Neutrino Tagging (NuTAG) — A new tool for accelerator based neutrino experiments —

Mathieu Perrin-TerrinMathieu PERRIN-TERRIN

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France.

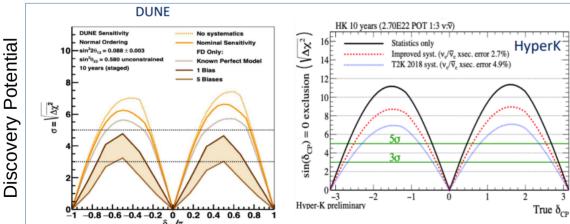
Seminar at Birmingham

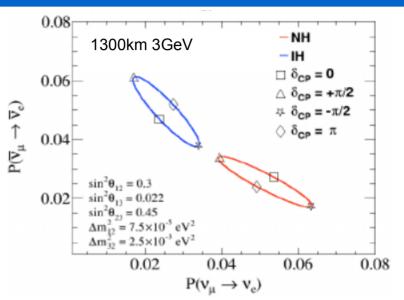

Outline

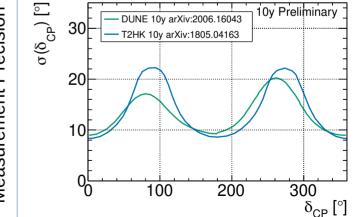
- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments

Scientific Landscape

Neutrino physics:


- on of the **least explored** field in particle physics
- many open questions (neutrino mass ordering, PMNS unitarity, CP violation)
- a portal to dark matter
- The challenge for the next decade: the leptonic CP violation
 - fundamental to understand the origin of matter (on of the Sakharov conditions)
 - the main purpose of the next Long Baseline neutrinos experiments (DUNE and T2HK)





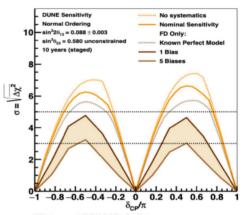
CP violation experimental studies

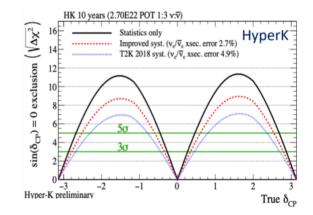
- Leptonic CP violating phase δ_{CP}
 - Ranges for 0 to 360°
 - CP conserved if δ CP = 0° or 180°
 - CP maximally violated at 90° and 270°
- Measurement principle: compare $P(v_{\mu} \rightarrow v_{e})$ and $P(anti-v_{\mu} \rightarrow anti-v_{e})$
- Expected status at the end of DUNE & T2HK

Measurement Precision

18-19/01/2023

Mathieu PERRIN-TERRIN (CPPM)

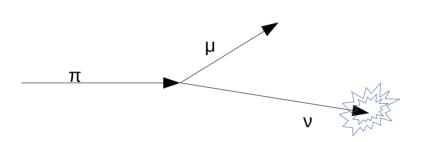

18-19/01/2023


DUNE and T2HK limitations

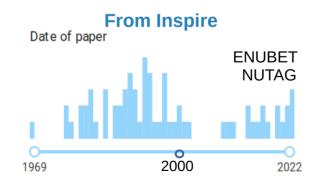
- Strong impact of the systematic uncertainties on
 - neutrino cross section
 - neutrino flux
 - detector response (e.g. energy scale)
- Statistics is also limited: ~250 v_e/year and 150 anti-v_e/year
- Two recommendations from European Strategy for Particle Physics:

To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied. Other important complementary experiments are in preparation The design studies for next-generation long-baseline neutrino facilities should continue.

DELIBERATION DOCUMENT ON THE 2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS DUNE


Outline

Scientific Landscape

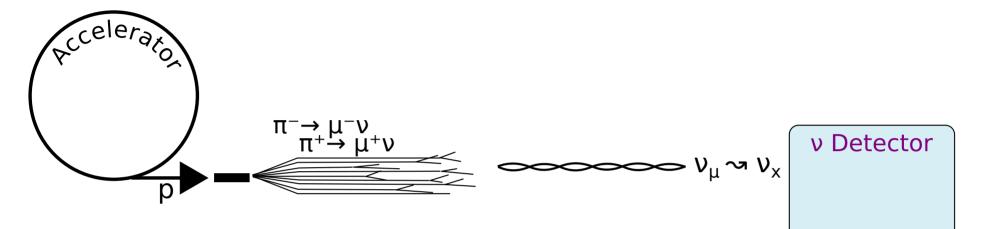

- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments

Neutrino Tagging

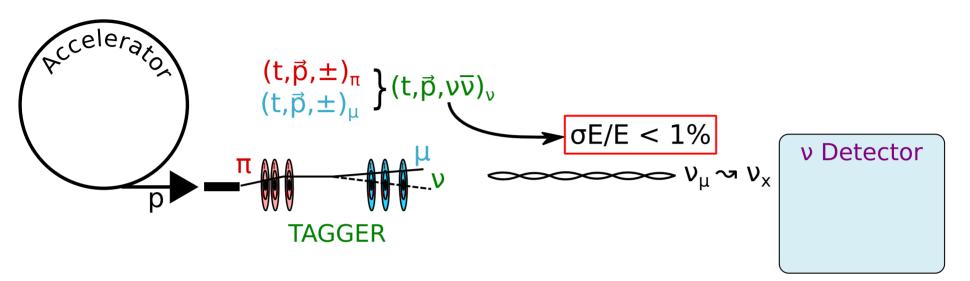
- Concept introduced in the 70-80's
- Associate **individually** each neutrino interaction with its production mechanism

