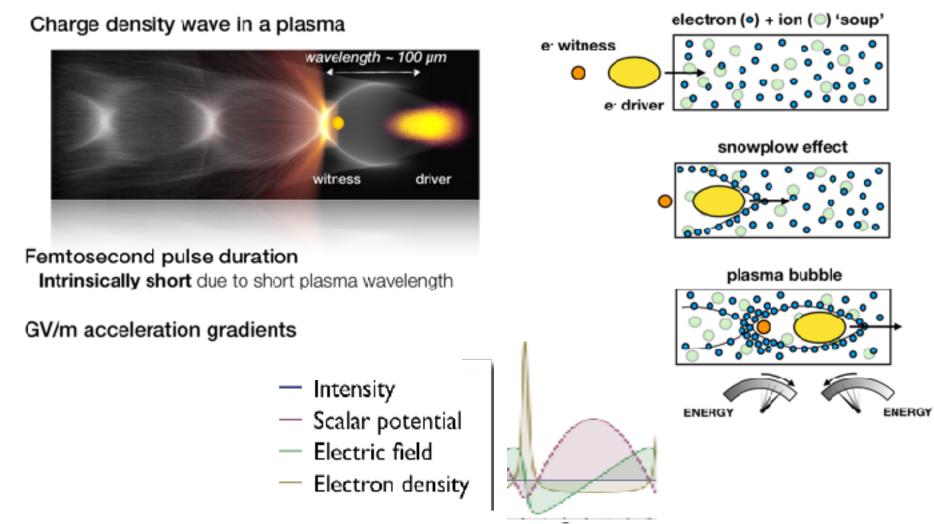


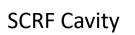
B. Foster, R. D'Arcy & C.A. Lindstrøm

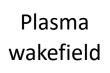
Plasma Wave Acceleration

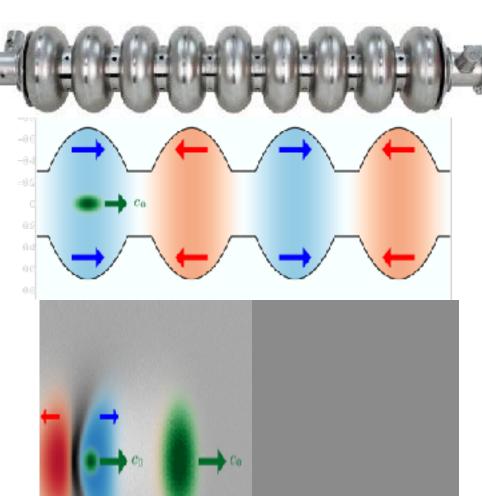

Wake Excitation

Particle Acceleration

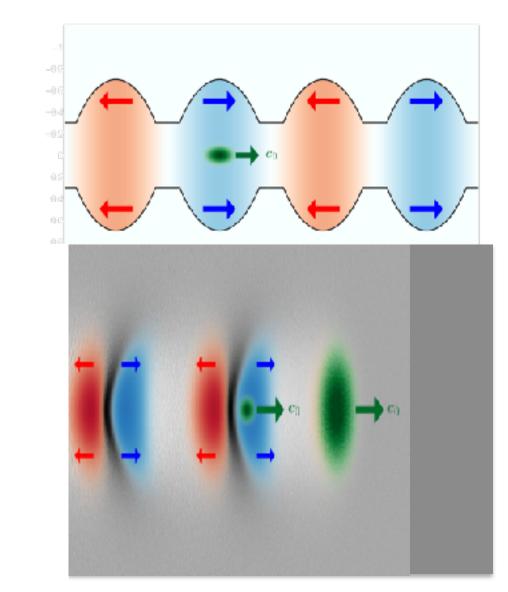
Plasma Wave Acceleration




time



Cavities cf Plasmas



Cavities cf Plasmas

SCRF Cavity

Plasma wakefield

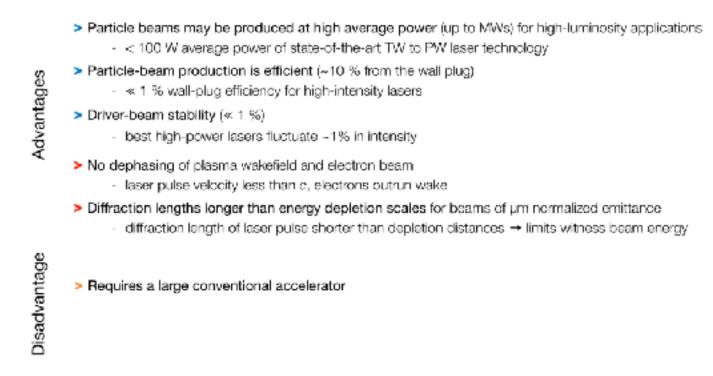
B. Foster, Warwick, 11/23

Setting the scale

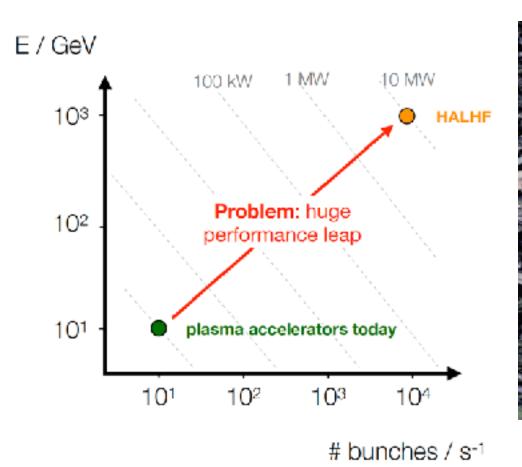
Plasma frequency depends only on density

