Observation of the doubly charmed tetraquark T_{cc}^{+} in the LHCb experiment

Vanya BELYAEV (NRC Kurchatov Institute/ITEP, Moscow)
Hadrons

• **Mesons:**
 • Quark + antiquark

• **Baryons**
 • Three quarks

• **Everything else, aka “exotics”**
 • Glueballs
 • Hybrids,
 • Pentaquarks,
 • Tetraquarks,
 • Hexaquarks, ...

A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN
California Institute of Technology, Pasadena, California

Received 4 January 1964

...anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqqq)$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}q)$, etc. It is assuming that the lowest
States

<table>
<thead>
<tr>
<th>States</th>
<th>Quark content</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_0(2900), X_1(2900)$ [21, 22]</td>
<td>$\bar{c}d u \bar{s}$</td>
</tr>
<tr>
<td>$\chi_{c1}(3872)$ [6]</td>
<td>$c\bar{c}q\bar{q}$</td>
</tr>
<tr>
<td>$Z_c(3900)$ [23], $Z_c(4020)$ [24, 25], $Z_c(4050)$ [26], $X(4100)$ [27], $Z_c(4200)$ [28], $Z_c(4430)$ [29–32], $R_{c0}(4240)$ [31]</td>
<td>$c\bar{c}ud\bar{d}$</td>
</tr>
<tr>
<td>$Z_{cs}(3985)$ [33], $Z_{cs}(4000)$, $Z_{cs}(4220)$ [34]</td>
<td>$c\bar{c}u\bar{s}$</td>
</tr>
<tr>
<td>$\chi_{c1}(4140)$ [35–38], $\chi_{c1}(4274)$, $\chi_{c0}(4500)$, $\chi_{c0}(4700)$ [38], $X(4630)$, $X(4685)$ [34], $X(4740)$ [39]</td>
<td>$c\bar{c}ss\bar{s}$</td>
</tr>
<tr>
<td>$X(6900)$ [14]</td>
<td>$c\bar{c}c\bar{c}$</td>
</tr>
<tr>
<td>$Z_b(10610), Z_b(10650)$ [40]</td>
<td>$b\bar{b}u\bar{d}$</td>
</tr>
<tr>
<td>$P_c(4312)$ [41], $P_c(4380)$ [42], $P_c(4440)$, $P_c(4457)$ [41], $P_c(4357)$ [43]</td>
<td>$c\bar{c}uud\bar{d}$</td>
</tr>
<tr>
<td>$P_{cs}(4459)$ [44]</td>
<td>$c\bar{c}uds$</td>
</tr>
</tbody>
</table>

Notes

- **24 tetraquark candidates**
- **6 pentaquark candidates**
(24-2) tetraquark candidates

- All are “quarkonium-like”

What is the internal structure?

- Compact tetraquark

- Molecule

- ... something else
• Discussed from the end of 70s
• For large m_Q could be bound and “stable

• $Q\bar{Q}$ attraction in color antitriplet state
 • half of those in $Q\bar{Q}$ in color-singlet state
 • Binding energy: $\alpha_s^2 m_Q$ large for sufficiently heavy Q

• Diquark-antidiquark or
diquark + two antiquarks
(“antibaryon”) picture

Jaffe 1977, Jaffe 1978, Lipkin 1987,...

Adler, Richard & Taxil 1982,
Ballot &Richard 1983,
Zouzou, Silvestre-Brac, Gignous&Richard 1986,
Lipkin 1986,
Heller&Tijon 1987,
Manohar & Wise 1993
• $bb\bar{q}q$: Theory & Lattice QCQ consensus
 - Exists & “stable”
 - mass $<< m(B) + m(B^*)$

• $bc\bar{q}q$: likely exists and may be almost stable
 - mass close to $m(B) + m(D)$

• $cc\bar{q}q$: no consensus
color antitriplet

- $S = 1$
- light "good" scalar isoscalar diquark
- $S = 0$
- In S-wave it fixes quantum numbers: $I(J^P) = 0(1^+)$
- Direct relation to Ξ_{cc}^{++} ccu

