New physics effects in $b \rightarrow s$ transitions with complex Wilson coefficients.

Ipsita Ray

Based on Nucl.Phys.B 969 (2021) 1154797 In collaboration with Soumitra Nandi, Sunando Patra and Aritra Biswas. On behalf of csb@IITG

伺 ト イヨト イヨト

Anomalies in flavor physics

- Flavor changing neutral currents (FCNCs), potential probe of physics at higher energy scales → loop-suppressed amplitudes within the Standard Model (SM).
- Deviations in few angular observables $(P'_5 \sim 3\sigma)$ and theoretically clean ratios $(R_K$ and $R_{K^*})$ from their respective SM predictions.

伺 ト イヨト イヨト

Theory

- Matching between the Standard Model and the effective theory amplitudes \rightarrow Wilson coefficients at the scale $\mu_0 \sim M_W$.
- Renormalization group evolution of the Wilson coefficients down to the scale $\mu_0 \sim m_b$.

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} \left(\lambda_t \mathcal{H}_{eff}^{(t)} + \lambda_u \mathcal{H}_{eff}^{(u)} \right) \tag{1}$$

$$\mathcal{H}_{eff}^{(t)} = C_1 \mathcal{O}_1^c + C_2 \mathcal{O}_2^c + \sum_{i=3}^6 C_i \mathcal{O}_i + \sum_{i=7,8,9,10,P,S} (C_i \mathcal{O}_i + C_i' \mathcal{O}_i')$$

$$\mathcal{H}_{eff}^{(u)} = C_1 (\mathcal{O}_1^c - \mathcal{O}_1^u) + C_2 (\mathcal{O}_2^c - \mathcal{O}_2^u) .$$

 \bullet W.C's \rightarrow encode short-distance physics and possible NP effects.

イロト 不良 トイヨト イヨト ヨー うらう

$$\mathcal{O}_{1} = (\bar{s}_{\alpha}q_{\beta})_{V-A}(\bar{q}_{\beta}b_{\alpha})_{V-A},$$

$$\mathcal{O}_{2} = (\bar{s}q)_{V-A}(\bar{q}b)_{V-A},$$

$$\mathcal{O}_{3} = (\bar{s}b)_{V-A}\sum_{q}(\bar{q}q)_{V-A},$$

$$\mathcal{O}_{4} = (\bar{s}_{\alpha}b_{\beta})_{V-A}\sum_{q}(\bar{q}_{\beta}q_{\alpha})_{V-A},$$

$$\mathcal{O}_{5} = (\bar{s}b)_{V-A}\sum_{q}(\bar{q}q)_{V+A},$$

$$\mathcal{O}_{6} = (\bar{s}_{\alpha}b_{\beta})_{V-A}\sum_{q}(\bar{q}_{\beta}q_{\alpha})_{V+A},$$

Ipsita Ray New physics effects in $b \rightarrow s$ transitions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Operator basis

$$\begin{array}{rcl} \mathcal{O}_{7} &=& \frac{e}{g^{2}}m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, & \mathcal{O}_{7}^{'} =& \frac{e}{g^{2}}m_{b}(\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}, \\ \mathcal{O}_{8} &=& \frac{1}{g}m_{b}(\bar{s}\sigma_{\mu\nu}T^{a}P_{R}b)G^{\mu\nu}, & \mathcal{O}_{8}^{'} =& \frac{1}{g}m_{b}(\bar{s}\sigma_{\mu\nu}T^{a}P_{L}b)G^{\mu\nu}, \\ \mathcal{O}_{9} &=& \frac{e^{2}}{g^{2}}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}l), & \mathcal{O}_{9}^{'} =& \frac{e^{2}}{g^{2}}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{l}\gamma^{\mu}l), \\ \mathcal{O}_{10} &=& \frac{e^{2}}{g^{2}}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}\gamma_{5}l), & \mathcal{O}_{10}^{'} =& \frac{e^{2}}{g^{2}}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{l}\gamma^{\mu}\gamma_{5}l), \\ \mathcal{O}_{S} &=& \frac{e^{2}}{16\pi^{2}}m_{b}(\bar{s}P_{R}b)(\bar{l}l), & \mathcal{O}_{S}^{'} =& \frac{e^{2}}{16\pi^{2}}m_{b}(\bar{s}P_{L}b)(\bar{l}\gamma_{5}l), \\ \mathcal{O}_{P} &=& \frac{e^{2}}{16\pi^{2}}m_{b}(\bar{s}P_{R}b)(\bar{l}\gamma_{5}l), & \mathcal{O}_{P}^{'} =& \frac{e^{2}}{16\pi^{2}}m_{b}(\bar{s}P_{L}b)(\bar{l}\gamma_{5}l) \left(2\pi^{2}-2\pi^{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Experimental Inputs

