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Abstract 

Atomic-scale defects can control the exploitable optoelectronic performance of crystalline 

materials, and several point defects in diamond are emerging functional components for a range 

of quantum technologies. Nitrogen and hydrogen are common impurities incorporated into 

diamond, and there is a family of defects that includes both. The N3VH0 defect is a lattice 

vacancy where three nearest neighbor carbon atoms are replaced with nitrogen atoms and a 

hydrogen is bonded to the remaining carbon. It is regularly observed in natural and high-

temperature annealed synthetic diamond and gives rise to prominent absorption features in the 

mid-infrared, the strongest of these being its CïH stretch mode at 3107 cm-1. Often, it is 

observed alongside another feature at 3237 cm-1. This feature is presently unidentified, but 

speculated to belong to an NïH stretch. Here, we combine time- and spectrally resolved 

infrared absorption spectroscopy to yield unprecedented insight into the vibrational dynamics 

of both of these defects, following both infrared and ultraviolet excitation of the CïH stretch. 

In doing so, we gain fundamental information about the energies of quantized vibrational states 

and corroborate our results with theory. We map out, for the first time, energy relaxation 

pathways, which include multiphonon relaxation processes and, in the case of N3VH0, 

anharmonic coupling to the bend modes. These advances provide a new route to probe and 

quantify atomic-scale defects in diamond. 
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1 Introduction 

1.1 Introduction to diamond 

 

1.1.1  Diamond in history 

 

Throughout history, diamond has been revered as a precious stone of great value. Many 

translations of the Book of Exodus refer to diamond as one of the twelve gemstones set in the 

priestly breastplate [1]. In Chapter XI of the Arthra-Sastra, details are given regarding both the 

source and value of diamonds, in addition to regulations involved in the diamond trade [2]. The 

word ódiamondô has its root in the Greek ó ŭɎɛŬɠô or óadamasô, meaning óinvincibleô, owing 

to its extreme hardness. Pliny the Elder describes diamond in glowing terms and refers to its 

two common uses ï as an object of beauty and as a tool for cutting and engraving [3]. 

 

1.1.2  Diamond in science 

 

Diamond is known to be one of the allotropes of carbon. It exists as a giant covalent lattice, 

one unit cell of which is shown in Figure 1.1. Each carbon atom is sp3 bonded to four nearest 

neighbours, creating a rigid tetrahedral structure. The diamond lattice is based on a face-centred 

cubic (fcc) lattice arrangement, with an additional two-atom basis filling half of the tetrahedral 

holes. This regular repeating pattern of strong, short covalent bonds is what gives rise to many 

of the incredible properties of diamond, such as its extreme hardness (10 on the Mohs scale), 
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high thermal conductivity (up to 2200 Wm-1K-1), high refractive index (~2.4) and high optical 

transparency. 

 

       

Figure 1.1 One unit cell of the repeating tetrahedral lattice structure of diamond. Each grey 

circle represents a single carbon atom. 

 

1.2 Formation of diamond 

 

Energetically, diamond is a less stable allotrope than graphite at room temperature and 

pressure. Conversion between the two structures requires a significant amount of energy. The 

conditions required for diamond formation typically follow the Simon-Berman line, shown in 

Figure 1.2, which details the relationship between the pressure, ὖ, in kilobars and the 

temperature, Ὕ, in Kelvin required for equilibrium between diamond and graphite: 

 

 ὖËÂÁÒχȢρ πȢπςχὝ+ (1.1) 
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This equation was originally extrapolated from thermodynamic calculations, based on the 

heats of formation of both allotropes, using data recorded at temperatures of up to 1200 K [4]. 

Subsequent equilibrium experiments, using a variety of apparatuses and conditions to form 

diamond from graphite using metal solvent catalysts, and to directly graphitise diamond 

without the presence of a catalyst, supported the conclusions from theory [5]. 

 

 

Figure 1.2 The phase diagram of carbon, including the Simon-Berman line and showing the 

conditions required for the formation of diamond from graphite. If the temperature is too high, 

liquid or gaseous carbon is formed instead. 

 

Following the Simon-Berman line, diamond may be produced under conditions of high 

pressure and temperature. In the following sections, 1.2.1 through 1.2.3, we describe the 

formation of diamond in nature and through the most common synthetic production methods ï 

high pressure, high temperature (HPHT) synthesis and chemical vapour deposition (CVD). 
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1.2.1  Natural diamond 

 

The majority of the Earthôs naturally occurring diamonds are formed deep in the subcratonic 

regions of the lithospheric mantle, at boundary regions near the asthenosphere [6-7]. When the 

lithosphere and the asthenosphere are at roughly the same depth, roughly 200 km, the cooler 

temperature of the former allows for a lower pressure requirement for diamond formation, 

according to the Simon-Berman line. Thus, there is a window in the deep lithosphere where 

diamond production becomes an energetically favourable process. 

