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Abstract

Atomic-scale defects can control the exploitable optoelectronic performance of crystalline
materials, and several point defects in diamond are emerging funciionpbnents for a range

of quantum technologies. Nitrogen and hydrogen are common impurities incorporated into
diamond, and there is a family of defects that includes both. BWelNdefect is a lattice
vacancy where three nearest neighbor carbon atoms are replaced with nitrogen atoms and a
hydrogen is bonded to the remaining carbon. It is regularly observed in natural and high
temperature annealed synthetic diamond and gives nmetunent absorption features in the
mid-infrared the strongest of these being itsHCstretch mode at 3107 ¢cmOften, it is
observed alongside another feature at 323%.chhis feature is presently unidentified, but
speculated to belong to ani N streéch. Here, we combine timeand spectrally resolved
infrared absorption spectroscopy to yield unprecedented insighthiwbrational dynamics

of both of these defect&llowing bothinfraredand ultravioletexcitation of the CH stretch.

In doing sowe gain fundamental information about the energies of quantized vibrational states
and corroborate our results with theory. We map out, for the first time, energy relaxation
pathways, which include multiphonon relaxation processes indhe case of PV/HC,
anharmonic coupling to theend mods These advances proé@ a new route to proksnd

guantify atomiescale defects diamond.



1 Introduction

1.1 Introduction to diamond

1.1.1 Diamond inhistory

Throughout history, diamond has been revered as a precious stone of greatviaaye.
translations oftie Book of Exodus refer to diamdras one of the twelve getones set in the
priestly breastplatfl]. In Chapter XI of théArthra-Sastradetals are given regarding both the
source and value of diamonds, in addition to regulations involved in the diamon®}rades|
word o6diamonddé has its root in the Greek
to its extreme hardnesBliny theElderdescribes diamond in glowing terms and refers to its

two common usek as an object of beauty and aal for cutting and engravin@].

1.12 Diamond inscience

Diamondis known to be one of the allotropes of carbltrexists as a giant covalelattice,
one unit cell of whichis shown in Figure 1. Each carbon atom &p° bonded to four nearest
neighbous, creating a rigid tetrahedral structufée diamond lattice is based on a faeatred
cubic (fcc) lattice arrangement, wigimadditionaltwo-atom basidilling half of the tetrahedral
holes.This regular repeating pattern of strong, short covalent bonds is what givesmiseyto

of the incredible properties of diamond, such as its exttem#nesg10 on the Mohs scale),
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high thermal conaitivity (up to 2200 WiitK 1), high refractive index (~2.4) and high optical

transparency.

3.57A

Figure 1.1 Oneunit cell of the repeating tetrahedral lattice structure of diamond. Each grey

circle represents a single carbon atom.

1.2 Formation ofdiamond

Energetically, diamond is a less stable allotrope than graphiteom temperature and
pressure. Gnversion between the two structures requires a significant amount of energy. The
conditions required for diamond formation typically follow the 8mBerman line, shown in
Figure 1.2, which details the relationship between the pressuré kilobars and the

temperature)Y in Kelvin required for equilibrium between diamond and graphite:

0 EAAOK® 8t Y+ (1.2



This equation was originallgxtrapolated from thermodynamic calculations, based on the
heats of formation of both allotropes, using data recorded at temperatures of up to 4R00 K [
Subsequent equilibrium experiments, using a variety of apparatuses and conditions to form
diamond fran graphite using metal solvent catalysts, and to directly graphitise diamond

without the presence of a catalyst, supported the conclusions from tBgory [

200.0 \

150.0 7 Liquid

Diamond

100.0

Pressure (kbar)

50.0

Graphite

T T T T T T T T T I T Gas
0 1000 2000 3000 4000 5000 6000
Temperature (K)

0.0

Figure 1.2 The phase diagram of carbon, including the SkBerman line andhowing the
conditions required for the foration of diamond from graphité.the temperature is too high,

liquid or gaseous carbon is formed instead.

Following the SimorBerman line, diamond may be produced under conditions of high
pressure and tempéuge. In the following sections, 1.2.1 through 1.2.3, describe the
formation of diamonah nature and througine most commosynthetic production methods

high pressure, high temperature (HPHVhthesis andhemical vapour deposition (CVD).



1.2.1 Natural diamond

The majority of the Earthds naturally occurr
regions of the lithospheric mantle, at boundary regions near the astheno8pfiev®len the

lithosphere and the asthenosphere are at roughlyathe depth, roughly 200 km, the cooler
temperature of the former allows for a lower pressure requirement for diamond formation,
according to the SimeBerman line. Thus, there is a window in the deep lithosphere where
diamond production becomes an energdiifdavourable process.

