Hadronisation in PYTHIA8: string junctions, strangeness and beyond

Javira Altmann - Monash University, visiting University of Oxford
PhD Supervisor - Peter Skands
> Confinement in High-Energy Collisions
$>$ String Hadronisation \rightarrow Modelling in PYTHIA (QCD Colour Reconnections)
> String Junctions
$>$ Strings from vacuum \rightarrow small systems \rightarrow heavy ion collisions

Confinement in high energy collisions

Consider "hard" processes with large momentum transfers $Q^{2} \gg \Lambda_{Q C D}^{2}$

At wavelengths $\sim r_{\text {proton }} \sim 1 / \Lambda_{Q C D}$ Need a dynamical process to ensure partons (quarks and gluons) become confined within hadrons
i.e. non-perturbative parton \rightarrow hadron map

OHard Interaction

- Resonance Decays

MECs, Matching \& Merging

- FSR
- ISR*

QED

- Weak Showers
- Hard Onium

Multiparton Interactions
\square Beam Remnants*
\square Strings
© Ministrings / Clusters
Colour Reconnections
String Interactions
Bose-Einstein \& Fermi-Dirac

- Primary Hadrons
- Secondary Hadrons
- Hadronic Reinteractions
(*: incoming lines are crossed)

Colour neutralisation

Require colour neutralisation:

$>$ The point of confinement is that partons are coloured \rightarrow a physical model needs two or more partons to create colour neutral objects

Colour neutralisation

Require colour neutralisation:

$>$ The point of confinement is that partons are coloured \rightarrow a physical model needs two or more partons to create colour neutral objects
Lattice QCD "Cornell potential" $V(r)=-\frac{a}{r}+\kappa r$ with $\kappa \sim 1 \mathrm{GeV} / \mathrm{fm}$
shows us the potential energy of a colour singlet $q \bar{q}$ at separation distance r

Lund String Model

Lund String Model:

Model the confining field between colour charges as a string

Collapse the colour field into a narrow flux tube (relativistic 1+1 dimensional world sheet) with uniform energy density
$\kappa \sim 1 \mathrm{GeV} / \mathrm{fm}$

Lund String Model

Lund String Model:

Model the confining field between colour charges as a string

Collapse the colour field into a narrow flux tube (relativistic 1+1 dimensional world sheet) with uniform energy density

$$
\kappa \sim 1 \mathrm{GeV} / \mathrm{fm}
$$

Quarks / antiquarks
(anti)triplet \rightarrow carry (anti)colour
\rightarrow connected via a string to an anticolour charge
\rightarrow string endpoints

Gluons

Octet \rightarrow carry a colour and an anticolour
\rightarrow connected via a string to both a colour and an anticolour charge

strings stretched from q (or वव) endpoint via a number of gluons to $\overline{\mathrm{q}}$ (or qq) endpoint
\rightarrow transverse excitations on the string ("kinks")

Lund String Model

Lund String Model:

Model the confining field between colour charges as a string
Collapse the colour field into a narrow flux tube sheet) with uniform energy density

$$
\kappa \sim 1 \mathrm{GeV} / \mathrm{fm}
$$

Quarks / antiquarks
(anti)triplet \rightarrow carry (anti)colour

\rightarrow connected via a string to an anticolour charge
\rightarrow string endpoints

Gluons

Octet \rightarrow carry a colour and an anticolour
\rightarrow connected via a string to both a colour and an anticolour charge
\rightarrow transverse excitations on the string ("kinks")

ATLAS, Eur.Phys.J. C76 (2016) no.6, 322

Signatures of gluon-kinks have been seen Factor ~ 2 more particles in gluon jets

Lund String Model

Lund String Model:

Model the confining field between colour charges as a string
Collapse the colour field into a narrow flux tube sheet) with uniform energy density

$$
\kappa \sim 1 \mathrm{GeV} / \mathrm{fm}
$$

Quarks / antiquarks
(anti)triplet \rightarrow carry (ant \rightarrow connected via a strir
\rightarrow string endpoints
How does this map partons onto hadrons in high-energy collisions?
\qquad

