Observation of the doubly charmed tetraquark T_{cc}^+ in the LHCb experiment

LHCb THCD

Vanya BELYAEV (NRC Kurchatov Institute/ITEP, Moscow)

I Stat

LHCb

Hadrons

Mesons:

- Quark + antiquark
- Baryons
 - Three quarks

A SCHEMATIC MODEL OF BARYONS AND MESONS

M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest

Everything else, aka "exotics"

- Glueballs
- Hybrids,

7 Oct 2021/Warwisk

- Pentaquarks,
- Tetraquarks,
- Hexaquarks, ...

LHC 30 "exotic" heavy flavor hadrons Quark States 24 tetraquark candidates content $X_0(2900), X_1(2900)$ [21,22] $\overline{c}du\overline{s}$ $\chi_{c1}(3872)$ [6] $c\overline{c}q\overline{q}$ $Z_{c}(3900)$ [23], $Z_{c}(4020)$ [24, 25], $Z_{c}(4050)$ [26], X(4100) [27], $c\overline{c}u\overline{d}$ $Z_{c}(4200)$ [28], $Z_{c}(4430)$ [29–32], $R_{c0}(4240)$ [31] $Z_{cs}(3985)$ [33], $Z_{cs}(4000)$, $Z_{cs}(4220)$ [34] $c\overline{c}u\overline{s}$ $\chi_{c1}(4140)$ [35–38], $\chi_{c1}(4274)$, $\chi_{c0}(4500)$, $\chi_{c0}(4700)$ [38], \overline{ccss} X(4630), X(4685) [34], X(4740) [39] X(6900) [14] $c\overline{c}c\overline{c}$ $b\overline{b}u\overline{d}$ $Z_{b}(10610), Z_{b}(10650)$ [40] $P_{c}(4312)$ [41], $P_{c}(4380)$ [42], $P_{c}(4440)$, $P_{c}(4457)$ [41], ccuud

 $P_{c}(4357)$ [43] $P_{cs}(4459)$ [44]

6 pentaquark candidates

 $c\overline{c}uds$

7 Oct 2021/Warwisk

QQqq

Discussed from the end of 70s For large mo could be bound and "stable

977, Jaffe 1978, Lipkin 1987,...

- Adler, Richard & Taxil 1982, Ballot & Richard 1983. Zouzou, Silvestre-Brac, Gignous & Richard 1986, Lipkin 1986, Heller&Tijon 1987. Manohar & Wise 1993
- QQ attraction in color antitriplet state
 - half of those in $Q\overline{Q}$ in color-singlet state
- Binding energy: $\alpha_s^2 m_0$ large for sufficiently heavy Q Diguark-antidiguark or diquark + two antiquarks ("antibaryon") picture

7 Oct 2021/Warwisk

bbqq bcqq ccqq

- bb**qq** : Theory & Lattice QCQ consensus
 - Exists & "stable" mass << m(B) + m(B*)
- bcqq : likely exists and may be almost stable mass close to m(B) + m(D)
- ccqq : no consensus

7 Oct 2021/Warwisk

ccud : ±250 MeV near DD* threshold

- S = 1
- light "good" scalar isoscalar diquark
 - 5 = 0

7 Oct 2021/Warwisk

- In S-wave it fixes quantum numbers:
 - $\mathbf{I}(\mathbf{J}^{\mathbf{P}}) \equiv \mathbf{0}(1^+)$
- Direct relation to Ξ_{cc}^{++} ccu Karliner&Risner, 2017

J. Carlson <i>et al.</i>	1987
B. Silvestre-Brac and C. Semay	1993
C. Semay and B. Silvestre-Brac	1994
M. A. Moinester	1995
S. Pepin <i>et al.</i>	1996
B. A. Gelman and S. Nussinov	2003
J. Vijande <i>et al.</i>	2003
D. Janc and M. Rosina	2004
F. Navarra <i>et al.</i>	2007
J. Vijande <i>et al.</i>	2007
D. Ebert <i>et al.</i>	2007
S. H. Lee and S. Yasui	2009
Y. Yang et al.	2009
N. Li <i>et al.</i>	2012
GQ. Feng et al.	2013
SQ. Luo et al.	2017
M. Karliner and J. Rosner	2017
E. J. Eichten and C. Quigg	2017
Z. G. Wang	2017
W. Park et al.	2018
P. Junnarkar <i>et al.</i>	2018
C. Deng et al.	2018
MZ. Lin et al.	2019
L. Majanj <i>et al.</i>	2019
G Yang et al	2019
Y Tan et al	2020
$O - F L \ddot{u} et al$	2020
E Braaten <i>et al</i>	2020
D. Goo et al	2020
L B Chong et al	2020
S. Nob. et. al.	2020
D N Emeter et el	2021
n. IN. Faustov et al.	2021