Karliner&Risner, 2017
T_{cc}^+ basic properties

Huge dependency on the mass

\[
\begin{align*}
\Gamma_{D^+D^0} & \quad \Gamma_{D^0D^0\pi^0} \\
\Gamma_{D^*0D^+} & \quad \Gamma_{D^*+D^0}
\end{align*}
\]

\[
\frac{\Gamma_{D^+D^0}}{\Gamma_{D^0D^0\pi^0}}
\]

\[
\frac{\Gamma_{D^*0D^+}}{\Gamma_{D^*+D^0}}
\]

\[
\begin{align*}
\Gamma_{D^+D^0} & \quad \Gamma_{D^0D^0\pi^0} \\
\Gamma_{D^*0D^+} & \quad \Gamma_{D^*+D^0}
\end{align*}
\]

\[
\frac{\Gamma_{D^+D^0}}{\Gamma_{D^0D^0\pi^0}}
\]

\[
\frac{\Gamma_{D^*0D^+}}{\Gamma_{D^*+D^0}}
\]
~40% of heavy quarks in <4% of 4π

RICH Detectors:
95% ε(K⁺) @5% π→K misID

Muon:
ε(μ⁺)=97%@1-3% π→μ misID

Tracking:
Δp/p =0.5-0.6% for 5<p<100 GeV/c

The most precise B-masses

pp-interaction point

Vertex Locator
O(50fs) resolution for B

The most precise τ(B)

ECAL: σ_m(π⁰)=7MeV/c²

Muon:
ε(μ⁺)=97%@1-3% π→μ misID
Run I+II

1 fb^{-1}@7 TeV
2 fb^{-1}@8 TeV
8 fb^{-1}@13 TeV

Thanks to LHC accelerator team for the excellent performance of machine

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"
LHCb is very good for DD and D̅D̅

Observation of double charm production involving open charm in pp collisions at $\sqrt{s} = 7$ TeV

Figure 5: Invariant mass distributions for $D^0\bar{D}$ candidates: a) $D^0\bar{D}^0$, b) D^0D^\pm, c) $D^0D^\pm_\Sigma$ and d) $D^0\Lambda^\pm_\Sigma$.

Near-threshold D̅D̅ spectroscopy and observation of a new charmonium state $\psi_3(1D)$

Figure 5: Mass spectra of (top) $D^0\bar{D}^0$ and (bottom) D^+D^- candidates in the near-threshold $m_{D\bar{D}} < 3.88$ GeV/c^2 region. The result of the simultaneous fit described in the text is superimposed.
$D^0 D^0 \pi^+$: Reconstruction & selection

$D^0 \rightarrow K^- \pi^+$ $(D^0 \rightarrow K^- \pi^+ \pi^+)$

- 5 hadron final state
 - 3 pions + 2 kaons
- PID is important
 (RICH)
- Efficient charm trigger
- Good quality tracks, vertices & PID
- No duplicated tracks
- Finite D^0 lifetime
Selected $D^0D^0\pi^+$

Non D^0 background is small statistically subtracted using sPlot

Selected $D^0D^0\pi^+$ vs $D^0\bar{D}^0\pi^+$

D0D$^0\pi^+$

LHCb
9 fb$^{-1}$

Peak is stable
- Data taking periods
- Data taking conditions
- Dipole magnet polarity
- Charge

Reflections
- Fake D0
- Duplicates

Breit-Wigner fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>117 ± 16</td>
</tr>
<tr>
<td>δm_{BW}</td>
<td>-273 ± 61 keV/c2</td>
</tr>
<tr>
<td>Γ_{BW}</td>
<td>410 ± 165 keV</td>
</tr>
</tbody>
</table>

- Significance 22σ
- m_{BW} below D*+D0 threshold 4.3σ

7 Oct 2021/Warwick

Vanya Belyaev "Doubly charmed tetraquark"
Narrow, just below D^+D^0 threshold
- The most long lived exotics so far
- Very close to threshold like $X(3872)$
 - Is it a coincidence?

Minimal quark content $ccu\bar{d}$

Good match to expected T_{cc}^+

To get more information a physics motivated model is required instead of Breit-Wigner
Unitarized 3-body Breit-Wigner

- Build the amplitude $T_{cc}^+ \rightarrow D^*D \rightarrow DD\pi$ or $DD\gamma$
 - $T_{cc}^+ \quad I(J^P) = 0(1^+)$
 - Isospin coupling to D^*D (both D^*+D^0 and D^*0D^+)
 - In vicinity of threshold keep only S-wave
 - $D^* \rightarrow D\pi$ or $D\gamma$

$$|T_{cc}^+\rangle = \frac{1}{\sqrt{2}} (|D^*+D^0\rangle - |D^*0D^+\rangle)$$

$$A_{T_{cc}^+D^*+D^0}^{S-wave} = \frac{g}{\sqrt{2}} \epsilon_{T_{cc}^+} \epsilon^{*\mu}_{D^*}$$

$$A_{T_{cc}^+D^*0D^+}^{S-wave} = -\frac{g}{\sqrt{2}} \epsilon_{T_{cc}^+} \epsilon^{*\mu}_{D^*}$$

