Long-baseline neutrino oscillation physics in Japan

Mark Scott
University of Warwick
10th June 2021
Long-baseline neutrino oscillations in Japan

10th June 2021

Neutrino Oscillations

Art McDonald
2015 Nobel

Takaaki Kajita
2015 Nobel
Neutrino Oscillation Formalism

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

\[
c_{ij} = \cos \theta_{ij} \\
s_{ij} = \sin \theta_{ij} \\
\delta = \delta_{CP}
\]

\[
\mathbf{U} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\]

\[
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{pmatrix}
\]

\[
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Atmospheric /Beam
Beam /Reactor
Reactor /Solar
Neutrino Oscillation Formalism

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

What do we know?
- \(\theta_{23} = 45.6^\circ \pm 2.3^\circ\)
- \(\theta_{13} = 8.3^\circ \pm 0.2^\circ\)
- \(\theta_{12} = 33.6^\circ \pm 0.8^\circ\)
- \(|\Delta m_{32}^2| = (2.45 \pm 0.05) \times 10^{-3} \text{ eV}^2c^{-4}\)
- \(\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2c^{-4}\)

What don’t we know?
- Is \(\theta_{23} = 45^\circ\) (octant)?
- Is \(\Delta m_{32}^2 > 0\) (mass ordering)?
- Do neutrinos violate CP-symmetry?
- New physics?
Neutrino Oscillation Formalism

\[
\begin{pmatrix}
 \nu_e \\
 \nu_\mu \\
 \nu_\tau
\end{pmatrix} =
\begin{pmatrix}
 U_{e1} & U_{e2} & U_{e3} \\
 U_{\mu1} & U_{\mu2} & U_{\mu3} \\
 U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix}
\]

What do we know?

- \(\theta_{23} = 45.6^\circ \pm 2.3^\circ \)
- \(\theta_{13} = 8.3^\circ \pm 0.2^\circ \)
- \(\theta_{12} = 33.6^\circ \pm 0.8^\circ \)
- \(|\Delta m^{2}_{32}| = (2.45 \pm 0.05) \times 10^{-3} \text{ eV}^2\text{c}^{-4} \)
- \(\Delta m^{2}_{21} = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2\text{c}^{-4} \)

What don’t we know?

- Is \(\theta_{23} = 45^\circ \) (octant)?
- Is \(\Delta m^{2}_{32} > 0 \) (mass ordering)?
- Do neutrinos violate CP-symmetry?
- New physics?
Long-baseline neutrino experiments

- Leading order oscillation probabilities for ν_μ survival and ν_e appearance

\[P(\nu_\mu \rightarrow \nu_\mu) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right) \]

\[P(\nu_\mu \rightarrow \nu_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) \]
Long-baseline neutrino experiments

- Leading order oscillation probabilities for ν_μ survival and ν_e appearance

$$P(\nu_\mu \to \nu_\mu) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)$$

$$P(\nu_\mu \to \nu_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right)$$

- Need to sample spectrum at different values of L/E
- Build two detectors
- One close to neutrino source
- Other at maximal oscillation
CP violation in neutrino oscillation

\[
P(\nu_\mu \rightarrow \nu_\ell) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E_\nu} \right) \left(1 + \frac{2a}{\Delta m_{31}^2} (1 - 2\sin^2 \theta_{13}) \right)
\]

- Probability for ν_e appearance around the oscillation maximum, including CP-violating term
 - $\delta \rightarrow -\delta$ when switching from neutrinos to antineutrinos

- Can measure δ_{CP} by comparing rate of electron neutrino appearance to rate of electron antineutrino appearance
 - Can also use absolute rate for neutrinos/antineutrinos if other oscillation parameters known well enough
Tokai to Kamioka Experiment – T2K

Super-Kamiokande (SK)

Near detectors

Kamioka

Tokai

JPARC

Materials and Life Science Experimental Facility

Hadron Beam Facility

Nuclear Transmutation

Linac (330m)

