

Vector Boson Scattering to Unravel EWSB and Probe BSM Physics

Karolos Potamianos STFC Ernest Rutherford Fellow Elementary Particle Physics Seminar University of Warwick March 9, 2023

The Standard Model of Particle Physics

Standard Model of Elementary Particles

The Higgs boson

Higgs mechanism

- > Implements (Spontaneous) Electroweak Symmetry Breaking (EWSB) in SM
- > Cornerstone of SM: gives mass to fundamental particles

Higgs: last fundamental particle discovered (2012), after almost 50 years!

Standard Model Production Cross Section Measurements

Status: February 2022

The Standard Model of Particle Physics

Yet, the Standard Model doesn't explain many observed phenomena

- **Gravity** is absent from the SM
- Dark Matter and Dark Energy
- Massive neutrinos
- The matter-antimatter asymmetry

Large experimental programme to unravel the mysteries of our Universe at the Large Hardon Collider (LHC) at CERN.

Important to look at the LHC data, probing the rarest SM processes to look for deviations from theory, which could be hints of new physics.

Probing the SM of Particle Physics

- $\gamma/Z \rightarrow II, W \rightarrow Iv$ well understood
- $H \rightarrow \gamma\gamma$, WW, ZZ, $\tau\tau$ observed
- WW V (V=W, Z, γ) precisely measured at LEP and LHC
- Higgs self-coupling not <u>yet</u> measurable
- Probing WW VV limited by experimental data

arXiv:1412.8367

WARWICK

Probing Electroweak Symmetry Breaking

- VBS at high energy subject to delicate cancellation between terms
 - \circ σ(W_LW_L→ W_LW_L) grows with energy w/o Higgs boson
 - Very sensitive to shifts in the trilinear or quartic gauge coupling

Vector Boson Scattering (VBS)

Complementary probe to direct Higgs measurements

500

200

1000

2000

5000

10000 \sqrt{s}/GeV

A light Higgs boson prevents crosssection of VBS processes from becoming unphysical (diverging)

VBS measurements test the consistency of the SM and is sensitive to New Physics

Standard Model Production Cross Section Measurements

Status: February 2022

Probing VBS (and VBF) :: Motivation

- Important tests of Electroweak and Strong interaction
- They directly **probe EW boson self-interactions**
- They are a portal to
 - Understanding EWSB
 - Probing BSM physics

Measurements:

- Fiducial and differential cross-sections
- Looking for anomalous couplings (EFT)
- Probing EW boson polarisation

Signal definition

VBS

non-resonant

EW Signal

Signal definition

VBS Topology

arXiv:hep-ph/9605444; 1996

- Two hadronic jets in the forward/backward regions with high energy (tagging jets)
- Hadronic activity suppressed between two jets (rapidity gap) due to absence of colour flow between interacting partons
- Two bosons produced ~back-to-back

The LHC

A 27 km collider at CERN in Geneva

ALICE

CMS

Probing the rarest SM Processes

The ATLAS Detetor

How does VBS look like in ATLAS?

Two charged leptons (e and μ) from (here) W \rightarrow lv Energy imbalance (v)/

Run: 302956 Event: 1297610851 2016-06-29 09:25:24 CEST m_{jj} = 3.8 TeV Two forward particle "jets" (from the incoming protons)

Probing Electroweak (EW) W[±]W[±]jj

Electroweak mediated VV jj production

$W^{\pm}W^{\pm}$ jj is most sensitive VBS process (largest σ_{EW}/σ_{QCD} ratio)

Observation by ATLAS in 2018 using 36.1 fb⁻¹ (~60 EW W[±]W[±]jj events, S/B \approx 1)

Overview of Run-2 ATLAS VBS/VBF Analyses

Z(vv)yjj (139 fb⁻¹): 6.3σ (*)

150 200

100

→ WW (139 fb⁻¹): 8.4σ 1211136190 1200 - Data

Leptonic

ZZjj (139 fb⁻¹): 5.5σ WZjj (36 fb⁻¹): 5.3σ

Data

ZZ

tt+V

W[±]Z-EW

W[±]Z-QCD

Misid. leptons

tZj and VVV

0.5

BDT Score

0

W/ Tot. unc.

350 400

p^{⊪y} [GeV]

Observation of EW W[±]W[±]jj

Inclusive ZZjj Production

Electroweak ZZjj Production

- Using BDT to separate EW and QCD ZZjj
- Also fitting QCD CR to constrain background
- **EW ZZjj cross-section : 0.82 ± 0.21 fb** (one of the smallest measured by ATLAS)

Observation of EW ZZjj (LO MG5+Pythia8)

	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	5.5 (3.9) σ
$\ell\ell u u jj$	$1.2 (1.8) \sigma$
Combined	5.5 (4.3) σ

