File |O and Network 1O

Challenges and Solutions

February 2023
Warwick RSE 1

SCRTP

* Runsthe SCRTP desktop machines
* Runs the Task Farm system
* Runs the associated storage systems
* Runs the Clusters
* Avon
e Orac

e Sulis

* Dealing with IO heavy workloads is a hard problem
» Lots of data

e Data that needs to be written fast

. Besltima dataloas

* There are general approaches that work to improve
matters

* An understanding of what is happening can help
you deal with other problems

Problems

e Difficult IO problems can cause
* Increase in total time to solution for a problem
* Limit on scaling of parallel code

* Generally hard to get actual scaling of 10O - a
good solution writes data at the same rate as
a single thread/rank

e Degradation of performance for everyone else
on a shared system

Design Balance

Compute

Storage Memory

Terminology

Terminology

* Latency - the time between a program asking for data and it

being made available, usually measured in seconds (or
milliseconds etc.)

* One measure of network latency is the “ping time”
* High latency is bad

e Bandwidth - the rate at which data is transferred once it is
flowing, usually measured in GB/s (or MB/s etc.)

* So you also have a higher bandwidth asking for data from
memory than from disk

* High bandwidth is good
D

Time

A

O O O O
™ QN —

poJlajsuel) Ble(

Latency

Data transferred

Time

Data transferred

Time

Terminology

* Bandwidth matters for large files
* Latency matters for small files

* A given system will generally be tuned for one or
the other

* Some things improve both but generally either
at cost or by being less reliable

What happens?

What seems like happens

* You call a write function in your code

* The data gets written to disk

Closer to reality

* You call a write function in your code

» Almost every language only specifies that this function will
return when you can safely reuse the input variable

* Your language may require (C++,C) or permit (Fortran,Python)
buffering in the language

* Once your language writes the data your OS may buffer output
* The filesystem may the buffer output

* There may be a RAM bufter in the hard disk unit

* Then finally data winds up on the disk

Why butters?

e Can only write (or read)
when the right bit of the
disk is under the hard
drive head (SSDs are
different but we'll
ignore them here)

* Long and unpredictable
wait for every write

* Latency!

* Performance of code
becomes unpredictable

How do buffers help?

» Buffers combine output at various levels
* Multiple writes are replaced by a single write

» Rather than paying disk latency for every write you
only pay it once when the buffer is actually written

e Your program can continue as soon as the output
data is safely in the buffer

» "Effective” bandwidth massively increased

What are the problems?

* Mostly buffers are unambiguously a good thing

* Even if you are both reading and writing data from a file it'll
be sorted out - you will never see an “old” version of the file

when reading

* The only problem is that if your program crashes before the
(language/runtime) buffer is written out

* You can manually flush the buffer to avoid this but this
removes the performance benefit

* Your code should only crash while you are debugging it
so write your codes debug mode to flush log files etc.
don't use it in production mode

Any surprises?

* Acouple
« Closing a file generally flushes output

e Qutputto screen generally flushes the output buffers when a
newline character is received (UNIX-like systems at least)

e In C++ writing std::endl to a stream always causes the buffer to
flush

* “Inserts a newline character into the output sequence os and

flushes it as if by calling os.put(os.widen('\n')) followed
by os.flush()”

* If you want a platform independent newline then use
os.widen('\n’)

Takeaway notes

 File buffers are ubiquitous and generally very good for performance

* You can sometimes tune the sizes of some of them which for large
data writes can be helpful

* Itistempting to turn them off because of the data loss problems,
especially for debugging logs etc.

* Make this an option if you do it! You don't want it on for normal
production

e Look into alternatives

» Code that fails gracefully under all circumstances - buffers flush
properly

* Logging to external program that doesn't crash - database IO

Files and Filesystems

File systems

* All computers nowadays (and really since the 1960s) have
filesystems

* Thatis a part of the computer operating system that
manages files and directories on the disks

* |t handles storing data to physical locations on the disk,
mapping filenames to those physical locations and
handles the hierarchical directory structure

e All of this information about how it does this is also stored
on the disk (in normal systems, there are odd ones)

e metadata
D

File systems

* On UNIX systems like Linux the metadata is mostly of the
form of things called inodes