3 GeV Rapid Cycling Synchrotron (RCS)

56 GeV Main Ring Synchrotron (56 GeV FL)

56 GeV Main Ring Synchrotron (56 GeV M14)

JPARC = Japan Proton Accelerator Research Complex

Super-Kamiokande

Tokai

Tokyo

Tokai to Kamioka Experiment – T2K

Long-baseline neutrino oscillations in Japan

10th June 2021
Neutrino beams

- Proton beam collides with fixed target to produce charged mesons.
- Focus positive or negative mesons to produce neutrino-dominated or antineutrino-dominated beam.
- Wait for pions to decay into neutrinos.
Off-axis beams

- Two-body pion decay
 - Angle and energy of neutrino directly linked
- Moving off axis:
 - Lower peak energy
 - Smaller high energy tail
 - Less energy spread
- T2K is at 2.5° off-axis
Integrated POT (Full T2K - up to Run 10)

23 Jan 2010 - 12 Feb 2020

23 Jan 2010 - 12 Feb 2020
POT Total: 3.64059×10^{21}
(maximum power 522.627 kW)

ν mode: 1.99006×10^{21} (54.7%)
$\bar{\nu}$ mode: 1.65053×10^{21} (45.3%)
Near detectors

INGRID
- Measure direction of neutrino beam
- Ensure stable beam operation
- Tune neutrino flux prediction

ND280
- Measure neutrino flux and cross section before oscillation
- UA1 magnet allows separation of neutrino and antineutrinos
- Oscillation analysis focuses on muon (anti-)neutrino samples
Super-Kamiokande

- 40,000 tons of ultra pure water
- 11,000 photo-multiplier tubes (PMTs)
- 1km overburden
- Separate electrons and muons by ring shape
 - Mis-ID <1%
 - No sign selection
Neutrino interactions

• Three principal types of neutrino interaction
• Occur as both charged current (CC) and neutral current processes

Quasi-elastic (CCQE)

Single pion production

Deep inelastic scattering / Multi-pion production
ND280 data

- Three principal types of neutrino interaction
- Occur as both charged current (CC) and neutral current processes
ND280 event samples

- Select highest momentum, muon-like, negative (positive) track as neutrino (antineutrino) candidate
- Count the number of tagged charged or neutral pions
• Fit parametrized models to near detector data
 – Two separate analysis, Markov Chain MC and Minimisation, Bayesian and Frequentist methods
Near detector analysis

- Produces tuned flux and cross-section models
- Use models to predict unoscillated event rate at Super-K
Near detector fit results

- Charged-current, zero-pion sample shown on right
 - Prefit on top, postfit on bottom

- Tuned muon neutrino flux at Super-K shown below
 - Prior in red, fit result in blue
Far detector analysis

- Apply oscillation parameters to prediction from tuned models
- Fit to data, marginalizing over nuisance parameters
 - Three separate analyses, using Markov Chain MC and Minimisation, and Bayesian and Frequentist methods
What T2K measures

- Muon-like neutrino candidates (left), electron-like candidates (right)
What T2K measures

- Muon-like neutrino candidates (left), electron-like candidates (right)
- Suppression in muon neutrino sample driven by $\sin^2\theta_{23}, \Delta m^2_{23}$
What T2K measures

- Muon-like neutrino candidates (left), electron-like candidates (right)
- Suppression in muon neutrino sample driven by \(\sin^2 \theta_{23}, \Delta m^2_{23} \)
- Increase in electron neutrino sample driven by \(\sin^2 \theta_{13}, \delta_{\text{CP}} \)
Effect of near detector fit on SK prediction

- Far detector single ring, muon-like sample on left, single ring electron-like sample on right
- ND280 fit result (red) increases predicted event rate, changes shape of spectrum and reduces systematic uncertainty
T2K systematic errors