EW WZjj Production

WZjj (36 fb⁻¹): 5.3σ PLB 793 (2019) 469

a'''							*	L
q'' q''' q''' q'''' q''''''''''''''''''''''''''''''''''''	ATLAS (S = 13 TeV, 36.1 fb ⁻¹ W [±] Zjj • Data ···································	MC Events / 0.2	45 40 35 30 25 10 5 20 10 20	TLAS = 13 TeV, 36.1 fb ⁻¹ WZjj SR	Data W ² Z-EW W ² Z-QCD ZZ Misid. leptons tzj and VVV Tot. unc.	herpa Δσ ^{fid.} /Δ φ _{jj} [fb/rad]	ATLAS Data Sherpa (scaled) WZji-EW × 1.77 WZji-QCD × 0.56	$vs = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ $W^{\pm}Zjj \rightarrow \ell' \nu \ell \ell jj$
Source	Uncertainty [%]	Data / I	1 ///////			ttio to S		
WZjj-EW theory modelling WZjj-QCD theory modelling WZjj-EW and $WZjj$ -QCD interference	$4.8 \\ 5.2 \\ 1.9$		-1		0.5 BDT Sci			$\Delta \phi_{jj}$ [rac
Jets	6.6				SR	WZjj-QCD	CR b-CR	ZZ-CR
Pile-up Electrons	$\begin{array}{c} 2.2 \\ 1.4 \end{array}$			Data Total predicted	$ 161 167 \pm 11 $	$\begin{array}{ccc} 213\\ 204 & \pm & 12 \end{array}$	$\begin{array}{c} 141\\ 146 \pm 11 \end{array}$	$52 \\ 51.3 \pm 7.0$
Muons b-tagging MC statistics Misid. lepton background Other backgrounds	0.4 0.1 1.9 0.9 0.8				$\begin{array}{rrrr} 44 & \pm 11 \\ 91 & \pm 10 \\ 7.8 & \pm 3.2 \\ 11.1 & \pm 2.8 \\ 6.2 & \pm 1.1 \\ 4.7 & \pm 1.2 \end{array}$	$8.52 \pm 0.4 \\ 144 \pm 14 \\ 14.0 \pm 5.7 \\ 18.3 \pm 1.1 \\ 6.3 \pm 1.1 \\ 11.14 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.211\pm & 0.004\\ 0.94\ \pm & 0.14\\ 0.41\ \pm & 0.18\\ 40.8\ \pm & 7.2\\ 0.17\ \pm & 0.04\\ 2.47\ \pm & 0.04\\ \end{array}$
Luminosity	2.1			tt + V ZZjj - EW VVV	4.7 ± 1.0 1.80 ± 0.45 0.59 ± 0.15	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.47 ± 0.54 4.2 ± 1.2 1.06 ± 0.30
Total Systematics	10.7				5.00 m 5.10			1.00 - 0.00

 $\Delta \phi_{jj}$ [rad]

EW VVjj Production

VVii (36 fb⁻¹): 2.7σ 032007

WARWICK

ZCI PZC

N N

μγ

EW VVjj Production

		61 63 6		6.11		
Fiducial p	hase space	Predicted $\sigma_{\rm EWVVjj}^{\rm fid,SM}$ [fb]	Measure	d $\sigma_{\mathrm{EW}VVjj}^{\mathrm{fid,obs}}$ [fb]		Uncertainty
	0-lepton	$4.1 \pm 0.3 ({\rm theo.})$	10.1 ± 3.3 (stat.) $^{+4.2}_{-3.8}$ (syst.)		Total uncert
Merged	$1 ext{-lepton}$	$6.1 \pm 0.5 ({\rm theo.})$	$2.0\pm1.5($	stat.) $^{+2.9}_{-2.8}$ (syst.)		Statistical
	2-lepton	$1.2 \pm 0.1 (\text{theo.})$	2.4 ± 0.6 (stat.) $^{+0.8}_{-0.7}$ (syst.)		Systematic
	0-lepton	9.2 ± 0.6 (theo.)	22.8 ± 7.4 (stat.) $^{+9.4}_{-8.5}$ (syst.)		Theoretical
Resolved	1-lepton	$16.4 \pm 1.0 (\text{theo.})$	$5.5 \pm 4.1 ($	stat.) $^{+7.7}_{-7.5}$ (syst.)		Floating nor
	2-lepton	$6.0 \pm 0.4 ({\rm theo.})$	11.8 ± 3.0 (stat.) $^{+3.8}_{-3.5}$ (syst.)		Z + jets W + jets
	0-lepton	13.3 ± 0.8 (theo.)	32.9 ± 10.7	$(\text{stat.})^{+13.5}_{-12.3} (\text{syst.})$		$t\bar{t}$
Inclusive	1-lepton	$22.5 \pm 1.5 ({\rm theo.})$	7.5 ± 5.6 (stat.) $^{+10.5}_{-10.2}$ (syst.)		Diboson
	2-lepton	$7.2 \pm 0.4 (\text{theo.})$	14.2 ± 3.6 (stat.) $^{+4.6}_{-4.2}$ (syst.)		Multijet
						MC statistic
Fiducia	l phase sp	bace Predicted $\sigma_{\rm EW}^{\rm fid,S}$	SM VVii [fb]	Measured σ	fid, obs EWVV i i [fb]	Exper
Merged		11.4 ± 0.7 (the	o.)	12.7 ± 3.8 (sta	t.) $^{+4.8}_{-4.2}$ (syst.)	Large- <i>R</i> jets Small- <i>R</i> jets
Resolve	ed	31.6 ± 1.8 (the	o.)	26.5 ± 8.2 (sta	t.) $^{+17.4}_{-17.1}$ (syst.)	$E_{\rm T}^{\rm miss}$ b-tagging
Inclusiv	/e	43.0 ± 2.4 (the	o.)	45.1 ± 8.6 (sta	t.) $^{+15.9}_{-14.6}$ (syst.)	Pileup Luminosity

Uncertainty source	σ_{μ}				
Total uncertainty	0.41				
Statistical	0.20				
Systematic	0.35				
Theoretical and modeling uncertainties					
Floating normalizations	0.09				
Z + jets	0.13				
W+ jets	0.09				
tī	0.06				
Diboson	0.09				
Multijet	0.04				
Signal	0.07				
MC statistics	0.17				
Experimental uncerta	unties				
Large-R jets	0.08				
Small- <i>R</i> jets	0.06				
Leptons	0.02				
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.04				
<i>b</i> -tagging	0.07				
Pileup	0.04				

0.03

EW Z(II)yjj Production

Source	Uncertainty [%]
Statistical	+19 -18
$Z\gamma jj$ –EW theory modelling	+10
$Z\gamma jj$ –QCD theory modelling	± 6
$t\bar{t} + \gamma$ theory modelling	± 2
$Z\gamma jj$ –EW and $Z\gamma jj$ –QCD interference	$^{+3}_{-2}$
Jets	±8
Pile-up	±5
Electrons	± 1
Muons	$^{+3}_{-2}$
Photons	±1
Electrons/photons energy scale	± 1
<i>b</i> -tagging	± 2
MC statistical uncertainties	± 8
Other backgrounds normalisation (including Z +jets)	+9 -8
Luminosity	±2
Total uncertainty	±26

