

CENTRAL EXCLUSIVE PRODUCTION

Daniel Johnson

LHCb THCp

Warwick EPP seminar, 21st January 2016

Consider the gluon PDF, g(x)

3

WHAT DOES CEP LOOK LIKE?

CERN

To a theorist:

WHAT DOES CEP LOOK LIKE?

CERN

To a theorist:

To an LHCb experimentalist?

LHCB: A DETECTOR FOR CPL

Tracking for CEP

- Silicon detector around pp interaction point
- ► Four downstream tracking stations:
 - ► silicon microstrips: TT + centre T1-3
 - ► straw tube drift chambers: outer T1-3

 $-4 -2 0 2 4 \rightarrow \eta = -log(tan(\theta/2))$

sensors
 sensors

LHCB: A DETECTOR FOR CPL

Calorimetry

Scintillating pad detector (charged multiplicity)
 N_{hits}: 1 of the 3 L0 trigger quantities!

► ECAL and HCAL

SPD: Event multiplicity limit

ECAL: Threshold for electron/photon CEP

HCAL: Threshold for hadron CEP

LHCB: A DETECTOR FOR Cタ

Distinguishing hadrons

Two cherenkov detectors, before and after magnet

- ► 1) C_4F_{10} : track momentum 10→65 GeV/c
- ► 2) CF_4 : track momentum 15→100 GeV/c
- ► Better discrimination in 'empty' CEP events

RICH: Principles

LHCB: A DETECTOR FOR CP

Trigger

- ► LO: SPD hits < 10; PU hits < 3; min e/h/µ activity
 - Orthogonal to the rest of LHCb programme
- ► HLT1: Pass-through
- ► HLT2: Tracking (p_T>300 MeV/c) & dedicated selections

Luminosity

- ► Average number of interactions per crossing ~ 1.5
- 'Empty detector' requirements reject events with >1 int.
- *"Luminosity levelling":*

WHAT DOES CEP LOOK LIKE?

CERN

To a theorist:

To an LHCb experimentalist:

We infer **pomeron** exchange by searching for events with **large rapidity gaps**

WHAT DOES CEP LOOK LIKE?

CERN

To a theorist:

To an LHCb experimentalist:

We infer **pomeron** exchange by searching for events with **large rapidity gaps**

but we have tunnel vision...

CEP PROCESSES AT LHC

Interactions of the form $pp \rightarrow p[exclusive]p$

QED background: 2y exchange

QED process with small proton form-factor corrections

Pomeron exchange:

- Photoproduction: Photon-pomeron fusion
 - Probe g(x) at small Bjorken x
 - ► More perturbative at higher [exclusive] mass
- Double pomeron exchange: Pomeron-pomeron fusion
 - ► [exclusive] preferred be neutral $J^{PC} = O^{++}$; no net flavour: $f_{0,2}$, $x_{c,b}$, $\gamma\gamma$, JJ, H ¹²

1] EXCLUSIVE J/\Psi AND \Psi(2S) PRODUCTION JPG 41 055002

High energy charged particles as a source of Weizsacker-Williams photons

study photon-hadron interactions at unprecedented energies w.r.t. HERA

one proton interacting strongly; one by photon exchange

Assume factorisation of the soft and hard strong interactions

- > Need probability for elastic p-p rescattering : mod. indep. using LHC measurements
 - ► smaller impact parameter \Rightarrow reduced survival probability
- ► Ignore saturation effects (low saturation scale)
- > Ambiguous source of photons!

Differential cross-section (J/ ψ rapidity) probes photoproduction scale, W

1] EXCLUSIVE J/ Ψ AND Ψ (2S) PRODUCTION JPG 41 055002

Selection: J/ψ or $\psi(2S) \rightarrow \mu^+ \mu^-$ in 930 pb⁻¹ p-p 7 TeV data

► Hardware trigger:

- Single muon $p_T > 400 \text{ MeV/c}$
- ► Number of SPD hits < 10
- ► Software trigger:
 - ► Both muons $p_T > 400 \text{ MeV/c}$

► Offline:

- ► Two identified muons in $2 < \eta < 4.5$
- > No photons or other forward tracks
- ► No backward tracks
- ► $65 MeV/c^2$ mass window for J/ψ or $\psi(2S)$