 Many variations of this idea were discussed in the 80-90's

18-19/01/2023

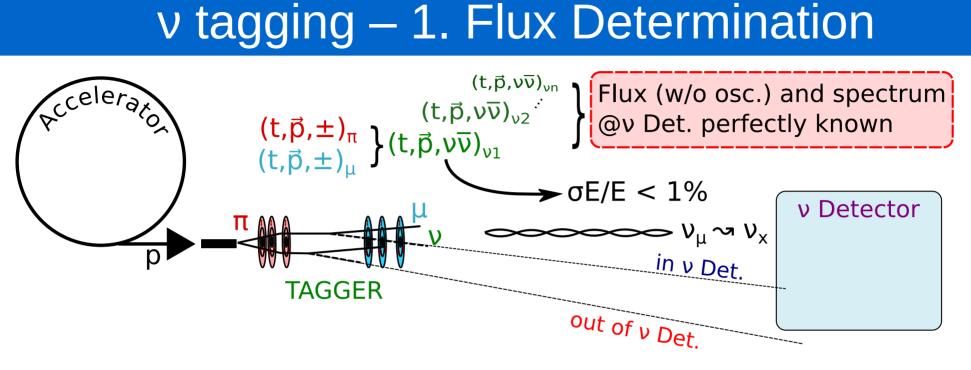

LETTERE AL NUOVO CIMENTO	VOL. 25, N. 9	30 Giugno	1979
Tagging Direct Neutrinos.	A First Step to I	Neutrino Tagging.	
B. PONTECORVO Laboratory of Nuclear Problems,	Joint Institute for 1	Nuclear Research - Dubna, U	ISSR
ricevuto l'1 Giugno 1979)			

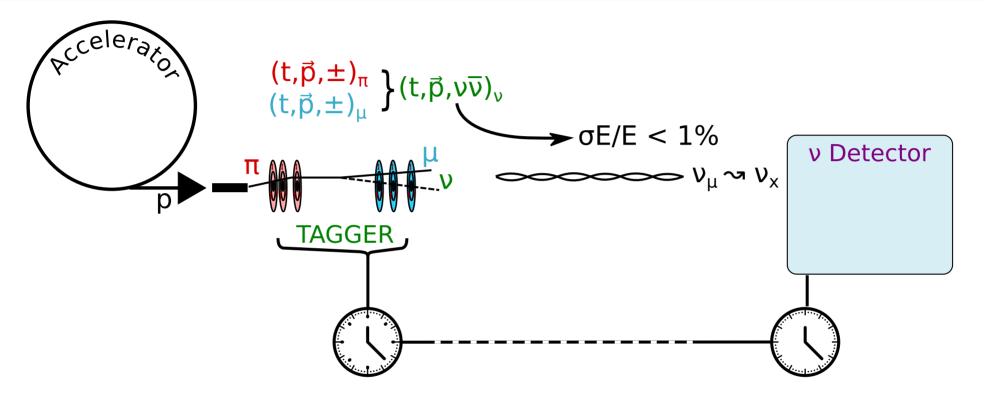
As it is well known, high-energy neutrino investigations are performed by using neutrino beams from π and K decays ($\pi \rightarrow \mu\nu$, $K \rightarrow \mu\nu$), that is by letting the pions and the kaons decay over a large distance (the so-called decay length).

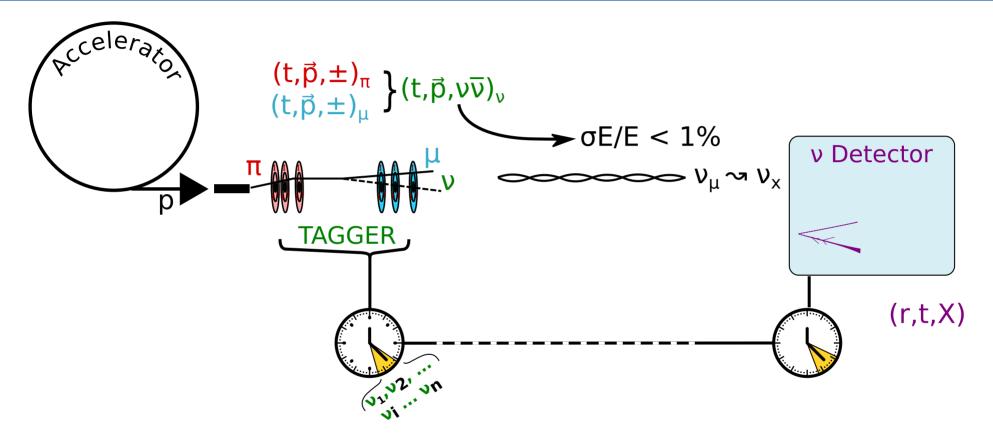

The possibility of using tagged-neutrino beams in high-energy experiments must have occurred to many people. In tagged-neutrino experiments it should be required that the observed event due to the interaction of the neutrino in the neutrino detector would properly coincide in time with the act of neutrino creation $(\pi \rightarrow \mu\nu, K \rightarrow \mu\nu, K \rightarrow e\nu\pi, ...)$. Of course, in tagged-neutrino experiments the properties of neutrino beams (type, direction and energy) will be much better known than in the experiments performed so far. The main difficulty in designing such a facility is that the effective

