnetic quantum number

ms, which describes the intrinsic spin angular momentum of the electron. It is also

worth reiterating that the spin quantum number s = 1
2 , for all electrons, and thus

ms must be ±1
2 .

Angular momentum associated with the magnetic moment of an atom can

arise from the intrinsic electron spin and the orbital movement of the electron. The

total spin angular momentum is defined as:

S =
∑

i

si (2.37)

and the total orbital angular momentum as

L =
∑

i

li, (2.38)

which finally allows a total angular momentum, J, to be calculated from the sum of

these components:
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J = L + S. (2.39)

It is clear that the sum over filled electron shells for li and si is zero, and thus only

partially filled shells contribute to the total angular momentum.

This allows the magnetic moment, µ̂, to be defined in terms of total angular

momentum J:

µ̂ = gjµBĴ, (2.40)

where the Landé g-factor, gj can be defined as:

gj =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.41)

Hund’s rules can then be used to describe how the the angular momentum

affects the energy of the system. They are as follows:

1. The electronic wavefunction with the maximum S value will have the

minimum Coulomb energy, due to the Pauli exclusion principle, which prevents

quantum states from being doubly occupied. This results in aligned spins being

forced into the next available orbital, reducing the Coulomb interactions that closer

electrons would otherwise experience.

2. After Hund’s first rule is considered, L should then be maximised. This

reduces the Coulomb energy as electrons moving in the same orbital direction are

less likely to be forced into close contact.

3. Finally, in order to minimise the energy from the spin-orbit coupling,

J = |L − S| if the electron shell is less than half full and J = |L + S| in any other

case. This rule is often disobeyed when the spin-orbit energies are minimal compared

to other energy terms, such as, for example, those due to the crystal field.

The next section extends our view of magnetism from a purely atomic stand-

point by considering the role of exchange interactions in mediating long-range mag-

netic ordering.

2.3 Exchange interactions

Exchange interactions can be thought of as electrostatic interactions arising as a

consequence of the energy lost by bringing two like charges close together and saved

by keeping those charges far apart. As the Pauli exclusion principle prevents a single

quantum state being doubly occupied, this Coulomb interaction that favours aligned

spins competes with the fact that it requires energy to fill a higher electron orbital
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which favours anti-aligned spins, and this results in what is called an exchange

interaction [63].

A wavefunction can be defined to describe the interaction between two elec-

trons at positions r1 and r2 respectively, which must be overall antisymmetric due

to the fact that electrons are fermions. This allows either an antisymmetric singlet

state χS (S = 0) that is spatially symmetric (i.e. the spin states of the two electrons

are aligned), or a symmetric triplet state χT (S = 1) that is spatially antisymmetric

(i.e. the spin states of the two electrons are anti-aligned). This can be written as:

ΨS =
1√
2

[ψa(r1)ψb(r2) + ψa(r)ψb(r1)]χS (2.42)

for the singlet state, and

ΨT =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χT (2.43)

for the triplet state. These states each have an associated energy, which can be

written as:

ES =

∫
Ψ∗SĤΨS dr1dr2 (2.44)

where ES is the energy of the singlet state and

ET =

∫
Ψ∗T ĤΨT dr1dr2 (2.45)

where ET is the energy of the singlet state, for normalised χS and χT. An exchange

constant J can be defined as the difference between these two energies such that:

Jex =
ES − ET

2
=

∫
ψ∗a(r1)ψ∗b(r2)Ĥψa(r2)ψb(r1) dr1dr2. (2.46)

This allows for the spin-dependent term of the effective Hamiltonian to be

written as:

Ĥ = −
∑
ij

Jex,ij Si · Sj, (2.47)

assuming that this interaction applies between all neighbouring atoms. The sign of

Jex indicates the spin state is stabilised, with Jex > 0 implying that ES > ET and

thus the spins are symmetric, and likewise Jex < 0 indicating that ES < ET and

thus the stabilised state is for anti-aligned spins.

There are many types of exchange interaction; some of the most relevant
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exchange interactions for this project are described in the following sections.

2.3.1 Direct exchange

Direct exchange occurs between nearest neighbour atoms and thus does not require

any mediating force. It is, however, rarely the force driving magnetic ordering due

to the fact that it is fairly rare for sufficient direct overlap of magnetic orbitals [63].

2.3.2 Indirect exchange

Indirect exchange occurs between non-neighbouring magnetic atoms and requires an

intermediary. Here we will consider two types of indirect exchange: superexchange

and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.

Superexchange

Superexchange is mediated by non-magnetic ions situated between magnetic ions.

The electron orbitals of these atoms will overlap, and the preferred way the electron

spins will align (or anti-align) will depend on how this overlap presents and how

filled the electron bands are. The simplest cases of this behaviour are described by

the Goodenough-Kanamori rules [64, 65, 66]. The original examples show that for

cations experiencing an octahedral crystal field, if the angle that the non-magnetic

ion makes with the magnetic ions is 90◦, the spins it will be more energy-efficient

for the spins to align, whereas if this angle is instead 180◦ they will anti-align [66].

This is due to how this angle between ions affects the overlap of electron orbitals -

the Goodenough-Kanamori rules show that a large overlap between partly occupied

orbitals of magnetic ions will result in a strong preference for the electron spins

to anti-align due to the Pauli exclusion principle, whereas if the overlap is instead

between a partially occupied and an unoccupied orbital, then the spins will be

weakly influenced to align due to the Coulomb interaction [67].

Ruderman-Kittel-Kasuya-Yosida interaction

In metals, a different form of indirect exchange is known as the RKKY interac-

tion [68, 69, 70, 71]. Metals contain delocalised conduction electrons. The spin of

a localised magnetic moment can polarise these electrons, which can then couple to

another localised magnetic moment situated a distance r away. For large r values,

the exchange constant for this interaction can be written:

Jex,RKKY(r) ∝ cos(2kFr)

r3
, (2.48)
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where kF is the radius of a spherical Fermi surface [63]. This equation shows that

the exchange constant varies sinusoidally with distance.

Double exchange

Double exchange is another example of an exchange interaction, in this case be-

tween ions with different oxidation states. An electron from an atom with a higher

oxidation state can hop to a vacant site in a neighbouring atom with a lower ox-

idation state, in order to reduce kinetic energy. As Hund’s first rule states that

the state with the highest S is the lowest energy, it is energetically favourable for

these spins to be aligned with each other. This is somewhat similar to ferromagnetic

superexchange for an extended system [63].

2.3.3 Dzyaloshinskii-Moriya interaction

Another example of an exchange interaction is the antisymmetric Dzyaloshinskii-

Moriya interaction (DMI). The DMI is described by:

HDM =
∑
ij

Dij [Si × Sj ] (2.49)

where HDM is the Hamiltonian for the DMI, D is the Dzyaloshinskii-Moriya

constant, and Si and Sj are neighbouring spins [72, 73, 74]. In order for the DMI

to have a significant effect within a material, D must be non-zero, which is possible

for crystal systems that lack an inversion centre of symmetry.

Moriya describes several rules that fall out mathematically from the DMI [73],

namely that for two ions each situated at i and j, respectively, with a centre point

C halfway along a line connecting them:

1. When a centre of inversion is situated at C, then D = 0.

2. When a mirror plane perpendicular to ij passes through C, then D ⊥ ij.

3. When there is a mirror plane including i and j, then D ⊥ mirror plane.

4. When a two-fold rotation axis perpendicular to ij passes through C, then

D ⊥ two-fold axis.

5. When there is an n-fold (n > 2) axis along ij, then D ‖ ij.
From these rules it can be determined that while the scalar magnitude of D is

determined by the strength of the spin-orbit coupling, its direction is determined by

the bond symmetry of the crystal structure.

In the continuum limit, Lifshitz invariants [75] can be used to describe the

DMI, which take the form:
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Table 2.1: A list of Lifshitz invariants for several different relevant crystallographic
point groups [76], with the vorticity ω and helicity γ for each noted as well.

Point group wDM = DL(m) ω γ

Cnv D(L(x)
xz + L(y)

yz ) 1 0

T D(L(z)
yx + L(y)

xz + L(x)
zy ) 1 ±π

2

O D(L(z)
yx + L(y)

xz + L(x)
zy ) 1 ±π

2

Dn D(L(y)
xz − L(x)

yz ) +D′(L(z)
xy ) 1 ±π

2

Cn D(L(x)
xz + L(y)

yz ) +D′(L(y)
xz − L(x)

yz ) 1 -arctan(D
′

D )

S4 D(L(x)
xz − L(y)

yz ) +D′(L(y)
xz + L(x)

yz ) 1 arctan(−D
′

D )

D2d L(y)
xz + L(x)

yz -1 ±π
2

L(k)
ij = mi∂kmj −mj∂kmi, (2.50)

where k is the cartesian direction along which the magnetic vector propagates, and

ij are the cartesian coordinates along which the spins rotate, m is the magnetic

unit vector along i and j, at times partially differentiated with respect to k [76, 77].

These Lifshitz invariants represent the contribution of the DMI to the free energy of

the system. It is by minimising the free energy of all the components of a magnetic

system that the solution to the magnetic ground state for a magnetic material can

be arrived at, so calculating these Lifshitz invariants for different magnetic systems

is highly useful.

The directions used for L(k)
ij , L(m), are dependent on the crystal structure of

the magnetic material which is being considered, specifically the point group. The

chiral energy density, wDM = DL(m) for each point group is tabulated in Table 2.1.

2.3.4 Zeeman energy

The Zeeman effect describes the interaction of intrinsic magnetic moments with an

external magnetic field. The application of an external magnetic field is necessary

to stabilise different spin structures such as skyrmions, the chiral soliton lattice, and

more. The Hamiltonian term associated with the tendency of the magnetic moments

to align with an externally applied field can be written as:

ĤZe = −µ ·B, (2.51)

where B = µ0H is the local induced field and µ is the local magnetic moment.

The next section will cover the different types of long-range magnetic order-

ings that arise from these exchange interactions.
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Figure 2.2: An example of (a) ferromagnetism, where neighbouring spins align, (b) antifer-
romagnetism, where each spin aligns antiparallel to its neighbour, and (c) ferrimagnetism,
where each spin aligns antiparallel to its neighbour, but the neighbouring spins are of differ-
ing magnitudes. This is simply a one-dimensional example of possible antiferromagnetic and
ferrimagnetic orderings; multiple different configurations are possible when more dimensions
are considered.

2.4 Long range magnetic ordering

It is now possible to begin to consider long-range magnetic orderings. For this, we

must then consider the environment our magnetic moments exist in.

2.4.1 Ferromagnetism

A ferromagnetic material exhibits spontaneous magnetisation even in the absence

of an externally applied magnetic field. In a ferromagnet, the exchange constant is

positive, resulting in the ground state energy being minimised when neighbouring

spins align. An example of ferromagnetism can be seen in Fig. 2.2(a).

Ferromagnets are magnetic until the thermal energy is larger than the mag-

netic energy, which occurs at a threshold transition temperature called the Curie

temperature, TC. Assuming that the direct exchange interaction applies, this can

be calculated as:

TC =
2JexJ(J + 1)

3kB
(2.52)

where Jex is the exchange constant, J is the total angular momentum, and kB is

Boltzmann’s constant. At temperatures above TC, the material can be considered

to be paramagnetic, i.e. incapable of spontaneous order but susceptible to aligning
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with an externally applied field.

A useful tool for modelling the behaviour of a magnet in a paramagnetic

state is the Curie-Weiss law [1], which can be written as follows:

χ =
C

T − θ
, (2.53)

where T is the temperature, θ is the Weiss temperature, which should be positive and

similar to TC (see equation 2.52) for a ferromagnet, negative for an antiferromagnet

and similar to TN (see equation 2.56), and 0 for a paramagnet. This arises from

the expansion of the Brillouin function [63]. C is the Curie constant, which can be

calculated as

C =
Nµ0µ

2
B

3kB
µ2

eff , (2.54)

where N is Avogadro’s constant, and the effective moment is

µeff = gj
√
J(J + 1), (2.55)

which can be calculated for magnetic atoms and compared to experimental data.

It is worth noting, that a net magnetic moment of zero can be measured

for a bulk ferromagnetic material in zero field due to the tendency of ferromagnets

to break into domains of opposing magnetism. These domains form to minimise

magnetostatic energy - a ferromagnetic material consisting of a single domain exerts

a large external magnetic field, whereas a material with multiple domains instead

exerts a far smaller magnetic field, requiring less energy.

2.4.2 Antiferromagnetism

Another case to be considered is for when Jex < 0, and the lowest energy ground

state is found for spins that align antiparallel to their neighbours, see Fig. 2.2(b).

Materials displaying this sort of long-range order are known as antiferromagnets. In

this case, the temperature at which the material transitions from antiferromagnetic

to paramagnetic is known as the Néel temperature, TN, and can be calculated by:

TN =
gjµB(J + 1)|λ|Ms

3kB
, (2.56)

where Ms is the saturation magnetisation, J is the total angular momentum, and

|λ| is the modulus of the molecular field constant, which can be defined as:
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λ =
2Jex

ng2µ2
B

. (2.57)

In order to extract TN from magnetic susceptibility data, taking the derivative of

χT with respect to temperature gives a close approximation [78].

One way of considering antiferromagnetism is two superimposed magnetic

lattices, each with its own spins aligned, but arranged such that the directions of

the spins of each lattice oppose each other. Due to the multiple ways the magnetic

structure can be arranged such that there are an equal number of opposing spins,

there are many possible types of antiferromagnetic ordering.

2.4.3 Ferrimagnetism

In the case of a ferrimagnet, the magnetic structure can again be considered as two

superimposed magnetic sublattices of spins, with each sublattice antiparallel to the

other. However, in this case, the magnitude of each lattice of spins is different, such

that a net magnetic moment is still present despite the antiferromagnetic ordering,

see Fig. 2.2(c).. A different molecular field is often needed for each sublattice to

induce ferrimagnetism and these different molecular fields can lead to complicated

temperature dependencies.

2.4.4 Spin glasses

A spin glass state refers to a highly disordered type of ordering, where random dis-

tributions of dilute magnetic orderings are present within the material, and different

spin structures are ’frozen’ at some transition temperature from a high-temperature

disordered state to a low-temperature disordered state. One of the hallmarks of a

spin glass is frequency-dependence of the temperature at which magnetic features

in frequency-dependent χ can be seen [79, 80, 81].

2.4.5 Chiral magnetism

Chirality refers to an inability to superimpose an object onto its mirror image - a

famous example of a chiral object is the human hand. Magnetic ordering can be

chiral, usually due to competing exchange interactions. The chirality of an object

can be described with helicity, which is positive or ‘right-handed’ if the spin moves

in the same direction that it points, or negative or ‘left-handed’ if the spin moves

oppositely to the direction it points. Here, several examples of possible ground state

chiral magnetic orderings are described.
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a) Helical b) Cycloidal c) Conical

Figure 2.3: An illustration of the differences between (a) helimagnetism, (b) cycloidal
magnetism, and (c) conical magnetism. The spiral plane around which the magnetic spin
rotates throughout the unit cell is indicated by the blue circle.

One example of a chiral magnetic phenomenon is a domain wall. The regions

between magnetic domains in a ferromagnet contain magnetic moments that slowly

vary from the direction of one magnetic domain to that of the other. This can either

be done by rotating the magnetic moments in the plane of the ’wall’, to form a Néel

domain wall, or by rotating the magnetic moments perpendicular to the plane of the

wall, to form a Bloch domain wall. The crystal structure, i.e. the type of Lifshitz

invariants present in the material, determines which type of wall is formed. These

magnetic domain walls can propagate along the direction of an applied magnetic

field.

Chiral magnetic long-range orderings include helimagnetic ordering, which

arises from the competition between the symmetric ferromagnetic exchange inter-

action and the antisymmetric DMI. The first of these prefers to align spins parallel

to each other, while the latter favours a turn angle of 90◦. For a material in which

the atoms lie in successive layers of basal planes, such as dysprosium, the exchange

interaction can be described as:

E = −2NS2 (Jex,1cos θ + Jex,2cos 2θ) , (2.58)

where N is the number of atoms in each plane, Jex,1 is the nearest neighbour exchange

constant, Jex,2 is the next-nearest neighbour exchange constant, and θ is the in-plane

angle of the spins. This can be minimised by setting ∂E
∂θ = 0, i.e.
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Figure 2.4: An illustration of triangular geometrical frustration. By placing two antifer-
romagnetically aligned spins at two corners of a triangular lattice, the third spin becomes
frustrated, as it cannot align antiparallel to both spins.

0 = (Jex,1 + Jex,2cos θ) sin θ. (2.59)

Clearly, either sinθ = 0 (the ferromagnetic or antiferromagnetic state), or

cos θ = − Jex,1

4Jex,2
, (2.60)

which is the chiral helimagnetic state. The helical pitch,L (0), can be calculated [3, 4]

using:

L (0) ≈ 2πa
J

D
, (2.61)

where J is the Heisenberg interaction, D is the Dzyaloshinskii-Moriya constant, and

a is a lattice parameter.

Cycloidal magnetism is very similar to helical magnetism, however; where

in helimagnetism the spiral plane is perpendicular to the propagation vector, in

cycloidal magnetism the spiral plane lies in the direction in which the magnetism

propagates. In conical magnetism, meanwhile, is three-dimensional, with the spins

rotating around in a conical shape.

2.4.6 Frustrated magnetism

Geometrical frustrated magnetism arises from the positioning of atoms within a

crystal structure. In a triangular array, two spins are easily able to order antifer-

romagnetically. However, this would make the energy of the third spin ordering as

spin-up equal to the energy of it ordering spin-down. This spin is therefore referred
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to as frustrated. A simple schematic of this phenomenon is shown in Fig. 2.4. As

every spin in the triangle experiences this frustration, the ground state of the system

becomes sixfold degenerate.

Particularly relevant to this project is the antiferromagnetic trillium lat-

tice [82], where sets of atoms are arranged in corner-sharing triangles [See Fig. 1.3].

It is important to note that there are two solutions to the spin ground state for

lattices such as these, the hard spin constraint:

|si|2 = 1, (2.62)

and the soft spin constraint, which allows the magnetism to vary spatially through-

out the model:

|sαi |2 + |sβi |
2 + |sγi |

2 + |sδi |2 = 4, (2.63)

where α, γ, γ, δ all refer to different positions in the unit cell. The soft spin constraint

is not unusual in itinerant magnetic systems [83], and the type of constraint used for

calculating the magnetic structure of materials with this magnetic system strongly

affects the magnetic order that results. With a Heisenberg calculation utilising the

hard spin constraint, a magnetic ground state with 120◦ angles between spins was

calculated, whereas with a mean field approximation using the soft spin constraint,

instead a highly degenerate partially-ordered ground state was realised.

2.5 Topological magnetic spin structures

Applying an external magnetic field to a chiral system can have a number of inter-

esting effects on its magnetic behaviour. In select materials, these effects include the

stabilisation of exotic spin structures such as the chiral soliton lattice [3, 46, 84],as

well as skyrmions [8, 7, 85].

2.5.1 The chiral soliton lattice

The chiral soliton lattice (CSL) can be described as regions of moments which are

ferromagnetically aligned with the external field and separated by 360◦ domain walls

[See Fig. 2.5]. As the applied field is increased, the extent of these ferromagnetic

regions, and thus the period of the CSL, are increased, until eventually the moments

are aligned in a field polarized state.

A winding number, w, appropriate for one-dimensional solitons can be ap-

plied to the CSL. This is defined as:
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Figure 2.5: Visualisation of chiral helimagnetism, a chiral soliton lattice (CSL),
and a forced ferromagnetic state. The arrows show the magnetic moments of each
atom. As the magnetic field (H) increases, the part of each helix that is aligned
with the field expands in size, increasing the period of the CSL, until finally the
moments are arranged in a forced ferromagnetic state.

w =
1

2π

∫ ∞
−∞

∂xφ dx, (2.64)

where φ is the azimuthal spin angle and x is the direction along the chain. As w is

always an integer, the number of times that solitons wrap around a sphere is equal

to a topological invariant - meaning that the solitons are topologically protected.

The CSL is therefore robust to deformation [3, 86] from factors such as thermal

fluctuations or material defects, and therefore of considerable interest for spintronic

applications [87].

Known CSL hosts include Cr1/3NbS2 [3, 86] and Cr1/3TaS2 [26], members of

the hexagonal layered transition metal dichalcogenides (TMDCs) intercalated with

3d transition metals that occupy octahedral 2c or 2d Wyckoff positions [37] between
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Figure 2.6: An example of a) a 3D hedgehog skyrmion, b) a 2D Bloch skyrmion, c) a 2D
Néel skyrmion, and d) a 2D anti-vortex skyrmion, taken from [88].

the trigonal prismatic layers [See Fig. 1.2].

2.5.2 Skyrmions

Skyrmions are swirling magnetic vortices that can be characterised by a topological

charge known as the skyrmion number, Φ:

Φ =
1

4π

∫
n ·
(
∂n

∂x
× ∂n

∂y

)
d2r, (2.65)

where n=
m

|m|
is a unit vector parallel to the magnetic moment m [88].

As with the CSL, this winding number must be an integer, and skyrmions are

topologically protected. This stability is part of what makes skyrmions so attractive

for use in memory storage devices. Fig. 2.6 illustrates different types of skyrmions.