$$\omega_p^2 = \frac{4\pi n_p e^2}{m}$$

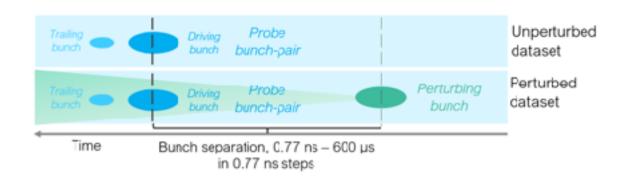
$$k_p = rac{\omega_p}{c}$$

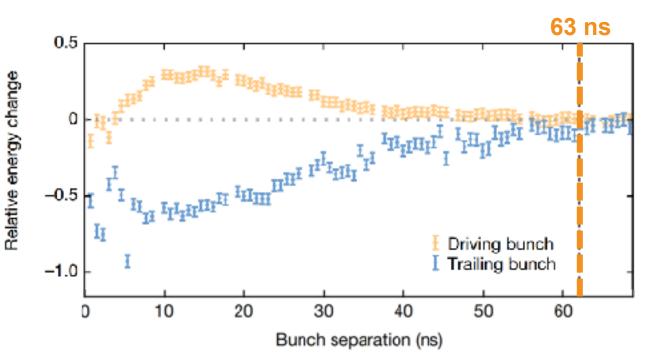

$$\lambda_p = \frac{2\pi}{k_p} = 1mm \sqrt{\frac{1 \cdot 10^{15} \text{ cm}^{-3}}{n_p}}$$

LWFA & PWFA


- Two main methods of exciting a wake-field in a plasma
 - a) Using a high-powered laser (LWFA)
 - b) Using electric field from intense particle beam (PWFA)
 - Each has advantages & disadvantages for PWFA:

Long Journey Ahead FLASHForward@DESY results




Rate limits in Plasma

Demonstrates >10 MHz repetition Rate in Ar – lighter gases faster.

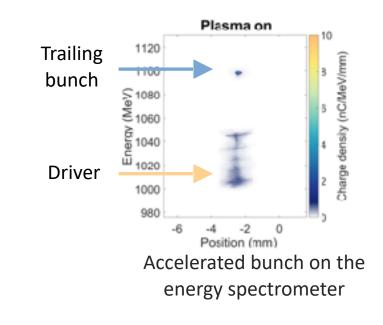


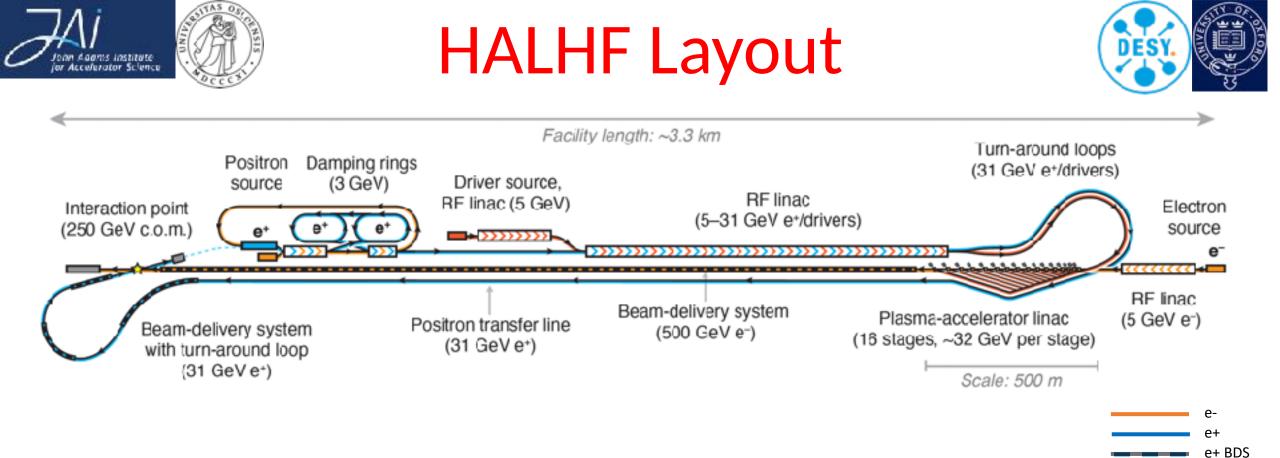
Diagram and image courtesy: F. Pena, J. Beinortaitė [1] R. D'Arcy, BF, et al., Nature **603**, 58-62 (2022)

- The basic idea is there are enough problems with a PWFA e-accelerator; e+ is even more difficult. Bypass this for e+e- collider by using conventional linac for e+.
- For this to be attractive financially, conventional linac must be low energy => asymmetric energy machine.
- This requirement led to (at least for us) unexpected directions – the more asymmetric the machine became, the better!