Diamond crystals form in melts that are found in this window and precipitate out on substrate
rocks. Common substrates for diamond deposition include peridotites, eclogites and
websterites §]. Traditional models for diamond formain within the lithospheric mantle
invoke either carbonate reduction or methane oxidation, but more recent work suggests that
they may form through isochemical cooling af®Hrich CarborHydrogerOxygen fluids 9].

Once formed, diamonds are subsequerdlfjkte n up towards the Eart.|
kimberlite pipes$,10-11]. A significantly smaller proportion of natural diamonds are produced
below the lithosphere in subduction zones underneath oceanicidustigure 1.3 shows the

regions of the upper amtle where diamond formation can occur.



100

200

300
Figure 1.3 Schematic showing a section of the crust and upper mantle of the Earth, including
depth below the surface, and pressure (kbar). Regions where diamond formation is
energetically favourable are denoted. Diamond is formed in two regions: in the window deep
in the subcratonic lithosphere, and in deep subduction zones underneath oceanic crust.

Reproduced from7].

Diamond inclusions have also been found to occur in carbbnmeteorites, known as
ureilites, that have crashed into the Ealfitf].[ The origin ofthese diamonds is not explicitly
knowni however, there are several suggested explanations for their formation: (1) through
energy generated by the impact of a collisiddi;[ (2) through exposure to gases in the solar
nebula that are rich in carbob5|; and (3) due to high internal pressure inside the ureilites

themselves, which allows diamond formation to become energetically favout@bple [



12.2 High pressure, high temperature synthesis of diamond

HPHT synthesis aims to replicate the conditicetpuired for the natural formation of diamond
[17-19]. Carbonrich sourcesuchas graphitaredissolved in a molten metal seht, typically

a transition metatlloy, and heated at a temperature exceeding 1600 K inside a reaction cell,
subjected by a Itg 19], cubic [20] or splitsphere 21] press to pressures above @&k Under

these conditions, the carbench sourcescan spontaneouslyprecipitate out as diamond
creating small crystalwhich begin to grovover time Alternatively, thereaction celimay be

setup with a temperature gradient. In this case, the upper section of the reaction cell remains
at a high temperature, while the lower section exists at a cooler temperature and contains
individual diamond seed crystals. The reilutin temperaturénducesprecipitation ontand
subsequent growthf thediamondseed crystalsA schematic of the setup required for HPHT

diamond synthesis is shown in Figure 1.4.

Graphite heater
Carbon source

Reaction

cell Insulator

Metal solvent

Grown crystal

Diamond crystal seeds
Figure 1.4Schematic represgation of a HPHT diamond@ss using the tempature gradient

methodto grow diamond crystals.



Since nitrogen gas readily enters the presses, the diamonds produced by HPHT synthesis are
often yellow in colour. Recent advances in impurity contsnich as the introduction of
nitrogengettes (aluminiumor titanium) into the synthesis mixture, has enabled the production
of colourless HPHT diamond&3]. HPHT processes can also be used to anneal both natural

diamonds and those produced by CVD synth&3<2f].

1.2.3 Chemical vapour deposition synthesif diamond

CVD growth of dianond is achieved by exposureftee radicalsThe most common of these
are the hydrogen radicaH® and the methyl radicaftCHs, which form the basis of the
mechanism for CVD growth abstraction of surface atorhg H*and subsequemtddtion of

ACHs which buildsup layers of diamond2b-26], as demonstrated in Figure 1.5

H H H)

. . \ \

C—C L
H*+CH, =————————p H,+"CH, 7\ /\c—c/\ / \

(1) Radical generation

abstraction

(2) Hydrogen l

(3) Methyl

S N A ; )
C = (C C m—— C C = (C C = C
LY AN AWAN NSNS\

/\ /\ /\ /\

Figure 1.5Mechanism for growth of diamond by CVD. After radicals are generated, hydrogen

abstraction and methyl addition allow for the growth dfdsamond.
7



Inside a CVD reactor, the synthesis gas mixture is passed through arma-diamond
substrate seeded witlemond crystals (heteroepitaxial growtBY]|, or a preexisting diamond
film (homoepitaxial growth) 28]. Radicals are generaté¢droughthermal activation of the
synthesis gas mixturavhich may be achieved in different ways depending on the type of
reactor. A hot filament CVD (HFCVD) reactor creates a high temperature environment for
radical formatior27], whilst a microwave plasma CVD (MWCVD) reactor creates a plasma
abovethe substrate surface by microwave irradiat28j.[The latter method converts a higher
proportion (~30%) of the synthesis gas int’iradicals.Figure 1.6shows simplified diagrams

of these two reactors, which are those most commonly used for growth of diamond by CVD.

a b Waveguide )
I Tuning
CHa/ H, gas Microwave antenna
l generator
|
Quartz window
. CH,/ H, gas ——
Hot filament —4—> - <«—1— Plasma
[ESER) 1 Substiate,seeded 1, [ympuaT)
with diamond crystals

!