The 2D Bloch skyrmion corresponds to a projection of the 3D hedgehog skyrmion;

the edge of the skyrmion is parallel to the field direction but a gradual change in

spin orientation exists that results in the centre of the skyrmion being antiparallel

to the field direction. The size of the skyrmion is therefore related to the ratio of the

ferromagnetic exchange interaction and the DMI - usually under 100 nm [8]. In an

alternate case, a Néel skyrmion rotates in the radial plane rather than perpendicular

to the radial plane like the Bloch skyrmion [89]. Finally, while both Bloch and Néel

skyrmion have a topological charge of +1, it is also possible to stabilise an anti-vortex

skyrmion. or anti-skyrmion as it is sometimes known, which has a topological charge

of −1. An example of the different types of skyrmion can be seen in Fig. 2.6.

Skyrmions can form in helimagnetic materials due to the DMI. The skyrmion

phase, previously known as an A-phase, was in fact originally discovered in the

noncentrosymmetric B20 material MnSi [7]. This led to the study of a great many

B20 materials with the same space group: P213. This includes: MnGe, FeGe, and

Cu2OSeO3. The latter is of particular interest due to its multiferroic insulating
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properties, which may lead to a capability of manipulating skyrmions formed in this

material with an electric field [90]. Of the skyrmions that are formed due to an

interplay of the DMI and the ferromagnetic exchange interaction under an applied

field, another particularly interesting family of materials are the Co-Zn-Mn alloys.

These alloys form in the P4132 space group, and have displayed skyrmions at high

temperatures, up to and including room temperature [18].

However, the DMI is not the only mechanism by which skyrmions can form -

in thin films, for example, the competition between the easy-axis anisotropy and the

magnetic dipole-dipole reaction can, upon application of a magnetic field, form large

(3-100 µm) magnetic bubbles that have been considered a kind of skyrmion. Other

methods considered as potential ways of forming skyrmions include four-site ring [9]

and frustrated exchange interactions [91, 54, 55].The latter of these is especially

relevant to this project and warrants deeper consideration.

A phase diagram was initially simulated for triangular-lattice antiferromag-

nets, using a Monte-Carlo simulation and mean-field calculations, and this revealed

the presence of several multiple-q states, where q is the wavevector. A triple-q state

was found to have the spin structure of a skyrmion lattice, suggesting that frus-

trated magnets are capable of hosting skyrmions [91]. Another point of interest is

that the mechanism of skyrmion formation in this case does not include the DMI and

enables the presence of both skyrmions and anti-skyrmions in a new Z-phase [91].

Skyrmions have since been observed in the centrosymmetric frustrated triangular-

lattice magnet Gd2PdSi3 [54], detected through transport measurements, and in

Gd3Ru4Al12 [55], which materialises a breathing Kagomé network, where they have

been directly observed using Lorentz transmission electron microscopy.
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Chapter 3

Experimental Details

3.1 Sample synthesis

3.1.1 Solid state synthesis

The following samples were prepared in an inert atmosphere within a glovebox, with

S prepared previously by evacuating overnight to remove excess moisture. Mn pieces

were also prepared prior to being placed in the glovebox to remove any oxide that

had formed on their surfaces by placing the pieces in a beaker containing a ratio of

isopropyl alchohol and nitric acid of 1 ml to 1 pipette droplet, respectively. This

beaker was then placed into a water bath and agitated to encourage the removal of

the oxide. Once the dull oxide was removed from the shiny surface of the manganese

pieces, they were transported to the glovebox and ground into a powder using a

mortar and pestle immediately prior to being placed inside the quartz ampoule to

minimise the chance of oxidation.

The vapour pressure of S is high, so to prevent any fracturing of the quartz

ampoules under the increasing pressure as the temperature rose, all materials were

heated to 450 ◦C to ensure they were above the boiling temperature of sulfur, to

allow S to react with the other constituent materials. After the sulfur was no longer

visible in the quartz ampoules, the materials were then heated to temperatures high

enough to form the desired end material. The heating cycles used can be seen in

Fig. 3.1. Before the final solid state synthesis reaction, it was necessary to press

Cr1/3TaS2 into a pellet to prevent the powder from caking to the sides of the quartz

ampoule, which would cause the ampoule to fracture due to undue pressure upon

heating. In order to press a pellet, a small amount of Cr1/3TaS2 powder was placed

between two metal dies in a die body. It was then placed under several tonnes of

pressure for five minutes using a pellet press.
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Figure 3.1: The (a) first and (b) final heating cycles for M 1
3
XS2 and M 1

4
XS2, to react the

sulphur present in the sample and to form the final product, respectively.

Removing the Nb-containing samples from the furnaces after the completion

of the synthesis involved quenching them in cold water from high heat in order to

force the material into the desired hexagonal 2H polytpe. This family of materials

can be stabilised in many different polytypes, and when cooling the sample slowly,

a different polytype is produced. On the other hand, for Cr1/3TaS2, the sample

needed to be cooled slowly to achieve the 2H polytype, and quenching the sample

would instead result in the trigonal 1T polytype instead [92].

3.1.2 Arc melting

Arc melting was used for the synthesis of polycrystalline alloys such as the Mn3XY

family, where X = Rh, Ir and Y = Ge, Si. Polycrystalline Mn3RhSi was prepared

in-house, with Rh powder, and Mn and Si pieces. Mn3IrSi and Mn3RhGe were pre-

pared in the same manner by collaborators at the National Cheng Kung University,

Taiwan.

A stoichiometrically correct ratio of the starting elements Mn (99.5%, metals

basis, Alfa Aesar), Rh (99.5%, metals basis, Alfa Aesar), and Si (99.9999%, NewMet)

were placed in a copper crucible that was then evacuated and flushed through with

argon several times, until a pressure of 0.1 mbar was reached. The argon line was

then left open to create an over-pressure of argon and electrodes connected to a

power source were used to strike an arc against a metal notch in the crucible [See

Fig. 3.2]. A water cooling system was employed to prevent the equipment from over

heating.

The arc was used to heat a titanium ingot to remove any oxygen still present

in the system. The presence of an excessive amount of oxygen would cause the

ingot to tarnish, indicating a problem with the vacuum. Otherwise, another arc was

struck and slowly transferred to the sample to melt it. The arc furnace used for

sample synthesis is shown in Fig. 3.2.
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Figure 3.2: The crucible of the arc furnace. The arc is struck against the metal notch, as
otherwise the large power output from the electrode causes it to fuse to the crucible. Inset:
the electrode for the arc furnace.

3.1.3 Chemical vapour transport

To form single crystals of the intercalated transition metal dichalcogenides using

the previously synthesised polycrystalline powder samples as seeds, chemical vapour

transport (CVT) across a closed system was used. This method used a three-zone

tube furnace to create a temperature gradient - a transport agent, I2, acted as a

catalyst to volatilise the sample, which then diffused along the temperature gradient.

Once it reached an area with a sufficiently different temperature, I2 separated from

the transported sample, which nucleated and crystallised. The I2 then travelled

back through the system to reach the sample and the process was repeated. Due to

this, only small amounts of transport agent were needed. For all chemical vapour

transport growths involved with this project, 250 mg of I2(99.99%, Alfa Aesar) was

used for 2.5 g of sample. A schematic of chemical vapour transport is shown in

37



Figure 3.3: A schematic of chemical vapour transport. The iodine (yellow circle) reacts
with the sample (grey circle) to form an iodine-sample complex. This complex is then
transported down the temperature gradient and deposits the sample, which crystallises.

Fig. 3.3.

Both the size of the temperature gradient and the type and amount of trans-

port agent used impacted the crystal growth significantly. For example, too large a

temperature gradient can prevent the desired dissolution of the sample-iodine com-

pound at the ‘cold’ end of the gradient. Due to the difference between the NbS2

and TaS2 systems, a slightly different heating cycle was needed to grow Cr1/3TaS2

than was used for the rest of the materials. For the Nb-containing systems, the

‘hot’ zone of the furnace was set to 950◦C and the ‘cold’ zone of the furnace was

set to 800◦C. For Cr1/3TaS2, however, a temperature gradient of 950◦C to 880◦C

was used instead. All samples were held at these temperatures for approximately

500 hours before being cooled at 50◦C/hr to room temperature. Table 3.1 contains

information on the single crystal growth procedures used for several members of the

intercalated transition metal dichalcogenide family.

3.1.4 Modified Bridgman growth

The Bridgman technique is a useful tool for crystal growth and refers to a crystal

growth method where a quartz ampoule containing molten material is slowly lowered

through a tube furnace with a large negative temperature gradient at its bottom.

Encountering the temperature gradient causes the molten sample to crystallise [93].

To grow single crystal samples for the Mn3XY family, a modfied version of the

Bridgman technique was used.

This modified Bridgman technique made use of a box furnace. Samples

of polycrystalline Mn3XY were placed inside an alumina crucible with a conical

tip. This crucible was then double-sealed inside two quartz ampoules, which were

evacuated and then flushed with 1/3 atm of argon gas. This gas was used in an

attempt to equalise the pressure these tubes undergo at the high temperatures
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needed to melt the polycrystalline material within. The samples were heated past

their melting points and held at this temperature for three days to ensure they

were fully melted, and then slowly cooled to room temperature at a rate of 3◦C/hr.

On reaching the conical tip of the alumina crucible, the material crystallised into a

boule.

3.2 Energy dispersive x-ray analysis

Energy dispersive x-ray analysis (EDX) was performed using a scanning electron

microscope (SEM). Samples were prepared by affixing them to carbon tabs on sam-

ple holders and evacuating the sample chamber. An electron beam was used to

bombard the sample, exciting electrons within the material to higher energy states.

These electrons then decayed from the high energy states and emitted x-rays with

energies dependent on the element they were emitted from. The number of x-rays

produced were then counted and the intensity of the x-ray peaks relative to their

neighbours were used to determine the percentage of each constituent part of the

material. The penetration distance of the electron beam with respect to the sample

depends on the incident energy, which was consistently set to 20 kV for all samples

measured.

3.3 Heat capacity

Heat capacity measurements were performed in a Quantum Design Physical Prop-

erty Measurement System (PPMS) using the 2τ thermal relaxation method at tem-

peratures from 1.8 to 300 K in zero applied field. Apiezon N grease was used to

ensure good thermal contact between the sample and the sample stage, which was

housed in a puck.

The 2τ thermal relaxation method measures the heat capacity of a material

using two time constants, τ1 the relaxation time between the sample platform and

the puck, and τ2 the relaxation time between the sample and the sample platform.

The heater is turned off and the sample system is allowed to relax, which takes the

form:

Tp(t) = T0 +Ae
−t
τ1 +Be

−t
τ2 , (3.1)

where Tp is the platform temperature at time t, T0 is the initial temperature, and

A and B are constants. The relaxation method was originally optimised for low
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temperature measurements [94, 95], before being extended to room temperature [96,

97, 98, 99, 100]. Here,

τm = Cm/Km, (3.2)

where C1 = Cs+Cp is the sum of the heat capacities of the sample and the platform

for τ1, C2 = Cp +Ch is the sum of the heat capacities of the platform and the heat

sink for τ2, K1 is the thermal conductivity between the sample and the platform,

and K2 the same parameter for the platform and the heat sin.

Model values for these two τ can be calculated and compared to the measured

data, producing a value for heat capacity. A simpler model assuming perfect thermal

coupling between the sample and sample stage and thus using only one value of τ

is also calculated and compared to the data, allowing the best model of the two

to be selected by the PPMS software. Baseline measurements for the puck were

performed to identify any features in the data that were associated with the puck

itself.

The Debye-Einstein model was used to calculate the lattice contribution to

the heat capacity in order to subtract it; allowing for the calculation of the entropy

associated with the magnetic ordering. This phonon contribution can be estimated

using

CD−E (T ) = γT + nδCD

(
T

ΘD

)
+ n(1− δ)CE

(
T

TE

)
, (3.3)

where γ is the electronic contribution to the heat capacity, n is the number of atoms

per formula unit of the materials, δ is the fractional contribution of CD, ΘD is the

Debye temperature, TE is the Einstein temperature, CD is the Debye contribution

to the heat capacity:

CD

(
T

ΘD

)
=

∫
Θ4

De
ΘD
T

T 4(e
ΘD
T − 1)2

, (3.4)

and CE is the Einstein contribution to the heat capacity:

CE

(
T

TE

)
=

∫
Θ2

Ee
ΘE
T

T 2(e
ΘE
T − 1)2

. (3.5)

It is worth noting that at low temperatures the magnetic contribution to the

heat capacity from antiferromagnetic spin waves can be approximated as:
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Cmag (T ) = cn

(
kBT

2|Jex|S

)3

, (3.6)

where c is a constant that has been calculated for several different lattices [101], Jex

is the exchange constant, and S is the spin angular momentum. This clearly has a

T 3 dependence, which can be expected to appear roughly linear at very low temper-

atures. As the phonon contribution to the heat capacity also has a T 3 dependence,

it can be very difficult to easily separate the magnetic and lattice contributions to

the heat capacity for antiferromagnetic materials.

At low temperatures, the heat capacity can be approximately modelled to

C (T ) /T = γ + βT 2, where β = 12
5
nRπ4

Θ3
D

, and where R is the molar gas constant.

As this is expected to be linear for materials with an antiferromagnetic ordering, it

can be used to estimate values for γ and β. The Dulong-Petit value, 3nR, can also

be calculated to indicate how close the sample was to reaching the saturation value

for the heat capacity at room temperature.

3.4 Diffraction techniques

The periodic structure of crystals means that they can act as a diffraction grating for

electrons, x-rays, and neutrons. These diffraction techniques are incredibly useful for

probing the structural and, for neutrons especially, magnetic properties of different

crystalline materials.

3.4.1 Electron diffraction

Two transmission electron microscopes (TEMs) were used to investigate the struc-

tures of different single crystals. To distinguish centrosymmetric from non-centrosymmetric

structures, measurements were made along the [001] direction of the crystals of

Mn1/3NbS2, Cr1/3NbS2, V1/3NbS2, and Cr1/3TaS2. Samples were prepared by us-

ing a scalpel to graze the surface at the edge of a crystal of each material. The

scrapings were then deposited upon a lacey carbon TEM grid in order to fill the grid

with tiny crystallites. Images and selected area electron diffraction patterns were

recorded using a JEOL2100 transmission electron microscope, operated at 200 kV

with a Gatan OneView digital camera. The electron wavelength, λe, can be related

to the voltage, V , of the TEM [62] using:

λe =
h

[2meeV (1 + eV
2mec2 )]

1
2

, (3.7)
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where h is Planck’s constant, me is the mass of the electron, e is the charge of an

electron, c is the speed of light.

To examine the in-plane structural features of Mn1/3NbS2 and Cr1/3NbS2,

the samples were instead prepared using an FEI NanoLab-600 Helios Dual-Beam

focused ion beam (FIB) microscope equipped with an Omniprobe-200 micromanip-

ulator. Single crystals of these materials were mounted inside the FIB on their (001)

face and samples of approximate size 20×5 µm2 and 1 µm thickness were cut normal

to this face using gallium ion milling. They were then lifted out with the microma-

nipulator and platinum deposition was used to attach the samples to Omniprobe

grids. Further gallium ion milling was used to thin the samples to approximately

100 nm so that they were electron-transparent. These samples were then measured

using an FEI Titan3 80-300 transmission electron microscope operated at an accel-

eration voltage of 300 kV and equipped with a high-brightness XFEG field-emission

electron gun. Images were recorded on a 2048 × 2048 pixel CCD using either a

Gatan Ultrascan 1000 camera or a Gatan 865 Tridiem camera which allows images

to be energy-filtered. A 2 T field was applied to the samples to force them into a

magnetically saturated state before diffraction images were taken.

TEMs utilise an electron gun and a series of electromagnetic lenses to focus

an electron beam on the atomically thin sample. An example schematic of a JEOL

JEM2100 TEM is shown in Fig. 3.4.

3.4.2 X-ray diffraction

X-ray diffraction has already been discussed at length in Section 2.4. Here the

details of the experimental equipment used for this project are discussed.

Powder x-ray diffraction

In a polycrystalline material such as a powder, every set of lattice planes are capable

of diffracting as the different crystallites within the powder orient randomly along

different faces with respect to the beam [60, 58].

The diffractometer used for this project was the Panalytical X’Pert Pro MPD,

which has a beam radius of 240 mm and a Cu K-α x-ray source (λ = 1.5406 Å). A

monochromator ensured only the K-α1 wavelengths were emitted. The detector was

moved around 2θ for each scan, which were usually made to span values 10 - 90o.

Peaks form in the diffraction profile at different (hkl) values which can be predicted

from knowledge of the sample, i.e. the peak at the lowest 2θ value is from the plane

with the greatest allowed spacing. This can be used to check the phase purity of a
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Figure 3.4: A schematic cross-section of a JEOL JEM2100 transmission electron micro-
scope. Taken from [102].

material. Data was analysed using the Rietveld refinement method implemented in

the Topas academic v6.0 sofware [103].

The Rietveld refinement method uses the least squares regression method

to minimise the difference between the calculated fit (ycalc) and observed data

(yobs) [104, 105, 106]. The best possible fit to the data is calculated as
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Figure 3.5: An image of an Oxford Diffraction Gemini single crystal diffractometer with
the directions ω and 2θ marked.

Rexp =

√
N − P∑N

i=1wi(yobs,i)
2
, (3.8)

where N is the number of data points, P is the number of parameters, wi = 1
σ2(yobs,i)

is the weighting, and σ2 is the variance of the intensity. This value can be compared

to Rwp the weighted difference between the observed data and calculated fit:

Rwp =

√∑N
i=1(yobs,i − ycalc,i)2∑N

i=1wi(yobs,i)
2

, (3.9)

in order to estimate the goodness of fit χ:

χ =
Rwp
Rexp

. (3.10)

Single crystal x-ray diffraction

The single crystal x-ray diffraction method used in this project was a transmission

technique. Samples were rotated through an angle ω while the detector was moved

through angle 2θ in order to build up a three-dimensional image with the diffraction

from the sample. An image of the single crystal diffractometer is displayed in Fig. 3.5

Single crystal x-ray diffraction data of Cr1/3NbS2 and V1/3NbS2 were col-

lected for a crystal of dimensions 0.13× 0.12× 0.02 mm3 and 0.07× 0.03× 0.03 mm3,

respectively, using an Oxford Diffraction Gemini diffractometer, employing graphite

monochromated Mo K-α radiation (λ = 0.71073 Å) generated by a fine-focus sealed

45



tube Enhance x-ray source and detected by a Ruby CCD detector.

Single crystal diffraction data of Mn1/3NbS2 and Cr1/3TaS2 were collected

for a crystal of dimensions 0.21 × 0.14 × 0.08 mm3 and 0.10 × 0.07 × 0.013 mm3,

respectively, using a Rigaku Oxford Diffraction Synergy diffractometer, employing

mirror monochromated Mo K-α radiation (λ = 0.71073 Å) generated by a micro-

focus sealed tube PhotonJet x-ray source and detected at a HyPix hybrid photon

counting detector.

In all cases, the temperature was controlled using an Oxford Cryosystems

Cryostream [107] at 295 and 300 K, respectively, with data collection, indexing,

reduction and absorption correction mediated using CrysAlisPRO [108]. For the Cr

system, absorption was accounted for by use of an empirical, spherical harmonics

approach as implemented in SCALE3 ABSPACK while for the Mn system, a

Gaussian integration over a multifaceted crystal model was employed.

Structural solutions were obtained using shelxt [109] and further refined by

full-matrix least squares, using shelxl [110], both operating through Olex2 [111].

Laue x-ray diffraction

A backscattering x-ray Photonic-Science Laue camera system was used to assess the

quality and orientation of the single crystals. The Laue backscattering method of

x-ray diffraction satisfies Bragg’s law by fixing the angle of incidence and varying

the wavelength of the incident light. The x-ray beam is passed through a hole in the

CCD (charge-coupled device) and is incident on the single crystal sample. Some of

this beam is then backscattered by the sample onto the CCD, resulting in diffraction

spots projected in an imaginary cone from the illuminated area [60, 58]. Due to

this, Laue diffraction is useful for crystal orientation, as different symmetries will

result in different patterns from different crystallographic orientations. The expected

Laue pattern of a material with a known space group and lattice parameters can

be simulated and compared to experimental results for different crystallographic

orientations in order to find the desired orientation. If multiple orientations are

required then the sample can be cut to suit. Fig. 3.6 displays the experimental

set-up used throughout this project.

3.4.3 Neutron diffraction

Powder and single crystal neutron diffraction measurements were performed using

the WISH instrument at the ISIS neutron source [112] [See Fig. 3.7]. The theory of

neutron scattering has been discussed previously in Section 2.5, so in this section
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Figure 3.6: An image of the Laue diffractometer.

Figure 3.7: A schematic of the Wish diffractometer, taken from [112], inbetween
a picture of the instrument (left) and the array of 3He detectors inside the experi-
mental blockhouse (right). An elliptical neutron beam is transported by a ballistic
supermirror guide that starts 1.7 m from the source and ends 0.5 m from the sample-
point.
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the experimental setup used for this project will be elaborated on.

The WISH instrument uses a spallation source that emits neutrons in pulses

using a proton accelerator. This allows for time-of-flight neutron scattering measure-

ments. WISH has a long repetition time and is thus better suited to slower-moving

long-wavelength neutrons to better probe short-d magnetic features. A fixed bank of

5 multi-angle detectors cover a broad 2θ range. The wavelengths of the large band-

width wavelengths of neutrons can be determined using a basic kinematic equation:

λ = h (t+ t0) /mn (L+ L0) , (3.11)

where t is the time of flight it takes a neutron to travel a distance L from the

moderator to the target, t0 and L0 are offset values for each experimental set-up that

must be calibrated, mn is the mass of the neutron, and h is Planck’s constant [61].