LHCb

7 Oct 2021/Warwisk

Vertex Locator O(50fs) resolution for B The most precise $\tau(B)$

ECAL: $\sigma_m(\pi^0)=7MeV/c^2$ Tracking:

 $\Delta p/p = 0.5 - 0.6\%$ for 5

The most precise B-masses

7 Oct 2021/Warwisk

Run I+II

10

Thanks to LHC accelerator team for the excellent performance of machine

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

$D^0D^0\pi^+$: Reconstruction & selection

$(\mathbf{D}^0 \rightarrow \mathbf{K}^- \pi^+) (\mathbf{D}^0 \rightarrow \mathbf{K}^- \pi^+) \pi^+$

р

5 hadron final state

- 3 pions + 2 kaons
- **PID** is important (RICH)
- **Efficient charm** trigger
- Good quality tracks, vertices & PID
- No duplicated tracks
- Finite D⁰ lifetime

Selected $D^0D^0\pi^+$

arXiv:2109:01038, 2109:01056

Non D⁰ background is small

statistically subtracted using sPlot

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Peak is stable Data taking periods Data taking conditions Dipole magnet polarity Charge Reflections Fake D⁰ **Duplicates Breit-Wigner fit** Parameter Value N 117 ± 16 $-273 \pm 61 \text{ keV}/c^2$ $\delta m_{\rm BW}$ $410 \pm 165 \,\mathrm{keV}$ $\Gamma_{\rm BW}$ Significance 22σ m_{BW} below $D^{*+}D^{0}$ threshold 4.3σ

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

16

Narrow, just below D^{+*}D⁰ threshold

- The most long lived exotics so far
- Very close to threshold like X(3872)
 - Is it a coincidence?
- Minimal quark content ccud Good match to expected T⁺_{cc}

To get more information a physics motivated model is required instead of Breit-Wigner

 T_{cc}^+

7 Oct 2021/Warwisk

Unitarized 3-body Breit-Wigner

- Build the amplitude $T_{cc}^+ \rightarrow D^*D \rightarrow DD\pi$ or $DD\gamma$
 - $\mathbf{T_{cc}^+}$ $\mathbf{I}(\mathbf{J^P}) = \mathbf{0}(1^+)$ $|\mathbf{T_{cc}^+}\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{D^{*+}D^0}\rangle |\mathbf{D^{*0}D^+}\rangle \right)$
- <u>Isospin coupling</u> to D^*D (both $D^{*+}D^0$ and $D^{*0}D^+$)
- In vicinity of threshold keep only <u>S-wave</u> $1^+ \rightarrow 1^- + 0^-$
- $D^* \rightarrow D\pi$ or $D\gamma$

- All constants and parameters are taken from D^{*} decay widths
- Unknowns: the mass and |g|
- Calculate $T_{cc}^+ \rightarrow D^*D \rightarrow DD\pi$ or $DD\gamma$ decay widths as functions of mass • 3-body phase space functions o
 - 3-body phase space functions ρ

7 Oct 2021/Warwisk

Actual branchings are functions of T_{cc}^+ mass (and shape)

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Amplitude

19

$\mathfrak{F}_{f}^{\mathrm{U}}(s) = \varrho_{f}(s)$ $\mathcal{A}_{\mathrm{U}}(s) = \frac{1}{m_{\mathrm{U}}^{2}}$	$\left \mathcal{A}_{\mathrm{U}}(s) \right ^{2}, \ rac{1}{-s - i m_{\mathrm{U}} \hat{\Gamma}(s)},$	$\varrho_f(s) = \frac{1}{(2\pi)^5} \frac{\pi^2}{4s} \iint a$	$ds_{12}ds_{23}\frac{ \mathfrak{M}_{f}(s,s_{12},s_{23}) ^{2}}{ g ^{2}}$
• Self energy	$im_{f U}\hat{\Gamma}(s)$	$\equiv g ^2 \Sigma(s),$	
<u>Unitarity</u>	$\Im \Sigma(s) _{\Im s=0}$ $\varrho_{\text{tot}}(s)$	$s^{0^{+}} = \frac{1}{2} \rho_{\text{tot}}(s) ,$ $\sum_{f} \rho_{f}(s) .$	<u>2 parameters</u> mass m _u coupling g
<u>Analiticity</u> <u>Causality</u>	$\Re \Sigma(s) _{\Im s=0^+} = \xi(s) =$	$= \xi(s) - \xi(m_{\rm U}^2),$ $= \frac{s}{2\pi} \text{p.v.} \int_{s_{\rm th}^*}^{+\infty} \frac{\rho_{\rm tot}(s')}{s'(s'-s)} ds',$	