- All constants and parameters are taken from D^* decay widths
- Unknowns: the mass and $|g|$

- Calculate $T_{cc}^+ \rightarrow D^*D \rightarrow DD\pi$ or $DD\gamma$ decay widths as functions of mass
- 3-body phase space functions ρ
Actual branchings are functions of T_{cc}^+ mass (and shape)
Amplitude

\[\mathcal{F}_f^U(s) = \varrho_f(s) |A_U(s)|^2 , \]

\[A_U(s) = \frac{1}{m_U^2 - s - i m_U \hat{\Gamma}(s)} , \]

\[\varrho_f(s) = \frac{1}{(2\pi)^5} \frac{\pi^2}{4s} \int \int ds_{12} ds_{23} \left| \mathcal{M}_f(s, s_{12}, s_{23}) \right|^2 , \]

- Self energy
- Unitarity
- Analiticty
- Causality

\[\text{2 parameters} \]

\[\text{mass} \quad m_U \]

\[\text{coupling} \quad |g| \]

\[\text{7 Oct 2021/Warwisk} \]

Vanya Belyaev "Doubly charmed tetraquark"
Amplitude

\[A(s) = \frac{|g|^2}{m^2 - s - i \frac{|g|^2}{2}} \left[\text{Im} \left(\ldots \right) \right] \]

\[\text{Im} \left(\ldots \right) = \varrho_{\text{tot}}. \]

Unitarity

\[\Im \sum(s) \bigg|_{s=0^+} = \frac{1}{2} \varrho_{\text{tot}}(s), \]

\[\varrho_{\text{tot}}(s) = \sum_f \varrho_f(s). \]

Casuality

\[\Re \sum(s) \bigg|_{s=0^+} = \xi(s) - \xi(m_U^2), \]

\[\xi(s) = \frac{s}{2\pi} \text{p.v.} \int_{s_{\text{th}}}^{+\infty} \frac{\varrho_{\text{tot}}(s')}{s'(s' - s)} ds', \]
Fit with advanced model

- Better description
- Asymmetric shape
- Heavy tail

Significance 22σ

- \(m_U \) below \(D^{*+}D^0 \) threshold 9σ

Parameter	**Value**
\(N \) | 186 ± 24
\(\delta m_U \) | \(-359 \pm 40 \text{ keV}/c^2\)
\(|g|\) | \(3 \times 10^{4} \text{ GeV} \text{ (fixed)}\)

arXiv:2109:01056

LHCb
9 fb⁻¹

\(m_{D^0 D^0 \pi^+} \) [GeV/c²]

\(m_{D^0 D^0 \pi^+} \) [GeV/c²]

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"
What about $|g|$?

Fit claims $|g|$ is not small

$|g| > 7.7 (6.2) \text{ GeV}$

The model exhibits Flatte-like scaling: for large $|g|$ visible widths/FWHM is in saturation

FWHM = 47.8 ± 1.9 keV
Mass shape (remove resolution)

FWHM = 47.8 ± 1.9 keV

arXiv:2109:01056
Systematic for mass parameter

- Vary resolution
- Vary correction factor
- Alternative background
- Coupling constants
 - D^* parameters
- Smaller values of $|g|$
- Momentum scale
- Energy loss
 - Amount of material

\[
\delta m_U = -359 \pm 40^{+9}_{-6} \text{ keV}/c^2
\]

\[|g| > 5.1 (4.3) \text{ GeV at 90 (95) \% CL}\]

<table>
<thead>
<tr>
<th>Source</th>
<th>$\sigma_{\delta m_U}$ [keV$/c^2$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit model</td>
<td></td>
</tr>
<tr>
<td>Resolution model</td>
<td>2</td>
</tr>
<tr>
<td>Resolution correction factor</td>
<td>2</td>
</tr>
<tr>
<td>Background model</td>
<td>2</td>
</tr>
<tr>
<td>Coupling constants</td>
<td>1</td>
</tr>
<tr>
<td>Unknown value of $</td>
<td>g</td>
</tr>
<tr>
<td>Momentum scaling</td>
<td>3</td>
</tr>
<tr>
<td>Energy loss</td>
<td>1</td>
</tr>
<tr>
<td>$D^{*+} - D^{0}$ mass difference</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>$^{+9}_{-6}$</td>
</tr>
</tbody>
</table>
What else can we say about T_{cc}^{+}?