- $B^{(0,+)} \to K^{(0,+)}\mu^+\mu^-$: Differential branching fractions and isospin asymmetries (LHCb and Belle), binned data on the angular observables(A_{FB} and F_H) for $B^+ \to K^+\mu^+\mu^-$ (CMS) and inputs on R_K (LHCb and Belle).
- $B \to K^* \mu^+ \mu^-$: Differential branching fractions and isospin asymmetries (LHCb), angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$ decays (LHCb and ATLAS), P'_4 and P'_5 for $B^0 \to K^{*0} \mu^+ \mu^-$ (Belle) and R_{K^*} (LHCb and Belle).
- $B_s \to \phi \mu^+ \mu^-$: Differential branching fractions and angular observables (LHCb).
- $B_s \rightarrow \mu \mu$: Branching fraction (HFLAV 2019).
- Radiative modes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Decay distribution

• For a vector meson in final state :

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\Omega} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) sin^2 \theta_K + F_L cos^2 \theta_K \\ + F_L cos^2 \theta_K + \frac{1}{4} (1 - F_L) sin^2 \theta_K cos 2\theta_l - F_L cos^2 \theta_K cos 2\theta_l \\ + S_3 sin^2 \theta_K sin^2 \theta_l cos 2\phi + S_4 sin 2\theta_K sin 2\theta_l cos \phi \\ + S_5 sin 2\theta_K sin \theta_l cos \phi \\ + \frac{4}{3} A_{FB} sin^2 \theta_K cos \theta_l + S_7 sin 2\theta_K sin \theta_l sin \phi \\ + S_8 sin 2\theta_K sin 2\theta_l sin \phi + S_9 sin^2 \theta_K sin^2 \theta_l sin 2\phi \right]$$
(3)

•
$$P_1 = \frac{2S_3}{1-F_L}$$
, $P_2 = \frac{2}{3} \frac{A_{FB}}{(1-F_L)}$, $P_3 = \frac{-S_9}{1-F_L}$, $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$

• Normalized angular distribution for pseudoscalar meson :

$$\frac{1}{\Gamma_l}\frac{d\Gamma_l}{d\cos\theta} = \frac{3}{4}(1 - F_H^l)(1 - \cos^2\theta) + \frac{1}{2}F_H^l + A_{FB}^l\cos\theta \tag{4}$$

 ϕ

 μ^+

 \mathbf{h}^{K^+}

- Complex new physics WCs : C'_7 , ΔC_9 , C'_9 , ΔC_{10} , C'_{10} , C_S , C'_S , C_P and C'_P .
- 3 datasets: Moment(LHCb 2016), Likelihood(LHCb 2016), Likelihood(LHCb 2020) - No asymmetric observables.
- Statistical analysis optimizing a χ^2 statistic.

$$\chi^2(C^{NP}) = [O_{exp} - O_{th}(C^{NP})]^T [C_{exp} + C_{th}]^{-1} [O_{exp} - O_{th}(C^{NP})]$$

- In the post-process for each fit, obtain fit-quality using p-value and find outliers.
- Model selection out of all possible combinations of the WCs(1022 combinations Real + Real and Imaginary) Akaike's Information Criterion (AICc) and cross validation.

(日本)(周本)(日本)(日本)(日本)