Powder neutron diffraction

The powder neutron diffraction data were taken at zero field for a range of tem-

peratures between 1.5 and 300 K for multiple samples. The powder polycrystalline

materials were mounted inside vanadium canisters due to the low coherent scattering

length of vanadium for neutrons, rendering it almost invisible to the neutrons.

Useful R-factors can be extracted from this data as well in the same way as

for powder x-ray diffraction. We can additionally define the Bragg R-factor as:

RBragg =

∑
|Iobs − Icalc|∑
|Iobs|

, (3.12)

where Iobs is the observed intensity and Icalc is the calculated intensity. Note that

this R-factor can also be used for x-ray diffraction, and that a version for the mag-

netic refinement can be defined in the same way, and is called RMag to distinguish

it from the R-factor used for nuclear structure.

Single crystal neutron diffraction

The single crystal V1/3NbS2 was attached to an aluminium holder using aluminium

tape and the alignment was checked in-situ and found to be accurate to within 1-2◦.

The single crystal neutron diffraction data were collected in both the (hk0) and

(h0l) scattering planes at 1.5 K for a range of magnetic fields between 0 and 8 T.

For the measurements in the (hk0) scattering plane, the magnetic field was applied

parallel to the c axis, while in the (h0l) scattering plane, the magnetic field was

applied along the [110] direction. A further temperature scan was performed in the
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(h0l) scattering plane, from 1.5 to 52 K in zero field. The large number of position

sensitive detectors within WISH provide good resolution, and also allowed for data

to be taken several degrees outside of both of these scattering planes, i.e. the (hk±1
3)

peaks were accessible. The single crystal neutron diffraction data were treated using

the single crystal interface of MantidPlot [113] and the powder neutron diffraction

data were analysed with the FullProf software suite [114] and JANA2020 [115].

3.5 Magnetisation

3.5.1 dc susceptibility

A Quantum Design Magnetic Property Measurement System (MPMS) was used

to measure the magnetisation between 1.8 and 300 K in applied magnetic fields

up to 7 T. This Superconducting Quantum Interference Device (SQuID) uses the

concept of inductance - a magnetic sample is moved some vertical distance through

a pickup coil in the presence of a magnetic field. The moving sample cuts flux lines

and induces a current in the coil proportional to the magnetisation of the sample.

This current itself induces a flux in the input coil, which is coupled to the SQuID.

This consists of two Josephson junctions connected in parallel in a superconducting

loop [116]. A basic schematic of this SQUID setup can be seen in Fig. 3.8. It is

worth noting that the coil has three ‘sections’ - it is wound one way in the top and

bottom sections, and it is wound in the opposite direction in the middle section.

Any changes to the magnetic flux across the system will result in changes

to the phases of the wavefunctions at these Josephson junctions, and therefore the

current running through them. The signal output by the SQUID is small and

therefore needs amplification, but remains very sensitive to changes in magnetic

flux.

The polycrystalline samples were prepared in gel capsules while the single

crystal samples were attached to teak sample holders with general electrical varnish

(GEV). The capsules or holders were then mounted inside low-magnetic-background

plastic straws at the midpoint to ensure the background deduction was symmetric.

V1/3NbS2 was mounted directly onto the straw using GEV due to the background

from the sample holder posing issues with the measurements due to the very small

signal these crystals produced. Holes were poked throughout the straws to prevent

the trapping of oxygen around the sample.
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Figure 3.8: A schematic of SQuID pickup coils. Taken from [117].

3.5.2 Magnetisation as a function of field

Field-dependent magnetisation measurements up to 10 T were performed using an

Oxford Instruments vibrating sample magnetometer (VSM). The magnetic field was

applied parallel and perpendicular to the c axis. The samples were aligned along

the different crystallographic directions to within 1-2◦ using superglue and PTFE

tape to attach them to the sample stick.

Like the SQuID, the VSM uses inductance to perform its measurements. The

sample is attached to a sample stick and a constant magnetic field is applied. The

stick is then set to vibrate, causing the magnetised sample to create an alternating

magnetic field that induces an electric field in the pickup coils of the VSM. The

current produced is proportional to the magnetisation of the sample. The applied

field was then varied in order to record the hysteresis loop that the sample produces.

3.5.3 ac susceptibility

A Quantum Design Physical Property Measurement System (QDPPMS) with an

alternating current measurement system (ACMS) attachment was used for the ac

susceptibility measurements on single crystal samples, which were orientated so

that the magnetic field was applied perpendicular to the c axis. In ac susceptibility

measurements, a small alternating field is applied to the sample. This causes the

moment of the sample to vary with time without any need for moving the sample. If

the force applied to the magnetisation is linear, it acts as a driven, damped, simple

harmonic oscillator. While the applied frequency is small, the results are most like

what would be measured for dc susceptibility, with
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MAC = χHACsin (ωt) , (3.13)

where MAC is the moment induced by HAC the alternating magnetic field, t is the

time, and ω is the angular frequency.

At higher frequencies, dynamic effects prevent the ac susceptibility from

following the curve that dc susceptibility measurements would follow. The ac sus-

ceptibility can lag behind the driving field, causing the need to separate χ into

two components: the real in-phase component χ’ and the imaginary out-of-phase

component χ”. These can be written as:

χ′ = χcos (φ) , (3.14)

χ′′ = χsin (φ) , (3.15)

where φ is the phase shift of the susceptibility relative to the driving signal and

χ =
√
χ′ 2 + χ′′ 2. (3.16)

For this reason, the imaginary χ” is indicative of dissipative processes in the mate-

rial.

3.6 Lorentz transmission electron microscopy

Lorentz transmission electron microscopy uses the Lorentz force to image magnetic

features in samples. In normal electron microscopy, an electron beam is focused

onto a sample. The magnetism present in the sample will deflect the electrons in a

direction dependent on the direction the magnetism orders in, due to the Lorentz

force. Therefore, if a certain amount of defocus is applied to the microscope instead,

alternating bright and dark features will be visible due to the magnetism present in

the sample. A schematic view of this concept is displayed in Fig. 3.9 for a material

with magnetic domains that alternate in orientation.

For the Lorentz transmission electron microscopy measurement, samples were

prepared using a focussed ion beam (FIB), as discussed in Section 3.4.1., using the

same FEI Titan3 80-300 transmission electron microscope operated at an acceler-

ation voltage of 300 kV and equipped with a high-brightness XFEG field-emission

electron gun. However, instead of the 2 T field applied in normal operation, images

of the magnetic structure were acquired either in Lorentz mode where the image
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Figure 3.9: An example of Lorentz transmission microscopy. A sample with magnetism
alternately pointing into the page (blue) and out of the page (red) is placed at a point
outside of the focused plane of the TEM. At this point it deflects the incoming electron
beam in different directions depending on the direction of the magnetism, causing dark and
bright spots in the image plane.

is formed using the Lorentz lens or in low-magnification mode where the image is

formed using the diffraction lens. Neither of these lenses applies a significant field

to the sample and when an applied field was required, the objective lens was weakly

excited to apply a field parallel to the electron beam. The applied magnetic field

corresponding to a given objective lens current had been calibrated to within 1 mT

using an FEI Hall probe holder.

The transport of intensity (TIE) equation was used to estimate the projected

B-field within the sample. The TIE is a partial differential equation that relates the

varial axial intensity of the optical field to its phase [118]. The TIE can in general

be written as:

− k∂I (x, y, z)

∂z
= ∇ · [I (x, y, z)∇φ (x, y)], (3.17)

where k = 2π
λ is the wave number, I (x, y, z) is intensity distribution at the x-y

plane located at propagation distance z, and ∇ is gradient operator over the x-y

plane, and φ is the phase shift of the material. Solving the TIE for φ requires

the comparison images with a large amount of positive and negative defocus with a
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Gaussian defocused image to estimate ∂I(x,y,z)
∂z [119]. Knowing the phase shift allows

the estimation of the B field within the material as they are proportional:

φ (x) =
etx

~
By, (3.18)

where e is the charge of the electron, t is the thickness of the sample, x is the in-plane

direction perpendicular to the optical axis, and By is the magnetic flux density along

the direction perpendicular to both x and the optical axis. By applying a gradient

to the reconstructed phase, the in-plane B field can then be retrieved:

∇φ (x, y) =
et

~
(B × n̂z) , (3.19)

where n̂z is a unit vector along the optical axis.

The specimen thickness was measured by taking in-focus images of an area

both with and without energy filtering. By dividing the unfiltered image by the

filtered image and taking the natural logarithm, the thickness as a multiple of the

inelastic mean free path of the electrons can be extracted in order to create a ‘t-over-

lambda’ map [62]. In order to calibrate the inelastic mean free path, the absolute

specimen thickness was measured at 15 positions using the two-beam convergent-

beam electron diffraction technique described in ref. [62], resulting in a map of the

absolute thickness across the whole specimen to within 10 nm accuracy.

The amount of defocus applied is critical and heavily affects what is visible

during the measurement. Agar Scientific’s S106 calibration specimen, which consists

of 463 nm spaced lines on an amorphous film, allowed for the calibration of the

defocus and the magnification by using the same lens settings as the calibration

specimen. Taking a Fourier transform of these images results in dark rings from the

contrast transfer function of the lens, the radii of which can be measured and used

to estimate the defocus.

All Lorentz transmission electroscopy experiments were performed at the

University of Cambridge with collaborators James Loudon and Alison Twitchett-

Harrison.
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Chapter 4

Neutron diffraction study of

V1/3NbS2

4.1 Introduction

While many members of the intercalated transition metal dichalcogenide family

have been well-investigated, there remain several of the intercalated TMDCs that

merit further study. One such example is V1/3NbS2, a material that was originally

reported as a paramagnet [25] but was later reported to order ferromagnetically

at temperatures below 50 K [21], with an additional transition observed as the

temperature decreased below 20 K and the field was directed perpendicular to the

c axis. It has since been predicted that V1/3NbS2 could host a chiral soliton lattice

using calculations that consider the effect of spin-orbit coupling [120].

Interestingly, the paramagnetic Weiss temperature for V1/3NbS2 was re-

ported to be negative, which is unexpected for a ferromagnetic material, and there-

fore attributed to a large contribution from crystal field effects [21]. However, a more

recent study on the magnetism of V1/3NbS2 and its sister compound V1/3TaS2 us-

ing neutron diffraction and dc susceptibility measurements, reported that both of

these materials are canted antiferromagnets, as expected for materials with negative

Weiss temperatures [24]. This study also found evidence for a k = (0, 0, 0) magnetic

propagation vector, and described the magnetic structure of the material as an A-

type antiferromagnet with some canting present along the c axis described by the

coupling of two irreducible representations.

In this chapter a detailed investigation into the magnetism of V1/3NbS2

is presented, using well-characterized single crystals and polycrystalline material.

Techniques such as powder and single crystal neutron and x-ray diffraction, as well
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Figure 4.1: Single crystals of V1/3NbS2 on mm paper.

as heat capacity and ac magnetisation measurements, have been used to probe the

magnetic structure of V1/3NbS2. It is shown that V1/3NbS2 becomes antiferromag-

netic below 50 K. Two magnetic propagation vectors were extracted from the powder

neutron diffraction data: k0 = (0, 0, 0) and k1 = (0, 0, 1
3). The k0 propagation vec-

tor represents an in-plane component of the magnetism, with antiferromagnetically-

coupled ferromagnetic layers of vanadium atoms. The k1 propagation vector rep-

resents a canting out of the plane. In addition, evidence is provided for diffuse

magnetic scattering in this material.

4.2 Sample preparation

Polycrystalline and single crystal samples of V1/3NbS2 were prepared using the

processes detailed in Section 3.1, i.e. with a solid state reaction within a box furnace,

and with chemical vapour transport (CVT) using the polycrystalline powder as a

seed and iodine as a transport agent. 5 g of polycrystalline powder was synthesised,

and 2.5 g was used during the CVT crystal growth process. Some of the crystals

synthesised in this process are displayed on mm paper in Fig. 4.1. The size of the

crystals varied from sub-mm in length and thickness, to approximately 4.0 × 2.5 ×
1.0 mm3.

4.3 X-ray diffraction

4.3.1 Laue x-ray diffraction

A Laue pattern from the single crystal used for the following experiments, [Fig. 4.2],

indicates that the crystal is of high quality. The c axis of the material was found to

point out-of-plane, as expected, which made it simple to orient the samples for all

further measurements.
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( a ) ( b )

Figure 4.2: Laue back reflection pattern along the (a) [100] and (b) [001] orienta-
tions of an aligned V1/3NbS2 crystal.

Several spots in Fig. 4.2 were not well defined due to stacking faults present

in the crystal measured, such as for example the twisting of crystal layers relative to

each other. Due to the weak van der Waals bonding between the layers in this family

of materials, and in fact many van der Waals materials, this particular stacking fault

is common.

4.3.2 Single crystal x-ray diffraction

Single crystal x-ray diffraction data taken at room temperature for V1/3NbS2 has

been used to create the model shown in Fig. 4.3. The parameters of this model are

displayed in Table 4.1, which shows excellent agreement between the calculated and

observed structure factors when modelled in the non-centrosymmetric space group

P6322, while refinement in the centrosymmetric space group P63/mmc provides a

significantly worse fit and a far more complex structure. The Flack parameter of

the model is poor, indicating the presence of twinning in the material. Due to this,

an inversion twin law is employed in the refinement for completeness for which the

twin component scale factor refines to within error of zero [3(6)], where the value

given in parenthesis is the associated error. A proportion of disorder over the main

2c Wyckoff site of the V atom (occupancy 0.413(12)) and the Wyckoff 2b (0.284(16))

and 2d positions (0.264(16)) was observed. Due to the relatively high amount of

disorder present in the system, as well as the ambiguous twin scale factor present

in this model, electron diffraction was used as a complementary method to confirm

that the material had crystallised in the non-centrosymmetric P6322 space group.
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Figure 4.3: Nuclear structure of V1/3NbS2 constructed from single crystal x-ray
diffraction measurements. The occupancy of the V atoms are shown as the percent-
age of each atom coloured in red. The octahedral sites that the V atoms occupy are
displayed.
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4.4 Electron diffraction

Electron diffraction was used as well as x-ray diffraction to investigate the struc-

tural properties of V1/3NbS2. Electron diffraction was performed along the [001]

direction of this material and the samples were prepared as discussed in Section

3.4.1, i.e. by depositing scrapings of single crystals onto lacey TEM carbon grids. A

JEOL2100 transmission electron microscope with a Gatan OneView digital camera

was operated at 200 kV to take the images.

Fig.4.4c displays the electron diffraction pattern measured. This pattern was

compared against simulations of V1/3NbS2 in the P6322 space group and simulations

of the centrosymmetric material V1/4NbS2, which crystallises in the centrosymmetric

P63/mmc space group. These two space groups display key pattern differences in

certain directions. Along the [001] direction, a significant difference in the relative

intensities of key spots is a good indication of the space group that the material has

crystallised in [see Fig. 4.4b].

4.5 dc susceptibility and magnetisation

The dc magnetic susceptibility, χdc (T ), of single-crystal V1/3NbS2 was measured in

a field of 3.3 mT applied parallel and then perpendicular to the c axis, [Fig. 4.5]. The

Curie-Weiss law is used to fit the zero-field cooled (ZFC) data in the paramagnetic

state to give effective moments 2.90(2) µB/f.u. and 3.03(2) µB/f.u. for the field

parallel and perpendicular to c, respectively. These values are in agreement with

values calculated in previous work [21] and are both close to the expected spin-only

value for V3+ of 2.83 µB/f.u..

A magnetic transition was observed at 50 K, with a sharp increase in the field-

cooled cooling (FCC) susceptibility especially at this temperature. The ZFC and

FCC curves are in fact significantly different from each other for both field directions,

with a highly suppressed susceptibility in the magnetically ordered state in the

ZFC regime when compared to the FCC regime, which increases at the transition

temperature to form a peak. When H ⊥ c, an additional upturn in χdc (T ) is

observed at T < 10 K. A larger signal is observed for H ‖ c than for H ⊥ c, but the

moment measured is still far smaller than would be expected for a ferromagnetic

material.

The acmagnetisationM as a function of magnetic fieldH is shown in Fig. 4.6.

Hysteresis is present for all temperatures for both field directions. This hysteresis is

small when the field is applied perpendicular to c [Fig. 4.6(b) inset]. However, when
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Figure 4.4: (a) V1/3NbS2 structure viewed along the [001] direction. (b) Simula-
tions of the expected electron diffractions for V1/3NbS2 in the non-centrosymmetric
P6322 and centrosymmetric P63/mmc space groups. The relative brightness be-
tween certain key spots (e.g. the (030) and (200) spots) are very different between
the two space groups. (c) Experimental electron diffraction pattern and image of
a prepared single crystal of synthesised V1/3NbS2 single crystal. The experimental
pattern matches excellently with the simulation for the P6322 space group.

the magnetic field is applied parallel to c, the hysteresis is far larger, with a coercive

field of up to 1 T. Step-like features are observed in this magnetic hysteresis loop

at low-fields when the magnetic field is applied at any intermediate angle between

exactly perpendicular and parallel to the c axis, even for very small angles.

The dc magnetisation of V1/3NbS2 does not saturate in fields of up to 100 T

regardless of the crystal orientation. As can be seen in Fig. 4.6, a maximum dc

magnetisation of ≈ 0.2 µB/f.u. is reached by 10 T, which is significantly lower

than the expected moment for V3+. This large difference between the observed and

expected moment, despite the full effective moment obtained from the Curie-Weiss

fits in the paramagnetic state [Fig. 4.5], strongly indicates a long range magnetically

ordered structure that is largely antiferromagnetic, with near-perfect cancellation

of the moments between the magnetic sublattices, and that the introduction of a
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Figure 4.5: Temperature dependence of the dc magnetic susceptibility χdc (T ) for
V1/3NbS2 collected in zero-field cooled (ZFC) and field-cooled cooling (FCC) modes
in an applied field of H = 3.3 mT for H ‖ c and H ⊥ c. The inset shows the
magnetic susceptibility for H ⊥ c between 1.8 and 50 K, with a magnetic transition
visible at 50 K.

magnetic field does not significantly modify this structure. The sharp increase in

the FCC χdc (T ) at 50 K in Fig. 4.5 indicates that there must be some ferromagnetic

component to the magnetic ordering, such as a canting of the magnetic moments.

4.6 ac susceptibility

The ac susceptibility of V1/3NbS2 as a function of temperature was measured at

several different applied dc magnetic fields oriented both perpendicular and parallel

to the c axis of V1/3NbS2 [see Fig. 4.7]. For H ‖ c, a large χ’ component is present

at low temperatures < 10 K. This corresponds well with the feature seen in χdc.

This feature is suppressed with field and is entirely absent when H = 100 mT. By

comparing the two datasets in Fig. 4.7(a), it can also be seen that a further gradient

change occurs in the 0 mT dataset at 30 K, after which point the 100 mT and

0 mT data sit neatly on top of each other, except for during the transition to the

paramagnetic state at temperatures around 50 K. At these temperatures, a sharp

peak is visible in χ’ for 0 applied dc field, which is significantly suppressed with an
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Figure 4.6: Field dependence of the dcmagnetisationM per formula unit of VNb3S6

for various temperatures. The field was applied (a) parallel and (b) perpendicular
to the c axis. The insets show the low field hysteresis for both field directions.

applied dc field of 100 mT. In χ”, there is no evidence of the features seen in χ’ at

low temperatures, however the peak at the transition can again be seen for 0 mT

applied dc field, and is again suppressed when 100 mT is applied.

For dc fields applied perpendicular to the c axis, something slightly different

can be seen. Instead of a large χ’ component at low temperatures, there is a small

decrease in χ’ at temperatures less than 10 K. Between 10 and 50 K, for all dc

applied fields, χ’ increases, and then decreases slightly between 50 K and 70 K. A

peak is again visible at the transition temperature for 0 mT, that is suppressed with

increasing fields. As the dc field applied to the material is increased, the χ’ follows

the same curve, but at a slightly increased background level. In χ”, no features were

visible except a peak at the transition temperature at 0 applied dc magnetic field.

4.7 Heat capacity

The heat capacity as a function of temperature for V1/3NbS2 is shown in Fig. 4.8.

The magnetic transition at 50 K is clearly visible as an anomaly in the data. A

value for the electronic contribution to the heat capacity γ as well as the Debye

temperature ΘD can be extracted from the low temperature heat capacity data

[Fig. 4.8 inset] using C (T ) /T = γ + βT 2, as mentioned in Sec. 3.3. In this case
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Figure 4.7: Temperature dependence of the ac magnetic susceptibility χac for
V1/3NbS2 collected with applied fields H ‖ c and H ⊥ c for both real χ’ [(a) and
(c), respectively] and imaginary χ” [(b) and (d), respectively].

n = 10 is the number of atoms per formula unit of VNb3S6.

This gives γ = 7.5(2) mJ/mol K2, a value that is reasonable for a metallic

material [38]. As disorder prevalent in intercalated TMDCs has been shown to in-

crease γ in other layered materials [121, 122], this may also have contributed to γ.

The Debye temperature obtained from the same fit, ΘD = 382(2) K, is consistent

with the heat capacity at 300 K falling below the Dulong-Petit value 3nR. A mag-

netic contribution to the heat capacity would result in a higher value for ΘD, which

is also consistent with the higher temperature data. Assuming 3D antiferromag-

netic spin waves, this magnetic contribution would be proportional to T 3, making

it difficult to distinguish from phonons. The linear dependence of C (T ) /T vs T 2

is, however, compatible with antiferromagnetic ordering.