Zyjj (36 fb⁻¹): 4.1σ

SR

Data

Z+jets

 $t\bar{t} + \gamma$

=

=

 $\sigma^{\rm fid.}_{Z\gamma jj-{\rm EW}}$

Phys. Lett. B 803 (2020) 135341

b-CR

BDT used to separate EW Zyjj from backgrounds. 29

EW Z(vv)yjj Production

Selections		Cut value			
Emiss		> 120 GeV			
$\dot{E}_{ au}^{\gamma}$		> 150 GeV			
Number of isolated	photons	$N_{\gamma} = 1$			
Photon isolation $E_{T}^{cone40} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} + 2.45 \text{ GeV}, p_{T}^{cone20} / p_{T} < 0.022 p_{T} < 0$					
Number of iets $N_{\text{iets}} > 2$ with $p_{\text{T}} > 50$ GeV				eV	
Overlap remo	val	ΔR	$(\gamma, jet) > 0.3$		
Lepton veto)	Ne	$=0, N_{\mu}=0$		
$ \Delta \phi(\gamma, \vec{p}_{T}) $	5)	c c	> 0.4		
$ \Delta \phi(j_1, \vec{p}_T^{\text{miss}}) $	s)		> 0.3		
$ \Delta \phi(j_2, \vec{p}_{\rm T}^{\rm mis}) $	s)		> 0.3		
m_{ii}	<i>,</i> ,,	2	> 300 GeV		
γ -centrality	/		< 0.6		
Analysis targeting aQGC searches					
	$W\gamma$ CR	$Z\gamma$ QCD CR 1	$Z\gamma$ QCD CR 2	Signal region	
$Z(\nu\bar{\nu})\gamma j j$ EWK	0.108 ± 0.028	11.0 ± 4.3	4.0 ± 2.2	37 ± 14	
$Z(v\bar{v})\gamma jj$ QCD	1.04 ± 0.46	394 ± 84	143 ± 32	133 ± 39	
$W(\ell \nu)\gamma j j \text{ QCD}$	425 ± 63	237 ± 71	76 ± 24	91 ± 30	
$W(\ell \nu)\gamma j j EWK$	63 ± 12	14.3 ± 2.7	4.5 ± 1.2	24.6 ± 4.9	
$W(ev)jj,tjj,t\bar{t}jj$	39.8 ± 2.5	70.1 ± 4.1	17.9 ± 1.3	22.5 ± 1.5	
$t\bar{t}\gamma j j$	193 ± 57	57 ± 20	9.1 ± 3.4	21.3 ± 7.6	
γjj	4.8 ± 7.4	52 ± 36	8 ± 11	20 ± 17	
Zj, jj	0.06 ± 0.66	20 ± 14	5.9 ± 6.9	6.6 ± 7.8	
$Z(\ell\bar{\ell})\gamma jj$	8.6 ± 2.5	6.8 ± 2.0	2.04 ± 0.95	2.2 ± 1.3	
Total	735 ± 30	863 ± 54	271 ± 25	357 ± 30	
Data	737 849 268 356				
Fiducial $\sigma_{Z\gamma EWK} = 0.77^{+0.34}_{-0.30}$ fb.					

W/w/ii EWK		Source of uncertainty	$\Delta \sigma / \sigma$ [%]
ttyji	W(e⊽)jj, tjj, ttjj _ γij	Experimental	
Zj, jj	Z(İİ)γjj	Jets	-3.2/+3.4
Uncertainty	Pre-Fit Bkgd.	Electrons and photons	-0.3/+1.7
	-	Muons	-0.4/+0.5
	_	$E_{\mathrm{T}}^{\mathrm{miss}}$	-1.8/+2.2
	Ē	Pile-up modelling	-1.7/+3.2
	-	Trigger efficiency	-0.9/+2.1
·////		Luminosity	-1.2/+2.6
		Theory	
		$Z(v\bar{v})\gamma jj$ EWK/QCD interference	-0.6/+2.6
	- internet	$Z(\nu\bar{\nu})\gamma jj$ EWK process	-6 /+12
Ī		$Z(\nu\bar{\nu})\gamma jj$ QCD process	-15 /+16
X		Other processes	-5.3/+7.7
		Other sources	
31 0.86 0.90	0.93 0.95 1	Data-driven backgrounds	-0.9/+1.2
	assiller response	Pile-up background	-1.2/+2.6
Z(v⊽)γjj EWK	Z(v⊽)γjj QCD	$Z(\nu\bar{\nu})\gamma jj$ QCD m_{jj} modelling	-4.4/+4.4
Yjj	Zj, jj	q	q
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	••••	7 [$\bigvee \gamma$
	-	The N	'
	2, , J) Uncertainty Uncertainty	2, vy 7, jj Uncertainty ···· Pre-Fit Bkgd.	Jets Jets Electrons and photons Muons E_{T}^{miss} Pile-up modelling Trigger efficiency Luminosity Theory $Z(v\bar{v})\gamma jj$ EWK/QCD interference $Z(v\bar{v})\gamma jj$ EWK/QCD interference $Z(v\bar{v})\gamma jj$ EWK process $Z(v\bar{v})\gamma jj$ QCD process Other sources Data-driven backgrounds Pile-up background $Z(v\bar{v})\gamma jj$ QCD m_{jj} modelling q