7 Oct 2021/Warwisk

Amplitude

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Vanya Belyaev "Doubly charmed tetraquark"

Vanya Belyaev "Doubly charmed tetraquark"

Systematic for mass parameter

24

IN THE SHIP WITH THE SHIP	ante ante	2109.01030
Vary resolution	Source	$\sigma_{\delta m_{\rm U}} \left[{\rm keV} / c^2 \right]$
• Vary correction factor	Fit model	
 Alternative background Coupling constants 	Resolution model	2
 D* parameters 	Resolution correction factor Background model	2
Smaller values of g	Coupling constants	1_{+7}
• Momentum scale	Unknown value of $ g $ Momentum scaling	-0 3
Energy loss	Energy loss	1
$\delta m_{\rm H} = -359 \pm 40^{+9} {\rm keV}/c^2$	$D^{*+} - D^0$ mass difference	2
a > 5.1 (4.3) GeV at 90 (95) % CL	Total	$^{+9}_{-6}$
	SKINGE &	Ser Star

7 Oct 2021/Warwisk

What else can we say about T_{cc} ?

Three body final state $D^0D^0\pi^+$

I and L define J^P quantum numbers Can we measure them?

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

$D^0\pi^+$ mass spectrum

26

arXiv:2109:01056

$\begin{array}{c} D^0 D^0 \pi^+ \text{ below } D^{*+} D^0 \\ \text{ threshold } \end{array}$

 $D^0\pi^+$ mass spectrum depends on the decay dynamic. Perfect agreement with our model

3 main features

- D*+ propagator
- q²¹⁺¹ at left edge
- p^{2L+1} at right edge
 - ... + resolution

7 Oct 2021/Warwisk

$D^0\pi^+$ mass spectrum: D^{*+} and l

arXiv:2109:01056

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

$D^0\pi^+$ mass spectrum: L

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

T_{cc} decays via intermediate off-shell D*+ meson l=1L=0 is largely favored $J^P = 1 +$

LHCb

29

Spectrum is in perfect agreement with our model for $I(J^P)=O(1^+)$ $T_{cc}^+ \rightarrow D^*D$ decays.

7 Oct 2021/Warwisk

$D^0D^0\pi^+$ Dalitz plot

arXiv:2109:01056

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

$D^0D^0\pi^+$ Dalitz plot

arXiv:2109:01056

7 Oct 2021/Warwisk

Complete Dalitz plot analysis for future
 Need more events

Treatment of resolution is not trivial

 However some variants (including isospin) can be excluded already now

D^0D^0 from $T_{cc}^+ \rightarrow D^*D$

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Actual branchings are functions of T_{cc}^+ mass (and shape)

7 Oct 2021/Warwisk

D^+D^0 from $T^+_{cc} \rightarrow D^*D$

arXiv:2109:01056

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

I=1 (isovector) nature?

arXiv:2109:01056

- Many arguments in favor of I=0 isocalar, but it could be $I_3=0$ component of I=1 isotriplet $T_{cc}^0 T_{cc}^+ T_{cc}^{++}$
 - * Light antiquarks in isovector state, similar to Σ_c, Σ_b baryons
- Interpreting the observed peak as $I_3{=}0$ component, from Σc and Σ_b mass splitting the masses of $~I_3{=}{\pm}1$ components are

$$m_{\hat{T}_{cc}^{0}} - (m_{D^{0}} + m_{D^{*0}}) = -2.8 \pm 1.5 \,\mathrm{MeV}/c^{2},$$

$$m_{\hat{T}_{cc}^{++}} - (m_{D^+} + m_{D^{*+}}) = 2.7 \pm 1.3 \,\text{MeV}/c^2$$
.