The entropy associated with the magnetic ordering can be calculated by

integrating over ∆C/T , where ∆C (T ) = C (T ) − CD−E (T ). However, to ensure
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Figure 4.8: Heat capacity C of V1/3NbS2 as a function of temperature T from
1.8 to 300 K. The line is a fit using the Debye-Einstein model. The inset shows
the linear behavior of C/T as a function of T 2 at low temperatures giving γ =
7.5(2) mJ/mol K2 and ΘD = 382(2) K.

that only the magnetic entropy is considered, the lattice contribution to the heat

capacity must first be removed. This phonon contribution can be estimated using

a Debye-Einstein model, see Eq. 6.1. The heat capacity data as fitted using Eq. 6.1

is shown in Fig. 4.8.

To limit the number of free parameters in this fit, the fractional contribution

δ was constrained to 0.4. This was done as, of the n = 10 atoms present, the one

V and three Nb atoms are far heavier in comparison to the six lighter sulfur atoms.

The Debye contribution CD is well suited to modelling the heavier atoms, while

the Einstein contribution CE works well for modelling the lighter sulfur atoms. In

addition, γ was fixed to the value obtained from the low temperature data. Finally,

to ensure that no aspect of the magnetic contribution to the entropy was removed in

the estimation of the phonon contribution to the heat capacity, the Debye-Einstein

model was restricted to data between 80 and 300 K, and then extrapolated to lower

temperatures. This was done as evidence of short-range magnetic correlations in

the magnetisation data were present until around 70 K.

Considerations such as these were useful in confining the flexible Debye-

Einstein model to what is physically reasonable. The best fit to the data was

obtained with a Debye temperature ΘD = 336(2) K and an Einstein temperature

64



1 2 3 4 5

0

1 0 0 0

2 0 0 0
 Y O b s
 Y C a l c
 Y D i f f
 N u c l e a r  B r a g g  p e a k s

Int
ens

ity
 (a

rb.
 un

its)

d  ( Å )

6 0  K

Figure 4.9: Powder neutron diffraction profile of V1/3NbS2 at 60 K with a calculated
fit to the data.

TE = 488(5) K. These values fall either side of the ΘD = 382(2) K obtained from

the low temperature fit, as expected. The calculated entropy ∆S = 9(1) J/mol K

is within error of the expected result of ∆S = R ln 3 from the S = 1 spin-only

moment of V3+. This data gives strong evidence for long-range magnetic ordering

in V1/3NbS2 with magnetic correlations above the ordering temperature.

4.8 Powder neutron diffraction

A fit was performed at 60 K to determine the nuclear structure of V1/3NbS2, with

a Bragg R-factor of RBragg = 7.978 %. V1/3NbS2 was found to form in the P6322

space group with lattice parameters of a = 5.7521(2) Å and c = 12.1778(7) Å.

The refined atomic positions are tabulated in Table 4.2 at both 60 and 5 K. The

temperature term for the V atom was taken from powder x-ray diffraction and

left invariant due to the fact that almost all neutrons scatter incoherently from
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Table 4.2: Atomic coordinates for V1/3NbS2 extracted from the powder neutron
diffraction refinement at 60 K and 5 K in the hexagonal space group P6322. The
reliability factors for each nuclear phase are RBragg = 7.978% and RBragg = 6.1%,
respectively. The magnetic reliability factors for the phase at 5 K are found to be
RMag = 19.2% and 30.9% for the magnetic phases associated with the k0 and k1

propagation vectors, respectively.

60 K
a = 5.7521(2) Å c = 12.1778(7) Å

Atom x y z Occ. Biso (Å
2
)

V1 1
3

2
3

1
4 1 0.3

Nb1 0 0 0 1 0.2(7)
Nb2 1

3
2
3 1.0046(9) 1 0.1(2)

S1 0.334(12) 0.012(4) 0.1271(3) 1 -0.10(15)

5 K
a = 5.7519(2) Å c = 12.1768(5) Å

Atom x y z Occ. Biso (Å
2
)

V1 1
3

2
3

1
4 1 0.3

Nb1 0 0 0 1 0.4(4)
Nb2 1

3
2
3 1.0046(5) 1 0.6(2)

S1 0.333(5) 0.001(3) 0.1273(2) 1 0.08(7)

vanadium. For the same reason, the disorder over the vanadium sites was found to

have little effect on the refinement, and so was not included in the fit. The thermal

displacement parameter, Biso, calculated from the fit was negative. This is not a

physically possible result, though it should be noted that the negative displacement

was very small and within error of a positive value.

Powder neutron diffraction measurements taken for temperatures between

5 and 52 K are displayed in Fig. 4.10(a). The data range shown is restricted to

between 3 and 5.5 Å to better show the evolution of two of several of the magnetic

Bragg peaks. Magnetic Bragg peaks become visible at temperatures around ≈ 47 K,

near the ordering temperature. As the temperature decreases to 41 K, the Bragg

peaks increase in intensity, culminating in a significant increase at temperatures

between 37.5 and 41 K. Any further changes to the size or shape of the magnetic

Bragg peaks below 20 K is marginal.

The data taken at 5 K using the WISH banks with an average 2θ value

of 54◦ are shown in Fig. 4.10(b) along with the calculated fit in the models for

nuclear and magnetic structures, which are refined in the fit as separate phases

and discussed below. The refined atomic positions and their thermal displacement

parameters are tabulated in Table 4.2. The data are consistent with the presence
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Table 4.3: Atomic components of the basis functions localised on the 2c Wyckoff
position of the P6322 paramagnetic space group and transformed by the irreducible
representations associated with k0 = (0, 0, 0) (mΓ2 and mΓ5) and k1 = (0, 0, 1

3)
(m∆1 and m∆2) propagation vectors.

Irrep V1(1
3 ,

2
3 ,

1
4) V2(2

3 ,
1
3 ,

3
4)

mΓ5

η1 (1
3 ,

2√
3
, 0) (-1

2 ,- 2√
3
, 0)

η2 (1, 0, 0) (-1, 0, 0)

mΓ2

δ (0, 0, 1) (0, 0, 1)

m∆1

ρ1 (0, 0, 1
2) + i(0, 0,-

√
3

2 ) (0, 0, 1) + i(0, 0, 0)

ρ2 (0, 0,
√

3
2 ) + i(0, 0, 1

2) (0, 0, 0) + i(0, 0, 1)

m∆2

ξ1 (0, 0,
√

3
2 ) + i(0, 0, 1

2) (0, 0, 0) + i(0, 0,-1)

ξ2 (0, 0,-1
2) + i(0, 0,

√
3

2 ) (0, 0, 1) + i(0, 0, 0)

of the k0 = (0, 0, 0) propagation vector, in agreement with a previous study [24]

that reported k0 magnetic reflections for the magnetic structure of both V1/3NbS2

and V1/3TaS2. This magnetic propagation vector describes an exact repeat of the

magnetic structure for every repeat of the nuclear unit cell. However, there is

another set of reflections which cannot be accounted for using just this propagation

vector. Indexing of these reflections, (105
3) at 4.11 Å and (011

3) at 4.95 Å, requires a

second propagation vector k1 = (0, 0, 1
3). With the current data, it is not possible to

unambiguously confirm whether these two propagation vectors belong to the same

or different phases. However, the fact that both the k0 and k1 reflections appear

at the same temperature [Fig. 4.10(a)], within the accuracy of the measurements,

indirectly suggests that they originate from the same magnetic phase.

The k0 magnetic intensities can be fitted with a model consisting of ferromag-

netic layers, antiferromagnetically coupled and stacked along the c axis [Fig. 4.11(a)] [24],

in an example of A-type antiferromagnetism. This was deduced from the quanti-

tative refinement of the neutron data, which found, via symmetry analysis, this

magnetic structure the best fit out of the four possible irreducible representations.

The refined moment extracted from this data and associated with this model is

0.90(5) µB, with the spins confined in the ab plane. The presence of a canting in the

magnetic structure of the material due to a small ferromagnetic component along

the c axis is consistent with the previously discussed dc magnetisation data [Fig-

ures 4.5 and 4.6], and has been suggested in previous literature [24]. However, the
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Figure 4.10: (a) Evolution of the powder neutron diffraction profiles with tempera-
tures for V1/3NbS2 between 5 and 52 K. For clarity, each profile is offset by 50 units.
The k0 and k1 magnetic peaks are marked with black and red arrows, respectively.
A small impurity peak is marked with a blue x. (b) Powder diffraction profile at 5 K
with a calculated fit using a hexagonal structure in space group P6322 and magnetic
components with propagation vectors k0 = (0, 0, 0) and k1 = (0, 0, 1

3). The Bragg
positions for each phase are shown below the pattern.
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( a ) ( b ) ( c )

Figure 4.11: Magnetic moments on the vanadium atoms in a unit cell of V1/3NbS2

viewed along the a∗ direction. (a) In-plane moments associated the k0 = (0, 0, 0)
propagation vector, (b) the out-of-plane up-down-down moments associated with the
k1 = (0, 0, 1

3) propagation vector and (c) the superposition of these two components.

origin of the coupling between the ferromagnetic and antiferromagnetic components

requires particular consideration.

Typically, weak ferromagnets have their ferromagnetic and antiferromagnetic

order parameters coupled via the bilinear free-energy invariant [72]. In the case

of V1/3NbS2 however, the in-plane antiferromagnetic component is transformed by

the two-dimensional irreducible representation mΓ5(η1, η2) of the P6322 space group

while the out-of-plane ferromagnetic component is transformed by the mΓ2(δ) rep-

resentation (Table 4.3) [123, 124]. This means that the two components are instead

coupled via a linear-cubic term, 3δη2
1η2-δη3

2 [123]. This coupling is sensitive to the

in-plane direction of the antiferromagnetic component, being allowed and maximal

for the high symmetry order parameter direction (0, η2) corresponding to the mag-

netic space group C2′2′21 and the V spins parallel to the a axis, and vanishing for

the (η1, 0) order parameter, corresponding to the magnetic space group C2221 [124]

and the case when the V spins are perpendicular to the a axis. Thus, based on

the dc magnetisation data [Figures 4.5 and 4.6] and the symmetry arguments, one
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can conclude that the k0 antiferromagnetic component in V1/3NbS2 is likely to be

along the a axis. A similar coupling between in-plane antiferromagnetic and out-of-

plane ferromagnetic components through the linear-cubic free-energy term has been

recently discussed for the trigonal ruthenates Sr3ARuO6, with A =(Li, Na) [125].

It has been concluded that the microscopic interaction behind this coupling is the

magneto-elastically induced antisymmetric Dzyaloshinskii–Moriya exchange. The

magneto-elastic coupling is anisotropic and it depends on the in-plane direction of

the spins. This breaks the degeneracy between the different in-plane antiferromag-

netic configurations choosing a particular direction, which activates the additional

antisymmetric energy term.

For the k1 component, the crucial observation is the absence of (0, 0, l)± k1

magnetic satellites, which strongly indicates that this spin component is along the

c axis. The symmetry analysis based on representation theory [124], reveals two two-

dimensional irreducible representations associated with k1 and transforming the out-

of-plane spin component, m∆1(ρ1, ρ2) and m∆2(ξ1, ξ2) (Table 4.3). Both describe

longitudinal spin density waves whose global magnetic phase is controlled by the

order parameter direction (admixing coefficients ρ1/ρ2 and ξ1/ξ2). The difference

between the m∆1 and m∆2 is the relative magnetic phase between the spin density

waves localized on the two V sites. In the former case the difference is π
3 and in the

latter case it is 2π
3 .

The quantitative refinement of the neutron diffraction data indicates that

the m∆2 representation provides a better fitting quality [Fig. 4.10(b)]. It is well

known that neutron diffraction is not sensitive to the global magnetic phase and

therefore the order parameter direction cannot be experimentally determined in the

m∆2 representation space. The magnetic symmetry, however, depends on the global

phase and this fact can provide additional information through various coupling

phenomena controlled by the symmetry. In particular, a coupling of macroscopic

ferromagnetic component along the c axis is possible when the order parameter takes

the (0, ξ2) direction in the representation space. The relevant coupling term is similar

to the one discussed above, 3δξ2
1ξ2-δξ3

2 . The corresponding magnetic structure is

up-down-down type with the P632′2′ magnetic space group [Fig. 4.11(b)]. The two

moment values were refined as 1.21(12) µB (up) and 0.61(6) µB (down). The up

and down spin components are not constrained by the symmetry to compensate one

other, resulting in a net ferrimagnetic moment, which is, however, too small to be

refined from the neutron diffraction data. Thus, the experimentally observed weak

ferromagnetism [Figures 4.5 and 4.6] can also be explained by the small ferrimagnetic

moment associated with the k1 component. It is possible that coupling between

70



the in-plane k0 and out-of-plane k1 magnetic order parameters takes place via the

common ferromagnetic component shared by these order parameters in the scenario

where both k0 and k1 belong to the same magnetic phase. In the latter case, the

resultant magnetic space group which accounts for the presence of both propagation

vectors [Fig. 4.11(c)] is C2′2′21 with the lattice vectors and origin related to the

parent P6322 paramagnetic space group as (0, 1, 0), (-2,-1, 0), (0, 0, 3) and (0, 0, 0),

respectively [124]. In this case, each moment is canted significantly out of plane,

with the “down” vectors experiencing a cant of 34◦ out of plane and the “up” vectors

being canted 55◦ degrees out of plane in the opposite direction.

Finally, let it be noted that the antisymmetrised square of both mΓ5 and

m∆2 irreducible representations contain the vector representation. This implies

that Lifshitz invariants [75] promoting inhomogeneous long-period modulated states

are allowed in the free-energy decomposition. In particular, these types of invari-

ants are responsible for the formation of magnetic helical state [126] and the field-

induced chiral soliton lattice in Cr1/3NbS2 [127] as well as in some other systems

with non-centrosymmetric crystal structures, such as MnSi [7], Ca3Ru2O7 [128] and

BiFeO3 [129]. It is not clear why the commensurate ground state in V1/3NbS2 is

robust against the chiral interactions behind the Lifshitz terms. A possible expla-

nation is that the magneto-elastic coupling and associated anisotropic interactions

discussed above are stronger and dominate in this compound.

4.9 Single crystal neutron diffraction

Extracting the magnetic structure from powder neutron diffraction measurements

alone can be challenging. Single crystal neutron diffraction measurements were

performed to confirm the suitability of the possible magnetic structures obtained

from powder neutron diffraction.

The (010) peak was initially examined in the configuration for the (hk0)

scattering plane, in which case the magnetic field is applied parallel to the c axis.

An example of the zero-field intensity maps at 1.5 and 300 K is given in Fig. 4.12(a).

For clarity, in Fig. 4.12(b), a cut taken along [01l] with 0.1 width in h is presented.

The large out-of-plane coverage of the WISH detectors allowed data to be taken

several degrees outside of this scattering plane along l. Peaks exist at (011
3) and

(01-1
3) that can be associated with the k1 magnetic propagation vector. Diffuse

scattering is clearly visible between the (010) peak and the (01±1
3) peaks flanking

it, and this scattering appears to be magnetic in nature, as it disappears above the

transition temperature 50 K (see 300 K data inset). In Fig. 4.12(b) the line plot
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Figure 4.12: (a) Area detector image depicting the (010) and (01±1
3) Bragg peaks

and the diffuse scattering between them, with H ‖ c. (b) Cut taken from the area
detector image along [01l] at 1.5 and 300 K to compare the intensities of the peaks
with the intensity of the diffuse scattering. The limits of the detector are shown as
dashed blue lines.

of the (010) and (01±1
3) peaks shows more clearly that the latter two peaks exist

above the diffuse scattering. This diffuse scattering implies the presence of a level

of disorder to the magnetic structure, and appears between peaks that correspond

to the k0 and k1 propagation vectors.

Figure 4.13 shows the integrated intensities of the peaks of interest for sev-
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Figure 4.13: Integrated intensity of several different structural and magnetic peaks
and their dependence on applied magnetic field. (Top) Field dependence of the
integrated intensities of the (010) and (011

3) peaks with the field directed H ‖ c.
(Middle) Integrated intensities of the (100) and (101

3) and (bottom) (001) peaks in
the (h0l) scattering plane with the field directed along [110].

eral different applied field strengths. The (001) peak was examined, and shows an

increase in intensity upon the application of a magnetic field up to 1 T in strength,

before steadily decreasing between 1 and 8 T in a manner consistent with antifer-

romagnetism. The magnetism of this peak can be associated with the magnetic

propagation vector k0 and does not show the same behavior as the (100) and asso-

ciated peaks.

The (100) peak in the (h0l) scattering plane shows similar behavior to the

(010) peak in the (hk0) scattering plane at zero field, i.e. diffuse scattering exists

that is no longer present above the magnetic transition temperature. A magnetic

field scan, however, reveals that the (100) and (010) peaks evolve differently under

the influence of an external magnetic field. The (010) and (01±1
3) peaks, under a

magnetic field applied parallel to the c axis, begin to decrease in intensity as the

magnetic field increases between 2 and 8 T. The (100) and (10±1
3) peaks, however,

do not change significantly in intensity for an applied field along the [110] direction

between 0 and 8 T. This must be related to the direction of the applied field as these

two peaks are equivalent for a hexagonal system.

Figure 4.14 displays the temperature dependence of the integrated intensities
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Figure 4.14: Integrated intensity of several different structural and magnetic peaks
and their dependence on temperature. The integrated intensities of the (100) and
(101

3) and (001) peaks between 1.5 and 54 K are plotted on the same axes. The
inset depicts the region of interest for the (100) and (101

3) peaks.

of certain Bragg peaks in the (h0l) scattering plane. While the (10±1
3) peaks show a

steady decrease in intensity as the temperature increases, the (100) and (001) peaks

show a sharper decrease in intensity between 10 and 20 K, which coincides with

the additional transition visible in the dc susceptibility data in Fig. 4.5 and the ac

susceptibility data in Fig. 4.7. It is worth noting that the (100) and (101
3) peaks sit

on a background of diffuse scattering that was not present around the (001) peak.

The (001) peak intensity at temperatures below 20 K is far greater than the

corresponding intensities of the (100) and (101
3) peaks. It then drops to approxi-

mately zero between 20 and 50 K, which is considerably lower than the corresponding

(100) and (101
3) peak intensities, before briefly increasing in intensity at the order-

ing temperature. The behavior of the (001) peak is remarkably reminiscent of the

behavior seen in the ac and dc susceptibility data for H applied perpendicular to the

c-axis in Figs. 4.5 and 4.7. This implies highly anisotropic behaviour and that the

magnetic moment is suppressed at these temperatures for certain field directions.
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4.10 Summary

In summary, the magnetic structure of V1/3NbS2 has been investigated using dc

susceptibility, heat capacity, and powder and single crystal neutron diffraction mea-

surements. V1/3NbS2 is found to undergo a magnetic transition at TN = 50 K, with

magnetic field scans revealing that the moment does not saturate at magnetic fields

up to 10 T. Heat capacity measurements were also used to further characterise the

evolution of V1/3NbS2 with temperature.

The powder neutron diffraction data reveals the presence of two magnetic

propagation vectors, k0 = (0, 0, 0) and k1 = (0, 0, 1
3), which correspond to mag-

netic structures with antiferromagnetic stacking of vanadium layers with a refined

moment of 0.90(5) µB and a canting along the c axis in an up-down-down configu-

ration with refined moments of 1.21(12) and 0.61(6) µB, respectively. This explains

the lack of saturation that is observed in the dc magnetisation even in magnetic

fields of 10 T, as well as the sharp increase of the dc susceptibility at 50 K in the

FCC measurements. The presence of the k1 propagation vector opens the possibility

of the expected ferromagnetic canting along the c axis originating from this propa-

gation vector rather than from the k0 propagation vector as proposed earlier [24].

Both k0 and k1 magnetic components are capable of coupling with an out-of-plane

ferromagnetic moment consistent with magnetisation data.

Analysis of the single crystal neutron diffraction data reveals diffuse magnetic

scattering between the (010) and (01±1
3) Bragg peaks, indicating a level of disorder

in the magnetic structure of V1/3NbS2. Additionally, the magnetic structure seems

to be highly anisotropic, with the integrated intensity of the Bragg peaks dependent

on the direction of the applied magnetic field - remaining constant in intensity

between 0 and 8 T for H in the ab-plane, or decreasing in intensity with increasing

field for H parallel to the c axis.

The study here, adopting a multi-technique approach, has shown that the

material V1/3NbS2 has a complex magnetic structure that is very different to the

magnetism previously observed in other members of this family such as Mn1/3NbS2,

and the CSL observed in Cr1/3NbS2. Due to the nature of the canted antiferromag-

netic ordering in this material, it seems unlikely that a CSL phase can be induced.

In showing the existence of a secondary, mostly diffuse, component to the mag-

netic structure associated with the k1 propagation vector, greater detail has been

uncovered about the magnetic structure of this material.
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Chapter 5

A comparative study of the

magnetic properties of

Mn1/3NbS2, Cr1/3NbS2, and

Cr1/3TaS2

5.1 Introduction

In select chiral helimagnetic materials, applying an external magnetic field perpen-

dicular to the helical axis stabilizes spin structures such as skyrmions [8] or a chiral

soliton lattice (CSL) [3, 46], as discussed in Section 2.5. One known CSL host is

Cr1/3NbS2, a member of a family of hexagonal layered transition metal dichalco-

genides (TMDs) intercalated with 3d transition metals that occupy octahedral 2c

or 2d Wyckoff positions [37] between the trigonal prismatic layers. The layers are

bonded by weak van der Waals forces, allowing for easy ‘twisting’ of layers relative to

each other, causing the common stacking faults that are observed in these materials.

Cr1/3NbS2 is a well-studied material that displays a helical magnetic ground

state below its magnetic ordering temperature TC = 127 – 130 K [127, 130, 131, 4].