Gluons

String fragmentation!
ATLAS, Eur.Phys.J. C76 (2016) no.6, 322

\rightarrow connected via a string to both a colour and an anticolour charge
\rightarrow transverse excitations on the string ("kinks")

Signatures of gluon-kinks have been seen Factor ~ 2 more particles in gluon jets

Partons \rightarrow Hadrons

Hadronisation:

Partons move apart and stretch the string \rightarrow string breaks
These happen at non-perturbative scales, can't use $P_{g \rightarrow q \bar{q}}(z)$ Instead use the Schwinger mechanism

Schwinger \rightarrow Gaussian p_{\perp} spectrum and heavy
flavour suppression Prob(u:d:s) $\approx 1: 1: 0.2$

Heavy quarks are only produced from hard processes
\rightarrow must be string endpoints

Schwinger mechanism QED

Gaussian suppression of high $m_{\perp}=\sqrt{m_{q}^{2}+p_{\perp}^{2}}$

Partons \rightarrow Hadrons

Hadronisation:

Schwinger \rightarrow Gaussian p_{\perp} spectrum and heavy flavour suppression $\operatorname{Prob}(u: d: s) \approx 1: 1: 0.2$

String breaks are causally disconnected
\rightarrow can fragment off hadrons from either end of the string
Probability distribution for the fraction of quark momenta, z, the hadron will take is parametrised by the Lund Symmetric Fragmentation Function

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(\frac{-b\left(m_{h}^{2}+p_{\perp h}^{2}\right.}{z}\right)
$$

Free tuneable parameters a and b

Partons \rightarrow Hadrons

Hadronisation:

$$
\text { Schwinger } \rightarrow \text { Gaussian } p_{\perp} \text { spectrum and heavy }
$$ flavour suppression Prob(u:d:s) $\approx 1: 1: 0.2$

String breaks are causally disconnected

\rightarrow can fragme
Probability c So far we have notion of hadron flavour and momentum momenta, What about colour?

Lund Symmietnicragmentationmunctori

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(\frac{-b\left(m_{h}^{2}+p_{\perp h}^{2}\right.}{z}\right)
$$

Free tuneable parameters a and b

Modelling Colour

Leading Colour limit:

Starting point for Monte Carlo event generators $N_{C} \rightarrow \infty$
$>$ Each colour is unique \rightarrow only one way to make colour singlets
$>$ Only dipole strings
> Used by PYTHIA in the default (Monash 2013) tune

In $e^{+} e^{-}$collisions :
$>$ Corrections suppressed by $1 / N_{C}^{2} \sim 10 \%$

e.g. a dipole string configuration which make use of the colour-anticolour singlet state
$>$ Not much overlap in phase space

Modelling Colour

Leading Colour limit:

Starting point for Monte Carlo event generators $N_{C} \rightarrow \infty$
\rightarrow Each colour is unique \rightarrow only one way to make colour singlets
$>$ Only dipole strings
\& Used by PYTHIA in the default (Monash 2013) tune

In $e^{+} e^{-}$collisions :
$>$ Corrections suppressed by $1 / N_{C}^{2} \sim 10 \%$

e.g. a dipole string configuration which make use of the colour-anticolour singlet state
$>$ Not much overlap in phase space

But high-energy pp collisions involve very many coloured partons with significant phase space overlaps

QCD Colour Reconnection (CR) model

QCD Colour Reconnections

Stochastically restores colour-space ambiguities according to SU(3) algebra
A Allows for reconnections to minimise string lengths

Colour - anticolour singlet state

Dipole reconnection

Gluon loop formation

QCD Colour Reconnections

Stochastically restores colour-space ambiguities according to SU(3) algebra
A Allows for reconnections to minimise string lengths

```
What about the red-green-blue colour singlet state?
```


Junction reconnection

Junctions

Mechanism for baryon production
$>\sim 40 \%$ of baryons are from junctions in PYTHIA
(in $p p$ collisions)

Junctions

Junctions

Junctions

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles
\rightarrow the pull in each direction on the junction is equal
\rightarrow junction is at rest

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles
\rightarrow the pull in each direction on the junction is equal
\rightarrow junction is at rest

Does a boost to the mercedes frame always exist?