Diamond crystals form in melts that are found in this window and precipitate out on substrate 

rocks. Common substrates for diamond deposition include peridotites, eclogites and 

websterites [8]. Traditional models for diamond formation within the lithospheric mantle 

invoke either carbonate reduction or methane oxidation, but more recent work suggests that 

they may form through isochemical cooling of H2O-rich Carbon-Hydrogen-Oxygen fluids [9].  

Once formed, diamonds are subsequently taken up towards the Earthôs surface through 

kimberlite pipes [8,10-11]. A significantly smaller proportion of natural diamonds are produced 

below the lithosphere in subduction zones underneath oceanic crust [12]. Figure 1.3 shows the 

regions of the upper mantle where diamond formation can occur. 
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Figure 1.3 Schematic showing a section of the crust and upper mantle of the Earth, including 

depth below the surface, and pressure (kbar). Regions where diamond formation is 

energetically favourable are denoted. Diamond is formed in two regions: in the window deep 

in the subcratonic lithosphere, and in deep subduction zones underneath oceanic crust. 

Reproduced from [7]. 

 

Diamond inclusions have also been found to occur in carbon-rich meteorites, known as 

ureilites, that have crashed into the Earth [13]. The origin of these diamonds is not explicitly 

known ï however, there are several suggested explanations for their formation: (1) through 

energy generated by the impact of a collision [14]; (2) through exposure to gases in the solar 

nebula that are rich in carbon [15]; and (3) due to high internal pressure inside the ureilites 

themselves, which allows diamond formation to become energetically favourable [16]. 
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1.2.2  High pressure, high temperature synthesis of diamond 

 

HPHT synthesis aims to replicate the conditions required for the natural formation of diamond 

[17-19]. Carbon-rich sources such as graphite are dissolved in a molten metal solvent, typically 

a transition metal alloy, and heated at a temperature exceeding 1600 K inside a reaction cell, 

subjected by a belt [19], cubic [20] or split-sphere [21] press to pressures above 50 kbar. Under 

these conditions, the carbon-rich sources can spontaneously precipitate out as diamond, 

creating small crystals which begin to grow over time. Alternatively, the reaction cell may be 

set up with a temperature gradient. In this case, the upper section of the reaction cell remains 

at a high temperature, while the lower section exists at a cooler temperature and contains 

individual diamond seed crystals. The reduction in temperature induces precipitation onto and 

subsequent growth of the diamond seed crystals. A schematic of the setup required for HPHT 

diamond synthesis is shown in Figure 1.4. 

 

 

Figure 1.4 Schematic representation of a HPHT diamond press, using the temperature gradient 

method to grow diamond crystals. 
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Since nitrogen gas readily enters the presses, the diamonds produced by HPHT synthesis are 

often yellow in colour. Recent advances in impurity control, such as the introduction of 

nitrogen-getters (aluminium or titanium) into the synthesis mixture, has enabled the production 

of colourless HPHT diamonds [22]. HPHT processes can also be used to anneal both natural 

diamonds and those produced by CVD synthesis [23-24].  

 

1.2.3  Chemical vapour deposition synthesis of diamond 

 

CVD growth of diamond is achieved by exposure to free radicals. The most common of these 

are the hydrogen radical, HÅ, and the methyl radical, ÅCH3, which form the basis of the 

mechanism for CVD growth ï abstraction of surface atoms by HÅ and subsequent addition of 

ÅCH3 which builds up layers of diamond [25-26], as demonstrated in Figure 1.5.  

 

 

Figure 1.5 Mechanism for growth of diamond by CVD. After radicals are generated, hydrogen 

abstraction and methyl addition allow for the growth of sp3 diamond. 
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Inside a CVD reactor, the synthesis gas mixture is passed through onto a non-diamond 

substrate seeded with diamond crystals (heteroepitaxial growth) [27], or a pre-existing diamond 

film (homoepitaxial growth) [28]. Radicals are generated through thermal activation of the 

synthesis gas mixture, which may be achieved in different ways depending on the type of 

reactor. A hot filament CVD (HFCVD) reactor creates a high temperature environment for 

radical formation [27], whilst a microwave plasma CVD (MWCVD) reactor creates a plasma 

above the substrate surface by microwave irradiation [29]. The latter method converts a higher 

proportion (~30%) of the synthesis gas into HÅ radicals. Figure 1.6 shows simplified diagrams 

of these two reactors, which are those most commonly used for growth of diamond by CVD.  