Disorder effects in this material have been shown to suppress the magnetic transition

temperature to values as low as TC = 88 K [132]. It has a 48 nm helical pitch in

zero field, which increases as the helix continuously transforms into the CSL on

application of an external field perpendicular to the c axis. The CSL and other

novel magnetic textures [3, 133, 18, 134, 135, 136] can be imaged using Lorentz

transmission electron microscopy (LTEM).

The phase diagram of Cr1/3NbS2 under an external magnetic field applied
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parallel to the ab plane indicates the presence of five magnetic states: paramagnetism

at temperatures above the transition temperature, chiral helimagnetism as the mag-

netic ground state, a highly-helical CSL phase (CSL–1), a highly-ferromagnetic CSL

phase (CSL–2), and at high enough magnetic field a region of field polarised forced

ferromagnetism aligned with the external magnetic field [130]. Additionally, if in-

stead the external magnetic field is applied parallel to the c axis of the material,

a chiral conical magnetic phase is produced, while at most oblique fields directed

at the material there is a tilted CSL phase produced [137, 5]. Some form of CSL

phase is, therefore, stabilized for a large number of external field magnitudes and

directions, which is an exciting prospect for device applications.

Recently, Cr1/3TaS2 has been shown to form a CSL phase, showing that

Cr1/3NbS2 is not unique among the intercalated TMDCs in exhibiting this phe-

nomenon [26, 138]. Additionally, Mn1/3NbS2 has been reported as being chiral

helimagnetic [139] with an ordering temperature of TC = 45 K and a more recent

study using neutron diffraction suggests that it was possible that Mn1/3NbS2 was

either a ferromagnet with a small domain size of 250 nm along the c axis or a

helimagnet with a modulation size far larger than the one found in Cr1/3NbS2 [22].

A combination of powder neutron diffraction and heat capacity measure-

ments have been used to suggest a change in the magnetic ordering in the material

below 20 K. A magnetic field – temperature phase diagram constructed from hys-

teresis in magnetization measurements suggests that Mn1/3NbS2 might be helimag-

netic at temperatures under 20 K [23]. Recent Lorentz transmission electroscopy

(LTEM) measurements of Mn1/3NbS2 [23] were used to support this conclusion. The

3D Heisenberg model has been applied to Mn1/3NbS2 and the magnetic moments

were found to be short-range and isotropic, allowing for coupling both within the

ab plane and to the c axis [140].

In this chapter, a detailed investigation of the magnetic properties of the

single crystals of Cr1/3NbS2, Cr1/3TaS2, and Mn1/3NbS2 is presented, using ac and

dc susceptibility, as well as LTEM measurements, to probe any differences between

the magnetic structures of these materials. These magnetic measurements show

Cr1/3NbS2 and Cr1/3TaS2 display chiral helimagnetism below its magnetic order-

ing temperature (TC) of 111 K and 120 K respectively, while there is no evidence

that Mn1/3NbS2 exhibits helimagnetic ordering below its transition temperature

TC = 45 K. Establishing the correct structural space group in these crystals can

often prove difficult with just single crystal x-ray diffraction techniques. Here, it

is shown how it is possible to unambiguously distinguish between the centrosym-

metric and non-centrosymmetric structures in a detailed structural investigation of
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Figure 5.1: Single crystals of Cr1/3NbS2 on mm paper.

these materials using electron and single crystal x-ray diffraction measurements,

which also indicate how substitutional disorder and stacking faults can manifest

in Cr1/3NbS2, Cr1/3TaS2 and Mn1/3NbS2, and give rise to additional superlattice

reflections in diffraction patterns acquired from Mn1/3NbS2.

5.2 Cr1/3NbS2

5.2.1 Sample preparation

Polycrystalline and single crystal samples of Cr1/3NbS2 were prepared using the pro-

cesses detailed in Section 3.1, i.e. with a solid state reaction within a box furnace

quenched in cold water from 950 ◦C, and with chemical vapour transport (CVT)

using the polycrystalline powder as a seed and iodine as a transport agent, respec-

tively. 5 g of polycrystalline powder was synthesised, and 2.5 g was used during the

CVT crystal growth process. Some of the crystals synthesised in this process are

displayed on mm paper in Fig. 5.1. The size of the crystals varied from sub-mm in

length and thickness, to approximately 2.0 × 1.5 × 0.2 mm3.

5.2.2 X-ray diffraction

Several different x-ray diffraction techniques were used to probe the structure of

synthesised Cr1/3NbS2 polycrystalline and single crystal material.

Laue diffraction

A Laue diffraction pattern was obtained along the c axis of a Cr1/3NbS2 crystal [see

Fig. 5.2]. A high number of diffraction spots are found to be ill-defined, indicating

a high level of stacking faults, i.e. rotation of layers in the material relative to each

other, present in the crystals measured.
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Figure 5.2: Laue backscattered reflection pattern along the [001] orientation of a
Cr1/3NbS2 crystal.

Single crystal x-ray diffraction

To distinguish the non-centroymmetric M1/3NbS2 materials, in the space group

P6322, from the centrosymmetric M1/4NbS2 materials in the space group P63/mmc,

structural investigation techniques such as single crystal x-ray diffraction are neces-

sary.

A representation of the model derived from single crystal x-ray diffraction

data taken at room temperature for Cr1/3NbS2 is shown in Fig. 5.3. This ma-

terial was well-modelled in the non-centrosymmetric space group, with excellent

agreement between the calculated and observed structure factors. Comparatively,

modelling the structure in the centrosymmetric space group P63/mmc provides a

significantly worse fit and a less simple structural model. The Flack parameter was

found to be ambiguous and so an inversion twin law is employed in the refinement

for completeness for which the twin component scale factor refines to effectively zero

[0.1(6)], though with a very high associated error. A small proportion of disorder was

found over the main Cr site (occupancy 0.952(2)) and site “i” (occupancy 0.048(2)).

The values for extracted from the single crystal x-ray diffraction measurements are

displayed in Table 5.1.

5.2.3 Electron diffraction

Figure 5.4 shows bright-field images and electron diffraction patterns acquired from

Cr1/3NbS2 at room temperature and viewed along the [100] direction. Figure 5.4(a)
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Figure 5.3: Crystal structure of Cr1/3NbS2 viewed along (a) the a axis and (b)
the c axis, with S atoms shown in yellow, Nb atoms shown in green, and Cr atoms
shown in blue. The occupancy of the intercalated sites is reflected by the proportion
of the site shown in blue. The octahedral sites of the 2c Wyckoff position are shown
by blue polyhedra. The projection of the 2b and 2d sites as seen from each direction
are indicated using i and ii, respectively.

shows the arrangement of atoms expected in this orientation and Fig. 5.4(b) shows

a simulated kinematic diffraction pattern. The experimental diffraction patterns

were taken from regions 670 nm in diameter. The pattern for Cr1/3NbS2 shown in

Fig. 5.4(c) is consistent with the simulation. Bragg reflections at (00l) are kinemat-

ically forbidden when l is odd but these appear in the experimental pattern because

electrons are scattered multiple times as they pass through the specimen.

5.2.4 dc susceptibility and magnetisation

The dc magnetization of Cr1/3NbS2 was measured at temperatures between 5 and

300 K with a field of 0.01 T applied either parallel or perpendicular to the c axis,

(see Fig. 5.5). In the paramagnetic state, the data were isotropic and could be

fitted using the Curie-Weiss law. For dc field H ⊥ c the Weiss temperature of

+109(2) K for Cr1/3NbS2 indicated that the interactions between the magnetic ions

are ferromagnetic. In the ordered state, the large difference between the magnitude

of the susceptibility when the field is applied parallel or perpendicular to the c axis
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Figure 5.4: (a) The unit cell of Cr1/3NbS2 viewed along [100] direction. (b) A
simulation of the corresponding electron diffraction pattern. (c) Bright-field images
and electron diffraction patterns from Cr1/3NbS2. The Cr1/3NbS2 pattern matches
well with the simulation.

shows that the ordered moments strongly prefer to lie in the ab plane and that this

material is highly anisotropic.

For Cr1/3NbS2, the effective magnetic moment, calculated from the Curie-

Weiss law, µeff = 3.94(13) µB/Cr for H ⊥ c is within error of the quenched spin-only

Cr3+ (3.87 µB/Cr3+). An earlier report states that the Cr ions can adopt different

valence states in this material [141], with the majority of the ions being Cr3+ but

with regions in the material where the helical order is broken and the ions instead

adopt the Cr4+ (2.83 µB/Cr4+) valence.

Figure 5.5 shows that the single crystals of Cr1/3NbS2 order magnetically at
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Figure 5.5: Temperature dependence of the dc susceptibility χdc (T ), collected
in zero-field-cooled (ZFC) warming and field-cooled cooling (FCC) modes, for
Cr1/3NbS2 in an applied field of 10 mT. It is clear from the large difference be-
tween the susceptibility for each field direction that this is a highly anisotropic
material, with the ab plane as the easy plane. An inset shows the inverse ZFC and
FCC susceptibility with H ⊥ c, measured in an applied field of 33 mT to increase
the signal in the paramagnetic state.

111 K, which is lower than the reported 130 K transition temperature, which can

be attributed to a degree of substitutional disorder [132]. This disordered state is a

possible interpretation of the single crystal diffraction data taken for Cr1/3NbS2. Ad-

ditionally, a peak in χ (T ) appears close to the transition temperature, and has been

previously modeled with the chiral XY model and attributed to a commensurate-

incommensurate magnetic transition [142, 143, 139].

Figure 5.6(a) displays the dcmagnetisation versus applied field measurements

for Cr1/3NbS2 at several temperatures. It is immediately clear that the magnetisa-

tion of the Cr1/3NbS2 sample studied here saturates at lower magnetic fields than

those reported in Ref. [127]. This is consistent with the ac susceptibility measure-

ments displayed in the next section. The first derivative of the magnetization with

respect to field at 60 and 90 K [Fig. 5.6(b)] can be compared with Fig. 5.7(b), with

features in dM/dH marking the various phase boundaries appearing at fields that

are in good agreement with the values extracted from the ac susceptibility data.
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Figure 5.6: (a) Magnetization M as a function of magnetic field H directed per-
pendicular to the c axis for different temperatures and (b) dM/dH versus magnetic
field at 60 and 90 K, for Cr1/3NbS2. The magnetic phase boundaries are marked
with either blue (60 K) or red (90 K) arrows.

5.2.5 ac susceptibility

Figure 5.7 shows the in-phase component of the ac susceptibility χ′ and its first

derivative with respect to the dc magnetic field dχ′/dH, as a function of magnetic

field H for Cr1/3NbS2 at 60 and 90 K. Here, an ac field of 113 Hz with an amplitude

of 0.3 mT was applied perpendicular to the c axis of the crystal. For Cr1/3NbS2, a
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Figure 5.7: (a) In-phase component of the ac susceptibility χ′ as a function of dc
field H directed perpendicular to the c axis and (b) dχ′/dH versus dc field H at
60 and 90 K for Cr1/3NbS2. Insets show the same data between 5 and 50 K. The
features used to define magnetic phase boundaries are marked by the arrows. All
the measurements were performed in an ac field of 0.3 mT at a frequency of 113 Hz.

dramatic fall in χ′(H) with increasing H marks the boundary between the helimag-

netic ground state and the chiral soliton lattice (CSL) phase, while a drop in χ′(H)

(evident as a shallow minimum in dχ′/dH) is present at the crossover from the

helicity-rich CSL-1 phase to the more ferromagnetic CSL-2 phase [See Figs. 5.7(a)

and 5.7(b)]. This drop is more obvious at 90 K, but is still present at 60 K. The
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Figure 5.8: Temperature dependence of the ac susceptibility χ (T ) in different dc
magnetic fields applied perpendicular to the c axis of single crystals of Cr1/3NbS2.
(a) In-phase component of the ac susceptibility χ′ (T ) and (b) out-of-phase com-
ponent of the ac susceptibility χ′′ (T ) for Cr1/3NbS2. All the measurements were
performed using an ac field of 0.3 mT at 113 Hz.

transition from the CSL-2 to the field polarized, or forced ferromagnetic (FFM)

state is harder to locate, and the boundary was chosen at the point where the sus-

ceptibility ceases to change significantly with field (dχ′/dH = 0). This is due to the

fact that the material is saturated at the point when it enters into this state, and

so an obvious anomaly in the data is not expected to mark this transition.
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Fig. 5.8 shows ac susceptibility versus temperature scans in different dc fields

for Cr1/3NbS2. The transition from the paramagnetic to an ordered state is marked

by an increase in χ′ (T ) that occurs at an almost fixed temperature with increasing

dc magnetic field. This increase in χ′ (T ) evolves into a peak, that is clearest in the

Cr1/3NbS2 sample at 13 mT, followed by a shoulder that shifts to lower temperatures

as the applied dc magnetic field is increased.

In low dc magnetic fields, in the helimagnetic phase of Cr1/3NbS2, a large

signal in χ′′ (T ) is visible at all temperatures. This low-temperature component

subsides when the CSL-1 and CSL-2 states are entered leaving a peak in χ′′ (T )

which shifts to lower temperatures with increasing dc field as the CSL-1 and CSL-2

phase boundaries are crossed and disappears in fields above 23 mT. The features in

χ′′ (T ) match well with the temperature at which the shoulder is visible in χ′ (T ).

The magnetic field - temperature phase diagrams for Cr1/3NbS2, constructed

using ac susceptibility versus field measurements at fixed temperatures, similar to

those shown in Fig. 5.7, are displayed in Fig. 5.9. The temperatures of the transi-

tions from a paramagnetic to a magnetically ordered state are in good agreement

with those obtained from dc susceptibility. The transitions present in the ordered

state for Cr1/3NbS2 occur at significantly lower magnetic fields than previously

reported [130]. This highlights the sensitivity of the magnetic response of these

materials to disorder [132].

Five different magnetic phases can be seen in the Cr1/3NbS2 material [Figs. 5.9(a)

and 5.9(b)], which correspond well to the helimagnetic (H), CSL-1, CSL-2, forced

ferromagnetic (FFM), and paramagnetic (PM) phases established in previous lit-

erature [130]. The helical phase coincides with a maximum in χ′ at zero field. χ′

initially falls rapidly under the application of a dc magnetic field. Clear changes in

χ′ and/or dχ′/dH delineate the other phase boundaries. There is also a significant

increase in the imaginary susceptibility at low fields, at all temperatures up to the

onset of magnetic order at 111 K. This is further evidence for the chiral helimagnetic

state in Cr1/3NbS2. χ′′ also shows a large pocket of intensity that begins just below

the ordering temperature in low dc magnetic fields and extends in an arc up to

25 mT at 60 K. This feature is reduced in intensity at higher frequencies. There are

several possible reasons for this feature. For example, the creation and destruction

of novel phenomena such as the CSL. Alternatively, this signal could be explained

by effects such as domain wall motion and pinning by defects, which are especially

prevalent in layered materials like these.

The changes in χ (T ) with frequency for Cr1/3NbS2 are investigated in Fig. 5.10.

The data were collected in a dc field of 13 mT in order to cut through the maximum
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Figure 5.9: (a) In-phase χ′ and (b) out-of-phase χ′′ components of the ac sus-
ceptibility of Cr1/3NbS2 as a function of temperature and dc applied field. For
both measurements, the ac and dc magnetic fields were applied perpendicular to
the c axis. Guides to the eye have been added to the phase diagrams based on
features present in the data to distinguish separate phases: the helimagnetic (H),
high-helicity CSL-1, highly ferromagnetic CSL-2, forced ferromagnetic (FFM), and
paramagnetic (PM) phases (as discussed in the text).

in χ′′ (T ) in the H -T phase diagram and cross several potential phase boundaries

(see Fig. 5.9). There was no frequency dependence in χ′ (T ) at the transition from

the paramagnetic to the FFM state and the losses in the out-of-phase channel χ′′ (T )

at this transition are small. For Cr1/3NbS2 there is a rapid upturn in χ′ (T ) and a

88



2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0

 5 3  H z
 1 1 3  H z
 2 9 3  H z
 9 9 7  H z
 2 9 9 9  H z
 9 9 7 3  H z

� ' (1
0-3  m

3 /m
ol 

Cr)

T  ( K )

2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

T  ( K )

� '' (1
0-3  m

3 /m
ol 

Cr)

 5 3  H z
 1 1 3  H z
 2 9 3  H z
 9 9 7  H z
 2 9 9 9  H z
 9 9 7 3  H z

( a )

( b )

Figure 5.10: Temperature dependence of the ac susceptibility χ (T ) at various ac
frequencies for Cr1/3NbS2 in a dc field of 13 mT. The in-phase susceptibility χ′ (T )
is displayed in (a) and the out-of-phase susceptibility χ′′ (T ) is displayed in (b).

clear shoulder that is suppressed with increasing frequency on entering the CSL-2

and CSL-1 phases. The temperature of the shoulder coincides with a peak in χ′′ (T ).

For Cr1/3NbS2, the losses reflected in χ′′ (T ) are located around the CSL-I

and CSL-II phases boundaries [See Fig. 5.9(b)]. There are two peaks in χ′′ (T ) that

are suppressed with increasing frequency but remain at fixed temperatures. Below

60 K, χ′′ (T ) is small and independent of temperature and frequency.
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Figure 5.11: (a) An in-focus image from Cr1/3NbS2 together with the projected
B field at 92 K in zero applied field obtained using off-axis holography from the
area outlined in red. Holography was used as the closely-spaced magnetic features
were difficult to discern with defocused imaging at this magnification. (b) Higher
magnification images from Cr1/3NbS2 obtained at 91 K in zero applied field showing
the specimen under-focus, in-focus and over-focus as well as the projected B field
reconstructed from these images using the transport of intensity equation.

5.2.6 LTEM

Images acquired using transmission electron microscopy allow the ‘projected B-field’

to be calculated. This is the component of the magnetic flux density normal to the

electron beam, averaged through the thickness of the sample.

Figure 5.11 shows the magnetic features observed in Cr1/3NbS2 by trans-

mission electron microscopy. Instead of conventional magnetic domains, Cr1/3NbS2

[Figs. 5.11(a) and 5.11(b)] shows thin magnetic strips. Unlike the soliton lattice

reported by Togawa et al. [3], the strips do not show a constant periodicity and their

width varies between 25 and 65 nm. The magnetisation within these strips points

mainly perpendicular to the c axis but some of the strips appear dark, indicating
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Figure 5.12: Single crystals of Cr1/3TaS2 on mm paper.

the magnetization is oriented out of the plane of the sample. The fact that the

periodicity is not constant is likely to be a consequence of disorder in the crystal

structure, which also results in the decrease in the field value at which magnetic

phase transitions occur, as well as the transition temperature.

5.3 Cr1/3TaS2

5.3.1 Sample preparation

Polycrystalline and single crystal samples of Cr1/3TaS2 were prepared using the

processes detailed in Section 3.1, i.e. with a solid state reaction within a box furnace

and then cooled slowly to room temperature from 950 ◦C, and with chemical vapour

transport (CVT) using the polycrystalline powder as a seed and iodine as a transport

agent, respectively. 5 g of polycrystalline powder was synthesised, and 2.5 g was

used during the CVT crystal growth process. Some of the crystals synthesised in

this process are displayed on mm paper in Fig. 5.1. The size of the crystals varied

from sub-mm in length and thickness, to approximately 1.0 × 1.0 × 0.2 mm3.

5.3.2 X-ray diffraction

As with Cr1/3NbS2, single crystal and Laue x-ray diffraction techniques were used

to probe the structure of Cr1/3TaS2.
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Figure 5.13: Laue backscattered reflection pattern along the [001] orientation of a
Cr1/3TaS2 crystal.

Laue diffraction

A laue diffraction patterns was obtained along the c axis of a Cr1/3TaS2 crystal

[See Fig. 5.13]. Several spots were not well-defined, indicating a small misalignment

between crystal layers.

Single crystal x-ray diffraction

Single crystal x-ray diffraction data taken at room temperature were used to build

a model of the nuclear structure of Cr1/3TaS2, shown in Fig. 5.14. The values

extracted from the single crystal x-ray diffraction measurements, meanwhile, are

displayed in Table 5.2. The Flack parameter was not well-defined, but the structure

was well-modelled in the non-centrosymmetric space group. The calculated and

observed structure factors were in excellent agreement while refinement in the cen-

trosymmetric space group P63/mmc provided a significantly worse fit as well as a

less simple structural model. An inversion twin law was employed in the refinement

for completeness for which the twin component scale factor refined with high ambi-

guity to effectively zero [0.4(6)]. A small proportion of disorder over the main site

(occupancy 0.73(3)), site “i” (occupancy 0.05(3)), and site “ii” (occupancy 0.12(3))

was found.
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Figure 5.14: Crystal structure of Cr1/3TaS2 viewed along (a) the a axis and (b)
the c axis, with S atoms shown in yellow, Ta atoms shown in brown, and Cr atoms
shown in blue. The occupancy of the intercalated sites is reflected by the proportion
of the site shown in blue. The octahedral sites of the 2c Wyckoff position are shown
by blue polyhedra. The projection of the 2b and 2d sites as seen from each direction
are indicated using i and ii, respectively.

