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Landau polaritons in highly nonparabolic two-dimensional gases in the ultrastrong coupling regime
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We probe ultrastrong light-matter coupling between metallic terahertz metasurfaces and Landau-level transi-
tions in high-mobility two-dimensional electron and hole gases. We utilize heavy-hole cyclotron resonances in
strained Ge and electron cyclotron resonances in InSb quantum wells, both within highly nonparabolic bands,
and compare our results to well-known parabolic AlGaAs/GaAs quantum well systems. Tuning the coupling
strength of the system by two methods, lithographically and by optical pumping, we observe a behavior clearly
deviating from the standard Hopfield model previously verified in cavity quantum electrodynamics: an opening
of a lower polaritonic gap.
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I. INTRODUCTION

Light-matter interaction phenomena are the driving force
of quantum optics and have been investigated in platforms
ranging from atoms [1] to solid-state systems [2]. The creation
of quasiparticles called cavity polaritons in solid-state-based
systems enables strong, nonlinear, photon-photon interac-
tions. This allowed the observation of Bose-Einstein con-
densation in solids [3], superfluidity, quantized vortices, and
dark solitons, forming the fascinating field of quantum fluids
of light [4]. A cavity polariton exists when the light-matter
coupling strength is larger than the dephasing rates of the
individual components, which are then in strong coupling with
reversible energy exchange between light and matter. The vac-
uum Rabi frequency �R quantifies this coupling strength, and
by tuning the magnitude of �R, different physical regimes can
be explored. An increase of the interaction strength towards
the transition frequency ωi j leads to the so-called ultrastrong-
coupling regime [5–7]. Usually negligible terms, such as the
polarization self-interaction and counterrotating terms, then
have to be included in the Hamiltonian representing the sys-
tem. This impacts the physics of the resulting quasiparticles:
the ground state of an ultrastrongly coupled system contains
virtual photons [5,8], with a number proportional to the nor-
malized light-matter coupling ratio �R/ωi j [9].

One way to enhance �R and thus drive the system into
the ultrastrong-coupling regime is to exploit the collective
enhancement due to the simultaneous coupling of N material
excitations to the same cavity mode, yielding an increased
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Rabi frequency
√

N �R. The collective radiative coupling of
material excitations in a reduced volume (V < λ3) is also the
basis of the phenomenon of Dicke superradiance and of the
superradiant phase transition [10–12]. Dicke superradiance
has been observed in atomic systems [13], and more recently,
the superradiant phase transition has been realized in a driven-
dissipative system of cold atoms [14]. Such phenomena have
attracted great attention lately also in the solid-state commu-
nity, with the observation of superradiant-related physics in
different experimental platforms [15], for example, semicon-
ductor quantum dots [16] and quantum wells [17].

In cavity quantum electrodynamics (QED) within the dipo-
lar approximation, in solid-state systems, and in semicon-
ductor intersubband systems such a phase transition is pre-
vented by the so-called no-go theorem [18–20]. The term
containing the squared vector potential (A2 term, also called
the diamagnetic term) in the minimal-coupling Hamiltonian
shifts the energy dispersion towards higher energies, such that
the lower branch can never become gapless and, accordingly,
can never reach the ground state and exhibit the critical
point associated with the Dicke quantum phase transition
[21]. Recently, ultrastrong coupling was obtained with the so-
called Landau polaritons [22], where the cyclotron transition
of a semiconductor-based system is optically coupled to a
cavity in the terahertz (THz) range. Using metamaterial-based
resonators [22,23] or Fabry-Pérot cavities [24], it has been
possible to explicitly distinguish the A2 term from the vacuum
Bloch-Siegert shift related to the counterrotating terms of the
interaction. Suggestions to circumvent the no-go theorem in
cavity QED include the use of multilevel atomic systems [25]
and considering systems with a linear dispersion relation,
like graphene, although this question is still under debate
[26,27]. Other works showed that also by including Coulomb
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dipole-dipole interaction [28–30] one could possibly restore
a Dicke-like model. Other investigations by De Bernardis
et al. [31] deal with the breakdown of the gauge invariance,
which is also the subject of other recent investigations [32,33].
Very recently, Nataf et al. [34] included the Rashba spin-orbit
interaction under a static magnetic field and found a magneto-
static instability which opens a promising way towards Dicke
superradiant phases.