Relativistic Refresher

$$E_e E_p = s/4$$
 (1)

and

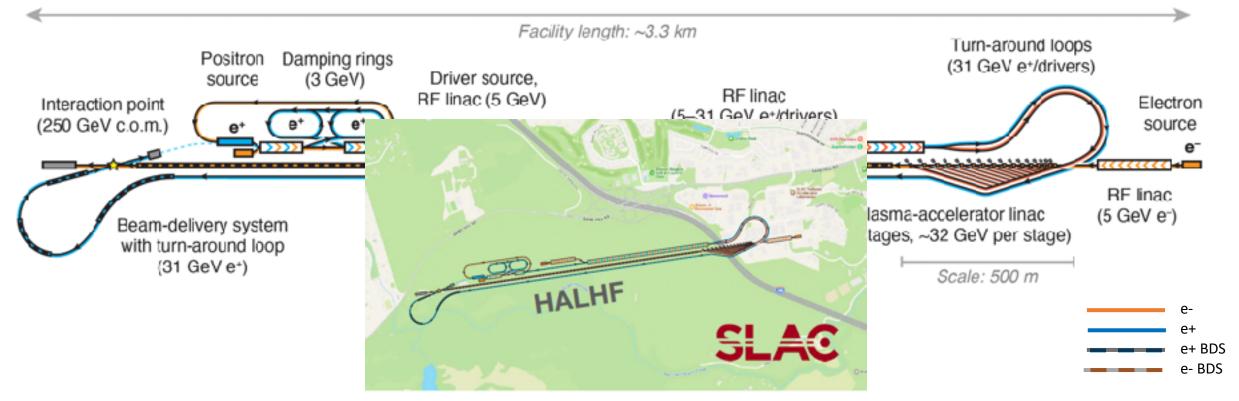

$$E_e + E_p = \gamma \sqrt{s},\tag{2}$$

where E_e and E_p are the electron and positron energies, respectively, govern the kinematics. These two equations link three variables; fixing one therefore determines the other two. For a given choice of positron and centre-ofmass energy, the boost becomes

$$\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right). \tag{3}$$

• It turns out that the (an) optimum (see below) for $E_{cm} = 250$ GeV is to pick $E_e = 500$ GeV, $E_p = 31$ GeV, which gives a boost in the electron direction of $\gamma \sim 2.13$.

• Overall facility length ~ 3.3 km – which will fit on ~ any of the major (or even ex-major) pp labs. (NB. A service tunnel a la ILC is costed but not shown)


B. Foster, Warwick, 11/23

e- BDS

HALHF Layout

- Overall facility length ~ 3.3 km (NB. A service tunnel à la ILC is costed but not shown)
- fits on ~ any of the major (or even ex-major) pp labs.

B. Foster, Warwick, 11/23

Energy Efficiency

- Asymmetric machines less energy efficient than symmetric energy lost "in accelerating the C.o.M." For equal bunch charges => 2.5 times more energy required for same C.o.M. energy.
- Can be reduced by introducing asymmetry into beam charges increase charge of low-energy beam and decrease high-energy s.t. N² = N_eN_p constant
 - => **L** conserved.
- $P/P_0 = (N_e E_e + N_p E_p)/(N^* sqrt(s))$
- Optimum is to scale e^+ charge by sqrt(s)/(2E_p), i.e. factor ~ 4.
- Producing so many e⁺ problematic compromise by scaling by factor 2 (2*e⁺, ½* e⁻).
- Reduces energy increase to 1.25. Also reduces bunch charge in PWFA arm.

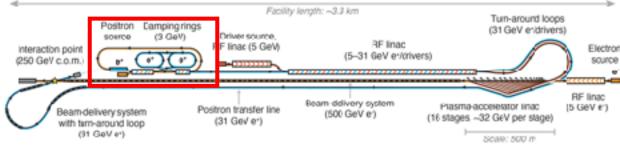
Emittance reduction

- Geometric emittance of bunch scales with 1/E .
- Lower-energy e⁺ beam must have smaller β function at I.P. use β_x / β_v = 3.3/0.1 mm c.f. CLIC 8.0/0.1 mm.
- In contrast, high-energy e⁻ beam β function can be increased.
- More interesting is to increase the e⁻ emittance AND reduce the β function => normalized emittance can be 16 times higher for the same L => increased tolerances in PWFA arm.
- Beam-beam focusing effect on L must be simulated with Guinea Pig.

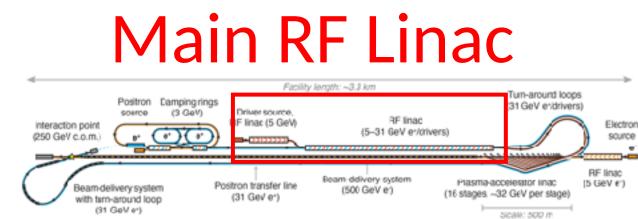
Beam-beam Effects

• Guinea-Pig results:

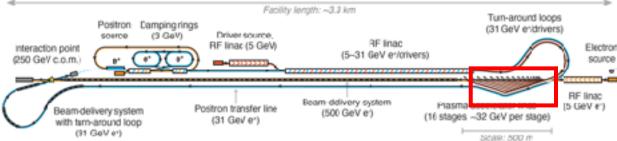
E (GeV)	$\sigma_z ~(\mu { m m})$	$N(10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} \ (\mathrm{nm})$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L}~(\mu \mathrm{b}^{-1})$	$ \mathcal{L}_{0.01} \ (\mu b^{-1}) $	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2/2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2/2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25