5.3.3 dc susceptibility and magnetisation

The dc susceptibility of single crystal Cr1/3TaS2 was measured between 5 and 300 K

in an applied field of 0.01 T, directed either parallel or perpendicular to the c axis, as

displayed in Fig. 5.15. Due to the small sizes of the crystals measured, it was difficult

to use the Curie-Weiss law to fit the high temperature data. Therefore, the isotropic

paramagnetic state data for a polycrystalline powder sample was fit using the Curie-

Weiss law to extract a Weiss temperature of +150(1) K for dc field H ⊥ c. This

indicated that the interactions between the magnetic ions are ferromagnetic. The

material was found to be highly anisotropic, with the signal of the dc susceptibility

being considerably larger for H ⊥ c, indicating a strong preference for the moments

to lie in the ab plane. The effective magnetic moment calculated from the Curie-

Weiss law µeff = 2.78(3) µB/Cr for powder dc susceptibility measurements is close
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Figure 5.15: Temperature dependence of the dc susceptibility χdc (T ), collected
in zero-field-cooled (ZFC) warming and field-cooled cooling (FCC) modes, for
Cr1/3TaS2 in an applied field of 10 mT. It is clear from the large difference be-
tween the susceptibility for each field direction that this is a highly anisotropic
material, with the ab plane as the easy plane. Insets show the inverse ZFC and FCC
susceptibility for a polycrystalline sample with an applied field of 33 mT.

to the quenched spin-only Cr4+ (2.83 µB/Cr4+).

The single crystal of Cr1/3TaS2 ordered magnetically at 120 K, which is

lower than the reported 150 K [26, 138], while the transition temperature of the

polycrystalline material synthesised was in-line with the literature value. The lower

transition temperature of the single crystal sample can be attributed to a degree of

substitutional disorder [132] that increases during the single crystal growth process.

This disordered state is a possible interpretation of the single crystal diffraction data

taken for Cr1/3TaS2.

Fig. 5.16(a) shows the decrease in magnetisation with increasing temperature

for a Cr1/3TaS2 single crystal, while Fig. 5.16(b) displays six-quadrant hysteresis

curves at 10, 60, and 90 K. No hysteresis was visible at these temperatures.

5.3.4 ac susceptibility

Unless otherwise stated, an ac field of 113 Hz with an amplitude of 0.3 mT was

applied perpendicular to the c axis of the crystals for all ac susceptibility measure-

ments, which were used to build up a phase diagram for Cr1/3TaS2. The magnetic
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Figure 5.16: Magnetization M as a function of applied magnetic field H directed
perpendicular to the c axis for single crystal Cr1/3TaS2 in (a) partial and (b) six-
quadrant hysteresis loops at several temperatures.

phase boundaries were decided by noting changes in the gradient of ac susceptibil-

ity χ′(H), which are displayed in Fig. 5.17(a) along with the first derivative of the

ac susceptibility with respect to the dc magnetic field dχ′(H)/dH in Fig. 5.17(b).

Data taken at both 50 and 100 K is displayed. The obvious minimum visible in

Fig. 5.17(b) denotes the H-CSL phase transition. The CSL-FFM phase boundary

was chosen at the point where the susceptibility ceases to change significantly with
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Figure 5.17: (a) In-phase component of the ac susceptibility χ′ as a function of dc
field H directed perpendicular to the c axis and (b) dχ′/dH versus dc field H at 50
and 100 K for Cr1/3TaS2. The features used to define magnetic phase boundaries
are marked by the arrows. All the measurements were performed in an ac field of
0.3 mT at a frequency of 113 Hz.

field (dχ′/dH = 0).

The magnetic field - temperature phase diagrams for Cr1/3TaS2 constructed

using ac susceptibility versus field measurements at fixed temperatures, similar to

those shown in Fig. 5.7, are displayed in Fig. 5.18. The temperatures of the transi-

tions from the paramagnetic to a magnetically ordered state are in good agreement
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Figure 5.18: (a) In-phase χ′ and (b) out-of-phase χ′′ components of the ac suscep-
tibility of Cr1/3TaS2 as a function of temperature and dc applied field. For both
measurements, the ac and dc magnetic fields were applied perpendicular to the
c axis.

with those obtained from dc susceptibility.

The H -T phase diagram for Cr1/3TaS2 can be divided into four regions. In

addition to the paramagnetic and FFM regions, there is evidence in the ac (and dc)

susceptibility for two phases labeled as helical (H) and chiral soliton lattice (CSL)

appearing in the ordered state [see Figs. 5.18(a) and 5.18(b)]. As with Cr1/3NbS2,

the imaginary component of the susceptibility χ′′, shows a large increase in intensity

for all temperatures at low magnetic fields below 10 mT that seems to coincide with

the helimagnetic phase.
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Figure 5.19: Temperature dependence of the ac susceptibility χ (T ) at various ac
frequencies for Cr1/3TaS2 in a dc field of 5.5 mT. The in-phase susceptibility χ′ (T )
is displayed in (a) and the out-of-phase susceptibility χ′′ (T ) is displayed in (b).

A dc magnetic field of 5.5 mT was applied to the Cr1/3TaS2, and χ (T ) at

different applied frequencies was investigated. 5.5 mT was chosen to cut the H -T

phase boundary at high temperatures. There was no frequency dependence in χ′ (T )

at the transition from the paramagnetic to the FFM state and the losses in the out-

of-phase channel χ′′ (T ) at this transition were small. χ′′ (T ) was suppressed at low

temperatures under 30 K for high frequencies above 2999 Hz. The peak that this
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Figure 5.20: Single crystals of Mn1/3NbS2 on mm paper.

suppression creates in χ′′ (T ) is suppressed as the frequency increases and is shifted

to slightly lower temperatures.

5.4 Mn1/3NbS2

5.4.1 Sample preparation

Polycrystalline and single crystal samples of Mn1/3NbS2 were prepared using the

processes detailed in Section 3.1, i.e. with a solid state reaction within a box furnace

quenched in cold water from 950 ◦C, and with chemical vapour transport (CVT)

using the polycrystalline powder as a seed and iodine as a transport agent, respec-

tively. 5 g of polycrystalline powder was synthesised, and 2.5 g was used during the

CVT crystal growth process. Some of the crystals synthesised in this process are

displayed on mm paper in Fig. 5.20. The size of the crystals varied from sub-mm in

length and thickness, to approximately 3.0 × 2.5 × 0.2 mm3.

5.4.2 X-ray diffraction

Single crystal and Laue x-ray diffraction techniques were used to probe the structure

of synthesised Mn1/3NbS2 single crystals.

Laue diffraction

Laue diffraction was used to check the crystallinity and orientation of single crystals

of Mn1/3NbS2 [See Fig. 5.21]. Due to the relative thickness of the crystal and the

x-ray beam, the pattern along [100] [Fig. 5.21(a)] was cut off on one side. Enough

diffraction spots were visible to indicate that the crystal was high quality and to

confirm that the [100] direction was being measured. The vast majority of the

diffraction spots visible were well-defined, indicating few stacking faults present in

the area measured, especially along [001] [Fig. 5.21(b)].
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Figure 5.21: Laue diffraction patterns taken along the (a) [100] and (b) [001]
directions of a single crystal of Mn1/3NbS2.

Single crystal x-ray diffraction

Single crystal x-ray diffraction measurements were used to probe the structure of

Mn1/3NbS2. While the same refinement that was completed in Section 5.2.2 for

the Cr phase is possible for the Mn phase, the true diffraction pattern exhibits

a complex array of superstructure peaks along all axes. Efforts to resolve this

remain ongoing but, for the purpose of this discussion, it is clear that the true

structure likely forms a highly twinned approximation of that shown for Cr1/3NbS2

in Fig. 5.22 with significant breaking of the translational symmetry therein. A

reconstruction of the Ewald sphere for this data set can be seen. Refinement of the

known model to the aristotype peak set, i.e., the idealized high symmetry version

of the low symmetry structure, yields a phase with disorder over the main site

(occupancy 0.851(15)), site “i” (occupancy 0.079(15)), and site “ii” (occupancy

0.020(15)), and potentially greater inversion twinning than Cr1/3NbS2 with a Flack

parameter of 0.57(10). Despite this inaccuracy, Table 5.3 reports the statistical

fits of the aristotypical model to both data sets, along with the lattice and Flack

parameters, atomic positions, and site occupancies for the purpose of discussion.

Select views of an Ewald sphere reconstruction of the single crystal x-ray

diffraction data for Mn1/3NbS2 is displayed in Fig. 5.23. Additional reflections are

visible according to rational vectors of the aristotypical cell in addition to those of

the known P6322 unit cell. This supercell is expected to correspond to a complex

twin system present in the sample due to the weak van der Waals bonding between

its layers.

Given the remaining ambiguity in the Mn1/3NbS2 structure further evidence

to support non-centrosymmetry in these phases is desired. A complementary method
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Figure 5.22: Crystal structure of Mn1/3NbS2 viewed along (a) the a axis and (b)
the c axis, with S atoms shown in yellow, Nb atoms shown in green, and Mn atoms
shown in blue. The occupancy of the intercalated sites is reflected by the proportion
of the site shown in blue. The octahedral sites of the 2c Wyckoff position are shown
by blue polyhedra. The projection of the 2b and 2d sites as seen from each direction
are indicated using i and ii, respectively.

that can be used is transmission electron microscopy.

5.4.3 Electron diffraction

Using electron diffraction along the [001] direction [see Fig. 5.24(a) and (b)] of these

materials, it is possible to compare simulated kinematic diffraction patterns (i.e.,

assuming single scattering) of M1/3NbS2 to M1/4NbS2. The difference between the

relative intensities makes it obvious whether or not the desired concentration of M

(i.e., 1/3) is present. Figure 5.24(c) displays an example of an electron diffraction

pattern takesn at room temperature, measured for a Mn1/3NbS2 crystal, and is

consistent with the simulation of the non-centrosymmetric structure.

Figure 5.24 also shows bright-field images and electron diffraction patterns

acquired from Mn1/3NbS2 at room temperature and viewed in the [100] direction.
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Figure 5.23: Single-crystal x-ray diffraction data for Mn1/3NbS2 plotted in an Ewald
sphere construction, viewed (a) along c*, (b) perpendicular to the a*c* plane, and
(c) along a*, showing peaks indexed to the aristotypical cell in yellow and those
of the supercell in pink. Inset to (a) shows distribution histograms for the three
aristotypical reciprocal vectors, and histograms for the pixel rows and columns are
shown to the left and bottom of each image, respectively.
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Figure 5.24(d) shows the arrangement of atoms expected in this orientation and

Fig. 5.24(e) shows a simulated kinematic diffraction pattern. The experimental

diffraction patterns were taken from regions 670 nm in diameter. The diffraction

pattern for Mn1/3NbS2 [Fig. 5.24(f)] displays superlattice reflections in addition to

the expected reflections. These reflections correspond to a superlattice with a period

of 3c in the c direction and 7d010 in the b∗ direction where d010 is the spacing of the

(010) planes. This may indicate the presence of ordered Mn vacancies. The absence

of a Mn atom would then allow the nearest-neighbor atoms to relax, forming a

structure with a pattern similar to that shown in Fig. 5.24(f). To confirm that this

is the cause of these superlattice reflections, further work to find a full structure

solution for this Mn1/3NbS2 sample is needed.

The supercell seen in the electron diffraction is in disagreement with that

found for the single-crystal x-ray diffraction, for which the pattern superficially

corresponds to a doubling of all axes. This would then lead to a different ordering

of the Mn vacancies. This difference could potentially be explained by the fact that

the single-crystal x-ray diffraction data averages over a macroscopic sample, whereas

the transmission electron diffraction data necessarily samples a small and very thin

volume. This would then suggest that the period of the superlattice varies across

the sample so that different results are observed in localised regions when compared

with an average across the whole sample. Some evidence that this is a local effect

can be seen by comparing the pristine (030) peak seen in Fig. 5.24(c) along the [001]

direction to the (030) peak surrounded by superlattice reflections seen along [100]

in Fig. 5.24(f).

5.4.4 dc susceptibility and magnetisation

The dc magnetization of Mn1/3NbS2 was measured at temperatures between 5 and

300 K with a field of 0.01 T applied either parallel or perpendicular to the c axis,

(see Fig. 5.25) in order to better compare with the Cr intercalated crystals. In the

paramagnetic state, the data were isotropic and could be fitted using the Curie-

Weiss law. For dc field H ⊥ c the Weiss temperature of +62(1) K for Mn1/3NbS2

indicated that the interactions between the magnetic ions are ferromagnetic. In the

ordered state, the large difference between the magnitude of the susceptibility when

the field is applied parallel or perpendicular to the c axis shows that the ordered

moments strongly prefer to lie in the ab plane and that these materials are both

highly anisotropic.

For Mn1/3NbS2, µeff = 5.43(1) µB/Mn, for H ⊥ c as calculated with the

Curie-Weiss law. This is consistent with previous reports on this material [144] that
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Figure 5.24: (a) Unit cell of Mn1/3NbS2 viewed down the [001] direction. (b)
Simulated electron diffraction patterns along the [001] direction for both the non-
centrosymmetric P6322 structure and the centrosymmetric P63/mmc structure,
which differ from each other in the relative intensities of key spots (200) and
(030), assuming kinematic scattering. An electron micrograph (c) of a crystal of
Mn1/3NbS2 and an electron diffraction pattern from the same area are shown and
match well with the simulation for the P6322 space group, with the especially faint
(200) spot marked with an arrow. (d) The unit cell viewed along [100] direction.
(e) A simulation of the corresponding electron diffraction pattern. (f) Bright-field
images and electron diffraction patterns from Mn1/3NbS2. Extra reflections are
present indicating a superlattice with a period of 3c in the c direction and 7d010 in
the b∗ direction.
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Figure 5.25: Temperature dependence of the dc susceptibility χdc (T ), collected
in zero-field-cooled (ZFC) warming and field-cooled cooling (FCC) modes, for
Mn1/3NbS2 in an applied field of 10 mT. It is clear from the large difference be-
tween the susceptibility for each field direction that these are highly anisotropic
materials, with the ab plane as the easy plane. Insets show the inverse ZFC and
FCC susceptibility with H ⊥ c.

give values for the effective moment between the spin-only moments of 4.90 µB/Mn3+

and 5.92 µB/Mn2+. The value may be modified by the presence of a small quantity

of Mn1/4NbS2 within the samples [145].

A step at 100 K in the temperature dependence of the dc magnetization of the

Mn-intercalated crystals is due to a small quantity of Mn1/4NbS2 [145, 22], which

orders below this temperature. The bulk of the sample (Mn1/3NbS2) undergoes

magnetic order at 45 K.

Four-quadrant dc magnetisation versus field measurements for Mn1/3NbS2

at different temperatures are displayed in Fig. 5.26. The M(H) curves shown here

differ in several important respects from those reported earlier [146, 147, 148]. No

hysteresis is visible in the M(H) measurements at any temperature while Refs. [146,

147, 148] report the presence of hysteresis at lower temperatures, T < 20 K. In

contrast to the initial magnetization curves reported previously [146], there is no

upward curvature in the magnetization with respect to the applied magnetic field at

any temperature. The fields required to saturate the magnetization of the samples

studied here are also higher than those reported earlier [146, 147, 148]. The reasons
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Figure 5.26: MagnetizationM as a function of applied fieldH directed perpendicular
to the c axis for single crystal Mn1/3NbS2 at several temperatures.

for these differences are not clear, although they suggest that structural factors

such as subtle changes in the level of disorder may have a significant effect on the

magnetic response of Mn1/3NbS2 in a magnetic field.

The dc magnetization measurements as a function of field for Mn1/3NbS2

are shown in Figs. 5.27(a) and 5.27(b). These data correspond well with the ac

susceptibility measurements, with clear features in dM/dH marking potential phase

boundaries. The M (H) curves shown here differ in several important respects from

those reported earlier [140, 22, 23].

5.4.5 ac susceptibility

As before, unless otherwise stated, all ac susceptibility measurements were taken

in an ac field of 0.3 mT at a frequency of 113 Hz. Figure 5.28 shows the in-phase

component of the ac susceptibility χ′ and its first derivative with respect to the

dc magnetic field dχ′/dH, as a function of magnetic field H for for Mn1/3NbS2 at

10 and 36 K. For Mn1/3NbS2, all the magnetic phase boundaries are denoted by

changes in gradient of χ′(H) [see Figs. 5.28(a) and 5.28(b)]. The obvious minimum

visible in Fig. 5.28(b) denotes the I-II phase transition. The II-FFM phase boundary

was chosen at the point where the susceptibility ceases to change significantly with
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Figure 5.27: (a) Magnetization M as a function of magnetic field H directed
perpendicular to the c axis for several temperatures and (b) dM/dH versus magnetic
field at 18 and 36 K, for Mn1/3NbS2. The magnetic phase boundaries are marked
by the arrows.

field (dχ′/dH = 0).

The magnetic field - temperature phase diagrams for Mn1/3NbS2 constructed

using ac susceptibility versus field measurements at fixed temperatures, similar to

those shown in Fig. 5.28, are displayed in Fig. 5.29. Note, measurements of ac

susceptibility versus temperature in fixed applied magnetic field are shown and are

consistent with the phase diagrams presented here. The temperatures of the tran-
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Figure 5.28: (a) In-phase component of the ac susceptibility χ′ as a function of
dc field H directed perpendicular to the c axis and (b) dχ′/dH versus dc field H
at 18 and 36 K for Mn1/3NbS2. The features used to define the magnetic phase
boundaries are marked by the arrows. All the measurements were performed in an
ac field of 0.3 mT at a frequency of 113 Hz.

sitions from a paramagnetic to a magnetically ordered state are in good agreement

with those obtained from dc susceptibility. The boundary in the phase diagram

for Mn1/3NbS2 marking the entry to a FFM phase is shifted to higher fields [140].

This highlights the sensitivity of the magnetic response of these materials to disor-

der [132].
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Figure 5.29: (a) In-phase and (b) out-of-phase components of the ac susceptibility
of Mn1/3NbS2 as a function of temperature and dc applied field. For both mea-
surements, the ac and dc magnetic fields were applied perpendicular to the c axis.
Guides to the eye have been added to the phase diagrams based on features present
in the data to distinguish the separate phases: the I, II, FFM, and PM phases (as
discussed in the text).

The H -T phase diagram for Mn1/3NbS2 can be divided into four regions.

In addition to the paramagnetic and FFM regions, there is evidence in the ac (and

dc) susceptibility for two phases labeled as I and II appearing in the ordered state

[see Figs. 5.29(a) and 5.29(b)]. χ′ and χ′′ are both significantly reduced in low

dc fields compared to Cr1/3NbS2 and Cr1/3TaS2, indicating a difference between

the ground states present in Mn1/3NbS2 and the Cr compounds. Once again, the
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imaginary component of the susceptibility χ′′, shows a large pocket of intensity just

below the ordering temperature in low magnetic fields that cuts through the center

of the phase boundary separating regions I and II. χ′′ is reduced in intensity as the

measuring frequency increases but is still clearly present at 10 kHz. This signal is

most likely due to domain wall motion and pinning by defects.

The exact nature of phases I and II are unknown. It is possible that the fea-

tures seen that mark these “phase boundaries” are due to the motion of magnetic

domains, though it is also possible that the material experiences two non-collinear

magnetic phases before the moments become field-polarized, neither of which were

visible in the LTEM measurements. An alternative phase diagram for Mn1/3NbS2

with helimagnetic and CSL phases [140] was based on initial-magnetization versus

field curves that contain a point of inflection and hysteresis. These features are not

seen in similar data collected for the crystals studied in this thesis. Reference [23]

proposed a helical phase at low-field and low-temperature, separated from a nearly

ferromagnetic phase at higher temperatures by an almost vertical phase boundary

at ∼ 20 K, that coincides with the disappearance of hysteresis in the M(H) curves.

The measurements undertaken in this chapter provide no evidence for such a phase

boundary below 20 K in these crystals of Mn1/3NbS2, although there is a signifi-

cant increase in the losses in phase I, reflected by an increase in χ′′ (T ), as the ac

measuring frequency increases. The form of the boundary between phase II and the

FFM phase matches qualitatively with the boundary shown in [23], albeit, as noted

above, at lower fields.

Fig. 5.30 shows ac susceptibility versus temperature scans in different dc

fields for Mn1/3NbS2. These data are consistent with those shown in Fig. 5.29. In

both materials, the transition from the paramagnetic to an ordered state is marked

by an increase in χ′ (T ) that occurs at an almost fixed temperature with increasing

dc magnetic field. This increase in χ′ (T ) evolves into a peak, that is clearest in

the Mn1/3NbS2 χ
′ (T ) data at 28 mT, followed by a shoulder that shifts to lower

temperatures as the applied dc magnetic field is increased.

For Mn1/3NbS2, there is an asymmetric peak in χ′′ (T ) that is present at the

boundary between phases I and II and disappears above 38 mT. The features in

χ′′ (T ) match well with the temperature at which the shoulder is visible in χ′ (T ).

The temperature and field dependence of χ (T ) observed here for Mn1/3NbS2 are

similar to the results reported in Ref. [148].

The changes in χ (T ) with frequency for Mn1/3NbS2 are investigated in

Fig. 5.31. The data were collected in a dc field of 28 mT for Mn1/3NbS2, in or-

der to cut through the maximum in χ′′ (T ) in the H -T phase diagram and cross
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Figure 5.30: Temperature dependence of the ac susceptibility χ (T ) in different dc
magnetic fields applied perpendicular to the c axis of single crystals of Mn1/3NbS2.
(a) In-phase component of the ac susceptibility χ′ (T ) and (b) out-of-phase com-
ponent of the ac susceptibility χ′′ (T ) for Mn1/3NbS2. All the measurements were
performed using an ac field of 0.3 mT at 113 Hz.

several potential phase boundaries (see Fig. 5.29). There was no frequency depen-

dence in χ′ (T ) at the transition from the paramagnetic to the FFM state and the

losses in the out-of-phase channel χ′′ (T ) at this transition are small. For Mn1/3NbS2

there is a rapid upturn in χ′ (T ) and a clear shoulder that is suppressed with in-

creasing frequency on crossing into phases II and I. The temperature of the shoulder
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Figure 5.31: Temperature dependence of the ac susceptibility χ (T ) at various ac
frequencies for Mn1/3NbS2 in a dc field of 28 mT. The in-phase susceptibility χ′ (T )
is displayed in (a) and the out-of-phase susceptibility χ′′ (T ) is displayed in (b).

coincides with a peak in χ′′ (T ).