Depending on the shape of the confining potential of an
intersubband transition, an additional higher-order resonance
which reduces the oscillator strength of the main mode could
lead to renormalized energies in the dipolar gauge (in contrast
to the Coulomb gauge) but not to a Dicke phase transition
[31].

In experiments on Landau polaritons with two-dimensional
electron gases (2DEGs) in AlGaAs/GaAs quantum wells
(QWs), which exhibit parabolic in-plane band dispersion,
a coupling ratio beyond unity [35] has been achieved, and
very good agreement of the polaritonic dispersion with the
Hopfield-like Hamiltonian [8] including all counterrotating
and diamagnetic terms has been verified [22,23,35–40]. It
has to be noted that the model developed in Ref. [8] that
was adopted in the previously cited papers and in this work
was originally developed for Fabry-Pérot resonators. Here,
striving to engineer ultrastrong coupling deviating from a
standard Hopfield model in a purely ground state system, we
utilize two QW systems with a nonparabolic 2DEG or two-
dimensional hole gas (2DHG): a strained germanium quantum
well (s-Ge QW) with an occupied nonparabolic heavy-hole
band and indium antimonide quantum wells (InSb QWs) with
extremely light mass electrons. We couple the 2DHG/2DEG
Landau-level transitions (ωi j = ωcyc) to a THz metamaterial
resonator with subwavelength electric field confinement. In
the present work with s-Ge and InSb QWs, we systematically
scale our cavity frequency fLC = ωLC/2π lithographically
to control the coupling rate and observe an opening of a
polaritonic gap below the cold cavity frequency. The energy
of the lower polariton branch no longer reaches the cold
cavity frequency at large detunings (high magnetic fields)
as in the Hopfield model [8]. A similar effect is observed
when optically pumping an intentionally undoped s-Ge QW,
creating more carriers in the QW. We modify the standard
Hopfield Hamiltonian, including an effective reduction of
the diamagnetic terms to capture the purely experimentally
observed change, obtaining very good agreement with our
experimental polariton branches.

II. NONPARABOLIC QUANTUM WELLS

The matter part of our coupled system, the inter-Landau-
level transition, is tunable in energy by an external static mag-
netic field as the cyclotron resonance scales as ωcyc = eB/m∗.
The cyclotron resonance is directly accessible in transmission
THz time domain spectroscopy (TDS) (as shown in Figs. 1(c)
and 1(d), we use a photoconductive switch [42] as a THz
source illuminated by a Ti:sapphire oscillator), and the ef-
fective mass of the carriers can be deduced by a linear fit
to the measured resonance. In contrast to the standard and
well-known AlGaAs/GaAs QW, the s-Ge QW and InSb QWs
exhibit additional and more complex properties, which are
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FIG. 1. Calculated in-plane band structure of (a) the heavy hole
(HH) and light hole (LH) band of the s-Ge QW and (b) the con-
duction band of an InSb QW [double side doped (DSD)]. The gray
shaded area indicates the chemical potential μF /Fermi energy EF of
each sample. The measured cyclotron resonance transmission spectra
are displayed as a function of magnetic field for the (c) s-Ge QW
(from Ref. [41], expressed in units of ellipticity η) and (d) InSb QW.

appealing for conducting ultrastrong coupling experiments,
which we compare then to the standard AlGaAs/GaAs QW.
The s-Ge and InSb QWs show, e.g., heavy nonparabolicity,
strain, and spin-orbit interaction [41,43–46], with a heav-
ier and lighter cyclotron effective mass than the standard
AlGaAs/GaAs quantum wells, for which the cyclotron mass,
due to the electron confinement, is found to be m∗

GaAs =
0.071me [23].

The s-Ge QW has a thickness L = 20 nm, heavy-hole (HH)
density of 1.3 × 1012 cm−2, effective mass m∗

HH = 0.118me, a
g factor of 5.0, and a mobility of 1.5 × 106 cm2V−1s−1 [41]. In
this system the 1.3% biaxial compressive strain, provided by
the Si0.3Ge0.7 barriers, lifts the degeneracy of the heavy-hole
and light-hole bands at the � point. The band structure of
this structure was calculated using the 6 × 6 k · p method
following Ref. [47], including the heavy-hole, light-hole, and
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split-off bands and a wave vector kz = π/L to include the
influence of quantum confinement. As shown in Fig. 1(a), the
heavy-hole band is strongly nonparabolic due to the applied
strain. The effective mass at the � point is m∗

HH = 0.0675 me,
as obtained from a parabolic fit at low wave vectors (green
line). The gray shaded area indicates the range of the oscil-
latory chemical potential μF , which lies clearly in the region
that is no longer within the parabolic approximation. Note that
within this range the in-plane dispersion remains essentially
isotropic.