Junction Rest Frame

What is the junction rest frame?

If the momenta of the junction legs are at 120° angles
\rightarrow the pull in each direction on the junction is equal
\rightarrow junction is at rest

Does a boost to the mercedes frame always exist?

Consider the following:
In the rest frame of one of the partons, and the angle between the other two partons is greater than 120°
*no special consideration for these cases in current implementation

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string
> More likely to occur for junctions with heavy flavour endpoints

Example of pearl-on-a-string viewed in the Ariadne frame of the green quark

Pearl-on-a-string

The junction gets "stuck" to the soft quark, which we call a pearl-on-a-string
> More likely to occur for junctions with heavy flavour endpoints

Updates to averaging

Use an "average" JRF
Current procedure assumes the average is the mercedes frame
$>$ Uses energy weighted sum of momenta on each junction leg
$>$ Relies on convergence procedure that fails $\sim 10 \%$ of cases

New treatment:
$>$ Considers pull on junction over time and average over junction motion
$>$ Includes pearl-on-a-string
> Allow endpoint oscillations
$>$ No reliance on convergence
$>$ Early time JRF defined by the first parton on each leg
$>$ Use smallest leg momentum as a measure of effective time for the JRF
$>$ When softest parton has lost its momentum, the next parton dominates the pull

Junctions

Junctions

Junctions

Vacuum \rightarrow High multiplicities

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13,535 (2017)]

Protons are composite

\rightarrow lots of quarks and gluons inside
\rightarrow multiple parton-parton interactions
\rightarrow lots of colour charges

Strangeness enhancement with charged multiplicity suggests higher multiplicity string systems act different to the vacuum case

Number of fundamental and antifundamental flux lines at central rapidity in pp collisions give us effective multiplet representation

Reach higher than simple quarkantiquark triplet string

Strangeness Enhancement

Multiplets ($y=0, p p 7$ TeV)

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Close-packing + Ropes

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

For a given string, the collective of surrounding strings provides an effective background

Strangeness Enhancement

Clear observations of strangeness enhancement with respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Close-packing + Ropes

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

String tension could be different from the vacuum case compared to near a junction

Strangeness Enhancement

Close-packing + Ropes

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

String tension could be different from the vacuum case compared to near a junction

Strangeness Enhancement

Popcorn mechanism

Popcorn Mechanism

Diquark formation via successive colour fluctuations

Popcorn mechanism

Popcorn Mechanism

arXiv:hep-ph/9606454
Diquark formation via successive colour fluctuations

Popcorn mechanism

Popcorn Mechanism

Diquark formation via successive colour fluctuations

Popcorn mechanism

Popcorn Mechanism

Diquark formation via successive colour fluctuations

What if there's a blue string nearby?

Popcorn mechanism

Popcorn Mechanism

Diquark formation via successive colour fluctuations

What if there's a blue string nearby?

Destructive interference of popcorn mechanism

[^0]
Popcorn mechanism

Popcorn Mechanism

arXiv:hep-ph/9606454
Diquark formation via successive colour fluctuations

What if there's a blue string nearby?

Vacuum \rightarrow Small Systems \rightarrow Heavy Ion

String model has well described $e^{+} e^{-}$systems (i.e. cases with not many strings), and we've explored high multiplicity small systems, but what about heavy ion systems?

Do we still have strings? Do we have QGP? Is it a mix of both, or is there a smooth transition between the strings and QGP?

Angantyr uses PYTHIA as its base to do $p A$ and $A A$ collisions,
How far can we push using only strings (no QGP formation) the string model?

Collective effects of strings can describe features that are typically described as signature of QGP
$>$ Near-sided ridge \rightarrow string shoving
$>v_{2} \rightarrow$ string repulsion?
$>$ Strangeness enhancement \rightarrow ropes/close-packing

Thank you for listening!

[^0]: blue $q \bar{q}$ fluctuation breaks nearby blue string, preventing diquark formation