- Three body final state $D^{0}D^{0}\pi^{+}$

- l and L define J^{P} quantum numbers

- Can we measure them?
D⁰π⁺ mass spectrum

D⁰π⁺ below D⁺D⁰ threshold

D⁰π⁺ mass spectrum depends on the decay dynamic. Perfect agreement with our model

3 main features

- D⁺ propagator
- q²+l+1 at left edge
- p²L+1 at right edge
- ... + resolution

[Graph showing D⁰π⁺ mass spectrum with data and background compared to total.]

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"
D^0\pi^+ mass spectrum: D^*+ and l

3 main features

- **D^*+ propagator**
- q^{2l+1} at left edge
- p^{2L+1} at right edge
- ... + resolution
- ... + interference

Graphical Representation

- **Yield** in \((200 \text{ keV}/c^2) \)
- **LHCb** data: \(9 \text{ fb}^{-1} \)
- **T^{+-}_{cc} \rightarrow D^0D^0\pi^+**
- **Data**
- **Background**
- **Total**

\[\delta m_{D^0D^0\pi^+} < 0 \]

Notes

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"
3 main features

- D^{*+} propagator
- q^{2l+1} at left edge
- p^{2L+1} at right edge
- $\cdots + \text{resolution}$
- $\cdots + \text{interference}$

$D^{0\pi^+}$ mass spectrum: L

$\delta m_{D^0D^0\pi^+} < 0$

$LHCb$

9 fb$^{-1}$

Yield/(200 keV/c2)

$m_{D^0\pi^+}$ [GeV/c2]

$D^{*+}, l=1, L=0$

arXiv:2109:01056
$D^0\pi^+$ mass spectrum: quantum numbers

- T_{cc}^+ decays via intermediate off-shell D^* meson
 - $l = 1$
- $L=0$ is largely favored
- $J^P = 1^+$

Spectrum is in perfect agreement with our model for $I(J^P)=0(1^+)$ $T_{cc}^+ \rightarrow D^*D$ decays.
$D^0D^0\pi^+$ Dalitz plot

All quantum numbers can be determined from Dalitz plot analysis
- For future
- Treatment of resolution is not trivial

$\delta m_{D^0D^0\pi^+} = -359$ keV/c^2
$\delta m_{D^0D^0\pi^+} = 0$

$LHCb$
9 fb$^{-1}$

arXiv:2109:01056
D⁰D⁰π⁺ Dalitz plot

- Complete Dalitz plot analysis for future
- Need more events
- Treatment of resolution is not trivial

- However some variants (including isospin) can be excluded already now

0(1⁺) I=0,J=1,L=0
1(1⁺) I=1,J=1,L=0
I=0,J=1,L=1
I=1,J=1,L=1
I=0,J=0,L=1
I=1,J=0,L=1
I=0,J=2,L=1
I=0,J=2,L=1

arXiv:2109:01056
Actual branchings are functions of T_{cc}^+ mass (and shape)
Energy release in $D^{*+}\rightarrow D^0\pi^+$ is very small

D^0D^0 from $T_{cc}^+\rightarrow D^*D$ form a narrow near-threshold peak

Exact shape depend on the $T_{cc}^+\rightarrow D^*D$ decay dynamics

Select inclusive prompt D^0D^0

Excellent agreement with our $O(1+)$ T_{cc}^+ decay model
 • in shape
 • in number

Significance $>20\sigma$
Actual branchings are functions of T_{cc}^+ mass (and shape)
For $T_{cc}^+ \rightarrow D^*+D^0$ and $T_{cc}^+ \rightarrow D^{*0}D^+$: 3 final states:

1. $T_{cc}^+ \rightarrow D^0D^0\pi^0$
2. $T_{cc}^+ \rightarrow D^+D^0\pi^0$
3. $T_{cc}^+ \rightarrow D^+D^0\gamma$

Select inclusive prompt D^+D^0

- Excellent agreement with our $0(1^+)$ T_{cc}^+ decay model
 - in shape
 - in number
- Significance $>10\sigma$
I=1 (isovector) nature?