• ILC

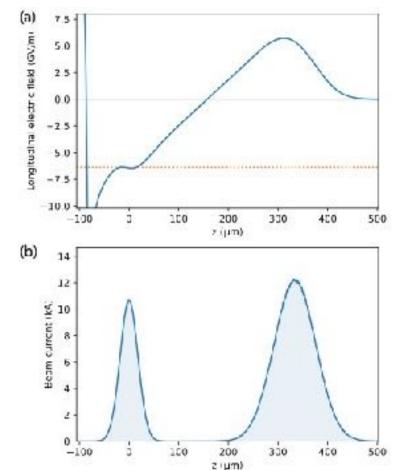
- HALHF
- HALHF with reduced emittance for PWFA


Positron Source

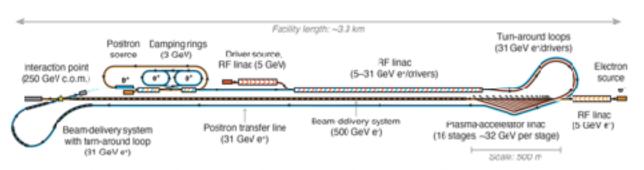
- "Conventional" e⁺ sources are not trivial that for ILC, which has relaxed requirements wrt HAHLF, still under development.
- e- accelerated to 5 GeV and then collide with target to produce e+ which are accumulated, bunched and accelerated to 3 GeV and then damped in 2 rings (~identical to CLIC but bigger e+ bunch charge (4*10¹⁰ e+).
- May be possible to use spent e⁺ bunch after collision rather than dedicated e⁻ bunch, with cost savings.

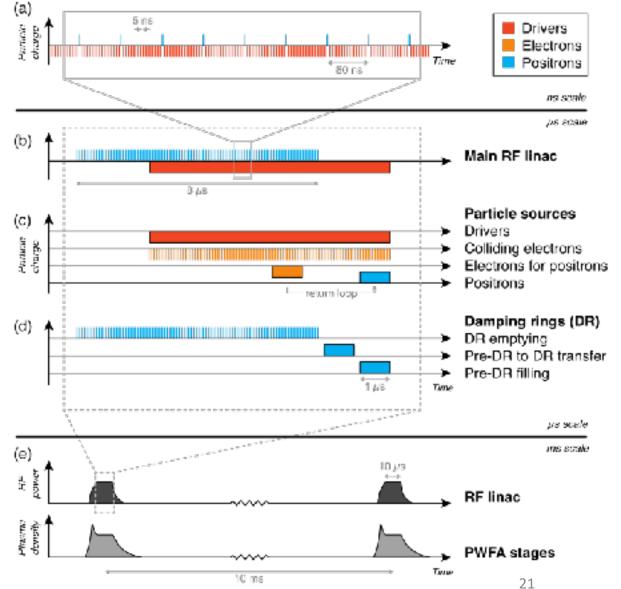


- Assume gradient of 25 MV => 1.25 km long.
- Delivers total average power of 21.4 MW => including e⁺ power and $\epsilon \sim 50\%$, wall-plug 47 MW.
- Assume warm L-band linac CW SRF could be used but would change bunch pattern.
- Before drivers, e+ bunch accelerated with 180° phase offset.



PWFA Linac




- Drivers go through turn-around and then distributed to plasma cells via undulating delay chicane.
- Assuming TR ~ 1, e- bunch accelerated by 31 GeV/5m stage => 16 stages with ρ ~ 7*10^{15} => 6.4 GV/m.
- Interstage optics needs ~ <26.5m> but scales with sqrt(E); <gradient>~1.2 GV/m
- $_{B}$ Total length of PWFA linac = 410m.

Bunch-train pattern.

• Assuming L-band linac:

John Agents Institute for Accelerator Science

HALHF Parameter Table

Machine parameters	Unit	Va	lue
Center-of-mass energy	${\rm GeV}$	250	
Center-of-mass boost		2.	13
Bunches per train		1	00
Train repetition rate	Hz	1	00
Average collision rate	$_{\rm kHz}$	1	.0
Luminosity	${\rm cm}^{-2} {\rm s}^{-1}$	0.81	$\times 10^{34}$
Luminosity fraction in top 1%		57	7%
Estimated total power usage	MW	1	00
Colliding-beam parameters		e^-	e^+
Beam energy	${\rm GeV}$	500	31.25
Bunch population	10^{10}	1	4
Bunch length in linacs (rms)	$\mu \mathrm{m}$	18	75
Bunch length at IP (rms)	$\mu \mathrm{m}$	75	
Energy spread (rms)	%	0.15	
Horizontal emittance (norm.)	μm	160	10
Vertical emittance (norm.)	μm	0.56	0.035
IP horizontal beta function	$\mathbf{m}\mathbf{m}$	3	.3
IP vertical beta function	$\mathbf{m}\mathbf{m}$	0.1	
IP horizontal beam size (rms)	nm	7	29
IP vertical beam size (rms)	nm	7	.7
Average beam power delivered	MW	8	2
Bunch separation	ns	8	30
Average beam current	μΑ	16	64

RF linac parameters		
Average gradient	MV/m	25
Wall-plug-to-beam efficiency	%	50
RF power usage	MW	47.5
Peak RF power per length	MW/m	21.4
Cooling req. per length	kW/m	20
PWFA linac and drive-beam pa	rameters	
Number of stages		16
Plasma density	cm^{-3}	$7 imes 10^{15}$
In-plasma acceleration gradient	GV/m	6.4
Average gradient (incl. optics)	GV/m	1.2
Length per stage ^a	\mathbf{m}	5
Energy gain per stage ^a	GeV	31.9
Initial injection energy	GeV	5
Driver energy	GeV	31.25
Driver bunch population	10^{10}	2.7
Driver bunch length (rms)	$\mu \mathrm{m}$	42
Driver average beam power	MW	21.4
Driver bunch separation	ns	5
Driver-to-wake efficiency	%	72
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	38
Wall-plug-to-beam efficiency	%	19
Cooling req. per stage length	$\rm kW/m$	100

 $^{\circ}$ The first stage is half the length and has half the energy gain of the other stages (see Section V. 4).