ą

 \wedge

ą 30

EW Z(νν)γjj Production

Observable	Requirements
$N_{\rm jet}$ with $p_{\rm T} > 25 {\rm ~GeV}$	≥ 2
$ \eta(j_{1,2}) $	< 4.5
$p_{\mathrm{T}}(j_1)$ [GeV]	> 60
$p_{\mathrm{T}}(j_2)$ [GeV]	> 50
$\Delta R(j,\ell)$	> 0.4
$ \Delta \eta_{jj} $	> 3.0
C_3	< 0.7
m_{ii} [TeV]	> 0.5
truth- $E_{\rm T}^{\rm miss}$ [GeV]	> 150
$\Lambda \phi(\text{truth}-\vec{F}^{\text{miss}}, i)$	>10
$p_{\rm T}(\gamma) [{\rm GeV}]$	> 15, < 110
$ \eta(\gamma) $	< 2.37
$E_{\rm T}^{\rm cone20}/E_{\rm T}^{\gamma}$	< 0.07
$\Delta R(\gamma, \text{jet-or-}\ell)$	> 0.4
C_{γ}	> 0.4
$\Delta \phi$ (truth- $\vec{E}_{\rm T}^{\rm miss}, \gamma$)	> 1.8
N_ℓ with $p_{\rm T} > 4$ GeV and $ \eta < 2.47$	0

Drocoss		SR - <i>m</i>	_{ij} [TeV]	
Process	0.25-0.5	0.5-1.0	1.0-1.5	≥ 1.5
Strong $Z\gamma$ + jets	20 ± 6	54 ± 12	13 ± 5	5 ± 2
EW $Z\gamma$ + jets	4 ± 1	30 ± 7	25 ± 5	36 ± 7
Strong $W\gamma$ + jets	22 ± 6	35 ± 10	9 ± 3	3 ± 1
EW $W\gamma$ + jets	2 ± 1	6 ± 1	4 ± 1	5 ± 1
jet $\rightarrow \gamma$	1 ± 1	2 ± 2	1 ± 1	0.4 ± 0.3
$jet \rightarrow e$	_	_	-	_
$e \rightarrow \gamma$	6 ± 1	11 ± 1	2.6 ± 0.4	1.4 ± 0.3
γ + jet	0.7 ± 0.5	0.4 ± 0.3	0.1 ± 0.1	0.1 ± 0.1
$t\bar{t}\gamma/V\gamma\gamma$	2 ± 1	4 ± 1	0.4 ± 0.2	0.1 ± 0.1
Fitted Yields	58 ± 6	143 ± 12	54 ± 5	52 ± 6
Data	52	153	50	52
Data/Fit	0.90 ± 0.15	1.07 ± 0.11	0.93 ± 0.16	0.99 ± 0.18

Combination of SM analysis with observation from search for invisible Higgs decays in $E_{\rm T}^{\rm miss}\,\gamma jj$

		Value	
POI	SM analysis	Inv. Higgs ana	. Combination
$\mu_{Z\gamma \rm EWK}$	0.78 ± 0.33	1.03 ± 0.25	0.96 ± 0.18
$\mu_{Z\gamma m QCD}$	1.21 ± 0.37	1.02 ± 0.41	1.17 ± 0.27
$\mu_{W\gamma}$	1.02 ± 0.22	1.01 ± 0.20	1.01 ± 0.13
Combi	nation: 6.3c	7	
Accepted	by IHEP		

Photon-induced WW :: $yy \rightarrow WW$

Photon-induced WW :: $yy \rightarrow \frac{1}{2}$ $\sigma(yy \rightarrow WW) = 3.13 \pm 0.31(stat) \pm 0.28(sys)$ ft Observation: 8.4 σ

	Signal region		Control regions	
n _{trk}	n _{trk}	= 0	$1 \leq n_{\mathrm{trk}}$	≤ 4
$p_{\mathrm{T}}^{e\mu}$	> 30 GeV	< 30 GeV	> 30 GeV	< 30 GeV
$\gamma\gamma \to WW$	174 ± 20	45 ± 6	95 ± 19	24 ± 5
$\gamma\gamma \rightarrow \ell\ell$	5.5 ± 0.3	39.6 ± 1.9	5.6 ± 1.2	32 ± 7
Drell–Yan	4.5 ± 0.9	280 ± 40	106 ± 19	4700 ± 400
$qq \rightarrow WW$ (incl. gg and VBS)	101 ± 17	55 ± 10	1700 ± 270	970 ± 150
Non-prompt	14 ± 14	36 ± 35	220 ± 220	500 ± 400
Other backgrounds	7.1 ± 1.7	1.9 ± 0.4	311 ± 76	81 ± 15
Total	305 ± 18	459 ± 19	2460 ± 60	6320 ± 130
Data	307	449	2458	6332

Photon-induced WW :: $yy \rightarrow WW$ $\sigma(yy \rightarrow WW) = 3.13 \pm 0.31(stat) \pm 0.28(sys)$ fb Observation: 8.4 σ

Source of uncertainty	Impact [% of the fitted cross section]
Experimental	
Track reconstruction	1.1
Electron energy scale and resolution, and efficiency	0.4
Muon momentum scale and resolution, and efficiency	0.5
Misidentified leptons, systematic	1.5
Misidentified leptons, statistical	5.9
Other background, statistical	3.2
Modelling	
Pile-up modelling	1.1
Underlying-event modelling	1.4
Signal modelling	2.1
WW modelling	4.0
Other background modelling	1.7
Luminosity	1.7
Total	8.9

Photon-Photon Scattering in Pb+Pb Collisions

59 events w/ expected background of 12 ± 3 8.2σ observation of light-by-light scattering

PRL 123 (2019) 052001

20

25

15

10

30

m_{γγ} [GeV]

Opportunities in VBS Topologies

Polarised VBS Production

- Longitudinal VBS : key aspect of EWSB but SMALL (5-10% of W[±]W[±]jj fraction)
- Probe of unitarization mechanism and new physics!
- Challenging to observe, esp. for $W_{L}^{\pm}W_{L}^{\pm}jj \rightarrow will$ require HL-LHC (more later)
- Looking into improving event selection and using machine learning to reconstruct kinematic properties of the W boson, as well as using hadronic W decays

