Fishing for neutrinos: Astroparticle and oscillations research with cosmics in the Abyss

Кмзне

Warwick University Seminar Paschal COYLE, CPPM 28/4/22

Neutrino telescopes: science

Motivations for neutrino astronomy

Main question: what is the origin and the role of the cosmic rays in the Universe ?

Neutrinos: cosmic messengers

Neutrinos: neutral, stable, weakly interacting

not absorbed by background light/CMB \rightarrow access to cosmological distances not absorbed by matter

not deviated by magnetic fields

- \rightarrow access to dense environments
- \rightarrow astronomy over full energy range

'Smoking gun' signature for hadronic processes

Correlated in time/direction with electromagnetic and gravitational waves

New window of observation on the Universe

THE CR-GAMMA-NEUTRINO CONNECTION

Multi-messenger connection (0th order)

Photo-hadronic interactions of CR

$$p + \gamma \rightarrow \Delta^+ \rightarrow \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$$

Neutrino emission

$$\pi^+ \rightarrow \mu^+ + \nu_\mu,$$

$$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$$

ν

 γ

CR

Trace many

things

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\stackrel{\text{Most of the observed}}{\text{radiation is EM } \otimes}$$

$$E_{\nu} \approx \frac{1}{20} E_{P} \approx \frac{1}{2} E_{\gamma}$$

$$\stackrel{\text{Hace cosmic}}{\text{accelerators}}$$

$$\stackrel{\text{Hace interactions of accelerated baryons}}{\text{accelerated baryons}}$$

A new window on the Universe

The Universe is opaque to EM radiation above 10-100 TeV, but not to neutrinos

Neutrinos fluxes from MeV to PeV

Very large volume neutrino telescopes

ICECUBE

8

Current H20 (liquid+solid) neutrino telescopes

Event Topologies

KM3Ne¹

IceCube-SkyMap

Diffuse flux observed by IceCube

Site ANTARES/KM3NeT

Toulon

Insitut M.Pacha

câble sous-marir de 40 km

N

Google*

© 2008 Cnes/Spot Image Image © 2008 DigitalGlobe Image NASA

ANTARES Detector

12 lines (885 PMTs)

Diffuse cosmic flux I

ANTARES 2007-2018 (3330 days)

Data: 50 events (27 tracks + 23 showers)

Background expectation (atm. flux, HONDA + Enberg, scaled x \sim 1.25) : 36.1 ± 8.7 (19.9 tracks and 16.2 showers) – stat. + syst.

Results not really constraining... but fully compatible with IceCube

Updated and improved analysis coming soon

Diffuse cosmic flux II

Combined tracks & showers likelihood fitting:

Cosmic flux:

 $\Phi_{100 \text{ TeV}} = (1.5 \pm 1.0) \times 10^{-18} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ $\Gamma = 2.3 \pm 0.4$

KM3NeT diffuse cosmic flux

 5σ in ~ 0.5 year for the full detector (230 DUs) $5\sigma \sim 1$ year for one block detector (115 DUs)

Galactic plane

Guaranteed galactic neutrinos from CR interactions with matter

Analysis uses full model morphology & spectrum – tracks and cascades

ANTARES Limit is a factor 1.2 above the 'KRAy' model.

ANTARES updated analysis soon

KM3NeT sensitivity very promising

Neutrino Sources?

Point source searches

Updated: ANTARES 13 years (3845 days of live time): 10162 tracks and 225 showers

Candidate list

121 sources investigated

1st: J0242+1101

Pre (post) trial: 3.8σ (2.4 σ)

2nd: TXS 0506+056

Pre (post) trial: 3.1σ (2.6σ) 4 muon events within 1° 22

J0242+1101: potential radio-y-v association

Chance probability of the multi-messenger association under study

for this source IceCube tracks from

10-years point-source sample - Tracks within 90% angular error from source angular error < 10deg²

OVRO radio light-curve

Adaptive binned gamma-ray light-curve obtained from Fermi LAT data

KM3NeT: sources

Point sources

Extended sources

Multi-messenger network

Time to send alert 5s, median resolution 0.5 deg
A few 10 alerts per year sent

1st KM3NeT treatment of external alert: PKS 0735+17

- Dec '21 : high energy IceCube neutrino alert. Flaring blazar just outside error Box
- Followed up with ARCA and ORCA

https://www.astronomerstelegram.org/?read=15290

KM3NeT

KM3NeT

Multi-site, deep-sea infrastructure Selected for ESFRI roadmap Single collaboration, Single technology

Oscillation Research with Cosmics In the Abyss

Astroparticle Research with Cosmics In the Abyss

182 ns

KM3NeT: ARCA and ORCA

KM3NeT

KM3NeT building block

- 31 x 3" PMTs
- All data to shore: Gbit/s optical fibre
- White Rabbit time synchronisation
- LED flasher & acoustic piezo
- Tiltmeter/compass
- Low drag