HALHF Parameters cf ILC & CLIC

Parameter	Unit		LHF	ILC	CLIC
		e ⁻	e^+	e^-/e^+	e^-/e^+
Center-of-mass energy	GeV	2	50	250	380
Center-of-mass boost		2.	13	-	-
Bunches per train		10	00	1312	352
Train repetition rate	Hz	10	00	5	50
Average collision rate	\mathbf{kHz}	1	.0	6.6	17.6
Average linac gradient	MV/m	1200	25	16.9	51.7
Main linac length	\mathbf{km}	0.41	1.25	7.4	3.5
Beam energy	GeV	500	31.25	125	190
Bunch population	10 ¹⁰	1	4	2	0.52
Average beam current	μA	16	64	21	15
Horizontal emittance (norm.)	μm	160	10	5	0.9
Vertical emittance (norm.)	μm	0.56	0.035	0.035	0.02
IP horizontal beta function	mm	3	.3	13	9.2
IP vertical beta function	$\mathbf{m}\mathbf{m}$	0	.1	0.41	0.16
Bunch length	μm		'5	300	70
Luminosity	$\mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.81 >	$\times 10^{34}$	$1.35 imes10^{34}$	$2.3 imes10^{34}$
Luminosity fraction in top 1%		57	7%	73%	57%
Estimated total power usage	\mathbf{MW}	10	00	111	168
Site length	km	3	.3	20.5	11.4

B. Foster, Warwick, 11/23

(5-31 GeV er/driver

Plasma-accelerator linac

(16 stages, ~32 GeV per stage

Beam-delivery system

(500 GeV er)

 Scale from existing costed projects wherever possible – mostly ILC – very rough – not better than 25% accurate.

(31 GeV er)

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	cost		factor	cost	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [69], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [47], scaled by length and multiplied by 6 ^b	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam dumps ^{ϵ}	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

Electron

source

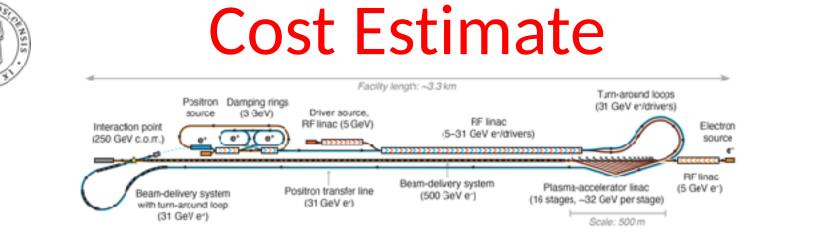
(! GeV er)

^a Swiss deflator from $2018 \rightarrow 2012$ is approximately 1. Conversion uses Jan 1st 2012 CHF to \$ exchange rate of 0.978.

^b Cost of PWFA linac similar to ILC standard instrumented beam lines plus short plasma cells & gas systems plus kickers/chicanes. The factor 6 is a rough estimate of extra complexity involved.

^c The positron transfer line, which is the full length of the electron BDS, dominates; this plus two turn-arounds, the electron transport to the positron source plus small additional beam lines are costed.

^d The HALHF length is scaled by \sqrt{E} and the cost assumed to scale with this length.