For Mn1/3NbS2 there is a single, broad, asymmetric anomaly in χ′′ (T ) that

extends down to 20 K, well into phase I [See Fig. 5.29(b)]. This peak in χ′′ (T ) is

suppressed as the frequency increases and is shifted to slightly higher temperature.

The shifting of the peak in χ′′ (T ) to higher temperatures with increasing frequency is

reminiscent of spin glass effects [79, 80, 81] and requires further investigation. Below
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Figure 5.32: Transmission electron micrographs acquired from Mn1/3NbS2 at 35 K
in a field of 63 mT, applied normal to the plane of the specimen. Images acquired
under and over-focus are shown together with the projected B field reconstructed
from these using the transport of intensity equation (TIE). White arrows and colors
indicate the direction of the B field according to the inset color wheel.

25 K there is rapid increase in χ′′ (T ) at higher frequencies indicating a different loss

mechanism is present in the Mn1/3NbS2 sample in this field and temperature range.

5.4.6 LTEM

As with Cr1/3NbS2, the ‘projected B-field’ was calculated from images acquired with

transmission electron microscopy. Figure 5.32 shows the magnetic features observed

in Mn1/3NbS2 by transmission electron microscopy. Fig. 5.32(a) shows conventional

magnetic domains separated by 180◦ domain walls with the magnetization lying in

the (100) plane and oriented in the [120] (b∗) direction. Images were acquired to

search for chiral solitons throughout the range of field and temperature identified in

Fig. 5.29(b), but nothing other than conventional magnetism was observed.

These LTEM observations are consistent with those reported in reference

[23]. However, whilst this reference interprets these images as showing helimag-

netism and magnetic solitons, the images obtained can also be interpreted as sim-

ply magnetic domains separated by 180◦ domain walls. The domains observed in

Fig. 5.32 vary between ∼ 250 nm along the c axis, as previously observed in other

work [22], and several micrometers in length. Due to the multiple phases seen in the

ac susceptibility phase diagram for Mn1/3NbS2 [Fig. 5.29(a)] and the pockets of high

χ′′ seen in Figs. 5.9(b) and 5.29(b) for Cr1/3NbS2 and Mn1/3NbS2, respectively, it is
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possible that Mn1/3NbS2 has a non-collinear aspect to its magnetism in phases I and

II that is not visible in these LTEM measurements, but the features that have been

used to mark these phase boundaries can also be attributed to the rearrangement

of magnetic domains.

5.5 Summary

Single crystals of Mn1/3NbS2, Cr1/3TaS2 and Cr1/3NbS2 have been produced and

established as crystallizing in the P6322 space group. Table 5.4 summarises some of

the properites of these materials. It is possible to use single crystal x-ray diffraction

measurements to solve the aristotype structures for these materials in either the cen-

trosymmetric or non-centrosymmetric form. While the non-centrosymmetric space

group, P6322, provides a discernibly better fit to the data, further evidence in sup-

port of this is provided using electron diffraction for Mn1/3NbS2 and Cr1/3NbS2.

These electron diffraction measurements show additional superlattice reflections

in Mn1/3NbS2 when compared to the simulated pattern, while for Cr1/3NbS2 the

diffraction data match well with the simulated pattern. A similar yet distinctly dif-

ferent phenomenon is observed in the single crystal x-ray diffraction data and efforts

to properly resolve the true nature of this superstructure are ongoing. The dc sus-

ceptibility measurements show that Cr1/3NbS2, Cr1/3TaS2, and Mn1/3NbS2 order

magnetically below TC = 111 K, TC = 120 K, and TC = 45 K respectively. The

small step observed at 100 K in the dc susceptibility in Mn1/3NbS2, which coincides

with the TC expected for the Mn1/4NbS2 composition, supports the interpretation

that these materials are prone to regions of Mn-deficiency.

The magnetic field – temperature phase diagrams for Cr1/3NbS2, Cr1/3TaS2,

and Mn1/3NbS2 are mapped with ac susceptibility, with five phases identified in

Cr1/3NbS2 and four phases in Mn1/3NbS2 and Cr1/3TaS2. One key difference be-

tween the three materials is that in Cr1/3NbS2 and Cr1/3TaS2 a region of high

intensity χ′ and χ′′ is observed at low magnetic fields for all temperatures below the

transition temperature, which corresponds to the continuous transformation of the

helimagnetic ground state to the chiral soliton lattice phase. This feature is notably

absent for Mn1/3NbS2.

Lorentz transmission electron microscopy measurements reveal that while

Cr1/3NbS2 and Cr1/3TaS2 shows the expected chiral helimagnetism, in Mn1/3NbS2

there is only conventional ferromagnetic behavior with visible domain walls that

are consistent with those reported previously [23]. It is therefore possible that the

features seen in the ac susceptibility measurements of Mn1/3NbS2 are due to the
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motion of magnetic domains. Alternatively, the helimagnetic ground state could be

of a modulation length longer than the thickness of the LTEM sample, resulting in

changed behaviour when compared to the bulk. Further careful investigations at the

various magnetic features identified in Mn1/3NbS2 phase diagram may be necessary

in order to understand fully why in Mn1/3NbS2 we do not see clear evidence of

helimagnetism or a CSL.
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Chapter 6

Magnetisation studies of

Mn3IrSi, Mn3RhGe, and

Mn3RhSi

6.1 Introduction

Materials such as Co-Zn-Mn alloys have been found capable of displaying skyrmions

at temperatures up to, and even higher than, room temperature [18]. These mate-

rials adopt the β−Mn type structure, which crystallises in the P4132 space group

with a unit cell containing 20 atoms [51], with the Mn atoms occupying two different

sites, the 8c and 12d Wyckoff positions, and the atoms filling the latter sites forming

a sublattice of corner-sharing triangles. This form of structure type is therefore of

considerable interest for topological magnetic phenomena.

The Mn3XY family of materials adopt an ordered form of the β−Mn-type

structure and form in the P213 space group, where the 12b site in P213 is in fact

very similar to the 12d position in the P4132 space group. Studies into this family

of materials [52, 53, 47, 48] have found that Mn3IrSi and several other members of

this family adopt a frustrated antiferromagnetic configuration with 120◦ between

the magnetic moments on the trillium lattice of Mn atoms. Mn3CoSi, meanwhile,

instead adopts a more complex magnetic ordering that is harder to identify, per-

haps due to competition between the non-collinear antiferromagnetic phase and a

ferrimagnetic ordering [47].

This chapter compares the structural and magnetic behaviour of three mem-

bers of this family: the previously studied Mn3IrSi, and the newly synthesised

Mn3RhGe, and Mn3RhSi. All three of these materials show behaviour in line with
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Figure 6.1: Example SEM image of Mn3IrSi with spectra 23 - 27 marked.

frustrated antiferromagnetism, with evidence of an incommensurate magnetic phase

shown at 200 K for Mn3RhGe.

6.2 Mn3IrSi

6.2.1 Sample preparation

A polycrystalline button of Mn3IrSi was prepared by collaborators at the National

Cheng Kung University by arc melting a stoichiometric ratio of Mn, Ir, and Si.

While the button itself was used for most measurements, part of this button was

ground into a powder and used for the powder x-ray diffraction, powder neutron

diffraction, and heat capacity measurements.

6.2.2 Energy Dispersive X-ray Analysis

Energy dispersive x-ray analysis was used to analyse the stoichiometry of the Mn3IrSi

button, see Fig. 6.1. An average over eighteen spectra, which are tabulated in Ta-

ble 6.1, gave a stoichiometry of Mn2.5(4)Ir1.1(2)Si1.4(2). The material appears to be

deficient in manganese and to vary in manganese amounts significantly throughout

the button. This is reflected by the signficant error value for the amount of Mn

present.
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Table 6.1: Energy dispersive x-ray analysis spectra measured from Mn3IrSi with
associated errors of ±1 %.

Spectrum Number Mn (%) Ir (%) Si (%)

19 58 16 26
20 57 16 26
21 56 18 26
22 67 12 20
23 46 23 30
24 42 25 32
25 45 24 30
26 51 20 30
27 64 14 22
28 41 27 32
29 38 29 33
30 45 25 31
31 41 26 32
32 48 24 28
33 44 25 31
34 41 26 33
35 46 24 30
36 59 18 22
37 44 26 30

Table 6.2: Atomic coordinates used for powder x-ray diffraction Rietveld refine-
ment for Mn3IrSi for the cubic space group P213. A refined lattice parameter of
6.50226(8) Å is extracted from the data.

Atom x y z Occ. Biso (Å
2
)

Mn1 0.1225(8) 0.2182(8) 0.4575(6) 1 0.1
Ir1 0.6832(2) 0.6832(2) 0.6832(2) 1 0.1
Si1 0.0738(6) 0.0738(6) 0.0738(6) 1 0.1

6.2.3 Powder x-ray diffraction

Powder x-ray diffraction measurements were used to check the phase purity of the

sample. Several very small peaks were present that could not be indexed, indicating

only a small amount of impurities present in this material. The R-factors extracted

from the fit were Rwp = 10.69%, Rexp = 4.52% and Rp = 7.29%, indicating good

agreement between the calculated and observed data. Atomic parameters extracted

from this model are displayed in Table 6.2, with the lattice parameter refined as

6.50226(8) Å. The thermal parameters were set to 0.1 for the fitting as they could

not be accurately refined from this data set.
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Figure 6.2: Powder x-ray diffraction profile of Mn3IrSi, taken at room temperature.

6.2.4 Heat capacity

Heat capacity measurements for Mn3IrSi are shown in Fig. 6.3. A transition is

observable at T = 225 K in agreement with the transition observed for this material

in the literature [47]. However, an additional shoulder is present at T = 208 K. The

transitions here indicate the onset of long-range magnetic ordering.

At low temperatures, the Debye temperature can be calculated using the

approximation C (T ) /T = γ + βT 2 + δT 4, where γ is the electronic contribution

to the heat capacity, the Debye temperature ΘD = 3

√
12
5
nRπ4

β , n = 5 is the number

of atoms in the formula, and R is the molar gas constant. By fitting the low

temperature data, between 1 and 100 K2 to this function, values of γ = 2.916(4)×
10−4 J/mol K and ΘD = 450(4) K can be extracted. The γ value here is in the range

expected for a metallic material. It is worth noting that for a 3D antiferromagnetic

material, it might be expected that at low temperatures the magnetic contribution

to the specific heat, as well as the phonon contribution, would be linear. It is clear

from the data that a quadratic relationship between specific heat and temperature

122



0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0  D e b y e  m o d e l

C (
J/ m

ol 
K)

T  ( K )

3 n R

0 2 0 4 0 6 0 8 0 1 0 00 . 0 2

0 . 0 4

0 . 0 6

C/T
 (J/

mo
l K

2 )

T  2  ( K 2 )

 γ +  βT  2  +  δT  
4

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

∆S
 (J/

mo
l K

)

T  ( K )

( a )

( b )

Figure 6.3: (a) Heat capacity versus temperature collected in zero field for Mn3IrSi.
(b) The change in the magnetic entropy as a function of temperature.

is observed, indicating a more complex relationship.

The lattice contribution to the heat capacity can be estimated using the

Debye model:

CD (T ) = γT + nCD

(
T

ΘD

)
, (6.1)
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Figure 6.4: Temperature dependence of the dc susceptibility, χdc (T ), for Mn3IrSi
collected in zero-field-cooled warming and field-cooled cooling modes in an applied
field of 25 mT. The inset shows the ZFC warming data around the transition tem-
perature of the main phase, which is marked with an arrow.

where CD is the Debye contribution. The Dulong-Petit value, 15R, was

exceeded at high temperatures for both materials, due to high γ contribution as

well as possible anharmonic contributions to the lattice.

The phonon contribution was then subtracted in order to allow the calcula-

tion of the change in magnetic entropy over the magnetic transition, by integrating

over ∆C/T , where ∆C (T ) = C (T ) − CD (T ) and gave ∆S = 37(5) J/mol K, for

Mn3IrSi, which is close to the expected value for Mn4+, ∆S = 34.8 J/mol K. The

Debye temperature obtained from the model was ΘD = 400(30) K. This value falls

well below the calculated value from the low temperature fit. This poor agreement

is attributed to the high transition temperature limiting the amount of data able to

be taken in the paramagnetic state.

6.2.5 dc magnetisation

The dc susceptibility measurements for Mn3IrSi are displayed in Fig. 6.4. The Nèel

temperature TN = 215 K was extracted from maxima in d(χT )/dT . This value is

very close to the average of the two transitions seen in the heat capacity data.

Another transition is present at T = 97 K, which has not previously been

discussed in the literature, and was not visible in the heat capacity data. This

additional transition is therefore likely due to a small magnetic impurity within

the sample measured. The dc susceptibility profile is sitting on a high magnetic
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Figure 6.5: Neutron powder diffraction profiles at 300 K for Mn3IrSi, with a
calculated fit.

background at 300 K, which is consistent with observations of other materials with

a trillium lattice [82], and additionally no hysteresis is observed between the ZFC

and FCC measurements within error.

6.2.6 Powder neutron diffraction

Time-of-flight powder neutron diffraction data was taken for several temperatures

between 1.5 and 300 K. First, the nuclear structure was calculated using the 300 K

dataset, as illustrated in Fig. 6.5. The fit was calculated for Mn3IrSi in the space

group P213 with a lattice parameter of a = 6.50407(7) Å. A small amount of

impurity peaks are visible that were not considered when fitting the data.

The calculated Bragg R-factor for this fit was RBragg = 6.459%. The atomic

positions for this fit are tabulated in Table 6.3, where it can be seen that they are

similar to the values in Table 6.2, as expected. The atomic positions found at 1.5

K are displayed in the same table.
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Figure 6.7: The twelve Mn atoms of Mn3IrSi are displayed with magnetic moments
(red arrows) to illustrate the ground state magnetic structure.

Table 6.3: Atomic coordinates for Mn3IrSi extracted from the powder neutron
diffraction refinement at 300 K and 1.5 K in the cubic space group P213. The
lattice parameter a = 6.50407(7) Å and the Bragg R-factor RBragg = 6.459%.

300 K
RBragg = 6.459% a = 6.50407(7) Å

Atom x y z Occ. Biso (Å
2
)

Mn1 0.1179(13) 0.2073(8) 0.4549(7) 1 1.02(9)
Ir1 0.6831(3) 0.6831(3) 0.6831(3) 1 0.55(6)
Si1 0.0662(8) 0.0662(8) 0.0662(8) 1 0.3(2)

1.5 K
RBragg = 4.86% RMag = 2.35% a = 6.49081(7) Å

Atom x y z Occ. Biso (Å
2
)

Mn1 0.1187(14) 0.2074(10) 0.4544(8) 1 0.55(10)
Ir1 0.6829(4) 0.6829(4) 0.6829(4) 1 0.18(6)
Si1 0.066(1) 0.066(1) 0.0661(1) 1 0.4(2)

The evolution of the neutron powder diffraction profiles for Mn3IrSi with

temperature between d-values of 2.0 and 7.5 Å are displayed in Fig. 6.6(a). This

region of interest was chosen to better show the evolution of the magnetic peaks

with temperature. The data bank with an average 2θ value of 54◦ was chosen for

the same reason. Magnetic peaks begin to appear between 215 and 220 K, which

is in line with the transition temperature extracted from the dc susceptibility data.

There is no evidence that the impurity peaks have a magnetic component, indicating
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Figure 6.8: The integrated intensity of the Bragg reflection (001) as it varies with
temperature.

that the visible impurities are non-magnetic.

The main magnetic phase fit at a base temperature of 5 K is displayed in

Fig. 6.6(b) using the same average 2θ value as the other measurements. A k0 = (0, 0,

0) propagation vector was used to model the magnetic behaviour of the material. For

this propagation vector, four possible irreducible representation vectors are available

for this material: mΓ1, mΓ2, mΓ3, and mΓ4, all of which are indicative of frustrated

antiferromagnetic structures. Each possible irreducible representation was trialed

to the data.

The data were best modelled using the irreducible representation mΓ1(η1, η2, η3),

the three orthogonal basis vectors of which are shown in Table 6.4. The magnetic

structure consists of a frustrated antiferromagnetic lattice of corner-sharing trian-

gles of Mn atoms as displayed in Fig. 6.7, with a refined moment size of 2.92(1) µB.

This is consistent with the magnetic structure found in the literature [52].

The (001) Bragg reflection is then analysed by measuring how the integrated

intensity of this reflection varies with temperature to visualise the order parameter

for this reflection, as displayed in Fig. 6.8. A broad decrease in intensity was visible

that reaches a minimum value by around 225 K, which agrees with the transition

temperature extracted from heat capacity measurements. There are no obvious

transitions at lower temperatures (i.e. at 208 K as seen in the heat capacity data)

visible from the integrated intensity of this peak.
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Figure 6.9: Example SEM image of (a) Mn3RhGe polycrystalline button with
spectra 14 - 18 marked and (b) Mn3RhGe polycrystalline button polished atomically
flat on a far smaller scale. Different contrast is indicative of different stoichiometry
present. Three phases are identified and marked as (i), (ii), and (iii).

Due to the transition visible at 97 K in the dc magnetisation data [See

Fig. 6.4], it can be assumed that magnetic impurities are present in the data but

make up a very small percentage of the sample and thus are not detected with

measurements like heat capacity and neutron diffraction.

6.3 Mn3RhGe

6.3.1 Sample preparation

As in the previous section, a polycrystalline button of Mn3RhGe was prepared by

collaborators at the National Cheng Kung University by arc melting a stoichiomet-

rically correct ratio of Mn, Rh, and Ge. Part of this button was ground into a

powder and used for the powder x-ray diffraction, powder neutron diffraction, dc

susceptibility, and heat capacity measurements, while the rest of the button was

used for the dc susceptibility measurements.

6.3.2 Enery dispersive x-ray analysis

The stoichiometry of the Mn3RhGe button was analysed using energy dispersive

x-ray measurements. An average over seventeen spectra gave a stoichiometry of

Mn2.99(10)Rh0.827(2)Ge1.18(10). This is very close to the desired stoichiometry, espe-

cially for the Mn content, which is critical. A deficiency in Rh exists throughout

the material, however, which seems relatively constant throughout the material.An
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Table 6.5: Energy dispersive x-ray analysis spectra measured from Mn3RhGe with
associated errors of ±1 %. The first table corresponds to the macroscopic surface
of unpolished Mn3RhGe, while the second displays spectra taken on a microscopic
scale - see Fig. 6.9(a) and (b), respectively.

.
Polycrystalline button

Spectrum Number Mn (%) Rh (%) Ge (%)

2 64 17 20
3 64 16 20
4 64 17 20
5 58 17 25
6 61 17 23
7 60 17 23
8 60 17 24
9 58 17 25
10 58 17 26
11 60 16 24
12 59 16 25
13 60 15 24
14 60 17 24
15 58 17 25
16 59 17 24
17 57 17 27
18 59 17 25

Metallographic slide

Spectrum Number Area surveyed Mn (%) Rh (%) Ge (%)

18 (i) 62 17 21
19 (i) 62 17 21
20 (i) 62 17 21
21 (i) 62 17 21
22 (i) 62 17 21
23 (i) 62 19 19
24 (i) 62 19 19
25 (i) 62 19 19
26 (ii) 61 11 28
27 (ii) 60 13 27
28 (ii) 60 11 28
29 (iii) 73 3 25
30 (iii) 72 3 24
31 (iii) 73 3 24

example of an SEM image is displayed in Fig. 6.9(a).

In order to examine the deficiency in Rh more closely, a metallographic slide
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Figure 6.10: Powder x-ray diffraction profile of Mn3RhGe, taken at room temper-
ature.

was prepared by polishing a polycrystalline shard of Mn3RhGe until it was appro-

priately flat, and this was examined in order to check for phase boundaries within

this material [See Fig. 6.9(b)]. Three separate phases are observed with average

stoichiometry of: (i) Mn3.105(10)Rh0.89(3)Si1.00(4), (ii) Mn3.019(8)Rh0.58(3)Si1.39(2), and

(iii) Mn2.902(12)Rh0.122(13)Si0.975(10). The first phase, which is the desired phase, is

the most prominent. The least prominent phase is likely Mn3Ge, with the small

amount of Rh seen in the EDX measurements due to the sampling of the surround-

ings because of the small size of the pockets of this phase. The values for both EDX

measurements are displayed in Table 6.5.

6.3.3 Powder x-ray diffraction

Powder x-ray diffraction measurements were used to confirm the phase purity of

Mn3RhGe. The data was found to form in cubic space group P213 with a lat-

tice parameter of a = 6.61727(12) Å. The R-factors extracted from the fit were
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Table 6.6: Atomic coordinates used for powder x-ray diffraction Rietveld refinement
for Mn3RhGe for the cubic space group P213 and a refined lattice parameter of
a = 6.61727(12) Å.