<table>
<thead>
<tr>
<th>Error source (units: %)</th>
<th>1R_μ (FHC, RHC)</th>
<th>1R_e (FHC, RHC, CC1π⁺)</th>
<th>FHC/RHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux</td>
<td>2.9, 2.8</td>
<td>2.8, 2.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Xsec (ND constr)</td>
<td>3.1, 3.0</td>
<td>3.2, 3.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Flux + Xsec (ND constr)</td>
<td>2.1, 2.3</td>
<td>2.0, 2.3, 4.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Xsec (ND unconstrained)</td>
<td>0.6, 2.5</td>
<td>3.0, 3.6, 2.8</td>
<td>3.8</td>
</tr>
<tr>
<td>SK + SI + PN</td>
<td>2.1, 1.9</td>
<td>3.1, 3.9, 13.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Total</td>
<td>3.0, 4.0</td>
<td>4.7, 5.9, 14.3</td>
<td>4.3</td>
</tr>
</tbody>
</table>

- Uncertainty on predicted SK event rate after ND280 fit
 - Flux and cross-section uncertainties are correlated so the combination gives a smaller uncertainty than the individual parts
 - Final column is error on rate of neutrino events compared to antineutrino events in the electron-like samples – critical for CP violation search
Latest Results – Neutrino mode beam samples

- Neutrino beam mode, muon-like CC-0π candidates (left), electron-like CC-0π candidates (right)
- Prediction (blue histogram) and RMS error (red band) after fit to data
Latest Results – Neutrino mode beam samples

- CC-1π sample only in neutrino beam mode
Latest Results – Neutrino mode beam samples

- CC-1π sample only in neutrino beam mode
- Use Michel electron tag to locate pion – below Cherenkov threshold
Latest Results – Antineutrino beam mode

- Antineutrino beam mode, muon-like CC-0π candidates (left), electron-like CC-0π candidates (right)
- Prediction (blue histogram) and RMS error (red band) after fit to data
Disappearance parameters

- T2K data shows preference for upper octant
- Best-fit point at non-maximal mixing, though maximal mixing still within 1σ
- Fits include reactor constraint on $\sin^2(\theta_{13})$
Disappearance parameters – global comparison

- 90% confidence level contours
- Normal mass ordering assumed
- All experiments in agreement
Appearance parameters – without reactor

- Fit without reactor constraint on $\sin^2(\theta_{13})$
- T2K best-fit point near maximal CP-violation
- Fully consistent with reactor measurements
Appearance parameters – with reactor

- Fit with reactor constraint on $\sin^2(\theta_{13})$
- T2K best-fit point nearer maximal CP-violation
- Regions of δ_{CP} space outside 2σ contour
• **Fit with** reactor constraint on $\sin^2(\theta_{13})$

• Likelihood with respect to global minimum

• Using Feldman-Cousins method to ensure coverage

• $\delta_{CP} = \pi/2$ excluded at $>3\sigma$
Mass Ordering and θ_{23} Octant

- Table shows posterior probability for various hypotheses
 - Bayesian approach
 - Marginalising over other oscillation parameters
 - A flat prior is used for δ_{CP}, $\sin^2 \theta_{23}$, $|\Delta m^2_{23}|$ and mass ordering
 - Solar parameters and $\sin^2 2\theta_{13}$ use Gaussian prior from PDG

- T2K data prefer the upper octant and normal mass ordering

<table>
<thead>
<tr>
<th></th>
<th>$\sin^2 \theta_{23} < 0.5$</th>
<th>$\sin^2 \theta_{23} > 0.5$</th>
<th>Line total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal ordering</td>
<td>0.19</td>
<td>0.65</td>
<td>0.83</td>
</tr>
<tr>
<td>Inverted ordering</td>
<td>0.03</td>
<td>0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>Column total</td>
<td>0.21</td>
<td>0.79</td>
<td>1.00</td>
</tr>
</tbody>
</table>
T2K bi-event rate

- T2K data consistent with Pontecorvo-Maki-Nakagawa-Sakata prediction
- Shaded area shows systematic uncertainty on prediction
δ_{CP} global comparison

