Studying penguins in the jungle **Rare beauty baryon decays at LHCb**

Anja Beck

- today: $b \rightarrow s \mu \mu$ transition
- SM forbids tree-level diagram
- rare in SM => BSM potentially more prominent
- access to virtual contributions

- today: $b \rightarrow s \mu \mu$ transition
- SM forbids tree-level diagram
- rare in SM => BSM potentially more prominent
- access to virtual contributions

- today: $b \rightarrow s \mu \mu$ transition
- SM forbids tree-level diagram
- rare in SM => BSM potentially more prominent
- access to virtual contributions

- today: $b \rightarrow s \mu \mu$ transition
- SM forbids tree-level diagram
- rare in SM => BSM potentially more prominent
- access to virtual contributions

- today: $b \rightarrow s \mu \mu$ transition
- SM forbids tree-level diagram
- rare in SM => BSM potentially more prominent
- access to virtual contributions

Sometimes maybe a little tension with the SM

Anja Beck

patrick.koppenburg@cern.ch 2023-08-31

Warwick EPP Seminar 26.10.23

4

Sometimes maybe a little tension with the SM

Anja Beck

Sometimes maybe a little tension with the SM

Branching fractions

Sometimes maybe a little tension with the SM

Branching fractions

Angular observables

Sometimes maybe a little tension with the SM

Branching fractions

Angular observables

LFU ratios μ/e

Sometimes maybe a little tension with the SM

Branching fractions

Angular observables

LFU ratios μ/e

One baryon measurement + prediction!

The jungle

The jungle

Problem A: hadron QCD is complicated + QCD resonances not fully understood

Problem B: unknown phases between the resonances => unpredictable interference

Anja Beck

Predictions for BF($\Lambda_h^0 \rightarrow pK\mu\mu$ **)**

possible spread of SM values due to unknown phase differences

Anja Beck

AB, TB, MK JHEP 02 (2023) 189

Predictions for angular observables in $\Lambda_h^0 \rightarrow p K \mu \mu$

dependence on hadron QCD and phases mostly cancels

Warwick EPP Seminar 26.10.23

Anja Beck

AB, TB, MK JHEP 02 (2023) 189

huge dependence on phases, some dependence on hadron QCD

What can we do?

- Measure the composition in a high-stats mode: $\Lambda_h^0 \to p K \gamma$

Anja Beck

• Focus on single state: $\Lambda(1520)$ (some QCD calculations available) *LHCb* PRL 131 (2023) 15

The measurements

Anja Beck

Warwick EPP Seminar 26.10.23

11

Hadron PID (RICH)

Anja Beck

Tracking

Electron/neutral PID

Muon Stations

Hadron PID (RICH)

Anja Beck

Tracking

Warwick EPP Seminar 26.10.23

Electron/neutral PID

Muon Stations

Hadron PID (RICH)

Anja Beck

Tracking

Warwick EPP Seminar 26.10.23

Electron/neutral PID

Muon Stations

Hadron PID (RICH)

Anja Beck

Tracking

Electron/neutral PID Muon Stations HCAL ECAL Muon SPD/PS

Hadron PID (RICH)

Anja Beck

Tracking

Electron/neutral PID Muon Stations HCAL Muon SPD/PS

Measurement 1: $\Lambda(1520)$

LHCb PRL 131 (2023) 15

Extract a single state $\mathbf{BF}(\Lambda_b^0 \to \Lambda(1520)\mu\mu)$

Anja Beck

Warwick EPP Seminar 26.10.23

LHCb PRL 131 (2023) 15

14

Extract a single state $\mathbf{BF}(\Lambda_h^0 \to \Lambda(1520)\mu\mu)$

Anja Beck

Determine contribution from $\Lambda(1520)$

Warwick EPP Seminar 26.10.23

14

Extract a single state $\mathbf{BF}(\Lambda_b^0 \to \Lambda(1520)\mu\mu)$

Anja Beck

LHCb PAPER-2023-036 **IN PREPARATION**

Signal selection and extraction ~50k signal candidates

Anja Beck

LHCb PAPER-2023-036 IN PREPARATION

Very different photon HLT2 triggers in Run 1/2

Signal selection and e ~50k signal candidates

Very different photon HLT2 triggers in Run 1/2

Anja Beck

The signal distribution

Anja Beck

LHCb PAPER-2023-036 **IN PREPARATION**

Very different photon HLT2 triggers in Run 1/2

The signal distribution

Anja Beck

Improved resolution by fixing $m(pK\gamma)$ to the true Λ_b^0 mass in the vertex fit