One operator scenarios

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dataset	χ^2 /DOF	p-val(%)	Value	χ^2 /DOF	p-val(%)	Value
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C'_7			ΔC_9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2020	270 5/210	0.4×10^{-2}	$Re(C'_7) \rightarrow -0.039 \pm 0.013$	202 80/210	62.5	$Re(\Delta C_9) \rightarrow -1.10\pm 0.11$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2020	218.0/210	3.4 × 10	$Im(C'_{7}) \rightarrow -0.026\pm0.101$	202.03/210	02.5	$Im(\Delta C_9) \rightarrow 1.27 \pm 0.37$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Libelihand 2016	206 45 /240	0.7	$Re(C'_7) \rightarrow -0.03 \pm 0.01$	225 70/240	71.6	$Re(\Delta C_9) \rightarrow -1.21\pm 0.14$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2010	300.43/245	0.7	$Im(C'_7) \rightarrow -0.002 \pm 0.025$	233.19/249	/1.6	$Im(\Delta C_9) \rightarrow -1.25 \pm 0.44$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Momente 2016	201 85 /271	18.4	$Re(C'_7) \rightarrow -0.031 \pm 0.016$	241.7/271	80.0	$Re(\Delta C_9) \rightarrow -1.24 \pm 0.18$
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Moments 2010	251.65/271	10.4	$Im(C_7') \rightarrow -0.0057 \pm 0.0300$	241.7/271	65.5	$Im(\Delta C_9) \rightarrow 1.19 \pm 0.48$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C'_9		4	ΔC_{10}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Libelihand 2020	007.0 (010	0.010-2	$Re(C'_9) \rightarrow -0.077 \pm 0.149$	076 17 (010	0.15	$Re(\Delta C_{10}) \rightarrow 0.64 \pm 0.18$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2020	287.5/210	2.5 × 10	$Im(C'_{9}) \rightarrow -0.70\pm0.54$	270.17/210	0.15	$Im(\Delta C_{10}) \rightarrow 1.79 \pm 0.29$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Libelihood 2016	210 72/240	0.47	$Re(C'_9) \rightarrow -0.13 \pm 0.15$	202 22/240	1.1	$Re(\Delta C_{10}) \rightarrow 0.39 \pm 0.15$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2010	310.72/245	0.47	$Im(C'_{9}) \rightarrow -0.15\pm0.71$	303.22/245	1.1	$Im(\Delta C_{10}) \rightarrow 0.45 \pm 0.50$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Momente 2016	205 4/271	14.8	$Re(C'_{9}) \rightarrow -0.060\pm 0.148$	281 7/271	21.5	$Re(\Delta C_{10}) \rightarrow 0.51 \pm 0.14$
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Moments 2010	295.4/271	14.8	$Im(C'_9) \rightarrow -0.084 \pm 0.423$	281.7/271	31.5	$Im(\Delta C_{10}) \rightarrow -0.11 \pm 0.68$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C'_{10}			C_S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Libelihood 2020	278 1/210	0.1	$Re(C'_{10}) \rightarrow 0.33 \pm 0.11$	288 55 /210	2.6×10^{-2}	$Re(C_S) \rightarrow -0.029 \pm 0.483$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2020	278.1/210	0.1	$Im(C'_{10}) \rightarrow -0.21\pm0.81$	288.33/210	2.0 × 10	$Im(C_S) \rightarrow -0.032 \pm 0.440$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2016	202.0/240	1.1	$Re(C'_{10}) \rightarrow 0.33 \pm 0.11$	311.19/249 0.4	0.4	$Re(C_S) \rightarrow -0.04 \pm 0.04$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2010	303.0/ 249	1.1	$Im(C'_{10}) \rightarrow 0.02\pm0.28$		$Im(C_S) \rightarrow 0.0017 \pm 0.3043$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mamanta 2016	290.2/271	20.2	$Re(C'_{10}) \rightarrow 0.28\pm0.12$	295.4/271	14.8	$Re(C_S) \rightarrow -0.027 \pm 0.279$
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Moments 2010			$Im(C'_{10}) \rightarrow -0.0030 \pm 0.3175$			$Im(C_S) \rightarrow 0.030 \pm 0.251$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C_P			C'_S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2020	288 52/210	2.6×10^{-2}	$Re(C_P) \rightarrow -0.0075 \pm 0.0135$	288 51/210 2.6 × 10 ⁻		$Re(C'_{S}) \rightarrow -0.044 \pm 0.053$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Likelihood 2020	288.52/210	2.0 × 10	$Im(C_P) \rightarrow 0.003 \pm 0.241$	200.01/210	2.0 × 10	$Im(C'_{S}) \rightarrow 0.0055 \pm 0.3001$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2016	211 22/240	0.4	$Re(C_P) \rightarrow -0.0047 \pm 0.1564$	211 22/240	0.4	$Re(C'_S) \rightarrow -0.04\pm0.17$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Likelihood 2010	311.22/243	0.4	$Im(C_P) \rightarrow 0.02\pm0.85$	511.22/245	0.4	$Im(C'_S) \rightarrow -0.01\pm 0.62$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Momente 2016	205 2/271	15	$Re(C_P) \rightarrow 0.26 \pm 0.12$	205 4/271	14.8	$Re(C'_S) \rightarrow -0.035 \pm 0.157$
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Moments 2010	200.2/2/1	10	$Im(C_P) \rightarrow -0.019 \pm 0.847$	200.4/211	14.0	$Im(C'_{S}) \rightarrow -0.020\pm 0.263$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C'_P			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likelihood 2020	288 49/210 2.6 × 10 ⁻⁵		$Re(C'_{P}) \rightarrow 0.0078 \pm 0.0125$			
	Encimood 2020	200.45/210	2.0 × 10	$Im(C'_{P}) \rightarrow -0.002\pm0.182$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Likelihood 2016	211.2/240	0.4	$Re(C'_P) \rightarrow 0.007 \pm 0.013$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lineimood 2016	311.2/249	0.4	$Im(C'_{P}) \rightarrow -0.0027 \pm 0.2648$			
$Im(C'_P) \to 0.0021 \pm 0.3384$	Moments 2016	295 4/271	14.8	$Re(C'_{P}) \rightarrow 0.0061 \pm 0.0135$			
	Moments 2010	295.4/271	14.8	$Im(C'_{P}) \rightarrow 0.0021 \pm 0.3384$			