- T_{cc}⁰ just below D^{*0}D⁰ threshold (very narrow)
 - $T^0_{cc} \rightarrow D^{*0}D^0 \rightarrow D^0D^0\pi^0$ and $D^0D^0\gamma$
- T_{cc}⁺⁺ slightly above D^{*+}D⁺ threshold (can be up to few MeV)
 - $\mathbf{T_{cc}^{++}} \rightarrow \mathbf{D^{*+}D^{+}} \rightarrow \mathbf{D^{+}D^{+}\pi^{0}}, \mathbf{D^{+}D^{+}\gamma}, \mathbf{D^{+}D^{0}\pi^{+}}$
- ' There <u>MUST</u> be signals D^+D^+ and $D^+D^0\pi^+$ spectra!
- There <u>MUST</u> be much larger signal in D⁰D⁰ spectrum!

7 Oct 2021/Warwisk

I=1 (isovector) nature?

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

=1 (isovector) nature?

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Amplitude pole

arXiv:2109:01056

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Amplitude pole

7 Oct 2021/Warwisk

Amplitude pole

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Low energy scattering parameters

Scattering length a Re a < 0 : attractive potential -Re a : characteristic size Effective range r

$$\mathcal{A}_{\rm NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - ik + \mathcal{O}(k^4) ,$$

$$\frac{2}{|g|^2} \mathcal{A}_{\rm U}^{-1} = -\left[\xi(s) - \xi(m_{\rm U}^2)\right] + 2 \frac{m_{\rm U}^2 - s}{|g|^2} - i\varrho_{\rm tot}(s)$$

$$\underbrace{k = 4\pi \sqrt{s} \rho_{\rm tot}(s)}$$

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Effective size

Effective size from the scattering length

$$R_a \equiv -\Re a = 7.16 \pm 0.51 \,\mathrm{fm}$$

Effective size from the binding energy $\Delta E = -\delta m_{\rm U}$

$$\gamma = \sqrt{2\mu\Delta E} = 26.4 \pm 1.5 \,\mathrm{MeV}/c$$
, $R_{\Delta E} \equiv \frac{1}{\gamma} = 7.5 \pm 0.4 \,\mathrm{fm}$

' The object is really large

7 Oct 2021/Warwisk

arXiv:2109:01056

- ... around Radium or Uranium nuclear $R=r_0A^{1/3}$
- Top three: X(3872), T⁺_{cc} and *deuteron* (+other nuclei...) Large size <u>should</u> have effect on production properties

Guo, Hanhart, Meissner, Wang, Zhao&Zou 2018

Event activity/Track multiplicity

7 Oct 2021/Warwisk

no suppression!!! One sees enhancement!!!

T_{cc}⁺

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Production estimate

$N(T_{cc}^+)/N(X(3872) \sim 1/20$

Large uncertainty (>30%) due to X(3872) shape and background

Larger than T_{cc}^+ statistics

Better understanding of X(3872) is needed

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

m_{DD} ·

Production estimate:

X+

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

Summary I/V

arXiv:2109:01038

Manifestly exotic state near D*+D⁰ threshold is observed with overwhelming significance

- New class of hadronic matter
- Narrow
- Just below threshold
- Minimal quark content ccud
- Long awaited T⁺_{cc}
- Breit-Wigner mass and width

$$\delta m_{\rm BW} = -273 \pm 61 \pm 5^{+11}_{-14} \,\text{keV}/c^2 \,,$$

$$\Gamma_{\rm BW} = 410 \pm 165 \pm 43^{+18}_{-38} \,\text{keV} \,,$$

Summary II/V

52

arXiv:2109:01056

Decay proceed via an intermediate off-shell D^{*+}

- Strong argument in favor of $J^P\!\!=\!\!1^+$
- Using dedicated unitarized 3-body model

 $\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \,\text{keV}/c^2$ $|g| > 5.1 \,(4.3) \,\text{GeV} \text{ at } 90 \,(95) \,\% \,\text{CL}$

- Pole position $\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2,$ $\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$
- Study of D⁰D⁰ and D⁺D⁰ spectra support isoscalar nature
 Study of D⁺D⁺ and D⁺D⁰π⁺ spectra rejects isovector nature