1] EXCLUSIVE J/\Psi AND \Psi(2S) PRODUCTION JPG 41 055002

`Empty-detector' signal

Fit invariant mass: isolate QED background

- ► Signal: Crystal ball: 56,000 J/ψ; 1,600 ψ(2S)
- > QED background: Exponential: 1% J/ψ; 17% ψ(2S)

1] EXCLUSIVE J/ Ψ AND Ψ (2S) PRODUCTION JPG 41 055002

A number of peaking backgrounds remain:

- ► 'Feed-down' decays: contamination can be estimated
 - ► $\psi(2S) \rightarrow J/\psi \pi \pi$: 2.5 ± 0.2%
 - ► $x_c \rightarrow J/\psi\gamma$: 7.6 ± 0.9%
 - ► $X(3872) \rightarrow \psi(2S)\gamma: 2.0 \pm 2.0\%$
- ► Inelastic CEP background

> These backgrounds tend to produce J/ψ or $\psi(2S)$ with harder p_T than signal

1] EXCLUSIVE J/ Ψ AND Ψ (2S) PRODUCTION JPG 41 055002

Determining exclusive contribution

> Fit the p_T^2 distribution of the exclusive candidates

- ► Feed-down background: Yield and shape determined using data
- Inelastic background: Yield and shape vary
 - ► J/ψ slope 0.97 ± 0.04 and $\psi(2S)$ slope 0.8 ± 0.2, consistent with HERA
- Exclusive signal: Yield and shape vary
 - Signal slope 5.7 ± 0.1 and 5.1 ± 0.7 , consistent with HERA data via Regge theory extrapolation
 - Signal purity: $59 \pm 1\%$ (J/ ψ) and $52 \pm 7\%$ (ψ (2S))
- > Largest systematic uncertainties arise through the description of the p_T^2 fit

1] EXCLUSIVE J/ Ψ AND Ψ (2S) PRODUCTION JPG 41 055002

Interpretation

- L0 and NLO extrapolations from HERA data have been performed
- > J/ψ (left) and $\psi(2S)$ (right) data superimposed: good agreement at NLO

1] EXCLUSIVE J/ Ψ and Ψ (2S) production

Implications for the gluon PDF, g(x)

- ► Sensitive in region $x \sim 10^{-6}$
- Not used in general PDF fits yet
 - skewing effects treated using Shuvaev transform
 - \blacktriangleright \Rightarrow 'Sudakov factor' no extra gluon emission
 - \blacktriangleright Accurate to O(x)
- Cross-section depends on square of g(x)
- Sensitivity to g(x) at low x demonstrated:

JHEP 09 084

Motivation similar to J/ψ and $\psi(2S)$

- Occurs by photoproduction
- > Perturbatively calculable hard process; depends on $g(x)^2$ to $x=1.5 \times 10^{-5}$
- > Photoproduction predictions exist at LO and NLO, differ greatly at this W
- ► Compare different models for **Y** wave function and t-channel exchange
- > LHCb probes a new kinematic region $(W_{\pm} = \sqrt{(M_{\Upsilon}\sqrt{s} e^{\pm y})})$

► Data set: 2.9 fb^{-1} pp collisions at pp $\sqrt{s} = 7$, 8 TeV

JHEP 09 084

Selection very similar to that for J/ ψ analysis

- ► Two well-reconstructed muons with mass 9 20 GeV/c²
- > No other forward or backward charged tracks

► Candidate: 06:57, July 29th 2011. $m_{\Upsilon} = 9457 \text{ MeV/c}^2$ and $p_T^2 = 0.2 \text{ GeV}^2/c^2$ 21

JHEP 09 084

CERN

Two-stage fitting procedure:

- Invariant mass distribution: isolate continuum dimuon production
- > Determine background contamination from $\chi_b \rightarrow \Upsilon \gamma$ feed-down in data
- > p_T^2 distribution: inelastic b.g. has harder spectrum
 - \blacktriangleright Exclusive signal and χ_b background modelled using SuperChiC

Efficiencies

- ► Correct using simulated samples: trigger and reconstruction: ~80% efficient
- > Event-level requirements imply single-interaction events only: 20% of data