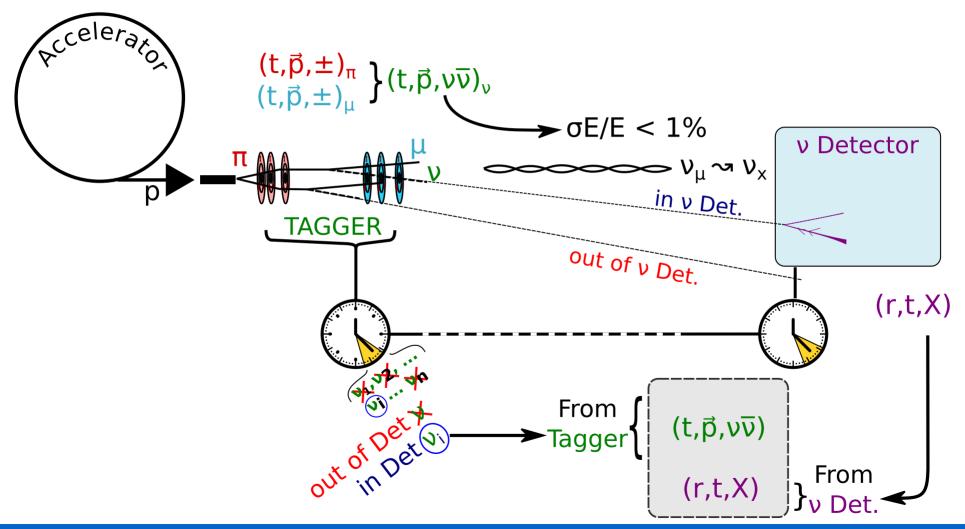
Mathieu PERRIN-TERRIN (CPPM)

Neutrino Tagging

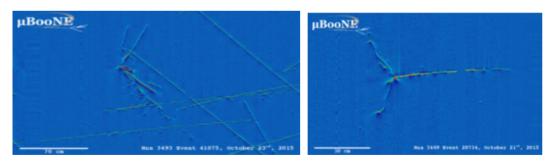


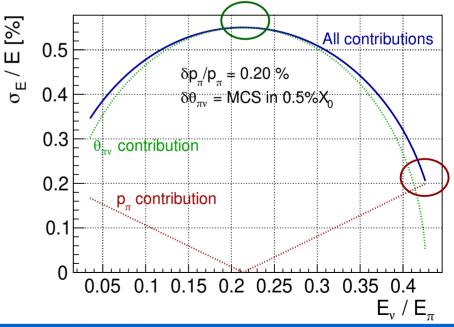

v tagging – Beam Instrumentation




• Each neutrino is fully & precisely characterised from its decay partners


v tagging – 1. Flux Determination





What about Energy Resolution?

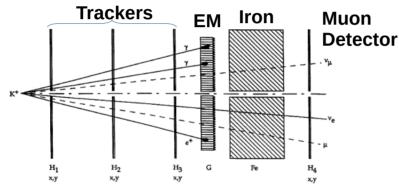
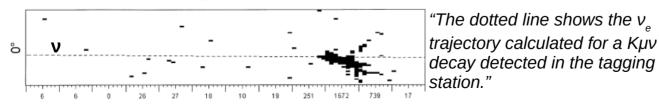
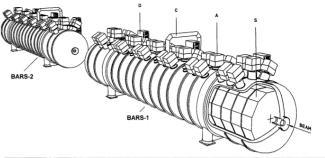
- Reconstructing a $\pi \rightarrow \mu \nu$ decay is much simpler and cleaner than a ν interaction
- v energy obtained from p_{π} and θ_{ν} as $E_{\nu} = \frac{(1 m_{\mu}^2/m_{\pi}^2) p_{\pi}}{1 + \gamma^2 \theta_{\nu}^2}$
- Energy reso ranges **between 0.2% (on axis) and 0.6** % (independent of p_{π})!
- To be compared with 10-20% for the methods based on the neutrino interactions

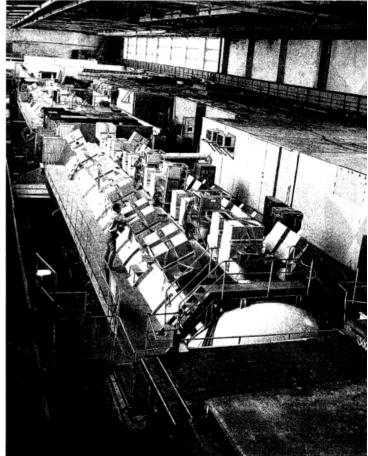
Outline

- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments

Experimental Demonstration

- Implementation attempted at Protvino with Tagged Neutrino Facility (TNF) using the BARS
- Stopped in the 90's