Polarised W[±]W[±]jj Production

Using ML to improve sensitivity

Probing all-hadronic W[±]W[±]jj (VBS)

Excellent channel to probe longitudinal polarisation at the LHC

- Leveraging high branching fraction of $W \rightarrow qq$
- Acces to both W decay products (to access polarisation)
- Tagging two forward jets (VBS) and two V-jets

Challenges:

- Charge reconstruction
- Background suppression
- Discriminate W[±]W[±]jj VBS from QCD
- Discriminate longitudinal (W_L) from transverse (W_T) _{q'_i} ~ (use difference in decay products w.r.t. W momentum)

Tools:

- Jet substructure techniques (grooming, n-subjettiness)
- Machine learning: DNN, GNN

Techniques developed useful in other LHC analysis context

Looking for BSM Physics in VBS Topologies

Effective Field Theory

Individual

95% Individua

[<-5.00, >5.00]

[-2.209, 1.847]

[-2.712, 2.576]

[-0.155, 0.152]

[-0.156, 0.160]

[-1.384, 1.464]

[-1.694, 1.403]

[-1.012, 0.994] [-0.195.0.336]

[-0.200.0.321]

[-0.097.0.080]

[-0.191.0.148]

[-0.066 . 0.230]

[-0.059, 0.085]

[-0.087, 0.093]

41

- Deviations from the SM are studied in the context of SMFFT
 - Model-independent way to look at new interactions of SM particles
- High sensitivity of VBS to operators generating anomalous triple (TGC) and quartic (OGC) gauge couplings × 2

$$\sigma \propto |\mathcal{M}_{\text{SMEF}} = |\mathcal{M}_{\text{SM}}|^2 + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} 2\text{Re}\left(\mathcal{M}_i^{(6)}\mathcal{M}_{\text{SM}}^*\right) + \sum_{i} \frac{\left(c_i^{(6)}\right)^2}{\Lambda^4} \left|\mathcal{M}_i^{(6)}\right|^2 + \sum_{i < j} \frac{c_i^{(6)}c_j^{(6)}}{\Lambda^4} 2\text{Re}\left(\mathcal{M}_i^{(6)}\mathcal{M}_j^{(6)*}\right) + O\left(\Lambda^{-4}\right)$$
SM Interference SM-EFT (quadradic) (cross-term)

Georgi-Machacek model

Nucl.Phys.B 262 (1985) 463-477

 \mathbf{W}^{\pm}

 \mathbf{W}^{\pm}

 $\mathrm{H}^{\pm\pm}$

Higgs triplet extension: one real and one complex triplet

- Tree-level H[±] WZ coupling and doubly charged Higgs: H^{±±}
- Fermiophobic quintuplet under custodial symmetry with H, H[±], and H^{±±} physical states

Origin of mass in the SM

- Masses of **charged fermions**: Yukawa-like interactions with Higgs field
- Observed at the LHC
- On-going efforts for precision, CP tests...

- But mechanism behind **mass of neutrinos** (neutral fermions) *remains unclear*
 - No right-handed v in SM no Higgs coupling
 - From neutrino oscillation measurements: $m_v > 0$
- Much larger mixing compared to quarks

Neutrino-less double β decay (0νββ) Phys. Rev. D 25, 2951 (1982) [HEP 1106 (2011) 091] dL

 $0\nu\beta\beta$ implies effective Majorana mass terms m $\chi\chi$

- Direct probe of new mass generation mechanism
- $\Delta L = 2$: source of matter-antimatter asymmetry

LHC focus has so-far been on s-channel production of heavy v (100 GeV – 1 TeV)

- Final state corresponding to t-channel not covered
- 2 jets, 2 SS e/ μ / τ , <u>no Etmiss</u> \rightarrow similar to W[±]W[±]jj

Neutrino-less double β decay (0vββ)

- GERDA = $0\nu\beta\beta$ experiment \rightarrow electrons only
- EWPD = Z invisible width measurement at LEP
- $0\nu\beta\beta$ -like at LHC contributes for $M_N > 1$ TeV

<u>New J. Phys. 17 (2015) 075019</u> (LHC Run-1 only)

Prospects for VBS at HL-LHC

W[±]W[±]jj EW Production at the HL-LHC

- 5-10% of $W_L^{\pm}W_{\pm}^{\pm}$ jj fraction
- Probe of unitarization mechanism and new physics!
- Need ATLAS+CMS to measure (w/o new techniques)
- Using ML & hadronic decays

+ Prospects studies @ FCC-hh and muon collider (opposite-sign WWjj)

Probing the Higgs self-coupling

- VBS topology can be used to look at higher-order processes
- Higgs self-coupling accessible via pp \rightarrow VVhjj
 - $H \rightarrow$ bb mode most promising
- Lepton channel viable @ HL-LHC
 - Semi-leptonic / hadronic might be probed before

An Event at the HL-LHC Much higher pile-up: <µ> = 140-200

Street Maria Hill - THE

Coping with challenging conditions _{??} HS jet

Multiple interactions (pile-up, PU) are a challenge

- W[±]W[±]jj: **forward jets** from the **hard-scatter** primary vertex
- **Pile-up** causes forward "pile-up" jets (QCD and stochastic)
 - Increases background contribution

Lack of particle tracking coverage in the forward region pileup jet makes it more difficult to identify/suppress jets

QCD

ID tracker coverage

HS

ID tracker coverage

PV

At the High-Luminosity LHC: 5x more pile-up

 ATLAS Inner Tracker (ITk) upgrade with extended tracking coverage

Photon-induced WW :: $yy \rightarrow WW @ HL-LHC$

WARWIC

Improved tracking to handle high pile-up

- Timing detectors promising to improve tracking under high pile-up conditions
 - Using time-wise association of tracks to primary interaction vertex
- Low-Gain Avalanche Detectors (LGADs) have a
 - time resolution down to 30 ps
- ATLAS & CMS will have LGAD timing layers, but not near the collision point (not radiation hard enough)
 - Must go further: sensor R&D for 4D tracking in the whole tracker (e.g. 3D silicon designs)
- ATLAS will be upgraded early/mid 2030's: replacement of two innermost layers
 - Opportunity to develop new technologies for fast silicon sensors (4D tracking)
- Also useful for future colliders (esp. FCC-hh, but also CEPC or FCC-ee)

3D sensor timing

53

The Start of a Long Journey

These sets of results using Run-2 data are ony the beginning...

