Skip to main content Skip to navigation

Ultrafast & Terahertz Photonics Group

Research areas

Nanomaterials

We use pump/probe spectroscopy to study how light and matter interact on femtosecond to nanosecond timescales. Using visible probes we can track electronic processes, while infrared radiation lets us study vibrational states of molecules and atomic-scale defects in semiconductors.

CNT

Recent papers:

...more papers

Terahertz medical imaging

Performing in vivo studies of the THz properties of skin is a major initiative in the group, supported by the EPSRC Terabotics Programme GrantLink opens in a new window. We develop robust measurement protocols and test them on a statistically significant number of patients, cross-checking with other methods.

Medical

Recent papers:

...more papers

Semiconductors and Energy materials

A major strand of our research is to improve our knowledge of the fundamental science underpinning new semiconductor materials, such as metal-halide perovskites, which are often attractive for photovoltaic applications.

Electronically-delayed optical pump/THz probe spectroscopy on a variety of semiconductors

Recent papers:

...more papers

Terahertz components, methods and techniques

We develop new THz devices and integrate them into novel systems designs that can perform THz imaging and THz spectroscopy faster, and with increased capabilities (e.g. polarisation control; robot-controlled probes).

Single-pixel

Recent papers:

...more papers

Recent publication highlights [filter by topic: view all | highlights | THz | perovskites | nano | biomedical]

Select tags to filter on

Real-time terahertz imaging with a single-pixel detector

R. I. Stantchev, X. Yu, T. Blu and E. Pickwell-MacPherson
Nature Communications 11 2535 (May 2020) [ pdf ] [ ref ] Stantchev 2020

Thu 09 Jul 2020, 22:23 | Tags: THz components, MacPherson, 2020

Metal composition influences optoelectronic quality in mixed-metal lead-tin triiodide perovskite solar absorbers

M. T. Klug, R. L. Milot, J.B. Patel, T. Green, H. C. Sansom, M. D. Farrar, A. J. Ramadan, S. Martani, Z. Wang, B. Wenger, J. M. Ball, L. Langshaw, A. Petrozza, M. B. Johnston, L. M. Herz and H. J. Snaith
Energy & Environmental Science (May 2020)

Klug 2020



Fri 01 May 2020, 13:00 | Tags: THz spectroscopy, photoluminescence, Milot, perovskites, 2020

Ultrafast Optoelectronic Processes in 1D Radial van der Waals Heterostructures: Carbon, Boron Nitride, and MoS2 Nanotubes with Coexisting Excitons and Highly Mobile Charges

M.G. Burdanova, R.J. Kashtiban, Y. Zheng, R. Xiang, S. Chiashi, J.M. Woolley, M. Staniforth, E. Sakamoto-Rablah, X. Xie, M. Broome, J. Sloan, A. Anisimov, E.I. Kauppinen, S. Maruyama and J. Lloyd-Hughes
Nano Lett. 20 5, 3560 (Apr 2020) [ free e-print ] [ preprint pdf ] [ ref ]

1D van der Waals hetereostructuresHeterostructures built from 2D, atomically thin crystals are bound by the van der Waals force and exhibit unique optoelectronic properties. Here, we report the structure, composition and optoelectronic properties of 1D van der Waals heterostructures comprising carbon nanotubes wrapped by atomically thin nanotubes of boron nitride and molybdenum disulfide (MoS2). The high quality of the composite was directly made evident on the atomic scale by transmission electron microscopy, and on the macroscopic scale by a study of the heterostructure’s equilibrium and ultrafast optoelectronics. Ultrafast pump–probe spectroscopy across the visible and terahertz frequency ranges identified that, in the MoS2 nanotubes, excitons coexisted with a prominent population of free charges. The electron mobility was comparable to that found in high-quality atomically thin crystals. The high mobility of the MoS2 nanotubes highlights the potential of 1D van der Waals heterostructures for nanoscale optoelectronic devices.




Broadband amplitude, frequency, and polarization splitter for terahertz frequencies using parallel-plate waveguide technology

A. I Hernandez-Serrano, D. M. Mittleman and E. Pickwell-MacPherson
Optics Letters 45 1208 (Feb 2020) [ pdf ] [ ref ]

SchematicIn this Letter, we report a broadband frequency/polarization demultiplexer based on parallel-plate waveguides (PPWGs) for terahertz (THz) frequencies. The fabrication and experimental validation of this polarization sensitive demultiplexer is demonstrated for the range from 0.2 to 1 THz. Upgrading the demultiplexer by adding a second demultiplexer stage, a fifty-fifty amplitude splitter is also demonstrated in the same frequency range. The multiplexer is based on a stainless-steel traveling-wave antenna, exhibiting strong mechanical robustness. This unique device exhibits three splitting mechanisms in the same device: amplitude, polarization, and frequency splitting. This is a significant improvement for the next generation of THz passive components for communication purposes.

Tue 25 Feb 2020, 12:00 | Tags: THz spectroscopy, THz components, MacPherson, 2020

Latest news Newer news Older news