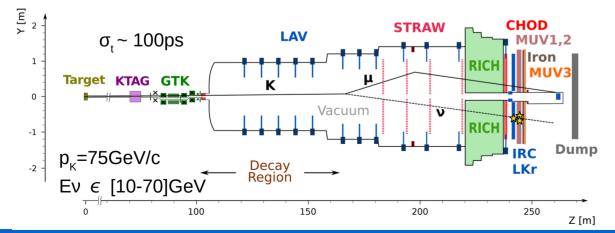

Рис. 2. Станция мечения. Н1, Н2, Н3, Н4 — двухкоординатные сцинтилляционные годоскопы (x, y); G — электромагнитный калориметр ГЕПАРД; Fe — 3-метровый железный поглотитель адронов. http://web.ihep.su/library/pubs/prep1997/ps/97-32.pdf

RUN 6860 Spill 102 Event 1844

Fig. 4. 0°-projection of the neutral current tagged v_{μ} interaction in the BARS. The dotted line shows the v_{μ} trajectory calculated for a $K_{\mu2}$ -decay detected in the tagging station. https://doi.org/10.1016/S0168-9002(98)00837-7

18-19/01/2023

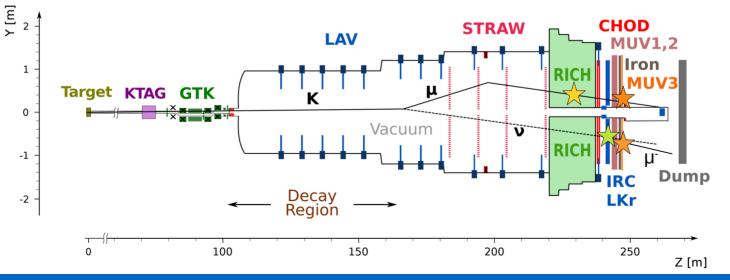
Mathieu PERRIN-TERRIN (CPPM)


NA62

- Neutrino tagging implemented at NA62 as a by-product
- Calorimeters (Lkr 20 ton and MUV1,2 66 ton) acts also as v detectors
- With the O(10¹³) K decays needed for the main analysis ($K^+ \rightarrow \pi^+ \nu \nu$) we expect:

~300 v's from $K^+ \rightarrow \mu^+ \nu_{\mu}$ interact in Lkr

~60 v's from $K^+ \rightarrow \pi^0 \mu^+ \nu_{\mu}$ interact in LKr+MUVs


 K⁺, μ⁺ and π⁰ properties (t,p,±) precisely measured thanks to GTK (Si-Pixel), STRAW and LKr

NA62

- Dedicated trigger line collect these events since 2022
 - muon in RICH 📩
 - energy deposit in Lkr (>5GeV) //
 - two muons in opposite quadrant at MUV3 \star
- Both Kµ2 and Kµ3 analyses are on going
- Hopefully, some Kµ2 and Kµ3 events will all particles (v included) detected will be available soon (world first!)

For more info check, the poster by Bianca De Martino at Neutrino22 https://doi.org/10.5281/zenodo.6785370

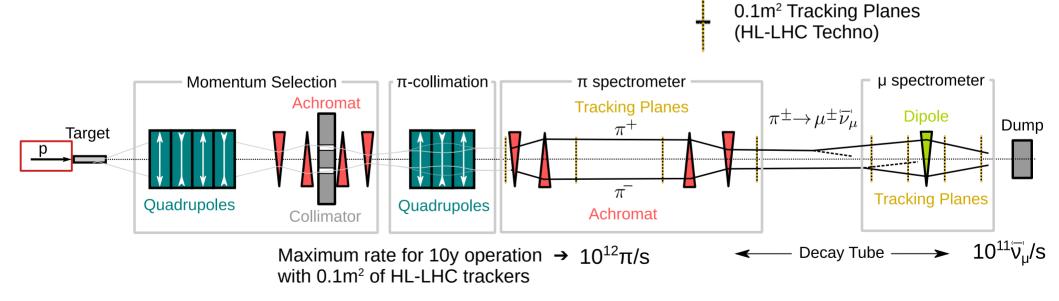
Outline

- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
 - Beam particle rate
 - Beam line
 - Tracking technology
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments

Towards full scale v-tagged experiments

- The main challenge is the **high particle rate** in the neutrino beam line (>1018part/s)
- Rate is limited by trackers irradiation and occupancy

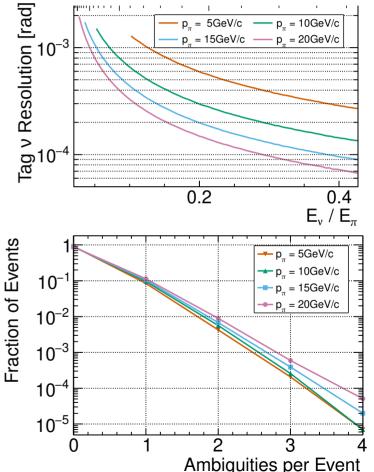
	Available	Max. Radiation	Max. Flux	
NA62-GTK	since 2015	10 ¹⁴ n _{eq} /cm ²	2 MHz/mm ²	
HL-LHC	before 2028	10 ¹⁶⁻¹⁷ n _{eq} /cm ²	10-100 MHz/mm ²	
		Sets the specifications for the beam line		


Handles to **limit particle flux**:

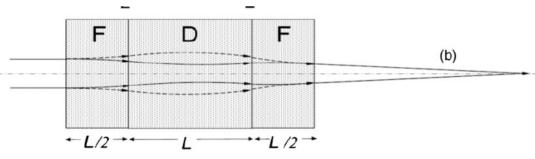
arXiv:1904.12837

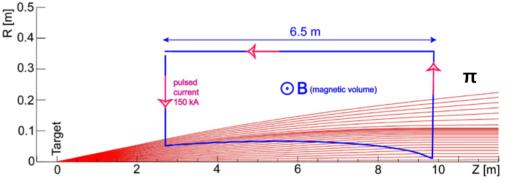
- spread particles in **time**: use slow extraction (few sec) instead of fast extraction (µs)
- spread particles in **space**: use large beam transverse size
- select only relevant π momentum range

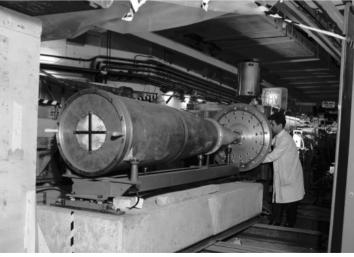
Tagged beam line conceptual design


- Slow extraction (few sec.) & beam cleaning to reduce π rate
- Static π + and π Focussing Devices replace conventional horns (see next)
- Beam size around 0.1 m²
- Neutrino chirality determined evt by evt: transport both π + and π -

Matching with tag-v

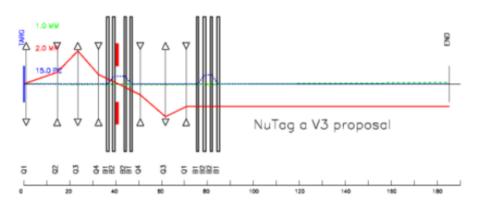

At 10¹¹ v/s, is the association tag-v/interacting-v working? Association based on time and angular coincidence: $\overline{2}$

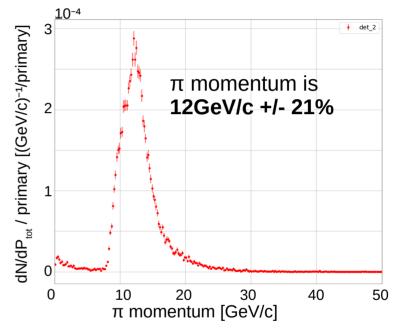

- Time coincidence: t_{v-tag} t_{v-int}
 - Silicon Trackers will enable <10ps reso on tag-v
 - Typical ν detector resolution is 10ns
 - → About 1'000 tag-v are in-time with any interacting-v
- Angular Coincidence: $\theta_{v-tag} \theta_{v-int}$
 - **Dominant** contribution is **tag-v resolution**
 - Resolution is <1 mrad (assuming a tracking plane thickness of 0.5% X₀)
- → 90% of the evt can be tagged w/o ambiguity Remaining 10% have > 1 tag-v matched

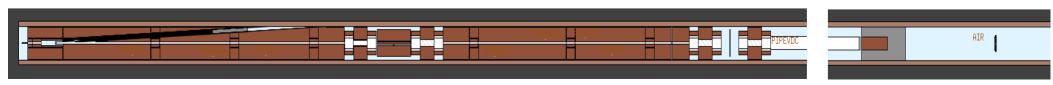


Beam line: π collimation in slow extraction

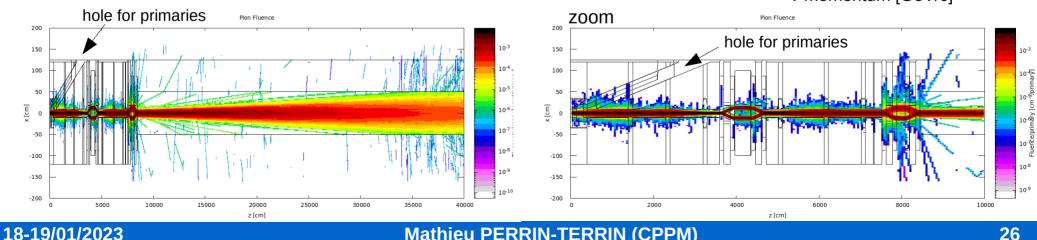
- π collimation is mandatory to achieve decent neutrino yields
- Beam lines normally use magnetic horns
 - horns operate in pulsed (μs) mode
 - heating induced by the large current prevents the use in continuous mode
- CERN-PBC started to develop, for ENUBET & NUTAG, a static π collimation system using only quadrupoles

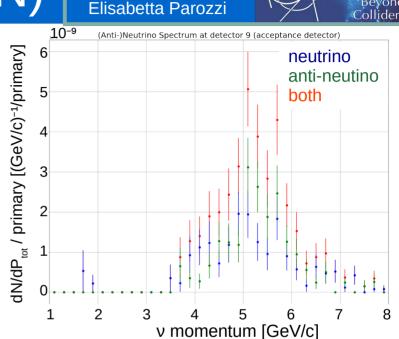

 Advanced static solutions (magnetic spokes, solenoid lens, cryogenic horns) were designed but never implemented


Static focusing studies (CERN)


Nikolaos Charitonidis Anna Baratto Roldan Elisabetta Parozzi

- The double polarity line optics:
 - Production angle to evacuate primaries
 - 4 Quad. + double-achromat to select π momentum
 - 3 Quad. to collimate the beam
 - double achromat to measure π momentum