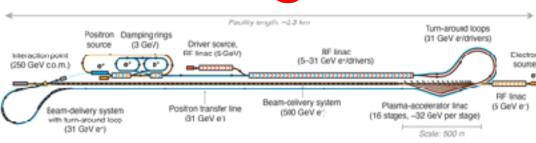

B. Foster, Warwick, 11/23 • Length of excavation and beam line taken from European XFEL dump.

Interaction point

(250 GeV 1.0.m

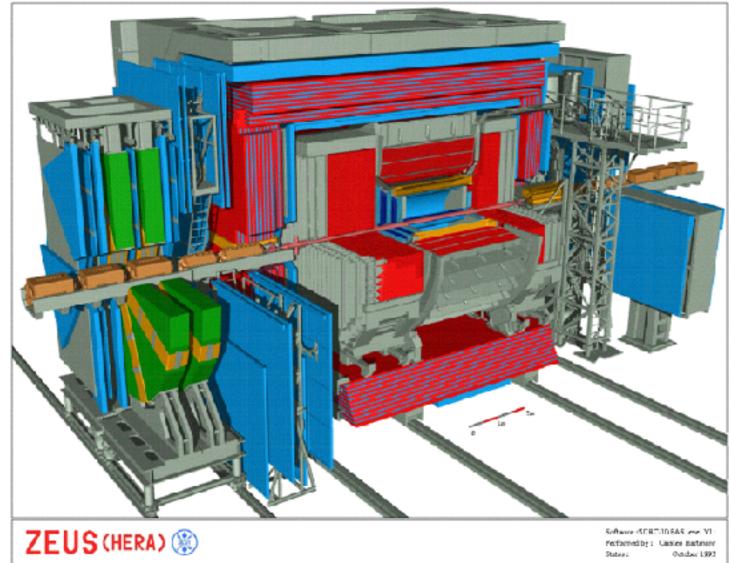
am-delivery system

turn-around leop


acelerator Science

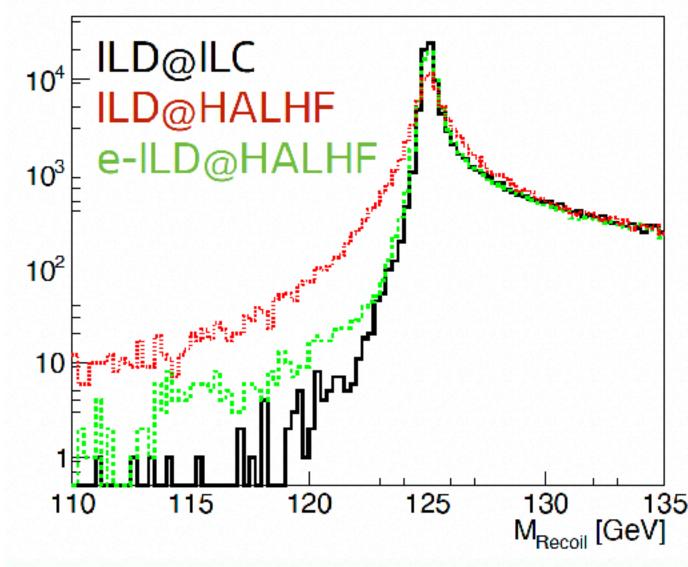
• Snowmass study ITF of various accelerator costs gives ILC Higgs Factory Total Project Cost (TPC) (= US accounting) of \$7 - 12B (2021 \$). Scaling this by the value estimate (~European accounting) of HALHF/ILC@Snowmass gives HAHLF TPC ~ \$2.3 -3.9B: c.f. EIC TPC = \sim \$2.8B. Direct estimate by ITF people (Seeman/Gessner) gives \$4.46B. B. Foster, Warwick. 11

Running Costs

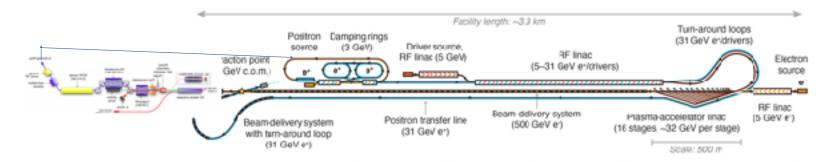

- Dominated by power to produce drive beams.
- (100*16*4.3nC + 6.4nC)*100 => 47.5 MW@50% eff.
- Damping rings: 2*10 MW.
- Cooling assume similar to CLIC => 50% of RF power (corresponds to 20 kW/m).
- For magnets and other conventional sources assume ~9 MW.
- Gives total power requirement ~ 100 MW similar to other proposals

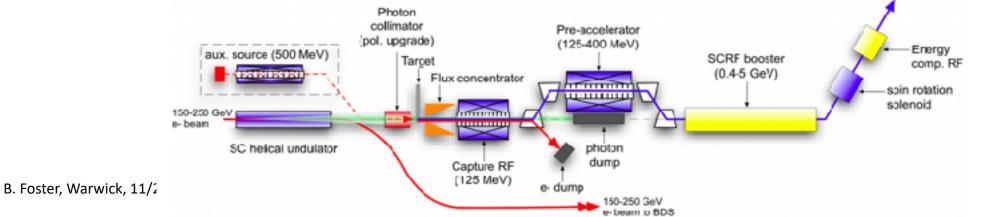
Experimentation at HALHF

- Boost is smaller than HERA - HERA detectors very similar to those at symmetric machines.
- Measurement of L via Bhabha (e+e- -> e+e-) - rate reduced by $1/(\theta\gamma)^2$ & e⁺ scattered into barrel – but not a problem. Singles rate good for machine optimisation



Experimentation at HALHF


- Preliminary study (M. Berggren,
 - A. Laudrain(DESY))
 - with long ILD barrel:
 - ~ 20% degradation
 - of Higgs resolution.
- "Proper" detector
 - B. F. Gressign required.



Upgrades

 Produce e⁺ polarization via ILC-like scheme ideas exist for E(e⁻) 500 GeV; wiggler probably longer and more expensive. Cost ~ 300 MILCU minus conventional source cost.

Energy Upgrades

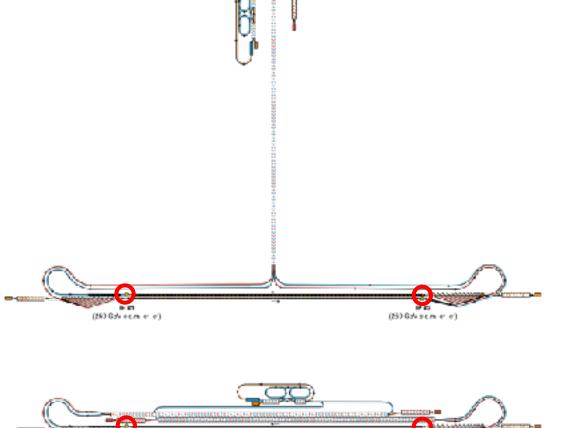
- Either keep e⁺ energy same increases γ as E increases

 experiments more and more difficult; or increase e⁺
 energy to keep γ ~ constant => more expensive linac.
- However, getting to ttbar (380 GeV) with same e⁺ energy => E(e-) ~ 1.165 TeV and γ ~ 3.1, ~ HERA and ttbar final state even more spherical. However, running costs increase with γ and there is a limit to beam-current asymmetry possible because of e⁺ production => unattractive.