* Index nodes
* Each inode refers to a single file or directory on disk

e When afile is created (and sometimes when it is
modified) the inode table has to be modified to show
where the file is being stored

» Often about 5% of a disks total capacity is used to store
inode information - it's why hard drives don’t have their
nominal capacity when you finally see them in the OS

Performance

* There is a cost for updating an inode

* |In general the inode table won't be near your data on

the disk
e This costis O(1) in filesize

* |t takes as long to do for a small file as it does for a
large file

* Smaller files are slower to write than larger files (per byte
written)

» Also, just opening a file can take a long time

iInode exhaustion

* The other problem with many small files is that for
“normal” filesystems a fixed number of inodes are
created when the file system is created and more
can't be created easily

* You can exhaust the inodes by writing many small
files even it you still have space on the disk for
more data

* Filesystems can be tuned for any given purpose
but on shared systems it is always tuned for
general use (mix of small and large files)

Takeaway notes

* Filesystems are always a tradeoff between use cases

* Very small files are often disproportionately slow to
write

» Overhead of creating file
» Overhead of writing metadata

* Even if you can tolerate the performance drop you
can run into scenarios like inode exhaustion

* Don’t write many small files!
D

Blocks and Block
Devices

File system blocks

* Filesystems are abstractions over how disks
actually lay out data

* For example the left shows how data may be
stored on a magnetic or optical disk (actually
only true for really old onest!)

* A -Track (or cylinder for drives with multiple

disks)

e B-Geometrical Sector

» C - Sector (usually about 4k of data)

D * So a piece of data is written to a given track on

Horon2/MistWiz a given sector (with a given head number it

Wikipedia, used under license there are mu|t|p|e d|S|(S)

File system blocks

D shows a block (sometimes called a
cluster or allocation unit, but we'll stick

with block)

* Ablockisthe smallest part of the disk
that the filesystem writes to or reads from

* Some filesystems allow multiple files in a
block (block fragments) but the most
common ones don't

e Assume that files have a minimum size

» Typically about 4kB but can be much
bigger

Takeaway notes

* Filesystems don't write files with bitwise granularity and drives
don't store data in an undifferentiated soup of bits

« Data is generally written and read in units of the filesystem block
size

* This can be much larger than the actual size of a small file

« Small files cannot take up less than a block of storage (on most
filesystems)

* Small files take up more space than their actual contents

« Technically larger files are always rounded up to the next
blocksize boundary, but 4k on a 10GB file doesn’t matter as
much as 4k on a 20byte file

Network filesystems

Network filesystems

* UNIX OSes generally make tilesystem boundaries

seamless

* In Windows/DOS by default you get a different
drive letter for each filesystem

* On UNIX you can make a different filesystem appear
anywhere - it just looks like a directory

* So on an SCRTP machine looking at the folder /usr
you are on the local hard drive, /home you are on a
network filesystem on the machine hermatus and
/storage you are on the machine nef

Network filesystems

* There are a lot of network filesystems but two that
you will “normally” encounter

 SMB - Server Message Block - originally IBM but
championed by Microsoft

* NFS - Network File System - Originally Sun
Microsystems but now an IETF open standard

e We use NFS version 4 here at Warwick for all
network filesystems on the “normal” machines

A bad joke

"Hi, I'd like to hear a TCP joke.”

"Hello, would you like to hear a TCP joke™?"

"Yes, I'd like to hear a TCP joke."

"OK, I'll tell you a TCP joke."

"OKk, | will hear a TCP joke."

"Are you ready to hear a TCP joke?"

"Yes, | am ready to hear a TCP joke."

"Ok, | am about to send the TCP joke. It will last 10 seconds, it
has two characters, it does not have a setting, it ends with a
punchline.”

"OKk, | am ready to get your TCP joke that will last 10 seconds,
has two characters, does not have an explicit setting, and ends
with a punchline.”

"I'm sorry, your connection has timed out. Hello, would you like to
hear a TCP joke?