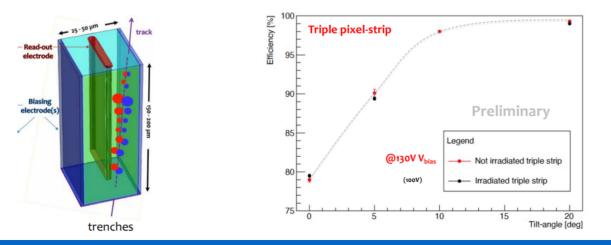

18-19/01/2023

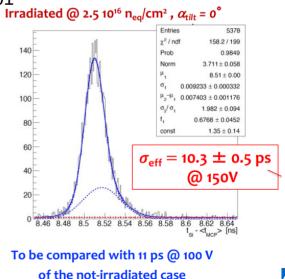
Mathieu PERRIN-TERRIN (CPPM)

Static focusing studies (CERN)

- Fluka **simulation**:
 - Beam size is 40 x 12 cm.
 - With 10¹³ protons-per-cycle (5s) the beam particle rate at the tagger is 0.070 MHz/mm² (<<10MHz/mm2)
- Margin to **increase the neutrino yield** (rate on axis is 1200 v/cm² for 10^{19} POT and 400m long decay tube)
 - improve π transmission (no production angle)
 - enlarge momentum bite

Nikolaos Charitonidis


Anna Baratto Roldan


Mathieu PERRIN-TERRIN (CPPM)

²⁶

Tracker: Pixel Technology

- Very ambitious specs, similar to the ones for HL-LHC experiments & HIKE
- TimeSpot (A. Lai, INFN Cagliari)
 - Trench 3D sensors
 - Excellent time and radiation resistance (being test at 10¹⁷ neq/cm² !)
 - ASIC development started (28ns) https://indico.cern.ch/event/1127562/contributions/4904519/ https://arxiv.org/abs/1703.08501

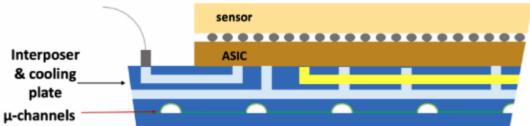
HL-LHC NA62 (in HIKE Neutrino Specification (R&D) Tagging operation) $Flux (MHz/mm^2)$ O(10 - 100)O(10 - 100)2 8 10^{16-17} $8 \cdot 10^{14}/y$ 10^{16-17} Fluence (n_{eq}/cm^2) $2 \cdot 10^{14}/y$ Hit Time Reso. (ps) 200< 20< 50< 50Det. Efficiency (%) > 99> 99> 99> 99Thickness (% of X_0) < 0.5< 0.5< 0.5< 0.9

arXiv: arXiv: arXiv: CERN-LHCC-2112.12848 1904.12837 2211.16586 2021-012

Mathieu PERRIN-TERRIN (CPPM)

https://doi.org/10.1088/1748-0221/16/09/p09028 https://indi.to/KPGtS

Tracker: Integration

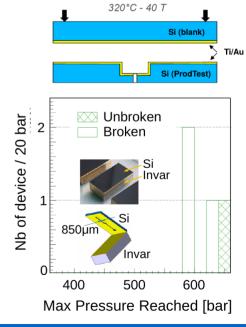

- The mechanical+thermal+electrical integration is very challenging
 - large area (100-1000cm²)
 - Iow material budget (<0.5% X0)</p>
 - high power consumption (>1.5W/cm2)
 - high **efficiency** (sensor tilt, no hole)
- Cooling performance will ultimately determine the available ASIC power and so the time resolution

Extract from Monolith Workshop in Geneva (09.22) A. Lai

4. 4D timing is mainly not a matter of sensors or single devices, it is a matter of system constraints (power in primis, cooling, stable clock distribution, interconnectivity, data BW, material budget)

Tracker: Cooling Plates

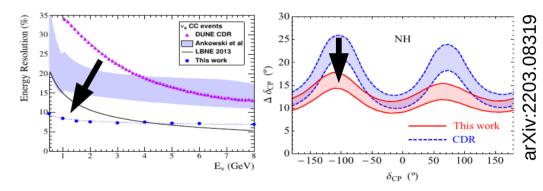
- Micro-channel cooling (thin + high cooling power)
- Technology pioneered by NA62 (liquid) and LHCb (bi-phasic)
- For NuTAG, a step further in integration is needed to cover large (0.1m²) areas
 - **cooling plate serves as electronic interface** connected to ASIC with silicon through via (TSV)

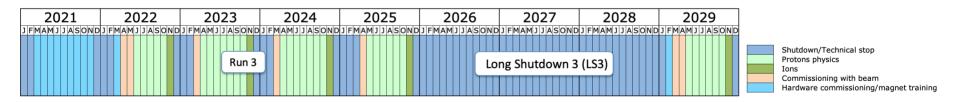


- R&D on-going in Marseille using Au thermo-compression
 - Gold layer can be patterned to serve electrical function
 - Process compatible with Si/Si, Si/Metal (connectors) and with electronics

Timescale

- Prototype made of 3 planes of about 10x10cm² by 2028
- Could be re-used at NA62

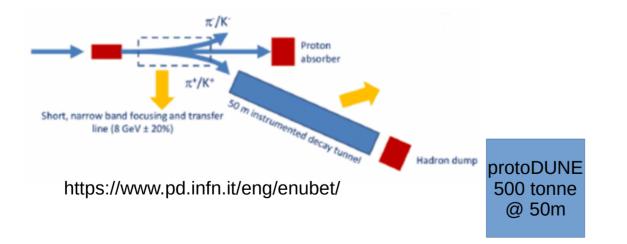

Mathieu PERRIN-TERRIN (CPPM)