LHCb PAPER-2023-036 **IN PREPARATION**

Very different photon HLT2 triggers in Run 1/2

Amplitude model from the helicity formalism

Amplitude for a given Λ state and fixed helicities $\lambda_{\Lambda}, \lambda_{\rho}, \lambda_{\gamma}$

Full decay rate depending on the Dalitz variable

10+ resonances x 2 or 4 complex couplings per resonance = ouch amount of unconstrained fit parameters

=> remove parameters by remove couplings with large L

Anja Beck

JA, YA, AB, CM JHEP 06 (2020) 116

$$\begin{bmatrix} C_2^{pK} & \text{coupling} \\ A_{LS} \end{bmatrix} \begin{pmatrix} p \\ M_{\Lambda_b^0} \end{pmatrix}^L \begin{pmatrix} q \\ M_{\Lambda} \end{pmatrix}^\ell$$

dans orb. ang. mom. barriers

 $B_L(p)B_\ell(q) \operatorname{BW}(m_{pK})$ Blatt-Weisskopf form factors

lineshape

$$\mathsf{les}\ \mathcal{D} = (\mathsf{cos}\,\theta_{p}, \textit{m}_{pK}) \equiv (\textit{m}_{pK}^{2}, \textit{m}_{p\gamma}^{2})$$

$$\sum_{\lambda_{\Lambda}} \mathcal{A}(\Lambda,\lambda_{\Lambda},\lambda_{p},\lambda_{\gamma}) igg|^{2}$$

- Warwick EPP Seminar 26.10.23

Resonance	$\mid J^P$	m_0	Γ_0	$ \Delta m_0$	$\Delta\Gamma_0$	$\mid \sigma_{m_0}$	σ_{Γ_0}	$\mid l$	L
$\Lambda(1405)$	$ 1/2^{-}$	1405	50.5	± 1.3	± 2	1.3	2	0	0, 1
$\Lambda(1520)$	$3/2^{-}$	1519	16	1518 - 1520	15-17	1	1	2	0, 1, 2
$\Lambda(1600)$	$1/2^{+}$	1600	200	1570 - 1630	150-250	30	50	1	0,1
$\Lambda(1670)$	$1/2^{-}$	1674	30	1670 - 1678	25-35	4	5	0	0, 1
$\Lambda(1690)$	$3/2^{-}$	1690	70	1685 - 1695	50-70	5	10	2	0, 1, 2
$\Lambda(1800)$	$1/2^{-}$	1800	200	1750 - 1850	150-250	50	50	0	0,1
$\Lambda(1810)$	$1/2^{+}$	1790	110	1740 - 1840	50-170	50	60	1	0,1
$\Lambda(1820)$	$\frac{5}{2^+}$	1820	80	1815 - 1825	70-90	5	10	3	1, 2, 3
$\Lambda(1830)$	$\frac{5}{2^{-}}$	1825	90	1820 - 1830	60 - 120	5	30	2	1, 2, 3
$\Lambda(1890)$	$3/2^{+}$	1890	120	1870 - 1910	80 - 160	20	40	1	0, 1, 2
$\Lambda(2100)$	$7/2^{-}$	2100	200	2090 - 2110	100-250	10	100	4	2, 3, 4
$\Lambda(2110)$	$\frac{5}{2^{+}}$	2090	250	2050 - 2130	200 - 300	40	50	3	1, 2, 3
$\Lambda(2350)$	$9/2^+$	2350	150	2340 $-$ 2370	100 - 250	20	100	5	3, 4, 5