JHEP 09 084

Systematic uncertainties

- > Largest uncertainties due to description of χ_b background p_T^2 behaviour
- Subdominant contribution from description of exclusive signal

Results

- Compare rapidity distribution with predictions at LO and NLO
- Extract underlying photon-proton cross-section and compare to different models
- ► NLO predictions agree well; slight preference for BG Y w.f. model

3] DOUBLE CHARMONIUM PRODUCTION

JPG 41 115002

Motivation

- ► Proceeds by double-pomeron fusion. Born-level prediction ~2-7pb
- ► Test selection rule for CEP within 'Durham model' $J_z^{PC} = 0^{++}$
 - ► 1% suppression!

 $f_q(x_1,\cdots)$

> Shape of $J/\psi J/\psi$ mass distribution has lower theory uncertainty

3] DOUBLE CHARMONIUM PRODUCTION

JPG 41 115002

Selection:

- > 3 fb^{-1} pp collisions at 7 and 8 TeV
- Trigger identical to previous analyses
- ► No additional VELO tracks
- No additional photon activity
- ► Reconstruct $\chi_c \rightarrow J/\psi\gamma$

One t-channel gluon participates in hard interaction, other shields colour charge

D. Johnson, Warwick EPP seminar, 21st January 2016

3] DOUBLE CHARMONIUM PRODUCTION

JPG 41 115002

`Empty-detector' signal

- Cross-section calculated for a range of double-charmonium states
 Largest systematic uncertainty related to final state geometrical acceptance
 - $\begin{array}{ll} \sigma^{J/\psi\,J/\psi} &= 65 \pm 11 \ ({\rm stat})^{+6}_{-13}({\rm syst}) \, {\rm pb}, \\ \sigma^{J/\psi\,\psi(2S)} &= 72^{+30}_{-20}({\rm stat})^{+10}_{-16}({\rm syst}) \, {\rm pb}, \\ \sigma^{\psi(2S)\psi(2S)} &< 255 \, {\rm pb} \ {\rm at} \ 90\% \ {\rm c.l.}, \\ \sigma^{\chi_{c0}\chi_{c0}} &< 75 \, {\rm nb} \ {\rm at} \ 90\% \ {\rm c.l.}, \\ \sigma^{\chi_{c1}\chi_{c1}} &< 49 \, {\rm pb} \ {\rm at} \ 90\% \ {\rm c.l.}, \\ \sigma^{\chi_{c2}\chi_{c2}} &< 150 \, {\rm pb} \ {\rm at} \ 90\% \ {\rm c.l.}. \end{array}$

3] DOUBLE CHARMONIUM PRODUCTION

JPG 41 115002

Interpretation

- ► First evidence for double-charmonium CEP
- \blacktriangleright Estimate of exclusive component is 42 ±13%
- > Total cross-section and relative size of $J/\psi \psi(2S)$ signal agree with theory
 - errors are large and theory only Born-level
- ► Observed double charmonium mass spectrum agrees with prediction

We infer **pomeron** exchange by searching for events with **large rapidity gaps**

...but proton dissociation or gluon emission ^{Si} with activity outside LHCb contaminates our _{Do} samples

Run 1 solution: fit p_T^2 distribution e.g.

- ► Fit can be model dependent
- Large biases for small samples
- Background level depends on final state

We infer **pomeron** exchange by searching for events with large rapidity gaps

... but proton dissociation or gluon emission with activity outside LHCb contaminates our samples

Run 1 solution: fit p_T^2 distribution e.g.

- Fit can be model dependent (X)
- ► Large biases for small samples
- Background level depends on final state

We infer **pomeron** exchange by searching for events with **large rapidity gaps**

...but proton dissociation or gluon emission ^{Si} with activity outside LHCb contaminates our _{Do} samples

Run 1 solution: fit p_T^2 distribution e.g.

- ► Fit can be model dependent 🚺
- ► Large biases for small samples 🚺
- Background level depends on final state

We infer **pomeron** exchange by searching for events with **large rapidity gaps**

...but proton dissociation or gluon emission ^{Si} with activity outside LHCb contaminates our _{Do} samples

Run 1 solution: fit p_T^2 distribution e.g.