- Fit with reactor constraint on $\sin^2(\theta_{13})$
- Assuming Normal mass ordering
- Experiments ~agree at 90% C.L.
 - Need more data!
Robustness checks
Neutrino cross section error

- Neutrino cross-section is ~largest source of uncertainty
- World data is imprecise around 1 GeV neutrino energy
- Multiple, plausible models exist, however:
 - Monte Carlo simulation based on a single model

<table>
<thead>
<tr>
<th>Error source (units: %)</th>
<th>$1R_\mu$</th>
<th>$1R_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FHC</td>
<td>RHC</td>
</tr>
<tr>
<td>Flux</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Xsec (ND constr)</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Flux+Xsec (ND constr)</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Xsec (ND unconstr)</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>SK+SI+PN</td>
<td>2.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>3.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Simulated data studies

• Use information about simulated interactions to produce mock data based on a different neutrino interaction model
 – Detailed description can be found here: https://arxiv.org/abs/2101.03779

• Pass mock data through near and far detector fitters
 – Tune nominal interaction model to try and match mock data model
 – Extract oscillation parameter contours and compare to our expectation
 – Use results to add additional uncertainties to oscillation contours from real data fit
T2K cross-section model

- Many unknowns!

Image from K. McFarland
Example: 2p-2h events

- Lepton kinematics give energy
- Extra protons below detector threshold – missed energy
- If we get the model wrong
 - Biased energy reconstruction
 - Incorrect relationship between reconstructed and true neutrino energy
2p-2h event reconstruction

- Biased energy affects oscillation measurements
- Multiple possible models – Martini and Nieves are two examples
 - Different predicted rates for neutrinos and anti-neutrinos
 - ‘CP-violating’ uncertainty
The Martini 2p2h simulated data study

- Model applied to ND280 nominal MC prediction
- FGD1 CC0π sample shown
The Martini 2p2h simulated data study

- Model applied to ND280 nominal MC prediction
- FGD1 CC0π sample shown
- Increase in normalization with larger increase at larger neutrino energies
Martini 2p2h ND280 fit

- Changes in flux and 2p2h normalization
 - Normalisation change expected, larger cross-section
 - Energy dependence – only flux parameters allow this in current model
Martini 2p2h at SK

- See that Martini model (compare nominal MC to simulated data) increases neutrino event rate (left), but not antineutrino (right)
- ND280 fit (red shading) under-predicts neutrino data but over-predicts antineutrino data
Martini 2p2h at SK – 2D contours

- Disappearance contour shifts to lower values of Δm^2_{32}
 - Bias in energy reconstruction
- Contour shrinks for $\delta_{\text{CP}} - \sin^2 \theta_{13}$
 - Relative rate of neutrino and antineutrino events changes
- $\Delta \chi^2$ for δ_{CP} changes by ~2 units at maximum
 - Apply change in $\Delta \chi^2$ to data to assess effect
- Δm^2_{32} likelihood is ~Gaussian
 - Apply fractional shift in best fit point as an additional systematic
Martini 2p2h at SK – Assessing δ_{CP}

- Change in ΔX^2 on left
- Nominal data ΔX^2 (green) and corrected data ΔX^2 (red) on right
 - Feldman-Cousins 3δ (blue) and 2δ (magenta) critical values
 - Negligible effect – **true for all interaction models studied**
Likelihood of δ_{CP} result

- Use marginalisation ‘toy’ experiments to check how unlikely our data result is
 - Randomly vary nuisance parameters according to their prior

- Coloured regions contain stated fraction of toys
 - Data result within ~1σ of median
Contribution to δ_{CP} result

- Can also replace individual data samples with nominal MC expectation
 - ‘Asimov’

- See that better-than-expected exclusion comes from neutrino mode electron-like samples
 - Both equally
Where next?
Water Cherenkov detectors in Kamioka

Super-Kamiokande
22.5kt fiducial mass

Kamiokande
3kt mass

Hyper-Kamiokande
188kt fiducial mass
Hyper-Kamiokande electron-like event samples