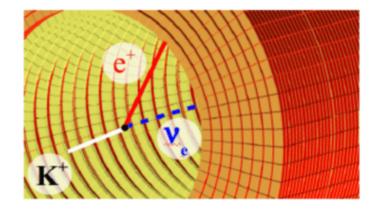

Outline

- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments
 - Short Base Line

Scientific program offer by NuTAG

- In the short term, a short base line experiment with detectors technology similar to DUNE and HK would greatly enhance their physics potential
 - measure the **absolute & differential cross section** at the 1% level for ve and vμ
 - improve the interaction models used to estimate the v energy
 - strong synergy with ENUBET (see next)
 - Possible Time scale, implementation at CERN after LS3

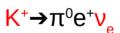




In the long term, a new kind of long baseline experiment would allow to study neutrino oscillations with unprecedented precision (see next)

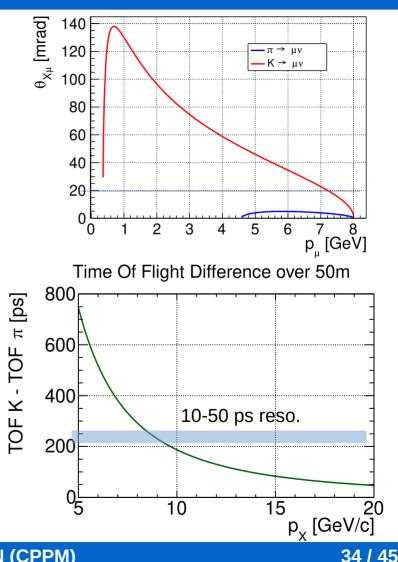
ve cross-section at SBL

- The technique proposed by ENUBET
 - slow extraction beam line to collect K (and π) decays
 - count the positrons as $N(e^+) = N(K^+ \rightarrow \pi^0 e^+ \nu_e) = N(\nu_e)$
 - v_e energy spread constrained with a narrow band beam (NBB)
 - 10²⁰ POT needed (NBB!) to get the 10⁴ v_e and a 1% precision on x-sec


Mode	BR	
$K^+ \rightarrow \mu^+ \nu_{\mu}$	63.56±	0.11
K⁺→π⁰ <mark>e⁺ν</mark> e	5.07 ±	0.04
$K^+ \rightarrow \pi^0 \mu^+ \nu_\mu$	3.352 ±	0.033
K⁺ → π⁺π⁰	20.67 ±	0.08
K⁺ → π⁺π⁺π⁻	5.583 ±	0.024
K⁺→π⁺π ^₀ π ^₀	1.760 ±	0.023

18-19/01/2023

Mathieu PERRIN-TERRIN (CPPM)

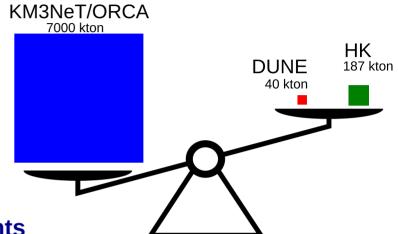

v_e cross-section at SBL

- The technique proposed by ENUBET
 - slow extraction beam line to collect K (and π) decays
 - count the positrons as $N(e^+) = N(K^+ \rightarrow \pi^0 e^+ \nu_e) = N(\nu_e)$
 - v_e energy spread constrained with a narrow band beam (NBB)
 - 10²⁰ POT needed (NBB!) to get the 10⁴ ν_e and a 1% precision on x-sec
- Synergistic developments with NuTAG
 - Derive N($K^+ \rightarrow \pi^0 e^+ v_e$) from N($K \rightarrow \mu v$) [more robust]
 - Use less POT with a wide band beam
 - K^+ and v_e interaction can be associated (tbc)
 - K⁺ momentum is know event by event
 - K⁺ and K⁻ can be collected together

v_{II} cross section and interaction models

- NuTAG will reconstruct all $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ and $K^+ \rightarrow \mu^+ \nu_{\mu}$ with a <0.6% reso. on the ν_{μ} energy
- Decay kinematics offers a very good control of the background
- K+'s and π+'s can clearly be separated using
 - Time-of-Flight (pixels have 10-50ps reso.)
 - Kinematics ($\theta_{x\mu}$ vs p_{μ} where X is π or K)
- Excellent sample (>10⁶ $\nu\mu$) to
 - measure cross section and <u>differential cross</u> section (wrt energy)
 - improve interaction model, as v energy is known independently of the interaction

18-19/01/2023


Outline

- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments
 - Short Base Line
 - Long Base Line

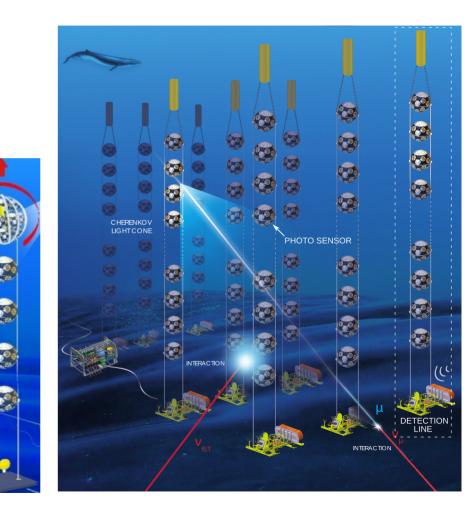
Neutrino tagging: a new tool for accelerator based neutrino experiments Eur. Phys. J. C, 2022, 82, 465, arXiv:2112.12848

