Hadronisation in PYTHIA8: string junctions, strangeness and beyond

Javira Altmann - Monash University, visiting University of Oxford PhD Supervisor - Peter Skands

- > Confinement in High-Energy Collisions
- > String Junctions
- > Strings from vacuum \rightarrow small systems \rightarrow heavy ion collisions

> String Hadronisation \rightarrow Modelling in PYTHIA (QCD Colour Reconnections)

Confinement in high energy collisions

Consider "hard" processes with large momentum transfers $Q^2 \gg \Lambda^2_{OCD}$

At wavelengths ~ $r_{proton} \sim 1/\Lambda_{QCD}$

Need a dynamical process to ensure partons (quarks and gluons) become confined within hadrons

i.e. non-perturbative parton → hadron map

> Example of $pp \rightarrow t\bar{t}$ event From PYTHIA 8.3 guide arXiv:2201.11601

Colour neutralisation

Require colour neutralisation:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

What does this **confinement field** look like?

Colour neutralisation

Require colour neutralisation:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects

Lattice QCD "Cornell potential" $V(r) = -\frac{a}{-} + \kappa r$ with $\kappa \sim 1$ GeV/fm

shows us the potential energy of a colour singlet $q\bar{q}$ at separation distance r

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** (relativistic 1+1 dimensional world) sheet) with uniform energy density

 $\kappa \sim 1 \text{ GeV/fm}$

Example of a "dipole" string

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** (relativistic 1+1 dimensional world) sheet) with uniform energy density

 $\kappa \sim 1 \text{ GeV/fm}$

Quarks / antiquarks

(anti)triplet \rightarrow carry (anti)**colour**

- \rightarrow connected via a string to an anticolour charge
- → string endpoints

Gluons

- Octet \rightarrow carry a **colour** and an **anticolour**
- \rightarrow connected via a string to both a colour and an anticolour charge
- \rightarrow transverse excitations on the string ("kinks")

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** sheet) with uniform energy density

 $\kappa \sim 1 \text{ GeV/fm}$

Quarks / antiquarks

(anti)triplet \rightarrow carry (anti)**colour**

- \rightarrow connected via a string to an anticolour charge
- → string endpoints

Gluons

- Octet \rightarrow carry a **colour** and an **anticolour**
- \rightarrow connected via a string to both a colour and an anticolour charge
- → transverse excitations on the string ("kinks")

Signatures of gluon-kinks have been seen Factor ~ 2 more particles in gluon jets

Lund String Model:

Model the **confining field** between colour charges as a **string**

Collapse the colour field into a **narrow flux tube** sheet) with uniform energy density

 $\kappa \sim 1 \text{ GeV/fm}$

Quarks / antiquarks

(anti)triplet \rightarrow carry (ant → connected via a strin

→ string endpoints

Gluons

Octet \rightarrow carry a **colour** and an **anticolour**

- \rightarrow connected via a string to both a colour and an anticolour charge
- → transverse excitations on the string ("kinks")

How does this map partons onto hadrons in high-energy collisions?

Partons \rightarrow Hadrons

Hadronisation:

Partons move apart and stretch the string \rightarrow string breaks

These happen at **non-perturbative** scales, can't use $P_{g \rightarrow q\bar{q}}(z)$

Instead use the **Schwinger mechanism**

Schwinger \rightarrow **Gaussian** p_{\perp} **spectrum** and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**

> Heavy quarks are only produced from hard processes → must be **string endpoints**

Schwinger mechanism QED

Non-perturbative creation of e^+e^- pairs in a string electric field

Probability from tunnelling factor

$$\mathscr{P} \propto \exp\left(\frac{-m^2 - p_{\perp}^2}{\kappa/\pi}\right)$$

Gaussian suppression of high $m_{\perp} = \sqrt{m_a^2 + p_{\perp}^2}$

Partons \rightarrow Hadrons

Hadronisation:

- **Schwinger** \rightarrow **Gaussian** p_{\perp} **spectrum** and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**
- String breaks are **causally disconnected**
- \rightarrow can fragment off hadrons from either end of the string
 - Probability distribution for the **fraction of quark**
 - **momenta**, z, the hadron will take is parametrised by the

Lund Symmetric Fragmentation Function

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(\frac{-b(m_h^2 + p_{\perp h}^2)}{z}\right)$$

Free tuneable parameters *a* and *b*

J. Altmann 🦝 Monash University

Partons \rightarrow Hadrons

Hadronisation:

Schwinger \rightarrow **Gaussian** p_{\perp} **spectrum** and heavy flavour suppression **Prob(u:d:s)** \approx **1 : 1 : 0.2**

String breaks are **causally disconnected**

→ can fragme Probability d What about colour? momenta, 2 Lund Symmetric rragmentation runction