- Many arguments in favor of $I=0$ isocalar, but it could be $I_3=0$ component of $I=1$ isotriplet $T^0_{cc} T^+_{cc} T^{++}_{cc}$
 - Light antiquarks in isovector state, similar to Σ_c, Σ_b baryons
- Interpreting the observed peak as $I_3=0$ component, from Σ_c and Σ_b mass splitting the masses of $I_3=\pm 1$ components are
 \[
 m_{T^0_{cc}} - (m_{D^0} + m_{D^{*0}}) = -2.8 \pm 1.5 \text{ MeV}/c^2, \\
 m_{T^{++}_{cc}} - (m_{D^+} + m_{D^{*+}}) = 2.7 \pm 1.3 \text{ MeV}/c^2.
 \]
- T^0_{cc} just below D^*D^0 threshold (very narrow)
 - $T^0_{cc} \rightarrow D^*D^0 \rightarrow D^0D^0\pi^0$ and $D^0D^0\gamma$
- T^{++}_{cc} slightly above D^*D^+ threshold (can be up to few MeV)
 - $T^{++}_{cc} \rightarrow D^*D^+ \rightarrow D^+D^+\pi^0, D^+D^+\gamma, D^+D^0\pi^+$
- There MUST be signals D^+D^+ and $D^+D^0\pi^+$ spectra!
- There MUST be much larger signal in D^0D^0 spectrum!
I=1 (isovector) nature?

No sign for $I_3 = \pm 1$ components!

7 Oct 2021/Warwisk
Expected relative yields *(very approximate)*

<table>
<thead>
<tr>
<th>I</th>
<th>I_3</th>
<th>T_{cc}^{++}</th>
<th>$D^0D^0\pi^+$</th>
<th>D^0D^0X</th>
<th>D^+D^0X</th>
<th>$D^+D^0\pi^+$</th>
<th>D^+D^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+1</td>
<td>T_{cc}^{++}</td>
<td>-</td>
<td>-</td>
<td>2/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>T_{cc}^+</td>
<td>2/3</td>
<td>2/3</td>
<td>1/3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>T_{cc}^0</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Σ</td>
<td>2/3</td>
<td>5/3</td>
<td>1</td>
<td>2/3</td>
<td>1/3</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>T_{cc}^+</td>
<td>2/3</td>
<td>2/3</td>
<td>1/3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"
Amplitude pole

Analytic continuation of the amplitude to the second Riemann sheet

\[\sqrt{s} \equiv m_{\text{pole}} - \frac{i}{2} \Gamma_{\text{pole}} \]

\[\delta m_{\text{pole}} = -360 \pm 40 \pm 4 \text{ keV}/c^2 \]
\[\Gamma_{\text{pole}} = 48 \pm 2 \pm 14 \text{ keV} \]

\[m_{\text{pole}} \approx m_U \]
\[\Gamma_{\text{pole}} \approx \text{FWHM} \]
Amplitude pole

\[\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV/c}^2 \]

\[\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV}, \]

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"
Amplitude pole

\[
\sqrt{s} \equiv m_{\text{pole}} - \frac{i}{2} \Gamma_{\text{pole}}
\]

\[
\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2
\]

\[
\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},
\]
Low energy scattering parameters

- **Scattering length** a
 - $\text{Re } a < 0$: attractive potential
 - $\text{Re } a$: characteristic size

- **Effective range** r

\[
A_{NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - ik + O(k^4),
\]

\[
\frac{2}{|g|^2} A_{U}^{-1} = - \left[\xi(s) - \xi(m_U^2) \right] + 2 \frac{m_U^2 - s}{|g|^2} - i \rho_{tot}(s)
\]

$k = 4\pi \sqrt{s} \rho_{tot}(s)$
Low energy scattering parameters

Match to low energy scattering amplitude

\[A_{NR}^{-1} = \frac{1}{a} + \frac{r k^2}{2} - ik + O(k^4), \]

\[\frac{2}{|g|^2} A_{U}^{-1} = -\left[\xi(s) - \xi(m_U^2)\right] + 2\frac{m_U^2 - s}{|g|^2} - i\delta \text{tot}(s) \]

Good match for scaled amplitude

\[\delta \sqrt{s} \lesssim -\Gamma_{D^{*+}} \]
Low energy scattering parameters

\[A_{NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - ik + \mathcal{O}(k^4) \]