Energy Upgrades

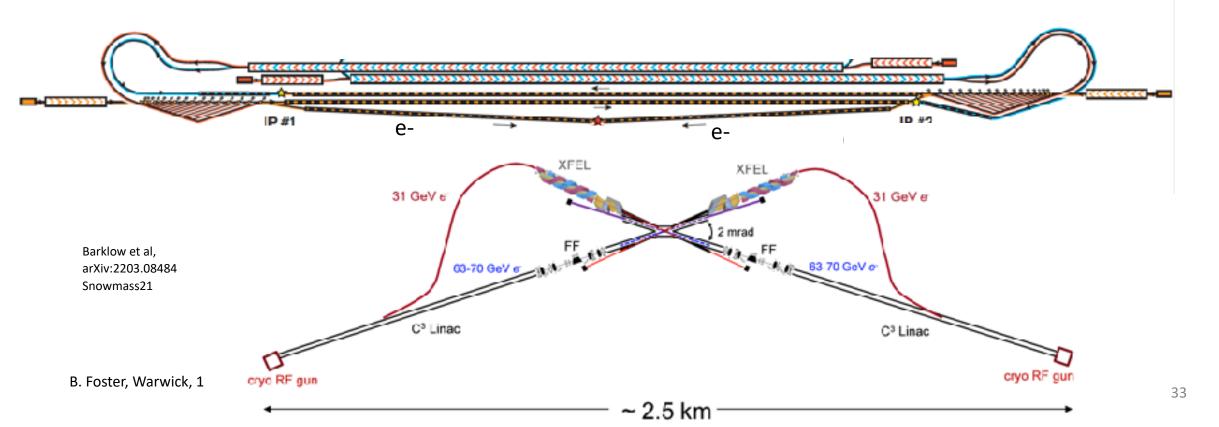
- Keeping γ constant by lengthening conventional linac
 needs E(e⁺) ~ 47.5 GeV and E(e⁻) ~ 760 GeV. (space allocated and tunnel would be built at initial HALHF construction time both for linac &BDS).
- Increases length of linac by 50%; PWFA arm also increases as inter-stage optics proportional to sqrt(E)
 +130 m. Capital cost ~ +200 MILCU; running costs increase by 25% to ~125 MW.

NB. Preliminary!



(25) Belt scale er-ef.

- Unlike circular machines, in LCs, extra IPs just share L. CLIC has only 1 detector; ILC has 2 "oscillating" ones.
- HALHF can either share L or double it – with an extra linac!
- Cost: T-shape: larger footprint - 250 MILCU; 2linac - 690 MILCU
- Running costs @ Higgs: Tshape: same; 2linac – 150 MW


(25) Byl 54, m. er-eft

γγ& Multi-TeV Upgrade

- Symmetry restoration!
 - $\gamma\,\gamma\,$ from Compton backscattering via lasers
 - But not yet available use XFEL driven by PWFA drive beams XCC idea of Barklow et al.

R&D Required

Rough timeline for HALHF (and beyond)

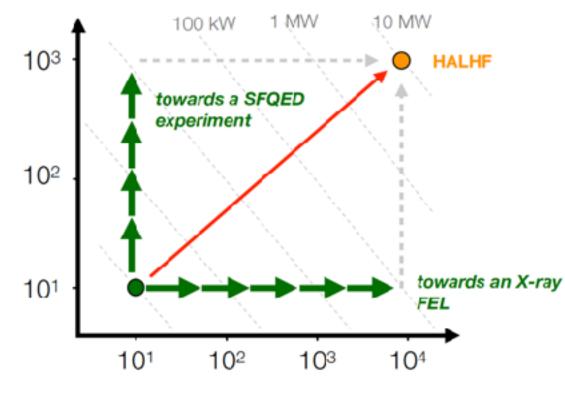
> Short term (0-5 yrs): Pre-CDR (feasibility study) & CDR

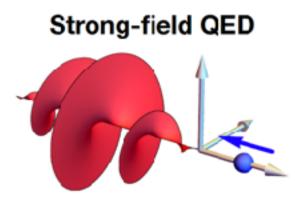
Timeline (approximate / aggressive / aspirational)							
0–5 years	5-10 years	10–15 years	15–20 years	20+ years			
Pre-CDR & CDR (HALHF)				Freshilly shrip R&D (exp. & theory) HEP leality (setiest start of construction)			
Simulation study to determine seli-consistent parameters (demonstration goals) First proof-of-principle							
experimentation							

R&D Required

>Short term (0-5 yrs): Pre-CDR (feasibility study) & CDR

>Near term (5–10 yrs): Much Plasma R&D required!


Timeline (approximate / aggressive / aspirational)							
0–5 years	5–10 years	10–15 years	15–20 years	20+ years			
Pre-CDR & CDR (HALHF) Simulation study to determine self-consistent parameters (demonstration goals) First proof-of-principle experimentation	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive), preserved beam quality, high rep. rate, plasma temporal uniformity & cell cooling			Feesibility surdy 1950 (exp. & meany) NCP facility (serificat start of construction)			



• "Valley of death" in performance goal requires decoupled strategy.