 

 

Figure 1.6 Schematic representation of a, a HFCVD reactor and b, a MWCVD reactor. 

 

The CVD synthesis gas is normally a mixture of 1-5% methane in hydrogen, though other 

hydrocarbon gases may be used [30]. The addition of other gases such as argon [31], nitrogen 

[32-34] and oxygen [35-36] has been shown to improve either the growth rate or the overall 

quality of the diamonds produced. However, a high content of hydrogen is almost always 

required for the formation of the HÅ and ÅCH3 radical species required for deposition. HÅ radicals 

are also required for the termination of free dangling bonds in the growing diamond to 
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discourage the formation of sp2 graphitic carbon, and the etching of any sp2 carbon that does 

form during growth. HÅ thus stabilises the diamond surface, ensuring that it remains sp3 

coordinated and encouraging growth of sp3 carbon only.   

Growth of diamond by CVD can be advantageous over HPHT synthesis. Due to the presence 

of free radicals, moderate temperatures and significantly lower pressures can be used to form 

diamond, in regions where graphite would normally be the energetically favourable allotrope 

[26]. Most CVD syntheses use sub-atmospheric pressures, and substrate temperatures in the 

range of 1000-1400 K. Additionally, being able to control the synthesis gas mixture offers an 

opportunity to directly influence which impurities are doped into the diamond during its 

growth. CVD has been used to grow a wide variety of diamonds, ranging from single crystal 

[37] to polycrystalline diamond [38], and from high purity, electronic-grade diamond [39] to 

quantum-grade diamond doped with specific defects [40]. CVD diamond can also be annealed, 

either by HPHT or low pressure, high temperature (LPHT) treatment, to alter its optoelectronic 

properties and defect composition [23].  

CVD synthesis of diamond does have its shortcomings. In particular, the presence of 

hydrogen in the synthesis gas mixture often results in the incorporation of hydrogen defects in 

the diamonds [41]. Additionally, though the presence of nitrogen does dramatically increase 

the growth rate of CVD diamond, it also reduces its overall quality ï a higher growth rate also 

encouraging the incorporation of sp2 carbon during growth and producing a brown colour [42]. 

When diamond growth is heteroepitaxial, the seed crystals grow into one another, producing 

polycrystalline diamond (PCD) unless the substrate lattice parameter matches that of diamond, 

in which case oriented, regular diamond growth is possible. When growth is homoepitaxial, 

single crystal (SC) diamond may be produced. However the initial growth matter on the 

substrate edges is irregular and polycrystalline and may have to be cut away from the deposited 

matter. For the formation of high purity SC diamond, long growth times are typically required. 
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1.3  Defects in diamond 

 

During the formation and subsequent treatment of both natural and synthetic diamond, defects 

become incorporated into the lattice. All defects are classified as either intrinsic or extrinsic. 

Intrinsic defects occur due to errors in the diamond lattice itself. The simplest example of an 

intrinsic defect is the vacancy, V, shown in Figure 1.7a, which results from the complete 

absence of a carbon atom from the lattice [43], leaving its four nearest neighbour atoms with 

dangling bonds. Vacancies can exist in different charge states, and in some cases aggregate 

together, forming vacancy clusters [44]. Another way of altering the diamond lattice structure 

is by the presence of interstitial sites, where a carbon atom sits outside its normal arrangement. 

The simplest observed example is the split-interstitial [45], shown in Figure 1.7b. Like 

vacancies, interstitials may also aggregate to form more complex defects [46]. More complex 

intrinsic defects observed in diamond are dislocations [47], which are caused by a slip in one 

plane of the diamond lattice, and platelets [48], which are extended planar defects that are thin 

and flat in their appearance. 

 

 

Figure 1.7 A unit cell of the diamond lattice showing a, the vacancy b, the split-interstitial. 

 



11 
 

Extrinsic defects appear due to the presence of impurity atoms in diamond. In natural 

diamond, impurities are omnipresent and can vary from single point defects to larger mineral 

inclusions [7,49]. In the production of synthetic diamond, it is possible to heavily control and 

limit the presence of defects [50]. Impurities can also be deliberately introduced by doping the 

synthesis mixture [51-52]. Defects may also be produced in synthetic diamond by post-

processing of the diamond through electron irradiation [53], ion implantation [54] or laser 

writing [55]. Furthermore, high temperature annealing of diamond may be used to induce the 

formation of more complex defect sites [23-24]. 