- **Scattering length**
 \[a = \left[- (7.16 \pm 0.51) + i (1.85 \pm 0.28) \right] \text{ fm} \]

- **Real part is negative**
 \(\rightarrow \) attraction

- **Effective range**
 \[r = - \frac{1}{w} \frac{16}{|g|^2} \]
 \[0 \leq -r < 11.9 (16.9) \text{ fm at } 90 (95)\% \text{ CL} \]

- **Compositness**
 \[Z \propto |g|^{-2} \]
 \[Z = 1 - \frac{1}{1 + 2 |r/R a|} \]
 \[Z < 0.52 (0.58) \text{ at } 90 (95)\% \text{ CL} \]

[Weinberg 1965, Matuschek, Baru, Guo & Hanhart 2021]

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"
Effective size

- Effective size from the scattering length

\[R_a \equiv -\delta a = 7.16 \pm 0.51 \text{ fm} \]

- Effective size from the binding energy

\[\Delta E = -\delta m_U \]
\[\gamma = \sqrt{2\mu\Delta E} = 26.4 \pm 1.5 \text{ MeV/c} \]
\[R_{\Delta E} \equiv \frac{1}{\gamma} = 7.5 \pm 0.4 \text{ fm} \]

- The object is really large
 - ... around Radium or Uranium nuclear
 - Top three: \(X(3872), T_{cc}^+ \) and deuteron (+other nuclei...)

Large size should have effect on production properties
Event activity/Track multiplicity

- Track multiplicity
- low-mass $D\bar{D}$ and DD

p-value: T_{cc}^+ vs $D\bar{D} = 0.1\%$
p-value: T_{cc}^+ vs $DD = 12\%$

- Similar to DD
 - DPS process
 - ... unexpected
- Different from $D\bar{D}$
 - Expected but totally different!
Track multiplicity for \(X(3872)\)

- Both states are “large”, some similarity could be expected
- \(X(3872)\) clear suppression for large multiplicity
- \(T_{cc}^+\) no suppression!!! One sees enhancement!!!

7 Oct 2021/Warwisk

Vanya Belyaev "Doubly charmed tetraquark"
The pT spectrum for the decay $T_{cc}^+ \rightarrow D^0 D^0 \pi^+$ is shown. The p-value for the comparison of $T_{cc}^+ vs \overline{D} D$ is 1.4%, and the p-value for $T_{cc}^+ vs DD$ is 0.02%. The graph indicates that more data is needed to make a definitive conclusion.

- A bit inconclusive
- More data is needed
X(3872) → D^0 D^0 \pi^0, D^0\overline{D}^0 \gamma

- **Huge X(3872) signal**
- Large uncertainty (>30%) due to X(3872) shape and background
- Larger than T_{cc} statistics
- Better understanding of X(3872) is needed

\[\text{N}(T_{cc}^+) / \text{N}(X(3872)) \sim 1/20 \]

\[m_{D^0D^0} [\text{GeV}/c^2] \]

Production estimate

arXiv:2109:01056

```
X(3872) \rightarrow D^0 \overline{D}^0 \pi^0, D^0\overline{D}^0 \gamma
```

```
• Huge X(3872) signal
• Large uncertainty (>30%) due to X(3872) shape and background
• Larger than T_{cc} statistics
• Better understanding of X(3872) is needed

N(T_{cc}^+)/N(X(3872)) \sim 1/20
```

```
Production estimate

arXiv:2109:01056
```

\[m_{D^0D^0} [\text{GeV}/c^2] \]

```
\text{LHCb} 9 \text{ fb}^{-1}
```

```
\text{arXiv:2109:01056}
```

```
JHEP 07(2019) 035
```

\[\text{JHEP 07(2019) 035} \]

```
N(T_{cc}^+)/N(X(3872)) \sim 1/20
```

```
JHEP 07(2019) 035
```

\[\text{JHEP 07(2019) 035} \]

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
For compact tetraquark interpretation of $X(3872)$ there is charged partner $\bar{X}^+$ close to $D^*+\bar{D}^0$ threshold.