As we learned to understand the backgrounds and signal, we can proceed with further probes: Differential distributions

Probing polarisation

But we will need the HL-LHC for high precision measurements and observation of polarisation

- Improved analysis techniques (ML, hadronic decays)
- Timing for HL-LHC

Stay tuned on this exciting field!

2/2/2/	$\sigma = 72.6 \pm 6.5 \pm 9.2$ fb (data)					[fb ⁻¹]	PLB 781 (2018) 55	Y	\\/AR\\/I
$\gamma \gamma \gamma$ \mathbf{Z}_{2}	NNLO (theory) $\sigma = 5.07 \pm 0.73 - 0.68 \pm 0.42 - 0.39$ fb (data)	ATLAS Preliminary				20.2	PRD 93 112002 (2016)	Л	
-[n; -0]	MCFM NLO (theory) $\sigma = 3.48 \pm 0.61 \pm 0.56 \pm 0.3 \pm 0.26$ fb (data)					20.3	PBD 93, 112002 (2016)	r L	
$N_{2} = 0$	MCFM NLO (theory) $\sigma = 6.1 \pm 1.1 - 1 \pm 1.2 \text{ fb (data)}$					20.3	PRI 115 031802 (2015)		
$- [\mathbf{n} \cdot \mathbf{n} - 0]$	MCFM NLO (theory) $\sigma = 2.9 \pm 0.8 - 0.7 + 1 - 0.9$ fb (data)	$\gamma_{5} = 7,0,15$ TeV				20.3	PBL 115, 031802 (2015)		
$M_{N} \rightarrow e_{V} \mu_{V}$	$\sigma = 1.5 \pm 0.9 \pm 0.5 \text{ fb (data)}$					20.3	EP.IC 77 (2017) 646		
	$\sigma = 0.82 \pm 0.01 \pm 0.08 \text{ pb} (\text{data})$					120.2	orViv:2201 12045		
VWW , (tot.)	NLO QCD (theory) $\sigma = 230 \pm 200 \pm 150 - 160$ fb (data)		_			20.3	EP.IC 77 (2017) 141		
_ __\lyfyii	Madgraph5 + aMCNLO (theory) $\sigma = 0.24 + 0.39 - 0.33 \pm 0.19$ fb (data)					20.0	EP IC 77 (2017) 141		
$\Lambda/\Lambda/\Lambda/ \Lambda = \ell_{1}\ell_{2}\ell_{3}\ell_{3}$	Madgraph5 + aMCNLO (theory) $\sigma = 0.31 + 0.35 - 0.33 + 0.32 - 0.35$ fb (data)					20.0	EPJC 77 (2017) 141		
$ VVVV \rightarrow i Vi Vi V$	madgraph5 + aMCNLO (theory) $\sigma = 0.55 \pm 0.14 \pm 0.15 - 0.13 \text{ pb (data)}$				-	70.0	PLB 798 (2019) 13/913		
v v z , (lot.)	Sherpa 2.2.2 (theory) $\sigma = 4 \pm 0.3 \pm 0.3 \pm 0.3 \pm 0.4$ pb (data)	Theory	- 1 C			120	ATLAS_CONE_2021_053		
ijj VBF	LHC-HXSWG (theory) $\sigma = 2.43 + 0.5 - 0.49 + 0.33 - 0.26 \text{ pb} (data)$			-		20.3	EP.IC 76 (2016) 6		
	$\sigma = 0.79 \pm 0.11 - 0.1 \pm 0.16 - 0.12 \text{ pb} \text{ (data)}$	LHC pp \sqrt{s} = 13 TeV -				120.0	ATLAS CONE 2021 014		
– H(→WW)jj VBF	NNLO QCD and NLO EW (theory) $\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 \text{ pb} (data)$	Data				20.3	PBD 92 012006 (2015)		
	LHC-HXSWG (theory) $\sigma = 65.2 \pm 4.5 \pm 5.6$ fb (data)	stat				139	ATLAS_CONE_2019_029		
– H (→γγ)ii VBE	$\sigma = 42.5 \pm 9.8 + 3.1 - 3$ fb (data)	stat ⊕ syst				20.3	ATLAS-CONF-2015-060		
	LHC-HXSWG (theory) $\sigma = 49 \pm 17 \pm 6$ fb (data)	LHC pp $\sqrt{s} = 8$ TeV				20.5 4 5	ATLAS-CONF-2015-060		
	$\sigma = 43.5 \pm 6 \pm 9$ fb (data)	Data –		•		20.2	FP.IC 77 (2017) 474		
	Powheg+Pythia8 NLO (theory) $\sigma = 159 \pm 10 \pm 26$ fb (data)	stat				20.2	EP.IC 77 (2017) 474		
– M(jj) > 500 GeV	Powneg+Pythia8 NLO (theory) $\sigma = 144 \pm 23 \pm 26$ fb (data)	stat ⊕ syst				17	EPJC 77 (2017) 474		
	$\sigma = 37.4 \pm 3.5 \pm 5.5$ fb (data)	LHC pp $\sqrt{s} = 7$ leV	-			130	EP.IC 81 (2021) 163		
Zjj EWK	$\sigma = 10.7 \pm 0.9 \pm 1.9$ fb.(data)	Data				20.3	JHEP 04 031 (2014)		
	PownegBox (NLO) (theory) $\sigma = 4.49 \pm 0.4 \pm 0.42$ fb (data)	• stat				130	ATLAS_CONE_2021_038		
ίγ jj EWK	Madgraph5 + aMCNLO (theory) $\sigma = 1.1 \pm 0.5 \pm 0.4$ fb (data)	stat ⊕ syst		-		20.3	.IHEP 07 (2017) 107		
	$\sigma = 3.13 \pm 0.31 \pm 0.28$ fb (data)		100			139	PLB 816 (2021) 136190		
$\gamma \rightarrow WW$	MG5_aMCNLO+Pythia8 × Surv. Fact (0.82) (th $\sigma = 6.9 \pm 2.2 \pm 1.4$ fb (data)	heory)				20.2	PBD 94 (2016) 032011		
	$\sigma = 45.1 \pm 8.6 \pm 15.9 - 14.6 \text{ fb} (data)$					35.5	PRD 100_032007 (2019)		
	Madgraph5 + aMCNLO + Pythia8 (theory) $\sigma = 2.89 + 0.51 - 0.48 + 0.29 - 0.28$ fb (data)					36.1	PBI 123 161801 (2019)		
V⁺W⁺jj EWK	PowhegBox (theory) $\sigma = 1.5 \pm 0.5 \pm 0.2$ fb (data)					20.1	PBD 96_012007 (2017)		
	PowhegBox (theory) $\sigma = 0.57 + 0.14 - 0.13 + 0.07 - 0.05$ fb (data)					26.1	PLB 793 (92019) 469		
VZjj EWK	Sherpa 2.2.2 (theory) $\sigma = 0.29 + 0.14 - 0.12 + 0.09 - 0.1$ fb (data)		- 1			20.1	PBD 93, 092004 (2016)		
7ii FWK	$\sigma = 0.82 \pm 0.18 \pm 0.11$ fb (data)					130	arXiv:2004 10612		
	Sherpa 2.2.2 (theory)					139	arxiv.2004.10012		
		00 0	5 10 15	20 2	5 30 35				
		0.0 0		det	a/theorem				_
				uala					5