The most common impurities in diamond are boron and nitrogen. Due to their similar size to 

carbon, they can directly replace an atom in the lattice structure, creating substitutional boron, 

(BS) [56], or nitrogen, (NS) [57]. More complex defects may form through interaction of 

multiple defect centres. For example, the migration of a nitrogen atom to a vacancy site in 

diamond generates a nitrogen-vacancy (NV) centre [58]. Impurity atoms that are too large to 

directly replace a carbon atom usually exist alongside a vacancy, such as the silicon-vacancy 

centre (SiV) [59]. 

The presence of defects significantly alters the optoelectronic properties of diamond, which 

is most clearly displayed in the diamond colour that manifests when there is a significant 

population of a specific defect centre [60-61]. Defects produce optical absorption of visible 

light and thus manifest a colour from reflected visible light. Figure 1.8 demonstrates some 

common defects in diamond and their associated colours in diamonds where they are the 

dominant defect. Another example of the change induced by defects is the p-type electrical 

conductivity exhibited by boron-doped diamond, which acts as a charge acceptor [56]. 

For the work in this thesis, the most important impurities to consider are those associated 

with nitrogen and hydrogen, which are elaborated upon in Sections 1.3.1 and 1.3.2. 
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Figure 1.8 Schematic showing the effect of the presence of common point defects found in 

diamond on the overall diamond colour. The operation (s) refers to a substitution ï a direct 

replacement of a carbon atom with that of another element or a vacancy site, denoted V. The 

operation (m) refers to a migration, where two non-carbon sites are grown in together. 

 

1.3.1  Nitrogen in diamond 

 

Nitrogen is a ubiquitous impurity in both synthetic and natural diamond [62], with most (~98%) 

natural diamonds typically containing 100-1000 ppm nitrogen. In synthetic diamond, the 

concentration of nitrogen can be controlled to within less than 1 ppb in the highest purity 

material [50]. The classification of diamond into its different types is predominantly dependent 

on their concentration of nitrogen, and the form in which it manifests [63-64]. Diamonds that 

contain nitrogen are labelled as type I, while those that do not contain nitrogen are labelled as 

type II. Figure 1.9 details how the different diamond types are classified. 
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Figure 1.9 Flowchart classifying diamond by its different types. Type I diamond contains a 

significant concentration of nitrogen, whereas Type II diamond contains negligible nitrogen. 

 

The simplest nitrogen defect is the single substitutional nitrogen centre (NS), shown in Figure 

1.10a, which is the dominant impurity in type Ib diamond. Here, a nitrogen atom directly 

replaces a carbon atom in the lattice [57]. This centre, commonly produced through HPHT 

synthesis methods, manifests as a yellow colour in diamond. Unlike boron-doped diamond, 

doping with nitrogen does not induce electrical conductivity, as its donor levels are too deep to 

facilitate n-type conductivity [65]. The migration of point defects, which occurs during 

diamond growth and annealing, produces more complex defect centres. The most well-studied 

of these is the NV0/ï centre, Figure 1.10b, where a nitrogen atom and a vacancy sit next to each 

other [58]. Due to its optical and spin properties, the negatively-charged nitrogen-vacancy 

centre (NVï) has been shown to have great potential in the fields of quantum computing, 

simulation and sensing [58,66-67]. 
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In natural diamond, where synthesis takes place over a considerably long time, nitrogen tends 

to aggregate and form more complex defect centres. The most common of these are the A-

nitrogen centre (N2
0) [68], Figure 1.10c, where two nitrogen atoms exist in a pair, and the B-

nitrogen centre (N4V
0) [69], Figure 1.10d, where four nitrogen atoms surround a vacancy. 

Diamonds containing a high concentration of these defects are known as type IaA and type IaB 

diamonds, respectively. Diamond containing a high concentration of NS
0 can be subject to 

HPHT annealing to produce N2
0, and, subsequently, N4V

0 [68-69]. 

 

 

Figure 1.10 Common nitrogen-containing defect centres as they appear inside a unit cell of the 

diamond lattice. a, The substitutional nitrogen (NS) centre; b, The nitrogen-vacancy (NV) 

centre; c, The A-nitrogen centre (N2
0), d, The B-nitrogen centre (N4V

0). 