No $\bar{X}^+$ signal is observed

$\bar{X}^+ : T_{cc}^+ : X(3872) < 0.1 : 1 : \sim 20$
• Manifestly exotic state near $D^*+D^0$ threshold is observed with overwhelming significance
  • New class of hadronic matter
  • Narrow
  • Just below threshold
  • Minimal quark content $ccud$
  • Long awaited $T_{cc}^+$
• Breit-Wigner mass and width

$$\delta m_{BW} = -273 \pm 61 \pm 5^{+11}_{-14} \text{ keV}/c^2,$$
$$\Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV},$$
Summary II/V

- Decay proceed via an intermediate off-shell $D^{*+}$
- Strong argument in favor of $J^P=1^+$
- Using dedicated unitarized 3-body model

\[
\delta m_U = -359 \pm 40^{+9}_{-6} \text{ keV}/c^2
\]

\[|g| > 5.1 (4.3) \text{ GeV at 90 (95) \% CL}\]

- Pole position

\[
\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2, \\
\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},
\]

- Study of $D^0D^0$ and $D^+D^0$ spectra support isoscalar nature
- Study of $D^+D^+$ and $D^+D^0\pi^+$ spectra rejects isovector nature
Summary III/V

- Scattering length
- Effective range
- Compositness
- Effective size

\[ a = \left[ - (7.16 \pm 0.51) + i (1.85 \pm 0.28) \right] \text{ fm} \]

\[ 0 \leq -r < 11.9 (16.9) \text{ fm at } 90 (95)\% \text{ CL} \]

\[ Z < 0.52 (0.58) \text{ at } 90 (95)\% \text{ CL} \]

\[ R_a \equiv -\Re a = 7.16 \pm 0.51 \text{ fm} \]

\[ R_{\Delta E} \equiv \frac{1}{\gamma} = 7.5 \pm 0.4 \text{ fm} \]

- No suppression of production at large multiplicities
  - Enhancement is seen
- Suprising similarity with \( D^0D^0 \) (DPS) production
• We already know a lot about $T_{cc}^+$ now
  • Is it enough to answer the main questions?
  • What is missing?
• What is the nature of
  • Compact tetraquark? Binding is expected. Closeness to threshold is “accidental”.
  • Molecule? Closeness to threshold is “natural”
• (Nearby) future
  • Amplitude analysis of Dalitz plot
  • Production measurements
    • Relative to $X(3872) \rightarrow D^0 \bar{D}^0 \pi^0, D^0 \bar{D}^0 \gamma, \psi \rightarrow D^0 \bar{D}^0, \Xi_{cc}^{++}$
    • Add new decay channels of $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
• More data in Run 3
Summary V

- $T_{cc}^+$ is almost stable
- $T_{bc}^0$ can be stable
- $T_{bb}^-$ should be stable
- Theory consensus
- Lattice QCD
- Only weak decays!
- Macroscopic lifetime!

Figure: Karliner & Risner, 2017
Observation of an exotic narrow doubly charmed tetraquark

Abstract

Conventional hadronic matter consists of baryons and quark-antiquark pairs, respectively. The observed narrow resonance, a doubly charmed tetraquark containing an anti-d quark, is reported using data collected at the Large Hadron Collider. This exotic state manifests itself as a narrow peak in the mass spectrum just below the $D^*+D^*$ mass threshold. The near-threshold narrow width reveals the resonance nature of this state.

© 2021 CERN for the benefit of the LHCb collaboration

Authors are listed at the end of this Letter.

Study of the doubly charmed tetraquark $T_{cc}^+$

Our distinguished colleague, beloved member of LHCb and whole hadron physics community has passed away.

His contribution to the field will have a lasting impact in future generations.

We dedicate the oncoming papers on the observation of the $T_{cc}^+$ to his memory.

Simon Eidelman 1948 - 2021

Vanya Belyaev "Doubly charmed tetraquark"
Mini-workshop on \( T_{cc}^+ \) and beyond, Online

14 September 2021
Europe/Zurich timezone

Overview
Timetable
Contribution List
My Conference
My Contributions
Participant List
Videoconference

The workshop is dedicated to discussion on the recent observation of the exotic doubly charmed tetraquark \( T_{cc}^+ \). The main purpose of the workshop is to summarize our current knowledge, both experimental and theoretical, on double heavy tetraquark system, including the properties of the \( T_{cc}^+ \) tetraquark and discuss the next steps.

1. LHCb-PAPER-2021-031, arXiv:2109.01038
2. LHCb-PAPER-2021-032, arXiv:2109.01056

The workshop is scheduled at the same date after the CERN LHC seminar, where the observation of the \( T_{cc}^+ \) tetraquark and measurement of its properties is reported.