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(\frac{-b(m_h^2 + p_{\perp h}^2)}{z}\right)$$

Free tuneable parameters *a* and *b*

Modelling Colour

Leading Colour limit:

Starting point for Monte Carlo event generators $N_C \rightarrow \infty$

 \succ Each colour is unique \rightarrow only one way to make colour singlets

- > Only **dipole** strings
- > Used by PYTHIA in the default (Monash 2013) tune

In e^+e^- collisions :

> Corrections suppressed by $1/N_C^2 \sim 10\%$

> Not much overlap in phase space

e.g. a dipole string configuration which make use of the **colour-anticolour** singlet state

Modelling Colour

Leading Colour limit:

Starting point for Monte Carlo event generators $N_C \rightarrow \infty$

 \succ Each colour is unique \rightarrow only one way to make colour singlets

- > Only **dipole** strings
- > Used by PYTHIA in the default (Monash 2013) tune

In e^+e^- collisions :

> Corrections suppressed by $1/N_C^2 \sim 10\%$

> Not much overlap in phase space

But high-energy pp collisions involve very many coloured partons with significant phase space overlaps

e.g. a dipole string configuration which make use of the **colour-anticolour** singlet state

QCD Colour Reconnection (CR) model

QCD Colour Reconnections

Stochastically restores colour-space ambiguities according to **SU(3) algebra**

> Allows for reconnections to **minimise string lengths**

Colour - anticolour singlet state

QCD Colour Reconnections

Stochastically restores colour-space ambiguities according to **SU(3) algebra**

> Allows for reconnections to **minimise string lengths**

- What about the **red-green-blue** colour singlet state?

;TI	0	Ν	S
;TI	0	N	S

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

Does a boost to the mercedes frame always exist?

J. Altmann 🌄 Monash University

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles \rightarrow the pull in each direction on the junction is equal \rightarrow junction is at rest

*no special consideration for these cases in current implementation

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string

> More likely to occur for junctions with heavy flavour endpoints

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string

> More likely to occur for junctions with heavy flavour endpoints

For a junction to make a **heavy baryon**, the junction leg with the heavy quark can't fragment (*i.e.* a "soft" junction leg) = pearl-on-a-string!

Special thanks to Gösta Gustafson

Use an "average" JRF

- Current procedure assumes the **average is the mercedes frame** > Uses energy weighted sum of momenta on each junction leg
- > Relies on convergence procedure that fails ~10% of cases

New treatment:

- \succ Considers pull on junction over time and average over junction motion
- > Includes pearl-on-a-string
- > Allow endpoint oscillations
- > No reliance on convergence

 \succ Early time JRF defined by the first parton on each leg > Use smallest leg momentum as a measure of effective time for the JRF \gg When softest parton has lost its momentum, the next parton dominates the pull

Updates to averaging

J. Altmann 🐼 Monash University

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Vacuum \rightarrow High multiplicities

Protons are composite

- \rightarrow lots of quarks and gluons inside
- → multiple parton-parton interactions
- \rightarrow lots of colour charges

Strangeness enhancement with charged multiplicity suggests higher multiplicity string systems act different to the vacuum case

> Number of fundamental and antifundamental flux lines at central rapidity in *pp* collisions give us **effective** multiplet representation

Reach higher than simple quarkantiquark triplet string

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Dense string environments

- → Casimir scaling of effective string tension
- \rightarrow Higher probability of strange quarks

For a given string, the collective of surrounding strings provides an **effective background**

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Dense string environments

- → Casimir scaling of effective string tension
- \rightarrow Higher probability of strange quarks

String tension could be different from the vacuum case compared to near a junction

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via successive colour fluctuations

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via successive colour fluctuations

blue $q\bar{q}$ fluctuation on the string

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via successive colour fluctuations

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via successive colour fluctuations

What if there's a blue string nearby?

J. Altmann 🤯 Monash University

Popcorn Mechanism

arXiv:hep-ph/9606454

Diquark formation via **successive colour fluctuations**

What if there's a blue string nearby?

Only basic model implemented thus far, further improvements on the modelling still happening!

J. Altmann 🤯 Monash University

Vacuum \rightarrow Small Systems \rightarrow Heavy Ion

String model has well described e^+e^- systems (i.e. cases with not many strings), and we've explored high multiplicity small systems, but what about heavy ion systems?

> Do we still have strings? Do we have QGP? Is it a mix of both, or is there a smooth transition between the strings and QGP?

Angantyr uses PYTHIA as its base to do pA and AA collisions, using only strings (**no QGP** formation)

Collective effects of strings can describe features that are typically described as signature of QGP

- \succ Near-sided ridge \rightarrow string shoving
- $\gg v_2 \rightarrow \text{string repulsion}?$
- Strangeness enhancement → ropes/close-packing

How far can we push the string model?

Thank you for listening!