- ► Fit can be model dependent 🚺
- ► Large biases for small samples 🔀
- > Background level depends on final state 🔀

WHAT IS HERSCHEL (1/2)

Five sets of scintillators, in the tunnel either side of LHCb

Station F2 at z = 114.0 m

D. Johnson, Warwick EPP seminar, 21st January 2016

WHAT IS HERSCHEL (2/2)

Greatly increased rapidity coverage

HISTORY

BUILDING HERSCHEL

Manufacturing the scintillating counters

- ► Light-guides attached
- 2 LEDs per counter to aid calibration and to monitor ageing
- PMT calibration over range of HV and counter calibration using a cosmic stand

BUILDING HERSCHEL

CERN

Signal calibration

- Signal, after clipping, fits within 25ns
- ► Ample light yield: ~170 photo-electrons per MIP
- Read-out electronics changed to fix pedestal drift

BUILDING HERSCHEL

Tunnel installation

LHCb Integrated Luminosity at p-p 6.5 TeV in 2015

- Hardware fully installed and operational
- ► DAQ complete
- > In stable state for offline analysis! $L^{-1} \sim 300 \text{ pb}^{-1}$
- Work to integration in the Level-O trigger ongoing

34

CER

IMPACT IN RUN 2

A BRIGHT FUTURE WITH HERSCHEL

We infer **pomeron** exchange by searching

for events with large rapidity gaps

Consider exclusive process: $pp \rightarrow p + \mu\mu + p$

- LHCb rapidity gap: 2 long and no other velo tracks
- ► LHCb+Herschel adds $N(ADC_{HRC}) < 3\sigma_{Pedestal}$ veto

➤ Top priority: integrate with L0; factor ~8 reduction in CEP L0 rate

- > Exclusive J/ ψ at 13 TeV (bg reduced by factor ~3 4) paper in preparation
- ► Herschel performance paper in preparation

FR

CONTINUING EXPLOITATION OF RUN 1 DATA

Analyses of interest using Run 1 data

1) Exclusive quarkonium production in p-Pb data:

- > Weizsacker-Williams photon flux enhanced by Z^2
- Photon emission ambiguity resolved

2) Exclusive exotica production in p-p data:

> Pomeron exchange constrains quantum numbers of the CEP system

CONTINUING EXPLOITATION OF RUN 1 DATA

Analyses of interest using Run 1 data

3) Double open-charm production in p-p data:

- ► Many exotic candidates in inclusive D^(*)D^(*) spectroscopy
- ► DD molecule, tetraquarks, ccg hybrids, conventional charmonium
 - ➤ Would not expect X(3872)→D*D since hadronisation of the short-distance c anti-c pair to form loosely bound D*D state accompanied by other emission
 - > If X(3872) is conventional χ_{c1} then should be produced in CEP

(URGENT!) CHALLENGES

- 1. It is essential to include CEP in PDF fits
 - CEP probes extremely low x; g(x) poorly known
 - Methods to include CEP with small systematic uncertainties are available
 - > PDF fitting groups are cautious!

- 2. Models of double open-charm production needed!
 - Measurement of prompt, correlated D⁰D⁰ production absent at LHC
 - ► No predictions or simulations exist

- 3. Enormous samples of exclusive continuum dimuon production are available
 - ► Simple, calculable QED process
 - Should be used to test predictions for soft-QCD survival factors & photon flux

 $\mu^2 = 4.1 \, [GeV^2]$

 $\mu^2 = 2.4 \, [GeV^2]$

7

5

3

2

xg(x,μ²)

EARLY RUN 2 DATA

Early data shows promising signals:

- Di-pion candidate in empty event
- Trigger tracking thresholds reduced to p_T>100 MeV/c
- Can probe low-mass glueball candidates

EARLY RUN 2 DATA

CERN

Early data shows promising signals:

- > J/ψ and $\psi(2S)$ candidates in empty event
- Much greater handle on inelastic backgrounds
 - main source of Run 1 background and, often, systematic uncertainty
- Continue to probe gluon PDF at very low x

An exciting two years!

- Diffractive physics demands greater study!
- ► CEP now a well-established field for LHCb
 - > demonstrated via three Run 1 publications...
 - ... and a number of exciting topics for Run 2
- > The Herschel project is a game-changer for diffractive physics at LHC(b)