The InSb QWs have a strongly nonparabolic conduction
band with a very small band gap (≈180 meV [48]), featuring
a very light effective mass electron which we determined by
cyclotron resonance measurements to be m∗

e = 0.0248me for a
double-side-doped (DSD) quantum well and m∗

e = 0.0243me

for a single-side-doped (SSD) QW. The effective mass of the
InSb DSD QW at the � point is m∗

e = 0.020me, as obtained
from a parabolic fit at low wave vectors [Fig. 1(b), green line].
The DSD QW has a thickness of L = 23 nm and an electron
density of 4.9 × 1011 cm−2 with a mobility of 3.49 × 105 cm2

V−1 s−1, and the SSD QW has a thickness of L = 21 nm and
an electron density of 3.65 × 1011 cm−2 with a mobility of
2.03 × 105 cm2 V−1 s−1. Details on the growth of such QWs
are published in Ref. [45].

III. LITHOGRAPHIC TUNING

For the cavity we chose complementary split-ring res-
onators (cSRRs), which can be described by a lumped-
element electric circuit model with a characteristic LC reso-
nance where the vacuum electric field fluctuations are greatly
enhanced due to the strongly subwavelength cavity volume
[22,37]. We design a cavity with an LC resonance fLC =
ωLC/2π and then scale the geometry of the resonator by a
linear factor a (from a = 0.5 to a = 2.3/2.4 on all QWs) with
constant metal thickness (4 nm of Ti and 200 nm of Au). The
lithographic tuning was experimentally verified and measured
on a bare Si substrate and on GaAs in our previous work [38],
revealing a linear frequency scaling with the inverse of the
geometrical scaling factor fLC ∝ a−1, as shown in Fig. 2(a),
with an optical micrograph of one cavity of the full array with
scaling a = 2 shown in Fig. 2(b).

As the frequency of the cavity depends on the dielectric
environment in close vicinity, the cold cavity frequencies,
i.e., the frequencies without free-carrier contributions, for
the s-Ge and InSb QW samples were further determined
by depositing three cavity arrays chosen from across the
frequency range of f ≈ 200 GHz to f ≈ 900 GHz (different
scalings) on buffer layer structures. The buffer layers have the
same growth structure as the QW sample and thus the same
refractive index but do not contain a QW. From a linear fit
to the measured cavity frequencies [Fig. 2(c), bright green
squares] on the reference structures the expected bare cavity
frequencies for all arrays of cSRR deposited on the QWs are
deduced [see Fig. 2(c), dark green rectangles]. Additionally,
the lithographic accuracy (electron beam lithography for s-Ge
QW and photolithography for InSb and GaAs QWs) is verified
using scanning electron microscopy, and the frequencies of
the expected cold cavity are corrected accordingly (this cor-
rection remained very small, <2%).
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FIG. 2. (a) Scaling of the cavity frequency on a Si substrate.
Bright green squares show the measured frequencies with a linear
fit (black line). (b) The cSRR is displayed for scaling a = 2. (c) The
scaling on a 3-μm layer of SiGe on Si is displayed with the measured
frequencies shown by bright green squares, from which, with a
linear fit (black line), the used frequencies (dark green squares) are
deduced.

Probing the coupled samples with THz time domain spec-
troscopy (see the Supplemental Material (SM) for details [49])
in transmission, we measure the polariton dispersion of each
frequency and resonator array on the s-Ge, InSb, and GaAs
QWs at a temperature of 3 K.

One example of such a measurement of a s-Ge QW at high
filling factors, thus at low frequencies, is shown in Fig. 3. The
bare cavity frequency for the shown scaling factor a = 2 is at
fLC = 208 GHz (solid cyan line), which lies between the fre-
quencies of the polariton branches at high and low magnetic
fields, with fLP = 165 GHz [lower polariton (LP)] and fUP =
292 GHz [upper polariton (UP)], respectively. This is a very
striking and peculiar feature, as in the standard Hopfield-like
Hamiltonian [5,8] used to describe the ultrastrong coupling,
one asymptotically recovers the cold cavity frequency at high
magnetic fields.