E / GeV

bunches / s-1

Source: Blackburn et al., Phys. Plasmas 25, 083108 (2018)

X-ray FEL

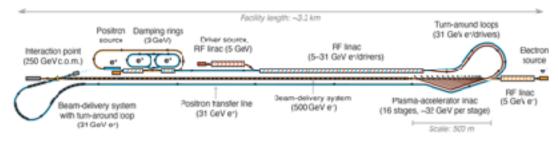
> Short term (0-5 yrs): Pre-CDR (feasibility study) & CDR

>Near term (5–15 yrs): Tech. Demonstrators — strong-field QED and an X-ray FEL

> Short term (0–5 yrs): Pre-CDR (feasibility study) & CDR

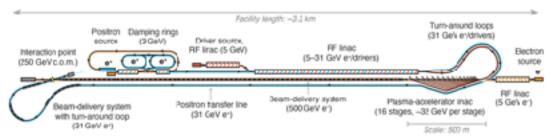
- >Near term (5–15 yrs): Tech. Demonstrators strong-field QED and an X-ray FEL
- >Long term (15–20 yrs): Delivery of HALHF intense R&D required

Timeline (approximate / aggressive / aspirational)							
0–5 years	5–10 years	10-15 years	15-20 years	20+ years			
Pre-CDR & CDR (HALHF) Simulation study to determine self-consistent parameters	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive)	Multistage tech demonstrator Strong-field QED experiment (25–100 GeV er)	(Facility upgrade)	Passibility study B&D (eqn. & lineary) HEP taolity (earliest start of construction)			
	Demonstration of: Preserved beam quality, high rep. rate, plasma temporal uniformity & cell cooling	Avg. power tech demonstrator X-ray FEL (20 GeV e [.])	(Facility upgrade) 🕌				
(demonstration goals)	R&D into conventional-accelera	ator & particle-physics concepts	Higgs factory (HALHF)				
First proof-of-principle experimentation		tration of: r drivers) & spin polarisation	Asymmetric, plasma-RF hybrid collider (250–380 GeV c.o.m.)				

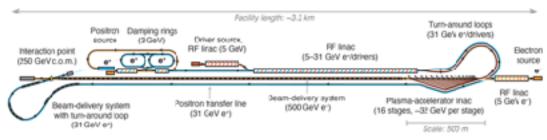


- >Short term (0–5 yrs): Pre-CDR (feasibility study) & CDR
- >Near term (5–15 yrs): Tech. Demonstrators strong-field QED and an X-ray FEL
- >Long term (15–20 yrs): Delivery of HALHF intense R&D required
- > Upgrades (20+ yrs): Upgrade path for HALHF (many options available)

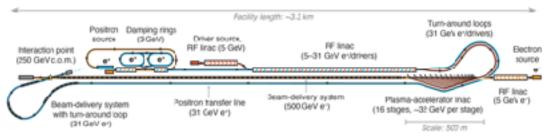
Timeline (approximate / aggressive / aspirational)							
0–5 years	5-10 years	10–15 years	15-20 years	20+ years			
Pre-CDR & CDR (HALHF)	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive)	Multistage tech demonstrator Strong-field QED experiment (25–100 CeV er)	(Facility upgrade)	Feesibility story IBD (exp. & interry) HEP facility (variest start of construction)			
Simulation study to determine self-consistent parameters	Demonstration of: Preserved beam quality, high rep. rate, plasma temporal uniformity & cell cooling	Avg. power tech demonstrator X-ray FEL (20 GeV e-)	(Facility upgrade)				
(demonstration goals) First proof-of-principle experimentation	Demons	ator & particle-physics concepts Iration of: - drivers) & spin polarisation	Higgs factory (HALHF) Asymmetric, plasma-RF hybrid collider (250–380 GeV c.o.m.)	(Fecliity upgrade)			
		Demonstration of: acceleration in plasma, high wall-plug energy recovery schemes, compact b	Multi-TeV e*-e-/γ-γ collider Symmetric, all-plasma-based collider (> 2 TeV c.o.m.)				



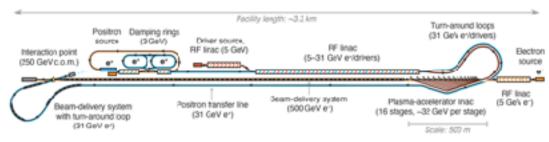
• HALHF benefits from maximal asymmetry.



- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.



- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- Conventional design work needed: DR with high bunch charge; heavily loaded linac; BDS...



- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- Conventional design work needed: DR with high bunch charge; heavily loaded linac; BDS...
- PWFA R&D: higher accelerated charge (x ~10), higher repetition rate (x ~1000), plasma-cell power dissipation (x ~1000), beam jitter reduction (x ~10-100).

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- Conventional design work needed: DR with high bunch charge; heavily loaded linac; BDS...
- PWFA R&D: higher accelerated charge ($x \sim 10$), higher repetition rate (x ~1000), plasma-cell power dissipation (x ~1000), beam jitter reduction (x ~10-100).
- Better start asap HALHF "kick-off" meeting @ DESY on 23.10.23 B. Foster, Warwick, 11/23