Summary III/V

arXiv:2109:01056

- Scattering length
- 'Effective range
- Compositness
- 'Effective size

 $a = \left[-(7.16 \pm 0.51) + i (1.85 \pm 0.28) \right]$ fm

 $0 \leq -r < 11.9 (16.9) \, \text{fm at } 90 (95)\% \, \text{CL}$

Z < 0.52 (0.58) at 90 (95)% CL

 $R_a \equiv -\Re a = 7.16 \pm 0.51 \,\mathrm{fm}$ $R_{\Delta E} \equiv \frac{1}{\gamma} = 7.5 \pm 0.4 \,\mathrm{fm}$

- No suppression of production at large multiplicities
 - Enhancement is seen
- Suprising similarity with D⁰D⁰ (DPS) production

Summary IV/V

- We already know a lot about T_{cc}^{+} now
- Is it enough to answer the main questions?
- What ia missing?
- What is the nature of
 - Compact tetraquark? Binding is expected. Closeness to threshold is "accidental".
 - Molecula? Closeness to threshold is "natural"
- (Nearby) future
 - Amplitude analysis of Dalitz plot
 - Production measurements
 - Relative to $X(3872) \rightarrow D^0 \overline{D}{}^0 \pi^0, D^0 \overline{D}{}^0 \gamma, \quad ``\psi" \rightarrow D^0 \overline{D}{}^0, \quad \Xi_{cc}^{++}$
 - Add new decay channels of $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
- More data in Run 3

7 Oct 2021/Warwisk

Summary V

55

• Only weak decays!

7 Oct 2021/Warwisk

Macroscopic lifetime!

56

arXiv:2109:01038

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2021-165 LHCb-PAPER-2021-031 September 2, 2021

Observation of an exotic narrow doubly charmed tetraquark

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

LHCb

CERN-EP-2021-169 LHCb-PAPER-2021-032 September 2, 2021

arXiv:2109:01056

Study of the doubly charmed tetraquark T_{cc}^+

LHCb collaborati

Abstract

Conventional hadronic matter consists of baryons and quark-antiquark pairs, respectively. The obs state, a doubly charmed tetraquark containing an anti-d quark, is reported using data collect the Large Hadron Collider. This exotic state we manifests itself as a narrow peak in the mass spect the $D^{*+}D^0$ mass threshold. The near-threshold narrow width reveals the resonance nature of the

© 2021 CERN for the benefit of the LHCb coll

[†]Authors are listed at the end of this Letter.

7 Oct 2021/Warwisk

Our distinguished colleague, beloved member of LHCb and whole hadron physics community has passed away.

His contribution to the field will have a lasting impact in future generations.

We dedicate the oncoming papers on the observation of the T_{cc}^{+} to his memory.

Vanya Belyaev "Doubly charmed tetraquark"

certum just below the D⁺⁺D⁰ mass nding to an integrated luminosity n proton-proton collisions at centate is consistent with the ground of cetud and spin-parity quantum ocetra disfavours interpretation of structure via intermediate off-shell ibution. The mass of the resonance 4. Resonance parameters including ge and compositeness are measured re of the T_{cc}^{+} state. In addition, an on track multiplicity is observed.

ollaboration. CC BY 4.0 licence

0

https://indico.cern.ch/e/TccWorkshop

Mini-workshop on " T_{cc}^+ and beyond", Online

14 September 2021 Europe/Zurich timezone

Enter your search term

Overview

Timetable

- Contribution List
- My Conference
- My Contributions
- Participant List
- Videoconference

The workshop is dedicated to discussion on the recent observation of the exotic doubly charmed tetraquark T_{cc}^+ . The main purpose of the workshop is to summarize our current knowledge, both experimental and theoretical, on double heavy tetraquark system, including the properties of the T_{cc}^+ tetraquark and discuss the next steps.

1. LHCb-PAPER-2021-031, arXiv:2109.01038 2. LHCb-PAPER-2021-032, arXiv:2109.01056

The workshop is scheduled at the same date after the CERN LHC seminar, where the observation of the T_{cc}^+ tetraquark and measurement of its properties is reported.

Due to COVID-19, workshop is purely virtual, on-line only

Vanya Belyaev "Doubly charmed tetraquark"

Extended Data Fig. 2: Mass distributions for $D^0D^0\pi^+$ combinations with fake D^0 candidates. Mass distributions for $D^0D^0\pi^+$ combinations with (a) one true and one fake D^0 candidate, (b) two fake D^0 candidates and (c) at least one fake D^0 candidate. Results of the fits with background-only functions are overlaid.