IV. TUNING BY OPTICAL PUMPING

In addition to the lithographic tuning, it is an attractive
option to use an optical pump to manipulate in situ the
polariton state. It has been shown that organic molecules
can be photochemically changed reversibly by UV and VIS
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FIG. 3. THz transmission of a resonator at fLC = ωLC/

2π = 208 GHz as a function of magnetic field. White areas indi-
cate high transmission and the polariton branches. The cold cavity
frequency fLC = ωLC/2π is shown by the solid cyan lines, and the
solid magenta lines show the cyclotron frequency fcyc = ωcyc/2π .
Polariton dispersion fits are shown with the Hopfield model (dashed
blue lines) and with a fitted reduced prefactor d (solid green lines).

radiation to switch from the weak- to ultrastrong-coupling
regime [50]. Recently, exploiting the alignment of the light
polarization with respect to carbon nanotubes enabled such
continuous tuning from weak and ultrastrong coupling [51].
Günter et al. [52] were able to show an ultrafast switch on
of ultrastrong coupling by optically exciting carriers in a QW
to enable the intersubband transition. For the current study,
we use an optical pump to change the carrier concentration
in a s-Ge QW. As a pump we used part of our Ti:sapphire
beam at 800 nm with an optical fluence of approximately
7 μJ/cm2 (the beam area onto the sample was ∼3 mm2.)
No time-delay-dependent carrier density can be observed (see
the Supplemental Material [49]), suggesting a lifetime much
longer than the time lapse between the laser pulses at our laser
repetition rate of 80 MHz. As a result, no special care had to
be taken to adjust the delay between the optical pump and THz
probe pulses: our optical pumping is, in fact, a way to change
“statically” the carrier density of the sample employing the
same cavity.

Working with a s-Ge QW which has the same growth
structure as the s-Ge layer used for the lithographic tuning but
no intentional doping, we still observe a cyclotron resonance
from the residual carriers in the QW with a mass of m∗ =
0.076m0. Working in a nonparabolic QW such as s-Ge, the
cyclotron mass is carrier density dependent; thus, optically
pumping the QW leads to an increase of the cyclotron mass
to m∗ = 0.08m0 (see the Supplemental Material for details).
The employed cavity is the same as scaling a = 1 from the
lithographic tuning study with a frequency of f = 415 THz.
THz transmission spectra as function of magnetic field are
taken without an additional optical pump in Fig. 4(a) and
with optical pump in Fig. 4(b). The coupling strength in-
creases from �/ω = 0.17 without pumping to �/ω = 0.25
with an additional optical pump. One would predict that in
the Hopfield model, the increased coupling strength leads
to an increased upper polariton branch frequency, leading to
a larger upper polariton gap, while, being far detuned, the
lower polariton branch still reaches the unchanged cavity
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FIG. 4. THz transmission spectra of the s-Ge QW with a cavity
frequency of f = 415 GHz are displayed. (a) Without additional
optical pump and (b) with optically pumping the system. (c) The
extracted intensity maxima of the polariton branches from the spectra
in (a) and (b) are shown together for comparison.

frequency. In Fig. 4(c), where the maxima of the polariton
branches with and without optical pumping are extracted and
plotted together, it is clearly visible that the lower polariton
branch does not reach the far-detuned cold cavity frequency,
thus opening a lower polariton gap, as also observed in the
measurements that use lithographically tuning.

V. ANALYSIS AND DISCUSSION

The deviation of the lower polariton frequency fLP at high
magnetic fields from the cold cavity frequency fLC is extracted
for all lithographically tuned cavities on GaAs, s-Ge. and InSb
QWs and displayed in Fig. 5(a) as a function of the inverse
scaling factor a. In the case of the GaAs QW [Fig. 5(a),
dark blue circles], we verify again that the deviation for all
frequencies ( f ≈ 200–900 GHz) is less than 5% (and less
than 15 GHz in absolute terms). For the s-Ge and InSb QWs,
instead, we observe an increasing deviation with increasing
coupling strength, up to 20% for the s-Ge QW [Fig. 5(a), red

075301-4



LANDAU POLARITONS IN HIGHLY NONPARABOLIC … PHYSICAL REVIEW B 101, 075301 (2020)