Warwick EPP Seminar 26.10.23

Rich spin (= angular) structures

Resonance	J^P	m_0	Γ_0	$ \Delta m_0$	$\Delta\Gamma_0$	σ_{m_0}	σ_{Γ_0}	$\mid l$	L
$\Lambda(1405)$	$1/2^{-}$	1405	50.5	± 1.3	± 2	1.3	2	0	0, 1
$\Lambda(1520)$	$3/2^{-}$	1519	16	1518 - 1520	15-17	1	1	2	0, 1, 2
$\Lambda(1600)$	$1/2^+$	1600	200	1570 - 1630	150-250	30	50	1	0, 1
$\Lambda(1670)$	$1/2^{-}$	1674	30	1670 - 1678	25-35	4	5	0	0, 1
$\Lambda(1690)$	$3/2^{-}$	1690	70	1685 - 1695	50-70	5	10	2	0, 1, 2
$\Lambda(1800)$	$^{1/2^{-}}$	1800	200	1750 - 1850	150-250	50	50	0	0, 1
$\Lambda(1810)$	$1/2^{+}$	1790	110	1740 - 1840	50-170	50	60	1	0,1
$\Lambda(1820)$	$5/2^+$	1820	80	1815 - 1825	70-90	5	10	3	1, 2, 3
$\Lambda(1830)$	$5/2^{-}$	1825	90	1820 - 1830	60 - 120	5	30	2	1, 2, 3
$\Lambda(1890)$	$3/2^+$	1890	120	1870 - 1910	80 - 160	20	40	1	0, 1, 2
$\Lambda(2100)$	$^{7/2^{-}}$	2100	200	2090 - 2110	100-250	10	100	4	2, 3, 4
$\Lambda(2110)$	$5/2^+$	2090	250	2050 - 2130	200-300	40	50	3	1, 2, 3
$\Lambda(2350)$	$^{9/2^{+}}$	2350	150	2340 $-$ 2370	100 - 250	20	100	5	3, 4, 5

Warwick EPP Seminar 26.10.23

Rich spin (= angular) structures

Resonance	J^P	m_0	Γ_0	$ \Delta m_0$	$\Delta\Gamma_0$	σ_{m_0}	σ_{Γ_0}	l	L
$\Lambda(1405)$	$1/2^{-}$	1405	50.5	± 1.3	± 2	1.3	2	0	0, 1
$\Lambda(1520)$	$3/2^{-}$	1519	16	1518 - 1520	15-17	1	1	2	0, 1, 2
$\Lambda(1600)$	$1/2^+$	1600	200	1570 - 1630	150-250	30	50	1	0, 1
$\Lambda(1670)$	$1/2^{-}$	1674	30	1670 - 1678	25-35	4	5	0	0, 1
$\Lambda(1690)$	$3/2^{-}$	1690	70	1685 - 1695	50-70	5	10	2	0, 1, 2
$\Lambda(1800)$	$^{1}/^{2^{-}}$	1800	200	1750 - 1850	150-250	50	50	0	0,1
$\Lambda(1810)$	$1/2^{+}$	1790	110	1740 - 1840	50-170	50	60	1	0, 1
$\Lambda(1820)$	$5/2^+$	1820	80	1815 - 1825	70-90	5	10	3	1, 2, 3
$\Lambda(1830)$	$5/2^{-}$	1825	90	1820 - 1830	60 - 120	5	30	2	1, 2, 3
$\Lambda(1890)$	$3/2^+$	1890	120	1870 - 1910	80 - 160	20	40	1	0, 1, 2
$\Lambda(2100)$	$^{7/2^{-}}$	2100	200	2090 - 2110	100-250	10	100	4	2, 3, 4
$\Lambda(2110)$	$5/2^+$	2090	250	2050 - 2130	200-300	40	50	3	1, 2, 3
$\Lambda(2350)$	$^{9/2^{+}}$	2350	150	2340 $-$ 2370	100 - 250	20	100	5	3, 4, 5