Extended Data Fig. 4: Mass distributions for D^0D^+ and D^0D^- candidates. Background-subtracted D^0D^+ and D^0D^- mass distributions.

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"

61

$$\varrho_f(s) = \frac{1}{(2\pi)^5} \frac{\pi^2}{4s} \iint ds_{12} ds_{23} \frac{\left|\mathfrak{M}_f\left(s, s_{12}, s_{23}\right)\right|^2}{\left|g\right|^2}$$

7 Oct 2021/Warwisk

$$\begin{split} & \underbrace{\text{Mass splitting for isovector}}_{m_{\Sigma_{c}^{+}}} & \underbrace{\text{Mass splitting for isovector}}_{m_{\Sigma_{c}^{+}}} & \underbrace{m_{\Sigma} + m_{u} + m_{u} - a \, q_{u} q_{u} - b \, q_{c} \, (q_{u} + q_{u})}_{m_{\Sigma_{c}^{+}}} & \underbrace{m_{\Sigma} + m_{u} + m_{d} - a \, q_{u} q_{d} - b \, q_{c} \, (q_{u} + q_{d})}_{m_{\Sigma_{c}^{0}}} & \underbrace{m_{\Sigma} + m_{u} + m_{d} - a \, q_{d} q_{d} - b \, q_{c} \, (q_{u} + q_{d})}_{m_{\Sigma_{c}^{0}}} & \underbrace{m_{\hat{T}_{cc}} & m_{\hat{T}_{cc}} + m_{u} + m_{u} - a' \, q_{\bar{u}} q_{\bar{u}} - b' \, q_{cc} \, (q_{\bar{u}} + q_{\bar{u}})}_{m_{\hat{T}_{cc}^{+}}} & \underbrace{m_{\hat{T}_{cc}} + m_{u} + m_{d} - a' \, q_{\bar{u}} q_{\bar{d}} - b' \, q_{cc} \, (q_{\bar{u}} + q_{\bar{d}})}_{m_{\hat{T}_{cc}^{++}}} & \underbrace{m_{\hat{T}_{cc}} + m_{u} + m_{d} - a' \, q_{\bar{u}} q_{\bar{d}} - b' \, q_{cc} \, (q_{\bar{u}} + q_{\bar{d}})}_{m_{\hat{T}_{cc}^{++}}} & \underbrace{m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' \, q_{\bar{d}} q_{\bar{d}} - b' \, q_{cc} \, (q_{\bar{d}} + q_{\bar{d}})}_{m_{\hat{T}_{cc}^{++}}} & \underbrace{m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' \, q_{\bar{d}} q_{\bar{d}} - b' \, q_{cc} \, (q_{\bar{d}} + q_{\bar{d}})}_{m_{\hat{T}_{cc}^{++}}} & \underbrace{m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' \, q_{\bar{d}} q_{\bar{d}} - b' \, q_{cc} \, (q_{\bar{d}} + q_{\bar{d}})}_{m_{\hat{T}_{cc}^{++}}}} & \underbrace{m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' \, q_{\bar{d}} q_{\bar{d}} - b' \, q_{cc} \, (q_{\bar{d}} + q_{\bar{d}})}_{m_{\bar{T}_{cc}^{++}}} & \underbrace{m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' \, q_{\bar{d}} q_{\bar{d}} - b' \, q_{cc} \, (q_{\bar{d}} + q_{\bar{d}})}_{m_{\bar{T}_{cc}}} & \underbrace{m_{\hat{T}_{cc}} + m_{\hat{T}_{cc}} + m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' \, q_{\bar{d}} q_{\bar{d}} - b' \, q_{cc} \, (q_{\bar{d}} + q_{\bar{d}})}_{m_{\bar{T}_{cc}}} & \underbrace{m_{\hat{T}_{cc}} + m_{\hat{T}_{cc}} + m_{\hat{T}_{cc}} + m_{\bar{T}_{cc}} + m_{\bar{T}_{cc}} + m_{\bar{T}_{cc}} + m_{\bar{T}_{cc}} + m_{\bar{T}_{cc}} + m_{\bar{T}_{cc}} & \underbrace{m_{\bar{T}_{cc}} + m_{\bar{T}_{cc}} + m_{$$

Vanya Belyaev "Doubly charmed tetraquark"

Vanya Belyaev "Doubly charmed tetraquark"

Trigger

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"