ADDITIONAL MATERIAL

ZZjj Production :: Event Selection

	$\ell\ell\ell\ell\ell jj$	$\ell\ell u u jj$
Electrons	$p_{\rm T} > 7~{ m GeV}, \eta < 2.47$	$p_{\rm T} > 7 {\rm ~GeV}, \eta < 2.5$
Muons	$p_{\rm T} > 7~{ m GeV}, \eta < 2.7$	$p_{\rm T} > 7 {\rm ~GeV}, \eta < 2.5$
Jets	$p_{\rm T}>30~(40)~{\rm GeV}$ for $ \eta <2.4~(2.4< \eta <4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet
ZZ selection	$p_{\rm T} > 20, 20, 10 \mbox{ GeV}$ for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\ell^{'+}\ell^{'-}} - m_Z $ $m_{\ell^+\ell^-} > 10 \mbox{ GeV}$ for lepton pairs $\Delta R(\ell,\ell') > 0.2$ $60 < m_{\ell^+\ell^-} < 120 \mbox{ GeV}$	$\begin{array}{l} p_{\mathrm{T}} > 30 \; (20) \; \mathrm{GeV} \; \mathrm{for} \; \mathrm{the} \; \mathrm{leading} \; (\mathrm{sub-leading}) \; \mathrm{lepton} \\ \mathrm{One} \; \mathrm{OSSF} \; \mathrm{lepton} \; \mathrm{pair} \; \mathrm{and} \; \mathrm{no} \; \mathrm{third} \; \mathrm{leptons} \\ & 80 < m_{\ell^+ \ell^-} < 100 \; \mathrm{GeV} \\ & E_{\mathrm{T}}^{\mathrm{miss}} > 130 \; \mathrm{GeV} \end{array}$
Dijet selection	Two most energetic jets with $m_{jj} > 300 \text{ GeV}$ and $\Delta y(jj) > 2$	$\begin{array}{l} \begin{array}{l} y_{j_1} \times y_{j_2} < 0 \\ m_{jj} > 400 \; \text{GeV and} \; \Delta y(jj) > 2 \end{array} \end{array}$

VVjj Production :: Event Selection

Selection	0-lepton	1-lepton	2-lepton
Trigger	$E_{\rm T}^{\rm miss}$ triggers	Single-electron triggers Single-muon or $E_{\rm T}^{\rm miss}$ triggers	Single-lepton triggers
Leptons	0 'loose' leptons with $p_{\rm T} > 7 \text{ GeV}$	1 'tight' lepton with $p_{\rm T} > 27~{\rm GeV}$ 0 'loose' leptons with $p_{\rm T} > 7~{\rm GeV}$	2 'loose' leptons with $p_T > 20 \text{ GeV}$ ≥ 1 lepton with $p_T > 28 \text{ GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200 GeV	> 80 GeV	-
$m_{\ell\ell}$	_	_	$ \begin{vmatrix} 83 < m_{ee} < 99 \text{ GeV} \\ (-0.0117 \times p_{\rm T}^{\mu\mu} + 85.63 \text{ GeV}) < m_{\mu\mu} < (0.0185 \times p_{\rm T}^{\mu\mu} + 94 \text{ GeV}) \end{vmatrix} $
Small-R jets		$p_{\rm T}$ > 20 GeV if $ \eta $ < 2.5, and $p_{\rm T}$	> 30 GeV if $2.5 < \eta < 4.5$
Large-R jets		$p_{\rm T} > 200 { m ~GeV}$	$ \eta < 2$
$V_{\rm had} \rightarrow J$ $V_{\rm had} \rightarrow jj$	$64 < m_{jj} < 1$	V boson tagging, min($ m_j $ 106 GeV, jj pair with min($ m_{jj} - m_W$	$(m_J - m_W , m_J - m_Z)$ $, m_{jj} - m_Z),$ leading jet with $p_T > 40$ GeV
Tagging-jets		$j \notin V_{\text{had}}, \text{ not } b\text{-tagged}$ $\eta_{ ext{tag}, j_1} \cdot \eta_{ ext{tag}, j_2} < 0, m_{jj}^{ ext{tag}} > 4$	$\Delta R(J, j) > 1.4$ 00 GeV, $p_{\rm T} > 30$ GeV
Num. of <i>b</i> -jets	-	0	-
Multijet removal	$\begin{array}{c} p_{\mathrm{T}}^{\mathrm{miss}} > 50 \ \mathrm{GeV} \\ \Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2 \\ \min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small} - R \ \mathrm{jet})] > \pi/6 \\ \Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{V_{had}}) > \pi/9 \end{array}$	_	_