Anja Beck

Large L are suppressed

Rich spin (= angular) structures			Poorly known reson			Large	e L are suppres		
Resonance	J^P	m_0	Γ_0	Δm_0	$\Delta\Gamma_0$	$\mid \sigma_{m_0}$	σ_{Γ_0}	$\mid l$	L
$\Lambda(1405)$	$1/2^{-}$	1405	50.5	± 1.3	± 2	1.3	2	0	0, 1
$\Lambda(1520)$	$3/2^{-}$	1519	16	1518 - 1520	15-17	1	1	2	0, 1, 2
$\Lambda(1600)$	$1/2^+$	1600	200	1570 - 1630	150-250	30	50	1	0, 1
$\Lambda(1670)$	$1/2^{-}$	1674	30	1670 - 1678	25-35	4	5	0	0, 1
$\Lambda(1690)$	$^{3/2^{-}}$	1690	70	1685 - 1695	50 - 70	5	10	2	0, 1, 2
$\Lambda(1800)$	$1/2^{-}$	1800	200	1750 - 1850	150-250	50	50	0	0, 1
$\Lambda(1810)$	$1/2^{+}$	1790	110	1740 - 1840	50-170	50	60	1	0, 1
$\Lambda(1820)$	$5/2^+$	1820	80	1815 - 1825	70 - 90	5	10	3	1, 2, 3
$\Lambda(1830)$	$5/2^{-}$	1825	90	1820 - 1830	60 - 120	5	30	2	1, 2, 3
$\Lambda(1890)$	$3/2^+$	1890	120	1870 - 1910	80 - 160	20	40	1	0, 1, 2
$\Lambda(2100)$	$^{7/2^{-}}$	2100	200	2090 - 2110	100-250	10	100	4	2, 3, 4
$\Lambda(2110)$	$5/2^+$	2090	250	2050 - 2130	200 - 300	40	50	3	1, 2, 3
$\Lambda(2350)$	$^{9/2^{+}}$	2350	150	2340 - 2370	100 - 250	20	100	5	3, 4, 5

Anja Beck

ssed

The amplitude fit

Setup

Simultaneous maximum likelihood fit to Run 1/2 Floating couplings, fixed masses/widths

Complicated likelihood with ambiguities and many local minima

Different starting values lead to

- similar NLL
- very different fitted parameters
- similar fit fractions (= relative amount of each resonance)
- => Fit several times with randomized starting values => keep the one with the lowest NLL
- => Use the fit fractions as observables NOT the fit parameters (= couplings)

Anja Beck

How to find your favourite model

Step 1) find a minimal good model

- a. start from all well-established resonances in the PDG
- b. remove large orb. ang. momenta L until the fit gets worse

Step 2) modify the model

- a. add new states
- b. modify the resonance models

The fit quality

 γ^2 distance between the 2D Dalitz histogram of data and fit result

Anja Beck

The smallest model $L \leq 3$

Allowing larger L does not change the fit quality. $L \leq 2$ has much worse fit quality.

Anja Beck

Warwick EPP Seminar 2

The best model Small model + non-resonant component

Anja Beck

24

The best model Small model + non-resonant component

Asymmetric angle due to interference

Warwick EPP Seminar 26.

4.0

Anja Beck

24

The 2nd winner Small model + float mass/width of $\Lambda(2100)$ and $\Lambda(2110)$

Uncertainties due to limited data From bootstrapping

Systematic uncertainties In decreasing order

- Resonance parameters (mass, width, radius) [external]
- Amplitude model and resolution
- Acceptance model and simulation
- Massfit model

Combine asymmetric uncertainties by convolving the distributions

Summary Studying penguins in the jungle

- Penguins are useful
- With complicated final states in baryons
- Hadron QCD is complicated esp. for resonance spectra
- LHCb measurement of BF($\Lambda_h^0 \rightarrow \Lambda(1520)\mu\mu$) [predictions are easier for individual states]
- Measurement of the spectrum at the photon pole by LHCb

Warwick EPP Seminar 26.10.23