Seafloor infrastructures

2nd junction box

ORCA

Oct 2020

ARCA

2nd Cable

Nov 2020

KM3NeT

ARCA junction box +5 detection units April 2021

Detector construction all around Europe

KM3Ne¹

DOMs

- 8 integration sites
- 860 produced
- 105 currently on bench

Base Modules

- 9 integration sites
- 45 BM produced
- 5 currently on bench

Detection Units

- 6 integration sites
- 33 DUs produced
- 8 currently on bench
- 19 deployed

Despite pandemic big efforts are on going in the detector construction

Production ongoing around europe

Marseille

KM3NeT DU deployment

18 KM3NeT detection units operational

ARCA8

с	
с	
and an and an	

ORCA10

Effective areas: KM3NeT vs ANTARES

ARCA6+ORCA6 bit better than ANTARES

If completely funded: Completion of ORCA115 array in 2026 and ARCA230 in 2027

KM3Ne¹

Acoustic position calibration in KM3NeT

KM3NeT

Animation of DU movement

preferred x-position from muon reconstructed track (m)

ORCA6: Moon/Sun Shadow

2D histogram data moon

KM3Ne¹

2D histogram data sun

Significance = 4.4 σ Angular resolution = 0.54°+/-0.13° Significance = 5.7 σ Angular resolution = 0.59°+/-0.10°

KM3NeT

ARCA6 data

PMT efficiencies: ⁴⁰K

Supernova monitoring in KM3NeT

SN MeV neutrinos => collective excess of multi-fold coincidences on all DOMs

KM3NeT

Discovery potential for 95% of Galactic CCSNe

ARCA6+ORCA6 already sensitive to 60% of Galactic CCSNe (<11 kpc)

Joint real time trigger operational for SNEWS since early 2019

Dark matter-indirect detection

Galactic Centre

Phys.Lett. B759 2016

42

KM3NeT

neutrino oscillations with atmospheric neutrinos

ORCA6 neutrino oscillations (tracks)

KM3NeT

ORCA6: measurement of oscillation parameters

KM3NeT

45

ORCA115: neutrino oscillations sensitivity (3 years)

KM3NeT

ORCA6: neutrino decay

ORCA6 353 kton-year sample:

$$\frac{1}{\alpha_3} \equiv \frac{\tau_3}{m_3} > 2.4 \text{ ps/eV}$$

(comparable to LBL limits)

ORCA6: non-standard interactions

ORCA6 353 kton-year sample:

NSI parameter $|\epsilon_{\mu\tau}| < 0.009$ (comparable to world best limits)

KM3NeT

ORCA115: sterile neutrinos

 $\Delta m_{41}^2 > 0.1 \text{ eV}^2$

Dependence on δ_{24}

Factor of two better sensitivity on $U_{\tau4}$ than current limits from SK and IC

 $\Delta m_{41}^2 < 0.1 \text{ eV}^2$

Due to longer & multiple baselines improve on MINOS/MINOS+ limits by 2 orders of magnitude

Tau appearance

The muon neutrinos mainly oscillate to tau neutrinos.

They appear as showers events.

Counting shower events is the sum of the tau and electron neutrinos

 \approx 3k v_t CC events/year with full ORCA

ORCA115: neutrino mass ordering

3 years

6 yrs & combination with JUNO

 $2.5-5\sigma$ determination of Neutrino Mass Ordering possible in 3 years

Combination power relies on tension between best-fit of Δm_{31}^2 in "wrong ordering" between JUNO and ORCA

ORCA115: NMO compared with the world

KM3NeT

Draft SNOWMASS White paper, Denton et al., 2022

Figure 26: The estimated sensitivities to the three remaining oscillation unknowns based on the latest estimates of sensitivities and starting dates. Many caveats are required, see the text for details. [Note: DUNE has sensitivity to the octant; future versions will include this curve.]

(kHz)

Earth and sea sciences

Time (mm:ss)

Opération Nautile: Déploiement instrumentation

https://www.mio.osupytheas.fr/fr/mers-et-oceans-changement-global/emso-lo-bathycruise

New idea: Tagged Protvino to ORCA

A. V. Akindinov et al., "Letter of Interest for a Neutrino Beam from Protvino to KM3NeT/ORCA" <u>https://arxiv.org/abs/1902.06083</u>

- Neutrino Beam from Protvino to ORCA
- Baseline 2590 km
- First oscillation maximum 5.1 GeV
- Sensitivity to mass hierarchy and CPV
- Lol published: arXiv:1902.06083
- Huge detector -> relax beam power
- New idea v tagging at source:

Summary

Water based nu telescopes:

- angular resolution, multi-flavour astronomy, galactic sources

Intriguing indications of cosmic neutrino sources from ICECUBE/ANTAE S associated with radio loud and/or gamma blazar flares

- J0242+1101
- MG3 J225517+2409
- TXS 0506+056

KM3NeT taking data and growing rapidly -First measurement of neutrino oscillation parameters by ORCA6 -First ATELs reacting to external alerts

New ideas in gestation

- Protvino to ORCA (P2O)
- Acoustic detection of UHE neutrinos

Come and join the adventure!

BACK UP

Old idea/New technology: Acoustic detection of UHE neutrino