- Expect approx:
 - 2300 ν_e events
 - 1900 $\bar{\nu}_e$ events
 - Assuming $\sin(\delta_{CP}) = 0$

- Difference between neutrino and antineutrino rates gives δ_{CP}
CP violation sensitivity

- Ability to exclude CP conservation versus true value of δ_{CP}

![Graph showing CP violation sensitivity](image)
CP violation sensitivity

- Ability to exclude CP conservation versus true value of δ_{CP}
- Large electron-like samples provide high statistics
CP violation sensitivity

- Ability to exclude CP conservation versus true value of δ_{CP}
- Large electron-like samples provide high statistics
- Limited by systematics
CP violation sensitivity

- Ability to exclude CP conservation versus true value of δ_{CP}
- Large electron-like samples provide high statistics
- Limited by systematics
- Can exclude 60% of true δ_{CP} values at 5σ

Hyper-K preliminary
True normal hierarchy (known)
$\sin^2(\theta_{13}) = 0.0218$ $\sin^2(\theta_{23}) = 0.528$ $|\Delta m^2_{32}| = 2.509 E-3$
CP violation sensitivity over time

- Percentage of true δ_{CP} values where CP conservation can be excluded as a function of running year

\[
\sin^2(\theta_{13}) = 0.0218 \quad \sin^2(\theta_{23}) = 0.528 \quad |\Delta m^2_{32}| = 2.509 \text{E-3}
\]
CP violation sensitivity over time

- Percentage of true δ_{CP} values where CP conservation can be excluded as a function of running year

- Can achieve 3σ CP violation result over significant regions of δ_{CP} after 2 years operation
Summary

- T2K has measured neutrino oscillation parameters with 3.64×10^{21} POT
 - Approaching 2σ exclusion of CP conservation
 - Preference for upper octant and normal mass ordering
- Detailed studies of neutrino interaction model robustness
 - Essential for future experiments
- Next generation experiment, HK, will give 5σ sensitivity to CP violation over large range of true δ_{CP} values
 - Systematics limited!
Backup Slides
SK detector systematics

- Understanding detector systematics and pion scattering crucial for future (+current) experiments

<table>
<thead>
<tr>
<th>Error source (units: %)</th>
<th>1R_{μ}</th>
<th>1R_{ϵ}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FHC</td>
<td>RHC</td>
</tr>
<tr>
<td>Flux</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Xsec (ND constr)</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Flux+Xsec (ND constr)</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Xsec (ND unconstrained)</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>SK+SI+PN</td>
<td>2.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>3.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

- Particularly necessary for higher energy events
 - Multi-pion samples at far detector
 - Atmospheric neutrinos

- Table shows effect on rate of events, but must understand energy spectrum shape for precision measurements
Water Cherenkov Test Experiment

- Goal: study detector systems and detector response to pions, muons, electrons and protons from 200 MeV/c up to 1000 MeV/c
 - Understand detector calibration needed for IWCD/HK
 - Physics: Cherenkov profile, secondary interactions, neutrons
- Use tertiary production target and spectrometer upstream of detector
Experimental area

- We are proposing to use the T9 beam line in the East Area
 - Enough space for 4m by 4m tank and tertiary beamline

- Tertiary beam for pions/protons
Experimental area

- We are proposing to use the T9 beam line in the East Area
 - Enough space for 4m by 4m tank and tertiary beamline

- Tertiary beam for pions/protons
- Secondary beam for low momentum electrons and muons
- Planned for early 2023
WCTE at CERN T9 beamline
WCTE Detector concept