Atom x y z Occ. Biso (Å
2
)

Mn1 0.1283(18) 0.2147(15) 0.4479(13) 1 0.1
Rh1 0.6866(6) 0.6866(6) 0.6866(6) 1 0.1
Ge1 0.0620(9) 0.0620(9) 0.0620(9) 1 0.1

Rwp = 9.69%, Rexp = 7.25% and Rp = 7.24%, which indicate excellent agreement

between the calculated fit and the observed data. The atomic parameters extracted

from the model are displayed in Table 6.6, with the thermal parameters set to 0.1.

This was chosen as a reasonable estimate as the thermal parameters could not be

refined accurately within this fit. The peaks that could not be indexed using this fit

were both few in number and very low intensity, indicating that the impurity phases

were small. These peaks did not match Mn3Ge and thus may be associated with

the unstudied Rh-deficient Mn3.019(8)Rh0.58(3)Si1.39(2) phase observed in the EDX

measurements.

6.3.4 Heat capacity

Heat capacity measurements for Mn3RhGe are shown in Fig. 6.11. Mn3RhGe shows

a transition at T = 216 K, which is strong evidence of long-range magnetic ordering

in this material. No additional transitions are observed in this dataset.

The behaviour seen is qualitatively similar to the heat capacity results for

Mn3IrSi. At low temperatures, as before, C (T ) /T = γ + βT 2 + δT 4. Fitting this

function resulted in values of γ = 2.636(7)× 10−4 J/mol K and ΘD = 398(4) K.

The lattice contribution to the heat capacity was estimated using the Debye

model, as before (see Equartion 6.1), and the Dulong-Petit value, 15R, was exceeded

at high temperatures, due to high γ contribution as well as possible anharmonic

contributions to the lattice. The Debye temperature obtained from the model was

ΘD = 340(30) K. This is considerably below the value calculated from the low

temperature fit, indicating that these values are only an approximation due to the

flexibility of the fit. The phonon contribution was then subtracted in order to allow

the calculation of the change in magnetic entropy over the magnetic transition,

giving ∆S = 36(5) J/mol K for Mn3RhGe, which is close to the value expected for

Mn4+, ∆S = 34.8 J/mol K.
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Figure 6.11: (a) Heat capacity versus temperature collected in zero field for
Mn3RhGe. (b) The change in the magnetic entropy as a function of temperature.

6.3.5 dc magnetisation

The dc susceptibility measurements for and Mn3RhGe are shown in Fig. 6.12. The

Nèel temperature TN =225 K was extracted from maxima in d(χT )/dT . Another

transition is present at 120 K that is attributed to an impurity phase of MnO in

the material, and around this transition and at lower temperatures hysteresis is

observed between the ZFC and FCC measurements.
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Figure 6.12: Temperature dependence of the dc susceptibility, χdc (T ), for
Mn3RhGe collected in zero-field-cooled warming (ZFC) and field-cooled cooling
(FCC) modes in an applied field of 25 mT. The inset shows the ZFC warming
data around the transition temperature of the main phase, which is marked with an
arrow.

Mn3XY family of materials are extremely sensitive to the exact stoichiom-

etry of manganese in the material, with even very small variations in the amount

present having visible effects on the magnetisation profiles [48]. Different shards of

material from the same batch had small differences in magnetisation because of this,

and the presence of MnO and other magnetic impurities seems to dominate the dc

susceptibility measurements. The height of the Curie tail is one aspect that is very

sample dependent.

In some measurements a further apparently ferromagnetic transition is present

at 368 K that can be associated with Mn3Ge, which is antiferromagnetic with a small

ferromagnetic component. This can be confirmed by eye, as the Mn3RhGe button

was able to be manipulated with a magnet at room temperature. Despite this,

no transition was present in the heat capacity at 368 K, which indicates that this

impurity phase is very small.

6.3.6 Powder neutron diffraction

The nuclear structure of Mn3RhGe was calculated using a powder neutron diffraction

measurement at 300 K, see Fig. 6.13. It was found to form in the cubic P213 space

group with a lattice parameter of a = 6.62104(9) Å. This is close to the value found

for the lattice parameter of this material in PXRD measurements, as illustrated in
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Figure 6.13: Neutron powder diffraction profiles at 300 K for Mn3RhGe, with a
calculated nuclear fit.

Fig. 6.10. Several impurity peaks were observed in the data, some of which were

indexed as MnO, which was also visible in the dc susceptibility measurements (see

Fig. 6.12) as part of the broad peak at 120 K. These impurities were excluded from

the range of data for the calculated fit.

The calculated Bragg R-factor for this fit was RBragg = 4.612 %. The atomic

positions for this fit at several temperatures are tabulated in Table 6.7, where it can

be seen that at room temperature they are similar to the values in Table 6.10, as

expected.

The diffraction patterns for Mn3RhGe for several different temperatures are

displayed in Fig. 6.14(a). As with Mn3IrSi, the data range has been restricted to

be between 2.0 and 7.5 Å to focus on the region of interest and the data displayed

is for an average 2θ value of 54◦. Magnetic peaks begin to appear between 200 and

260 K, which is in line with the transition temperature of TN = 216 K extracted

from the heat capacity data. No obvious hallmarks of short range ordering, i.e.
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Figure 6.14: (a) Neutron powder diffraction profiles at temperatures ranging from
base to 300 K for Mn3RhGe, offset by 150 counts each for clarity. Impurity peaks are
marked with an x, with magnetic impurity peaks marked with xm. MnO impurity
peaks are marked in blue whereas unindexed impurities are marked in black. (b)
The nuclear and magnetic fit to the data at 1.5 K, with each phase refined separately.
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Figure 6.15: The twelve Mn atoms of Mn3RhGe are displayed with magnetic
moments (red arrows) to illustrate the ground state magnetic structure.
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Figure 6.16: Integrated intensities of Bragg reflections (001) and (101 − k1) as a
function of temperature.

broad magnetic peaks, are present at any temperatures for either material.

The main magnetic phase was fit at base temperature 1.5 K and is displayed

138



Table 6.7: Atomic coordinates for Mn3RhGe extracted from a powder neutron
diffraction refinement at 300 K in the cubic space group P213 with lattice parameter
a = 6.62104(9) Å and Bragg R-factor RBragg = 4.612%.

300 K
RBragg = 4.612% a = 6.62104(9) Å

Atom x y z Occ. Biso (Å
2
)

Mn1 0.117(2) 0.2017(10) 0.4572(11) 1 1.37(10)
Rh1 0.6861(9) 0.6861(9) 0.6861(9) 1 1.5(3)
Ge1 0.0636(6) 0.0636(6) 0.0636(6) 1 0.91(12)

200 K
RBragg = 11.83% RMag = 14.83% a = 6.6105(1) Å

Atom x y z Occ. Biso (Å
2
)

Mn1 0.144(2) 0.2098(15) 0.454(2) 1 0.12(2)
Rh1 0.6888(11) 0.6888(11) 0.6888(11) 1 0.000(3)
Ge1 0.0671(9) 0.0671(9) 0.0671(9) 1 0.053(6)

1.5 K
RBragg = 4.21% RMag = 5.93% a = 6.60100(5) Å

Atom x y z Occ. Biso (Å
2
)

Mn1 0.120(2) 0.2060(14) 0.452(2) 1 1.05(9)
Rh1 0.6862(11) 0.6862(11) 0.6862(11) 1 1.4(3)
Ge1 0.0640(8) 0.0640(8) 0.0640(8) 1 0.36(14)

in Fig. 6.14(b) using the bank with an average 2θ of 54◦. It was found that these

data were best modelled using a k0 = (0, 0, 0) propagation vector with the same

four possible irreducible representations available as for Mn3IrSi, and the irreducible

representation that best models this data is the same vector as found for Mn3IrSi,

mΓ1(η1, η2, η3) and magnetic space group P213.1. The refined moment size was

3.07(1) µB. The magnetic structure for this material is displayed in Fig. 6.15, and

more details regarding the irreducible representation are displayed in Table 6.4.

The (001) and (101 − k1), where k1 = (0.066, 0, 0), Bragg reflections were

then analysed by measuring how the integrated intensity varied with temperature,

as displayed in Fig. 6.16. A decrease in intensity is visible that reaches a minimum

value between around 200 and 260 K, which agrees with the transition temperature

extracted from heat capacity and dc susceptibility measurements. The (101 − k1)

Bragg reflection was fully suppressed at temperatures below 160 K and above 260 K.

Additional magnetic phases are present in the measured sample of Mn3RhGe.

A small impurity phase of MnO becomes magnetic at temperatures below 120 K,

and these magnetic peaks were excluded from the fit. This impurity is visible in the

dc susceptibility data as part of the broad peak at 120 K. Furthermore, at 200 K,the
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Figure 6.17: Neutron powder diffraction profile at 200 K for Mn3RhGe.

magnetism is clearly incommensurate, with multiple large magnetic satellite peaks

observable. These incommensurate peaks cannot be accounted for using the k0 =

(0, 0, 0) propagation vector, and required the use of an incommensurate propagation

vector of k1 = (0.066, 0, 0) instead to index them.

The fit to the incommensurate magnetic structure is displayed in Fig. 6.17, for

which the best fit was found to be for magnetic space group P212121.1
′(0, 0, g)000s

and irreducible representation m∆1(ξ1, ξ2, ξ3), with a refined moment size of 3.10(4) µB.

The other available irreducible representation, m∆2, was trialled and found a worse

fit for the data. Fitting to the P212121.1
′(0, 0, g)000s magnetic space group resulted

in a helical magnetic winding along the direction indicated by the propagation vector

k1. This winding is long, and is illustrated in Fig. 6.18. This pocket of incommensu-

rate magnetism is a desirable area for future study due to the potential of stabilising

some topological phenomenon such as skyrmions with the application of a magnetic

field in this temperature region.
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( a ) ( b )

Figure 6.18: Structure of the incommensurate magnetic phase found in Mn3RhGe
at 200 K shown (a) in its nuclear unit cell and (b) extended along the c direction
for a single triangular array of Mn atoms to better show the evolution of its helical
winding. The refined moment size of the Mn atoms is found to be 3.10(4) µB.

Figure 6.19: Example SEM images of Mn3RhSi (a) polycrystalline button with
spectra 52 - 55 marked and (b) single crystal with spectra 60 - 62 marked.

6.4 Mn3RhSi

6.4.1 Sample preparation

A polycrystalline button of Mn3RhSi was synthesised in-house at the University

of Warwick by arc melting a stoichiometric ratio of Mn, Rh, and Si into three

separate buttons before combining them. While the final button itself was used for

most measurements, part of this button was ground into a powder and used for the
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Table 6.8: Energy dispersive x-ray analysis spectra measured from polycrystalline
and single crystal Mn3RhSi with associated errors of ±1 %.

Polycrystalline button

Spectrum Number Mn (%) Rh (%) Si (%)

38 53 18 29
39 57 17 26
40 56 18 26
41 53 17 30
42 55 18 27
43 53 18 29
44 57 17 27
45 51 19 30
46 51 19 31
47 62 17 21
48 58 19 23
49 59 18 23
50 62 17 21
51 62 17 21
52 59 18 23
53 60 17 22
54 59 18 23
55 60 18 22
56 60 17 23

Single crystal

Spectrum Number Mn (%) Rh (%) Si (%)

57 50 23 28
58 48 21 31
59 46 25 29
60 49 24 28
61 45 25 30
62 47 24 29
63 52 23 25
64 49 24 27
65 48 24 29
66 51 23 26
67 55 22 23

powder x-ray diffraction measurements.

A single crystal of Mn3RhSi was then grown from the final button using a

modified version of Bridgman technique as discussed in Chapter 3: Experimental

Details, by sealing the polycrystalline sample inside a conical alumina crucible inside

a quartz ampoule. The ampoule was evacuated and then filled with 1/3 atm of argon
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Figure 6.20: Single crystal of Mn3RhSi and a Laue diffraction pattern of the [001]
direction, taken from the cross-section of this crystal.

gas, before being heated in a box furnace to 950 ◦C and held at this temperature

for 72 hours. The material was then cooled to 750 ◦C at a rate of 3◦C/hr, held at

this temperature for 24 hours, and quenched in cold water.

6.4.2 Energy dispersive x-ray analysis

Energy dispersive x-ray analysis was used to analyse the stoichiometry of the Mn3RhSi

button used in the dc susceptibility measurements. An average over nineteen spec-

tra gave a stoichiometry of Mn2.9(2)Rh0.89(3)Si1.3(2). An example of an SEM image

with some of the spectra marked is shown in Fig. 6.19(a). As with Mn3RhGe, the

material appears to be slightly deficient in rhodium, though in this case it is to a

lesser degree.

The single crystal sample was analysed in the same manner, see Fig. 6.19(b).

The stoichiometry was analysed over eleven spectra and found to be Mn2.44(8)Rh1.17(4)Si1.38(7),

indicating that a significant amount of Mn was lost from the surface of the crystal

during the process of crystal growth. This is likely to have happened due in part

to a reaction of the Mn and the quartz, as some of the melt was found to have

moved outside of the alumina crucible during the crystal growth process. The re-

sults for all spectra measured for both the polycrystalline and single crystal samples

are tabulated in Table 6.8.
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Figure 6.21: Powder x-ray diffraction profile of Mn3RhSi, taken at room tempera-
ture.

Table 6.9: Atomic coordinates used for powder x-ray diffraction Rietveld refinement
for Mn3RhSi for the cubic space group P213.

Atom x y z Occ. Biso (Å
2
)

Mn1 0.1216(8) 0.2087(9) 0.4562(7) 1 0.52(9)
Rh1 0.6828(4) 0.6828(4) 0.6828(4) 1 0.52(9)
Si1 0.0606(15) 0.0606(15) 0.0606(15) 1 0.52(9)

6.4.3 Laue diffraction

Laue diffraction was used to check the quality of the single crystal after polishing, as

displayed in Fig. 6.20. The crystal was found to be single grain and highly crystalline

through most areas of the crystal.
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6.4.4 Powder x-ray diffraction

Powder x-ray diffraction measurements were used to check the phase purity of the

sample, see Fig. 6.21. Most peaks were able to be indexed using the P213 space

group with a lattice parameter of a = 6.48491(15) Å, though several very small

peaks associated with impurities were visible. The R-factors extracted from the

fit were Rwp = 9.26%, Rexp = 8.75% and Rp = 7.37%, indicating good agreement

between the calculated and observed data. The atomic parameters extracted from

the model are displayed in Table 6.2. The thermal parameters were allowed to vary

for this refinement but were constrained to the same value to limit the amount of

free parameters that were refined.

6.4.5 dc magnetisation

An example of a dc susceptibility measurement on a polycrystalline Mn3RhSi but-

ton is shown in Fig. 6.22. The Nèel temperatures are again extracted from max-

ima in d(χT )/dT . For Mn3RhSi, we see three transitions at approximately TN =

181 K, 236 K, and 276 K. As in the case with Mn3RhGe, these dc susceptibility

measurements were dominated by impurities and thus were somewhat sample de-

pendent. The transition at approximately 236 K was present in all samples and thus

can be associated with the main phase.

A large amount of hysteresis occurs between the ZFC and FCC data below

approximately 200 K, and a sharp downturn in the moment is present in the ZFC

data at temperatures below 20 K that is not visible in the FCC data. Similar

hysteresis is seen in the dc suscpetibility measurements for Mn3RhGe.

6.5 Summary

In conclusion, in the investigation into the Mn3XY family a single crystal of Mn3RhSi

has been successfully synthesised and then oriented with laue diffraction. Polycrys-

talline samples of Mn3IrSi and Mn3RhGe have been investigated using dc suscept-

bility and powder neutron diffraction measurements.

Mn3IrSi, Mn3RhGe, and Mn3RhSi all undergo magnetic transitions, which

are tabulated in Table 6.10. These transitions are antiferromagnetic in nature and

determined using the d(χT )/d(T ) method. However, dc susceptibility measurements

for these samples are dominated by magnetic impurities and show a degree of sample

dependence.

The heat capacity measurements show no additional transitions present in
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Figure 6.22: Temperature dependence of the dc susceptibility, χdc (T ), for Mn3RhSi
collected in zero-field-cooled warming (ZFC) and field-cooled cooling (FCC) modes
in an applied field of 25 mT. The inset shows the ZFC warming data around the
transition temperature of the main phase, which is marked with an arrow.

Mn3RhGe, indicating that only small amounts of magnetic impurities are present,

which is corroborated by the powder neutron and x-ray diffraction measurements.

Two magnetic transitions are visible at 208 and 225 K in the heat capacity data for

Mn3IrSi. Only one transition temperature can be extracted from the dc susceptibil-

ity near these temperatures, which occurs at the average of them, 215 K. Likewise,

in the neutron powder diffraction, only one transition is observed. The heat capac-

ity data saturates at levels higher than 3nR in both materials due to a considerable

contribution from the electronic heat capacity γ. The magnetic entropy indicates

that the most likely valence state for these materials in Mn4+.

The neutron powder difffraction measurements reveal that both Mn3IrSi and

Mn3RhGe share a frustrated antiferromagnetic ground state that is consistent with

the literature for Mn3IrSi. A further incommensurate magnetic phase in Mn3RhGe

is stabilised before it relaxes into its ground state at a temperature between 200

and 160 K. This helical magnetic phase in Mn3RhGe is interesting with regards to

its potential for hosting novel magnetic phenomena. The Mn3XY family and β-Mn

structure-type materials are interesting candidates for further study with this in

mind.
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Chapter 7

Conclusions and further work

In conclusion, detailed investigations have been carried out on several different chiral

magnetic materials. In this chapter, the work will be summarised, and any potential

avenues for future inquiry will be remarked upon.

A detailed investigation into the magnetic structure of intercalated transition

metal dichalcogenide V1/3NbS2 was described in Chapter 4, using ac and dc sus-

ceptibility measurements, and powder and single crystal neutron diffraction. This

material was found to display behaviour consistent with canted antiferromagnetism

at temperatures below 50 K. For example, magnetic fields of up to 10 T were not

sufficient to saturate V1/3NbS2, and the maximum moment reached was ≈ 0.2 µB,

which is expected for antiferromagnets. The dc susceptibility measurements indi-

cated the presence of a small ferromagnetic component to V1/3NbS2.

Neutron measurements indicated that to fully describe the magnetism inher-

ent to V1/3NbS2, two magnetic propagation vectors were required. A k0 = (0,0,0)

propagation vector described an A-type antiferromagnetic ordering, while a k1/3

= (0,0,1/3) propagation vector described the evolution of an up-down-down con-

figuration of moments along the c axis throughout the magnetic unit cell. Due to

the small size of the ferromagnetic component, these measurements were unable to

resolve which component of the magnetism it was associated with. Additionally,

diffuse magnetic scattering was found between the (010) and (01±1/3) Bragg peaks

in single crystal neutron diffraction measurements.

In order to resolve the unanswered questions about the magnetic structure

of V1/3NbS2, complementary techniques such as muon spin relaxation are needed.

Beamtime has been awarded to members of the UK Skyrmion Project for this inves-

tigation. Additionally, high-field measurements are required to find the saturation

magnetisation and field for this material.
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In Chapter 5, three intercalated transition metal dichalcogenides - Cr1/3NbS2,

Cr1/3TaS2, and Mn1/3NbS2 - were compared and contrasted. Phase diagrams were

constructed for each material using ac susceptibility measurements that revealed

the real susceptibility, χ’, for the ground state magnetic orderings of Cr1/3NbS2

and Cr1/3TaS2 were considerably higher than that of the ground state ordering of

Mn1/3NbS2. Additionally, a magnetic transition was found to vary in tempera-

ture with frequency in Mn1/3NbS2, which is reminiscent of spin glass behaviour.

Furthermore, additional reflections in single crystal x-ray and electron diffraction

measurements on single crystals of Mn1/3NbS2 indicate the presence of a complex

twin system.

Using LTEM measurements, a helimagnetic ground state was observed in a

single crystal of Cr1/3NbS2 with a suppressed transition temperature of 111 K. The

suppression of this transition temperature was attributed to disorder effects, which

were also used to explain the areas in the LTEM images where the helical order

appeared to break. Additionally, the LTEM measurements for Mn1/3NbS2 below

TC = 45 K were consistent with what would be expected for a ferromagnet with

domains.

Further work is required to understand both the nuclear and magnetic struc-

ture of Mn1/3NbS2. Neutron studies have been undertaken on this material and

are currently being analysed in order to uncover its true magnetic ground state.

Lorentz transmission electron microscopy on synthesised Cr1/3TaS2, the suppressed

transition temperature of which would suggest that it is disordered, would also allow

a comparison to see whether the periods of broken helicity seen for Cr1/3NbS2 are

also present for this material.

Finally, this thesis described the investigation into the frustrated antiferro-

magnets Mn3RhSi, Mn3RhGe, and Mn3IrSi in Chapter 6, which adopt an ordered

form of the β-Mn structure. Powder neutron diffraction measurements on polycrys-

talline Mn3IrSi and Mn3RhGe revealed a frustrated antiferromagnetic ground state

for both materials, with the angles of 120◦ between the magnetic moments. An

additional incommensurate helical magnetic phase at 200 K was also measured for

Mn3RhGe. A single crystal of Mn3RhSi was successfully synthesised and charac-

terised using powder and Laue x-ray diffraction measurements, as well as dc suscep-

tibility measurements.

To conclude the work on these materials, neutron diffraction measurements

on Mn3RhSi would be useful in determining its ground state magnetic ordering

and magnetic phase diagram. Additional investigations into the helical phase of

Mn3RhGe and the synthesis of a single crystal of this material are required to fully
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understand its magnetic behaviour.

The results in this thesis help to elucidate the differences between the mag-

netic structures of several intercalated transition metal dichalcogenides, and to in-

dicate which members of the Mn3XY family are interesting as potential skyrmion

hosts.
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