Figure 1.6 Schematic representati ofa, aHFCVD reactor andd, aMW CVD reactor.

The CVD synthesis gas is normally a mixture €% methane in hydrogen, though other
hydrocarbon gases may be usgd.[The addition of other gases such as ar@if hitrogen
[32-34] and oxygen 35-36] has been shown to improve either the growth rate or the overall
quality of the diamonds produced. However, a high content of hydrogaimastalways
required for the formation of the"Bihd"CHs radical species required for depositiofratlicals

are aso required for the termination of free dangling bonds in the growing diamond to

8



discourage the formation of sgraphitic carbon, and the etchingasfy sp carbon that does
form during growth. # thus stabilises the diamond surface, ensuring that it rematns sp
coordinated and encouraging growth of sprbon only.

Growth of diamond by CVD can be advantageous over HPHT synthesis. Due to the presence
of free radicals, moderate temperatures agdifstantly lower pressures can be used to form
diamond, in regions where graphite would normally be the energetically favourable allotrope
[26]. Most CVD syntheses use sabmospheric pressures, asgbstratdéemperatures in the
range of 10060400 K. Addtionally, being able to control the synthesis gas mixture offers an
opportunity to directly influence which impurities are doped into the diamond during its
growth.CVD has been used to grow a wide variety of diamonds, ranging from single crystal
[37] to polycrystalline diamond3§], and from high purity, electronigrade diamond39] to
guantumgrade diamond doped with specific defedtd.[CVD diamond can also be annealed,
either by HPHT or low pressure, high temperature (LPHT) treatment, to alteta&demypronic
properties and defect compositi&8].

CVD synthesis of diamond does have its shortcomings. In particular, the presence of
hydrogen in the synthesis gas mixture often results in the incorporation of hydrogen defects in
the diamonds41]. Additionally, though the presence of nitrogen does dramatically increase
the growth rate of CVD diamond, it also reduces its overall quahthigher growth rate also
encouraging the incorporation ofsgarbon during growthnd producing a brown colo[#2].
Whendiamond growths heteroepitaxialthe seed crystals grow into one anotipeoducing
polycrystalline diamond (PCynlesghe substrate lattice parameter matches that of diamond,
in which case oriented, regular diamond growth is possWigen grevth is homoepitaxial
single crystal (SC) diamond may be produckidweverthe initial growth matteion the
substrate edges irregular and polycrystalline and may have to beawgty from the deposited

matter Forthe formation of higlpurity SCdiamond, long growth times are typically required.



1.3 Defects in diamond

During the formation and subsequent treatment of both natural and synthetic diamond, defects
becomancorporate into the lattice. All defects adassified as either intrinsia extrinsic.

Intrinsic defects occur due to errors in the diamond lattice itself. The simplest example of an
intrinsic defect is thevacancy, V, shown in Figure Ja7which results from the complete
absence of a carbon atom from the latt4d,[leaving ts four nearest neighbour atoms with
dangling bonds. Vacancies can exist in different charge states, and in some cases aggregate
together, forming vacancy cluste]. Another way of altering the diamond lattice structure
is by the presence of intersdikisites, where a carbon atom sits outside its normal arrangement.
The simplest observed example is the gpterstitial [45], shown in Figure 15. Like
vacancies, interstitials may also aggregate to form more complex ddf@ctslpre complex
intrinsic defects observed in diamond are dislocatidi g which are caused by a slip in one
plane of the diamond lattice, and plateldt8][which are extended planar defects that are thin

and flat in their appearance.

Figure 1.7 A unit cell of the diamonthttice showinga, the vacancy, the splitinterstitial.

10



Extrinsic defects appear due to the presence of impurity atoms in diamond. In natural
diamond, impurities are omnipresent and can vary from single point defects to larger mineral
inclusions ,49. In the production of synthetic diamond, it is possible to heavily control and
limit the presence of defects(]. Impurities can also be deliberately introduced by doping the
synthesis mixture §1-52]. Defects may also be produced in synthetic diamonddomst
processing of the diamond through electron irradiatk8), lon implantation[54] or laser
writing [55]. Furthermore, high temperature annealing of diamond may be used to induce the
formation of more complex defect site&3{24].