- Instrumented with multi-PMT modules being developed for Hyper-K
- Integrated calibration system on detector lid
- Total mass ~50 tons
Best fit parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Hierarchy</th>
<th>T2K only</th>
<th>Best fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T2K only</td>
<td>T2K + reactor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal</td>
<td>Inverted</td>
</tr>
<tr>
<td>$\sin^2(2\theta_{13})$</td>
<td></td>
<td>0.109</td>
<td>0.120</td>
</tr>
<tr>
<td>$\sin^2(\theta_{13})$</td>
<td></td>
<td>28.0×10^{-3}</td>
<td>31.0×10^{-3}</td>
</tr>
<tr>
<td>δ_{CP}</td>
<td></td>
<td>-2.22</td>
<td>-1.29</td>
</tr>
<tr>
<td>Δm^2_{32} (NH)/</td>
<td>Δm^2_{31} (IH) [eV$^2/c^4$]</td>
<td>2.495×10^{-3}</td>
<td>2.463×10^{-3}</td>
</tr>
<tr>
<td>$\sin^2(\theta_{23})$</td>
<td></td>
<td>0.467</td>
<td>0.466</td>
</tr>
<tr>
<td>$-2\ln L$</td>
<td></td>
<td>597.72</td>
<td>598.56</td>
</tr>
</tbody>
</table>

- Global best fit (above) and Feldman-Cousins intervals for δ_{CP} (bottom left) and $\sin^2\theta_{23}$ (bottom right)

<table>
<thead>
<tr>
<th>δ_{CP}</th>
<th>Confidence level</th>
<th>Interval (NH)</th>
<th>Interval (IH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1σ</td>
<td>$[-2.66, -0.97]$</td>
<td>$[-1.79, -1.09]$</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>$[-3.00, -0.49]$</td>
<td>$[-3.52, -1.09]$</td>
</tr>
<tr>
<td></td>
<td>2σ</td>
<td>$[-\pi, -0.26] \cup [3.11, \pi]$</td>
<td>$[-2.20, -0.75]$</td>
</tr>
<tr>
<td></td>
<td>3σ</td>
<td>$[-\pi, 0.32] \cup [2.63, \pi]$</td>
<td>$[-2.82, -0.14]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\sin^2\theta_{23}$</th>
<th>Confidence level</th>
<th>Interval (NH)</th>
<th>Interval (IH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1σ</td>
<td>[0.528, 0.582]</td>
<td>[0.537, 0.584]</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>[0.443, 0.592]</td>
<td>[0.505, 0.593]</td>
</tr>
<tr>
<td></td>
<td>2σ</td>
<td>[0.436, 0.597]</td>
<td>[0.505, 0.593]</td>
</tr>
</tbody>
</table>
Beam stability

- INGRID and muon monitors measure beam centre position
- Very stable neutrino beam over full run
T2K flux model

- Parametrised in neutrino energy and flavour
- Parameter uncertainties calculated by varying underlying systematics
- Performed simultaneously for near and far detector
- Correlates near and far flux parameters
Super-Kamiokande detector

- Signal in far detector:
- Measure rate of muon-like and electron-like events
- CCQE interactions are 'golden' channel

\[E_{\nu}^{\text{QE}} = \frac{m_p^2 - m_n' - m_\mu^2 + 2m_n'E_\mu}{2(m_n' - E_\mu + p_\mu \cos \theta_\mu)} \]

- Assume nucleon at rest – 2-body process
- Can calculate neutrino energy from observed muon kinematics

(a) CC QES interaction
Cross-section model – CC 0π

- Axial mass parameter
- $2p2h$ normalisation
 - Different for neutrinos and antineutrino
- $2p2h$ shape – difference between true and reconstructed neutrino energy
 - Different for carbon and oxygen
- Q^2 normalization parameters
Cross-section model – Binding energy

- Affects CC 0π events
- Shifts momentum of outgoing lepton
- New modelling allows this to be constrained by near detectors
 - Previously was a large uncertainty on oscillation measurement
Cross-section model – CC 1π

- CA5 – normalisation for the resonant form factor
- Axial mass parameter
- $I=1/2$ background norm.
 - Low momentum and high momentum pions
Cross-section model – Pion Final State Interactions

- Microscopic final state interaction cross-section parameters
- Alter charge, kinematics and presence of pions in final state of neutrino interaction
Cross-section model – CC Other