Table 1: Summary of the event selection in the 0-, 1- and 2-lepton channels.

VVjj Production :: Event Selection

Table 4: Fiducial phase-space definitions used for the measurement of electroweak VVjj production.

		Object selection
Leptons Small- <i>R</i> jets Large- <i>R</i> jets	Pт	$p_{\rm T} > 7 \text{ GeV}, \eta < 2.5$ $p_{\rm T} > 20 \text{ GeV if } \eta < 2.5, \text{ and } p_{\rm T} > 30 \text{ GeV if } 2.5 < \eta < 4.5$ $p_{\rm T} > 200 \text{ GeV}, \eta < 2.0$
		Event selection
Leptonic V selection	0-lepton 1-lepton	Zero leptons, $p_T^{\nu\nu} > 200 \text{ GeV}$ One lepton with $p_T > 27 \text{ GeV}$, $p_T^{\nu} > 80 \text{ GeV}$ Two leptons, with leading (subleading) lepton $p_T > 28$ (20) GeV
	2-lepton	$83 < m_{\ell\ell} < 99 \text{ GeV}$
Hadronic V selection	Merged	One large- <i>R</i> jet, $\min(m_J - m_W , m_J - m_Z)$ 64 < m_J < 106 GeV
	Resolved	Two small- <i>R</i> jets, min $(m_{jj} - m_W , m_{jj} - m_Z)$ $p_T^{j_1} > 40 \text{ GeV}, p_T^{j_2} > 20 \text{ GeV}$ $64 < m_{jj} < 106 \text{ GeV}$
Tagging-jets		Two small- <i>R</i> non- <i>b</i> jets, $\eta_{\text{tag},j_1} \cdot \eta_{\text{tag},j_2} < 0$, highest m_{jj}^{tag} $m_{jj}^{\text{tag}} > 400 \text{ GeV}, p_{\text{T}}^{\text{tag},j_{1,2}} > 30 \text{ GeV}$
	0-lepton	
Number of <i>b</i> -jets	1-lepton 2-lepton	0

VVjj Production :: Event Selection

Table 5: The distributions used in the global likelihood fit for the signal regions and control regions for all the categories in each channel. "One bin" implies that a single bin without any shape information is used in the corresponding fit region.

Regi	ons	Discriminants			
810110		Merged high-purity Merged low-purity		Resolved	
0 lonton	SR	BDT	BDT	BDT	
0-ieptoli	VjjCR	$m_{jj}^{ m tag}$	$m_{jj}^{ m tag}$	$m_{jj}^{ m tag}$	
	SR	BDT	BDT	BDT	
1-lepton	WCR	m_{ii}^{tag}	m_{ii}^{tag}	m_{ii}^{tag}	
	TopCR	One bin	One bin	One bin	
2 lanton	SR	BDT	BDT	BDT	
2-16-	ZCR	$m_{jj}^{ m tag}$	$m_{jj}^{ m tag}$	$m_{jj}^{ m tag}$	

$$\begin{aligned} \sigma_{Z\gamma jj}^{\text{fid.}} &= 71 \pm 2 \,(\text{stat.}) \,_{-7}^{+9} \,(\text{syst.}) \,_{-17}^{+21} \,(\text{mod.}) \,\text{fb} \\ \\ \sigma_{Z\gamma jj}^{\text{fid.}, \text{MadGraph+Sherpa}} &= 88.4 \pm 2.4 \,(\text{stat.}) \pm 2.3 \,(\text{PDF} + \alpha_{\text{S}}) \,_{-19.1}^{+29.4} \,(\text{scale}) \,\text{fb}. \\ \\ \\ \sigma_{Z\gamma jj-\text{EW}}^{\text{fid.}} &= 7.8 \pm 1.5 \,(\text{stat.}) \,\pm 1.0 \,(\text{syst.}) \,_{-0.8}^{+1.0} \,(\text{mod.}) \,\text{fb} \\ \\ \sigma_{Z\gamma jj-\text{EW}}^{\text{fid.}, \text{MadGraph}} &= 7.75 \pm 0.03 \,(\text{stat.}) \pm 0.20 \,(\text{PDF} + \alpha_{\text{S}}) \pm 0.40 \,(\text{scale}) \,\text{fb} \\ \\ \\ \sigma_{Z\gamma jj-\text{EW}}^{\text{fid.}, \text{Sherpa}} &= 8.94 \pm 0.08 \,(\text{stat.}) \pm 0.20 \,(\text{PDF} + \alpha_{\text{S}}) \pm 0.50 \,(\text{scale}) \,\text{fb} \\ \end{aligned}$$

Probing VBF and VBS :: What we measure

Cannot directly measure VBF/VBS

- Significant interference with other diagrams with same order in
- **Extracting** VBF/VBS component is **not gauge invariant**
- We can only **measure electroweak production** of VVjj (VBS) or Vjj (VBF)
- Moreover, QCD/strong production is much larger than EW (excl. W[±]W[±]jj)