0 0.2 0.4 0.6 0.8
Normalized coupling R/ cyc

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 p
ol

ar
ito

n 
fre

qu
en

cy

LP
/U

P
/

LC

AlGaAs/GaAs QW

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2
GaAs QW
s-Ge QW
relaxed s-Ge QW
InSb QW, SSD
InSb QW, DSD

(f
LC

-f
LP

)/f
LC

1/scaling factor a

5%

Increasing coupling strength(a)

(b)

FIG. 5. (a) The deviation of the lower polariton frequency fLP

to the cold cavity frequency fLC is displayed for a GaAs QW (dark
blue circles), a s-Ge QW (red squares), and InSb QWs [orange
(single-side-doped QW) and yellow (double-side-doped QW) stars]
as a function of the geometrical scaling, where the coupling strength
increases towards the left. (b) Normalized polariton frequencies
ωLP/UP/ωLC at the position of minimal splitting versus the normal-
ized coupling strength �R/ωcyc. The theoretical Hopfield model is
displayed by blue solid lines. Experimental data points for parabolic
2D electrons in GaAs QWs fit the Hopfield model (dark blue circles
[23,38]). Experimental data points for the nonparabolic 2D heavy
holes in a s-Ge QW are displayed by red squares (series 1) and
diamonds (series 2). The bright green triangles are for a partially
relaxed s-Ge QW of sample series 2.

squares, 43-GHz absolute deviation] and 10% for the InSb
QWs [Fig. 5(a), yellow and orange stars]. Interestingly, one
cavity array ( fLC = 160 GHz) of the s-Ge QWs [Fig. 5(a),
bright green triangle], which shows a characteristic crosshatch
pattern of strain relaxation (see the SM [49]), has a polariton
frequency of the lower branch very close to the cold cavity
frequency again, with a deviation of less than 5% like for the
GaAs QW.

The Hopfield-like Hamiltonian can be written as the sum of
different contributions [8]: H = Hmat + Hint + Hdia + Hcavity,
with the material excitation Hmat, the bare cavity electromag-

netic field Hcavity, the interaction term Hint, and the diamag-
netic term Hdia arising from the self-interaction of the light,
including all counterrotating terms. The diamagnetic term
is [5,8] Hdia = h̄

∑
k [Dk (a†

kak + aka†
k ) + Dk (aka−k + a†

ka†
−k )]

and leads to a renormalization of the polariton energies. The
value D of the diamagnetic terms is, in the case of parabolic
dispersion, approximated as Dk = D ≈ �2

R/ωcyc [8] by eval-
uating the Thomas-Reiche-Kuhn sum rule (also known as the
f -sum rule) [5].

To capture the observed different renormalizations of the
polariton energies, we introduce here a parameter d which
we use to reduce effectively the strength of the diamagnetic
term D = d �2

R/ωcyc. In the effective model, a polaritonic gap
opening with respect to the bare cavity frequency for both po-
lariton branches is predicted (see details in the SM [49]), just
as observed in Fig. 3. We fit the measured polariton branches
to extract the normalized coupling ratio �R/ωcyc following the
procedure described in Ref. [22] but implement the modified
Hopfield model with the prefactor d as an additional fitting
parameter for the effective diamagnetic term D = d �2

R/ωcyc.
The fit (solid green line) is in very good agreement with the
measured polariton branch dispersion, yielding a prefactor
d = 0.7 (normalized rms deviation below ≈3%) for the shown
cavity frequency. The normalized coupling rate is as large as
�R/ωcyc = 0.57. If, instead, one keeps the prefactor at d = 1
for the standard parabolic Hopfield model, the fit (dashed blue
line) does not describe the measured data very accurately (the
normalized rms deviation rises to above 15%).