- CC coherent pion production normalization
 - Separate for carbon and oxygen
- NC coherent normalization
 - Not fit at near detector
- NC other normalization
 - Not extrapolated to far detector
Cross-section model – CC DIS

- Bodek-Yang correction uncertainty
 - Separate for DIS and multi-pion production events
- AKGY multi-pion production model uncertainty
- Miscellaneous events
- DIS/multi-pion normalization uncertainties
SK event selection – 0π samples

Look for fully contained, single ring events inside SK fiducial volume, then:

If electron-like ring:
- Visible energy > 100 MeV
- Reconstructed energy < 1250 MeV
- Not identified as π^0
- No decay electrons

If muon-like ring:
- Reconstructed momentum > 200 MeV/c
- At most 1 decay electron
SK event selection – e-like single pion sample

Look for fully contained, single ring events inside SK fiducial volume, then:

If electron-like ring:

- Visible energy > 100 MeV
- Reconstructed energy < 1250 MeV
- Not identified as π^0
- **One** decay electrons
PRISM concept

- Measure neutrino interactions at multiple off-axis positions
- Neutrino flux changes with position

v_{beam}
PRISM benefits - 2

- Same detector measuring all off-axis fluxes
- Can weight and combine different off-axis ‘slices’
PRISM benefits - 2

- Same detector measuring all off-axis fluxes
- Can weight and combine different off-axis ‘slices’
- Produce Gaussian energy distribution
PRISM benefits - 2

- Same detector measuring all off-axis fluxes
- Can weight and combine different off-axis ‘slices’
- Produce Gaussian energy distribution

- Measure at a known energy
- Map out true-reco relationship
- Energy range determined by off-axis range
PRISM benefits - 3

- Can have different linear combination
PRISM benefits - 3

- Can have different linear combination
- Recreate oscillated flux using near detector data

\[
\sin^2 \theta_{23} = 0.5 \\
\Delta m^2_{32} = 2.41 \times 10^{-3}
\]
PRISM benefits - 3

- Can have different linear combination
- Recreate oscillated flux using near detector data

\[\sin^2 \theta_{23} = 0.5 \]
\[\Delta m_{32}^2 = 2.41 \times 10^{-3} \]

- Use data to directly predict oscillated spectrum (red)
- Backgrounds (green) can be measured in-situ
- Oscillation analysis minimally dependent on neutrino interaction model
PRISM benefits - 4

- Fit ND v_e flux
 - Directly measure electron/muon cross-section ratio

- Sterile neutrino searches
 - >5σ exclusion of LSND
 - Oscillation vs off-axis angle
1. Is the mass hierarchy “normal” or “inverted?”
2. Do neutrino oscillations violate \(CP \) symmetry?
3. What is the “octant” of \(\theta_{23} \)?
1. Is the mass hierarchy “normal” or “inverted”?
2. Do neutrino oscillations violate \(CP \) symmetry?
3. What is the “octant” of \(\theta_{23} \)?
1. Is the mass hierarchy “normal” or “inverted?"
2. Do neutrino oscillations violate CP symmetry?
3. What is the “octant” of θ_{23}?

Diagram:

- $P(\overline{\nu}_\mu \rightarrow \overline{\nu}_e)$
- $P(\nu_\mu \rightarrow \nu_e)$

- $\delta=0$, $\delta=\pi/2$
- $\delta=\pi$, $\delta=3\pi/2$

Legend:

- **Antineutrino**
- **Neutrino**

Text:

CP-violation through δ creates opposite effects in neutrinos and antineutrinos.

Slides by A. Himmel
1. Is the mass hierarchy “normal” or “inverted”?
2. Do neutrino oscillations violate CP symmetry?
3. What is the “octant” of θ_{23}?

Matter effects also introduce opposite neutrino-antineutrino effects.

Slides by A. Himmel
1. Is the mass hierarchy “normal” or “inverted”?

2. Do neutrino oscillations violate CP symmetry?

3. What is the “octant” of θ_{23}?

The octant creates the same effect in neutrinos and antineutrinos.

Slides by A. Himmel