Network problems

T
fi

nat shows a chunk of the problem with network

esystems

Networks and network protocols are generally

g

uite chatty

Latency goes up massively as soon as things are

going to move over a network

Once the server is more than a few meters away

from the client even speed of light delays can

come into play on latency

Network problems

* Network bandwidth will be between 1Gbps and 10Gbps
generally

* Not a huge limit for a single user but can sometimes can be
for many users

* Bigger problem is that both the server and the client actually
have to do work to communicate

e Much of the work is in opening and closing files not in writing
so the total effort on the server is mostly controlled by the
number of clients

e Most of the rest of the effortis O(1) in the size of the write (|
want to write this much data to this file, here is the data) so
many small writes are bad (Buffers!)

Advanced Systems

» Systems like clusters and tightly integrated server
systems can improve matters somewhat

* Fibre Channel systems are used to attach storage to
servers

* Infiniband networking is faster and much lower
latency than normal ethernet networks (less chatty!)

* Mostly money is spent where it does the most good!

* Most money for IO infrastructure in SCRTP goes
into the systems on the clusters

Takeaway notes

* Network file systems are much like local filesystems in general
BUT

* Latency is much, much higher

« Bandwidth is lower, especially to and from the machine you
are sat at

» Better between datacentre machines and actually better than
a normal desktop in the clusters

* Network filesystems have to be designed and tuned for their
intended purpose

 The home areas of SCRTP machines are designed for
interactive sessions NOT heavy data output

What can | do?

Limit Opening Files

* Opening a file takes time

* Very fast on a local machine
 Fairly fast over a network

e Thistime is O(1)in file size

* Don't open multiple files
« Keep files open

* Write output to one file and seek within it rather than
saving to multiple files

Don't tlush butfers

* Be aware of what in your language might flush the
output buffers unintentionally

e Performance can drop drastically!

 |f you need to flush buffers in case the code
crashes write a debug mode!

Be caretul of worktlows

* A lot of science involves combining several codes into a

workflow

* Mostly programs are linked together by reading and writing
files

* |t programs complete very fast this can become a
problem

 Combine programs into a single program (if possible)
» Use /dev/shm (shared memory filesystem)

 WARNING this is a literal RAM disk - everything in it will
disappear if the computer is reset

Be caretul of worktlows

* Workflow managers (like Dask or Snakemake) can be
troublesome as well

* They often work in slightly pathological ways themselves
(i.e. Snakemake when submitting slurm jobs polls the
slurm daemon repeatedly to test for completion)

* |t can be very easy to write a workflow that will stress a
system badly

* Run real scale problems by hand and see how long each
phase takes to run - check if you are going to be
producing a workflow that is troublesome

Database |O

* |f you have a lot of independent programs running
simultaneously then it looks as though you have no choice
but to have them all output their data individually - they're
independent

* What works better is to have a single program running
continually that takes input and writes it to disk using
suitable strategies

» Generally this will be a Relational Database
Management System, or more simply a database

 Not trivial to move over to this but not horrible - email us if
this is something that you are interested in

Use the right hardware

* Performance is different for different types of disk
» Testing on a random computer | get

* 1.2GB/s on the M.2 SSD

e 197MB/s on a RAIDS array of HDDs

e 3.7GB/s on /dev/shm

* Latency is lower on the SSD and almost zero on /
dev/shm

Use the right hardware

e Clusters!

* The best hardware that we have is put into the clusters

* GPFS high performance distributed parallel
filesystems with memory buffers and SSD “burst

buffers”

* Smaller “scratch” space using pure SSD based
systems

* |f you find yourself running into problems with
performance on systems like the task farm one of the
clusters might meet your needs better (especially Sulis)

Parallelism

* There is one specific case of writing lots of files that is
so common that there is a “proper” solution

* MPI parallel code where each rank writes it's own
output files

e Use MPI 10 features instead

Not hard to program yourself if you want to (we

nave some training material on the RSE webpage
nttps://warwick.ac.uk/RSE)

* Libraries like HDF5 and pNetCDF already use it

https://warwick.ac.uk/RSE

Final surprises

* Lots of “normal” pieces of software are written on the
assumption that they are running on “normal”

computers
* i.e.low latency penalty for reading or writing files

* You might find that a piece of software that you are
using has performance issues due to this when running
on systems like the SCRTP where your home directory is
on a network

» Check for settings to change where files are written

* Try other software?

Conclusions

e Data lO is a major problem for modern scientific
computing

e [ryto minimise
* Opening files
* Flushing bufters
* Running multiple programs

* Use the right hardware for the job
D