Ipsita Ray New physics effects in $b \rightarrow s$ transitions

Results (Likelihood 2020 dataset)

• With CP-asymmetric observables only in $B_s \to \phi \mu \mu$ -

χ^2_{Min}/DOF	p-value (%)	Scenario
206.517/211	57.4	$Re(\Delta C_9) \rightarrow -1.05 \pm 0.11$
202.889/210	62.5	$Re(\Delta C_9) \rightarrow -1.10 \pm 0.11$
		$Im(\Delta C_9) \to 1.27^{+0.33}_{-0.43}$

• Without any CP-asymmetric observables -

χ^2_{Min}/DOF	p-value (%)	Scenario
198.226/199 194.926/198	$50.2 \\ 54.8$	$\begin{aligned} Re(\Delta C_9) &\to -1.05 \pm 0.11 \\ Re(\Delta C_9) &\to -1.11 \pm 0.12 \\ Im(\Delta C_9) &\to -1.36^{+0.44}_{-0.34} \cup [0.84, \ 1.59] \end{aligned}$

• With CP-asymmetric observables in both $B_s \to \phi \mu \mu$ and $B \to K^* \mu \mu$ (From Likelihood 2016 dataset) -

χ^2_{Min}/DOF	p-value (%)	Scenario
239.768/246 238.105/245	$\begin{array}{c} 60\\ 61.2 \end{array}$	$\begin{array}{c} Re(\Delta C_9) \to -1.06 \pm 0.11 \\ Re(\Delta C_9) \to -1.09 \pm 0.11 \\ Im(\Delta C_9) \to -1.11^{+0.62}_{-0.4} \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Parameter spaces

Ipsita Ray New physics effects in $b \rightarrow s$ transitions

Observables sensitive to $Im(\Delta C_9)$

Ipsita Ray New physics effects in $b \to s$ transitions

Observables responsible for sign change in $Im(\Delta C_9)$

Ipsita Ray New physics effects in $b \rightarrow s$ transitions

Observables responsible for sign change in $Im(\Delta C_9)$

Ipsita Ray New physics effects in $b \rightarrow s$ transitions

イロト イヨト イヨト

2

Model Selection

• Akaike's Information Criteria -

AICc =
$$\chi^2_{min} + 2K + \frac{2K(K+1)}{n-K-1}$$
,

n = sample size and K = no. of parameters

• Selected models : $\Delta AIC_c^i = AIC_c^i$ - AIC_c^{min}

イロト 不得下 イヨト イヨト

-

• Akaike's Information Criteria -

AICc =
$$\chi^2_{min} + 2K + \frac{2K(K+1)}{n-K-1}$$

 \mathbf{n} = sample size and \mathbf{K} = no. of parameters

• Selected models : $\Delta AIC_c^i = AIC_c^i$ - AIC_c^{min}

• Cross-Validation (LOOCV) -

- One of the data points left out and the rest of the sample ("training set") optimized for a particular model.
- Result used to find the predicted squared error (SE) for the left out data point.
- Repeated for all data points and calculate MSE for the model.