One efficient way to plot [19] the polariton dispersion is
to show the normalized polariton frequencies as a function
of normalized coupling strength, as in Fig. 5(b). Thus, for
each anticrossing, which we measure as transmission spectra
as a function of magnetic field, we extract the upper and
lower polariton frequencies ωLP/UP at the point of the minimal
splitting of the two branches (vacuum Rabi frequency) and
normalize to the cold cavity frequency ωLC (the exact step-by-
step procedure can be found in the SM [49]). In the Hopfield
model, the point of minimal splitting corresponds strictly to
the resonant condition ωLC = ωcyc, whereas in an effective
model with d < 1, this point of minimally split branches
shift towards lower magnetic fields (like for a pure Dicke
model with D ≡ 0; see the SM [49]). The solid blue lines
in Fig. 5(b) correspond to the calculated standard Hopfield
model, which agrees well with our previous experiments on
AlGaAs/GaAs QWs [22,23,36–38]. Solid dark blue circles
show our data from Refs. [23,38], which nicely agree with
the Hopfield model. For the scaling study on s-Ge QWs
[Fig. 5(b), red squares and diamonds] instead, we observe a
clear deviation of our measured polariton frequencies from
the calculated Hopfield dispersion. The upper and the lower
polariton frequencies are at lower frequencies than expected
by the Hopfield model at high normalized couplings �R/ωcyc.
The prefactor d and the Rabi frequency serve as fitting param-
eters, and it is especially notable that the obtained value for d
is dependent on the coupling strength and does not represent
a constant value in our fitting result (see also data tables in the
SM [49]). The deviation from the Hopfield model increases
with increasing coupling strength, which we achieve by scal-
ing the cavity frequency to lower values, and thus corresponds
to an anticrossing at lower magnetic fields. The measurement
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with the largest deviation shown is the same as in Fig. 3, as
described before with d = 0.7 for �R/ωcyc = 0.57. Further
measurements with even lower cavity frequencies result in
only the observation of the upper branch, as the lower po-
lariton branch is lower than the experimentally observable
frequency region (THz-TDS bandwidth >0.1 THz). In the
Supplemental Material, for these measurements where only
the upper branch is measured experimentally, we also include
in the same plot the frequency of the lower polariton branch
that we extrapolated by assuming that the normalized light-
matter coupling strength scales linearly with the size of the
resonator [49].

Additionally, in Fig. 5(b) we also include a measurement
at fLC = 160 GHz with a partially relaxed s-Ge QW sample
[as in Fig. 5(a)], where the semiconductor material shows
a crosshatch pattern, characteristic of strain relaxation (see
the SM [49]). The best fit of the polariton branches yields a
prefactor d = 0.95, with the normalized polariton frequencies
(Fig. 5, green triangles) close to the Hopfield model again.
This result suggests that the strain plays a critical role in the
observed renormalization of the polariton energies.

In conclusion, we reported a solid-state system in the
ultrastrong-coupling regime that exhibits a mode softening
of the polariton branches compared to the standard Hopfield
model, where the lower polariton never reaches the ground
state, regardless of how high the normalized coupling rate
is. We found again that the Hopfield model [8] fits our
data within the experimental errors for the GaAs/AlGaAs
2DEGs. In contrast, in the s-Ge QW and InSb QW systems
the polariton branches are indeed experimentally observed at
lower frequencies. We captured this change with an effective
model including a reduced diamagnetic term, which at high
filling factor is about 30% less than in the Hopfield model.
Key features of our system, which might lead to a theoretical
model to predict this observed change, include the strain in the
systems, nonparabolic band dispersions, and (Rashba) [34]
spin-orbit coupling effects [41,43–46]. Which physical effect

leads to the observed deviation from the Hopfield and whether
this could lead to a Dicke quantum phase transition remains
an open question and needs to be investigated in the future.
However, with our results we clearly enter an uncharted
regime of the ultrastrong coupling with a purely ground state,
solid-state system that does not fall within the validity of the
Hopfield model. Furthermore, a contributing effect of the very
tight electric field confinement in the metamaterial resonator
cannot be ruled out, as most theoretical models [8] still con-
sider Fabry-Pérot-type cavities with optical confinement over
a wavelength of light. The strong electric field gradients that
occur at deep subwavelength dimensions in our metamaterials
will enhance, through Maxwell’s equation, the vector poten-
tial and therefore magnetic coupling to the system. Exploring
the nature of the ground state and its excitations in this
parameter region would be highly relevant and could answer
fundamental questions concerning the possibility of a Dicke
superradiant transition outside of driven systems [14]. Exper-
imentally, this study would benefit from further increasing
the light-matter coupling strength by, for example, increasing
the number of quantum wells or the hole density or further
downscaling of the resonator frequencies. Investigating other
complex solid-state material systems might also be able to
help us to disentangle the possible causes and shed light on
the origins of the observed opening of a lower polariton gap
and its implications.
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