The most commompurities in diamond are boron and nitrogen. Due to their similar size to
carbon, they can directly replace an atom in the lattice structure, creating substitutional boron,
(Bs) [56], or nitrogen, (N) [57]. More complex defects may form through interawctiof
multiple defect centres. For example, the migration of a nitrogen atom to a vacancy site in
diamond generates a nitrogeacancy (NV) centre58]. Impurity atoms that are too large to
directly replace a carbon atom usually exist alongside a vacsundy,as the silicemacancy
centre (SiV) 9.

The presence of defects significantly alters the optoelectronic properties of diamond, which
is most clearly displayed in the diamond colour that manifests when thersigaificant
population of a specifidefect centreg0-61]. Defects produce optical absorption of visible
light and thus manifest a colour from reflectadible light. Figure 1.8demonstratesome
common defects in diamond and their associated colours in diamonds where they are the
dominantdefect. Another example of the change induced by defects istipe electrical
conductivity exhibited by boredoped diamond, which acts as a charge accepéhr |

For the work in this thesis, the most important impurities to consider are those aslsociat

with nitrogen and hydrogen, which are elaborated upon in Sections 1.3.1 and 1.3.2.

11



Figure 1.8 Schematic showing the effect of the presenceooimonpoint defectfound in
diamond on the overall diamomblour. The operation (s) refers to a substitutica direct
replacement of a carbon atom with that of another element or a vacancy site, denoted V. The

operation (m) refers to a migration, where two{garbon sitesire grown in together.

13.1 Nitrogen in diamond

Nitrogen is a ubiquitous impurity in both synthetic and natural diarf@2jdwith most (~98%)
natural diamonds typically containing @000 ppm nitrogenin synthetic diamondthe
concentration of nitrogen can be controlkedwithin less than 1 ppb in the highest purity
material[50]. The classification of diamond into its different types is predominantly dependent
on their concentration of nitrogen, and the form in which it manifé8t64]. Diamonds that
contain nitrogen are labetl as type I, while those that do not contain nitrogenadeled as

type Il. Figure 1.9letails how the different diamond types are classified.

12



Diamond Type laB
classification (N,V)

Are N,V

Is nitrogen T
e laAB
Is boron oresent? defect YpP

(>1ppm)

Type lla

present?

complexes (N2 and N4V)

dominant?

Are single Are N,
N centres pairs
dominant? dominant?

Type Ib Type laA
(N) (N;)

Figure 1.9 Flowchart classifying diamond by its different types. Type | diamond contains a

significant coentration of nitrogen, whereas Type Il diamond contains negligitstegen.

The simplest nitrogen defect is the single substitutional nitrogen cerjreskdivn in Figure
1.10a, which is the dominant impurityp type Ib diamond. Here, a nitrogen atom directly
replaces a carbon atom in the latti&&][ This centre, commonly produced through HPHT
synthesis methods, manifests ayellow colour in diamond. Unlike boretoped diamond,
doping with nitrogen does himduce electrical conductivity, as its donor levels are too deep to
facilitate ntype conductivity 5. The migration of point defects, which occurs during
diamond growth and annealing, produces more complex defect centres. The metidied
of the® is the NV centre, Figure 1.1 where a nitrogen atom and a vacancy sit next to each
other B8]. Due to its optical and spin properties, the negatieblgrged nitrogetwwacancy
centre (NV) has been shown to have great potential in the fieldguahtim computing,

simulation and sensir&8,66-67].
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In natural diamond, where synthesis takes place over a considerably long time, nitrogen tends
to aggregate and form more complex defect centres. The most common of these are the A
nitrogen centre (BY) [68], Figure 1.1@, where two nitrogen atoms exist in a pair, and the B
nitrogen centre (W°) [69], Figure 1.1@, where four nitrogen atoms surround a vacancy.
Diamonds containing a high concentration of these defects are known as type laA and type laB
diamonda, respectively. Diamond containing a high concentration $fclin be subject to

HPHT annealing to producefy and, subsequently,.M° [68-69].

Figure 1.10Common nitrogeftontaining defect centres as they appear inside a unit cell of the
diamond latticea, The substitutional nitrogen @N centre;b, The nitrogeavacancy (NV)

centre;c, The A-nitrogen centre (BY), d, The B-nitrogen centre (BW°).
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