Due to COVID-19, workshop is purely virtual, on-line only.
Thank you!
Extended Data Fig. 2: Mass distributions for $D^0 D^0 \pi^+$ combinations with fake $D^0$ candidates. Mass distributions for $D^0 D^0 \pi^+$ combinations with (a) one true and one fake $D^0$ candidate, (b) two fake $D^0$ candidates and (c) at least one fake $D^0$ candidate. Results of the fits with background-only functions are overlaid.
Extended Data Fig. 4: Mass distributions for $D^0D^+$ and $D^0D^-$ candidates. Background-subtracted $D^0D^+$ and $D^0D^-$ mass distributions.
\[ \mathcal{Q}_f(s) = \frac{1}{(2\pi)^5 \frac{\pi^2}{4s}} \int \int ds_1 ds_2 \frac{|M_f(s, s_{12}, s_{23})|^2}{|g|^2} \]
\[ \xi(s) = \frac{s}{2\pi} \text{p.v.} \int_{s_{\text{th}}^*}^{+\infty} \frac{\rho_{\text{tot}}(s')}{s' (s' - s)} ds' , \]
Mass splitting for isovector:

\[
\begin{align*}
    m_{\Sigma_{c}^{++}} &= m_{\Sigma} + m_{u} + m_{u} - a q_{u} q_{u} - b q_{c} (q_{u} + q_{u}) \\
    m_{\Sigma_{c}^{+}} &= m_{\Sigma} + m_{u} + m_{d} - a q_{u} q_{d} - b q_{c} (q_{u} + q_{d}) \\
    m_{\Sigma_{c}^{0}} &= m_{\Sigma} + m_{d} + m_{d} - a q_{d} q_{d} - b q_{c} (q_{d} + q_{d})
\end{align*}
\]

\[
\begin{align*}
    m_{\hat{T}_{0}^{cc}} &= m_{\hat{T}_{cc}} + m_{u} + m_{u} - a' q_{u} q_{\bar{u}} - b' q_{cc} (q_{\bar{u}} + q_{u}) \\
    m_{\hat{T}_{+}^{cc}} &= m_{\hat{T}_{cc}} + m_{u} + m_{d} - a' q_{u} q_{\bar{d}} - b' q_{cc} (q_{\bar{u}} + q_{d}) \\
    m_{\hat{T}_{++}^{cc}} &= m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' q_{d} q_{\bar{d}} - b' q_{cc} (q_{\bar{d}} + q_{d})
\end{align*}
\]

\[
\begin{align*}
    m_{\hat{T}_{0}^{cc}} - m_{\hat{T}_{+}^{cc}} &= -5.9 \pm 1.5 \text{ MeV}/c^2, \\
    m_{\hat{T}_{++}^{cc}} - m_{\hat{T}_{+}^{cc}} &= 7.9 \pm 1.3 \text{ MeV}/c^2.
\end{align*}
\]
Consistency of two models

Both models describe data well
Resolution background

Cross-check with pseudoexperiments

Parameter | Value
--- | ---
$N$ | $117 \pm 16$
$\delta m_{BW}$ | $-273 \pm 61$ keV/$c^2$
$\Gamma_{BW}$ | $410 \pm 165$ keV

Parameter | Value
--- | ---
$N$ | $186 \pm 24$
$\delta m_U$ | $-359 \pm 40$ keV/$c^2$
$|g|$ | $3 \times 10^4$ GeV (fixed)

mode | [keV/$c^2$] | FWHM | [keV/$c^2$]
--- | --- | --- | ---
$\delta^{BW}$ | $-279 \pm 59$ | $409 \pm 163$
$\delta^{U}$ | $-361 \pm 40$ | $47.8 \pm 1.9$

Parameter | Pseudoexperiments | Data
--- | --- | ---
mean | RMS |
$\delta m_{BW}$ | $-301$ | $-273 \pm 61$
$\Gamma_{BW}$ | $222$ | $410 \pm 165$
$\delta m_U$ | $-378$ | $-359 \pm 40$
Trigger

L0 Hardware Trigger: 1 MHz readout, high $E_T/P_T$ signatures

- 450 kHz $h^\pm$
- 400 kHz $\mu/\mu^\pm$
- 150 kHz $e/\gamma$

Defer 20% to disk

Software High Level Trigger

- 29000 Logical CPU cores
- Offline reconstruction tuned to trigger time constraints
- Mixture of exclusive and inclusive selection algorithms

5 kHz Rate to storage

Software High Level Trigger

- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers

12.5 kHz Rate to storage