イロト イボト イヨト

э

Model	$\Delta AICc$	MSE_{X-Val}	$\chi^2_{\rm Min}/{ m DOF}$	p-val (%)	$\operatorname{Pull}_{\mathrm{SM}}$	Result
						$\operatorname{Re}(\Delta C_9) \rightarrow -1.36 \pm 0.24$, $\operatorname{Im}(\Delta C_9) \rightarrow 2.05 \pm 0.36$
585	0.	0.989	189.05/206	79.6	9.0	$\text{Re}(C'_9) \rightarrow 0.57 \pm 0.23, \text{Im}(C'_9) \rightarrow 0.14 \pm 0.25$
						$\operatorname{Re}(\Delta C_{10}) \to 0.51 \pm 0.22, \operatorname{Im}(\Delta C_{10}) \to -0.53 \pm 0.46$
18	2.015	0.942	199.41/210	68.9	9.2	$\text{Re}(\Delta C_9) \rightarrow -1.08 \pm 0.099, \text{Re}(C'_9) \rightarrow 0.50 \pm 0.18$
697		0.971	188.25/204	77.9	8.7	$\operatorname{Re}(\Delta C_9) \rightarrow -1.4 \pm 0.24, \operatorname{Im}(\Delta C_9) \rightarrow 1.93 \pm 0.49$
	3 506					$\text{Re}(C'_9) \rightarrow 0.56 \pm 0.23$, $\text{Im}(C'_9) \rightarrow 0.31 \pm 0.5$
	3.300					$Re(\Delta C_{10}) \rightarrow 0.52 \pm 0.22, Im(\Delta C_{10}) \rightarrow -0.51 \pm 0.41$
						$\operatorname{Re}(C'_{10}) \rightarrow -0.032 \pm 0.177, \operatorname{Im}(C'_{10}) \rightarrow 0.75 \pm 0.82$
529 3	3 791	0.977	197.05/208	69.6	8.9	$\operatorname{Re}(\Delta C_9) \rightarrow -1.11 \pm 0.11, \operatorname{Im}(\Delta C_9) \rightarrow -0.12 \pm 0.46$
	0.101					$\operatorname{Re}(C'_9) \to 0.42 \pm 0.23, \operatorname{Im}(C'_9) \to -1.21 \pm 0.41$
641		1.011	189.69/204	75.6	8.6	$\operatorname{Re}(C'_7) \rightarrow -0.0075 \pm 0.0136$, $\operatorname{Im}(C'_7) \rightarrow -0.015 \pm 0.037$
	4.946					$\text{Re}(\Delta C_9) \to -1.07 \pm 0.13, \ \text{Im}(\Delta C_9) \to -0.061 \pm 0.296$
	4.540					$\text{Re}(C'_9) \rightarrow 0.61 \pm 0.25, \text{Im}(C'_9) \rightarrow -1.98 \pm 0.4$
						$\operatorname{Re}(\Delta C_{10}) \to 0.59 \pm 0.21, \operatorname{Im}(\Delta C_{10}) \to 0.051 \pm 1.254$
530	5 470	0.993	198.74/208	66.6	8.8	$\operatorname{Re}(\Delta C_9) \rightarrow -1.34 \pm 0.26$, $\operatorname{Im}(\Delta C_9) \rightarrow 1.95 \pm 0.44$
	0.413					$Re(\Delta C_{10}) \rightarrow 0.32 \pm 0.23$, $Im(\Delta C_{10}) \rightarrow -0.56 \pm 0.57$
513	5.492	0.98	202.89/210	62.5	9.0	$\text{Re}(\Delta C_9) \to -1.1 \pm 0.11, \text{Im}(\Delta C_9) \to 1.27 \pm 0.37$

Predictions of R_{K^*} and P'_5

Ipsita Ray New physics effects in $b \rightarrow s$ transitions

A B F A B F

э

- \mathcal{O}_9 is the only one operator scenario with both real and complex W.Cs that is capable of explaining the present data.
- In all other one operator scenarios, the quality of fits are very poor, with the respective p-values \sim 0.
- \mathcal{O}_9 with complex WC, though not the best model, is the only one-operator scenario passing all the selection criteria. Some two, three and four-operator scenarios are selected as well, and all of these contain \mathcal{O}_9 (with real or complex WC) as one of the operators.

Ipsita Ray New physics effects in $b \rightarrow s$ transitions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 - のへで