NuTag for δ_{CP} Precison Measurement

- Future measurements require high statistics and low systematics
- Very challenging for conventional LBLNE:
 - higher **power** beams
 - larger underground high granularity far detectors
 - more precise near detector + dedicated experiments

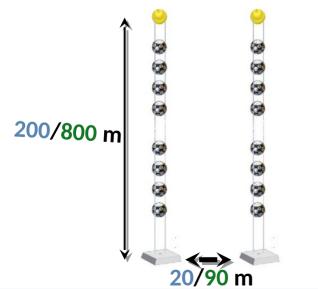
Alternative:

« *low »* power <u>tagged</u>-beams + huge (>Mton) natural water Cerenkov detectors

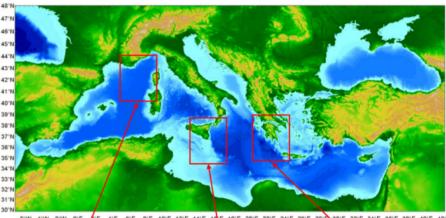

- natural water detectors size has virtually no limits
- detectors poor granularity (more than) compensated by tagging, (δE/E<1%)
- reduced systematical uncertainties thanks to the tagging

Natural Water Cerenkov detection [KM3Net]

- A versatile water Cerenkov detection technology:
 - the multi-PMT DOM
 - the deployment tool (LOM)
- DOM and line spacing determines the energy threshold of the detector


KM3NeT/ORCA

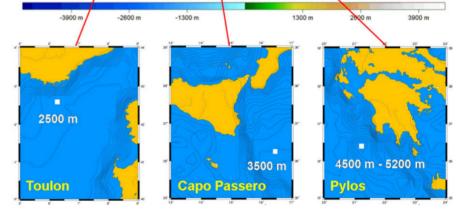
- Three sites explored in **France**, **Italy** and **Greece**
- Two detectors under construction until ~2026:

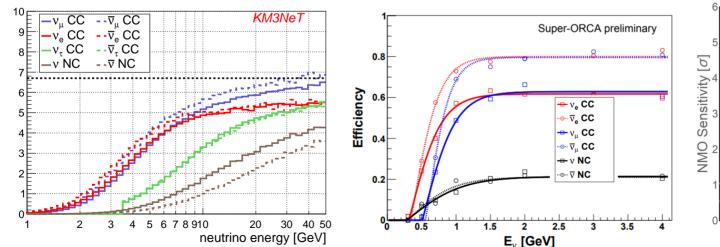

ORCA:

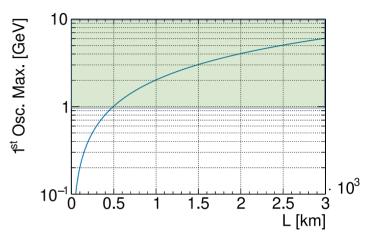
Depth: -2500m (France), Energy thres. 3 GeV Eff. Mass: 7 Mton Neutrino oscillation

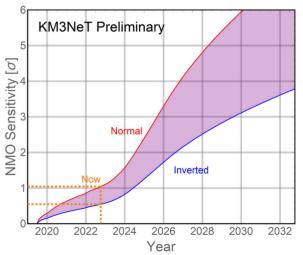
ARCA: Depth: -3500m (Sicily) Energy thres.: 100 GeV Eff. Mass: Gton Neutrino astronomy

18"E 20"E 22"E 24"E 26"E 28" 10°E 12'E 14'E




Figure 1-6: Locations of the sites of the three Mediterranean neutrino telescope projects.


18-19/01/2023

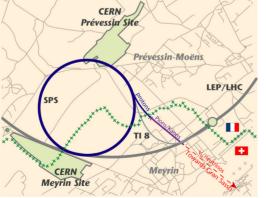

Mathieu PERRIN-TERRIN (CPPM)

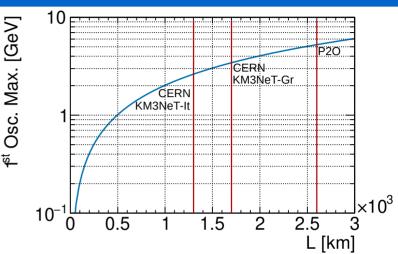
KM3NeT/ORCA for a LBL

- ORCA main purpose is the Neutrino Mass Ordering for which an energy threshold <5 GeV is needed</p>
- Configuration ten times more dense (superORCA) were simulated and allow to have a threshold <1GeV</p>
- KM3NeT technology allows to recover and redeploy line
- Depending on the baseline, ORCA lines could be reconfigured ~2030

effective volume [Mm³]

Possible Long Baseline in Europe


- From U70-Protvino (Russia) to KM3NeT-ORCA
 - P2O, letter of Interest published in 2019
- From CERN to Greek or Italian site of KM3NeT
 - Idea already explored in the past
 - CERN, Gran-Sasso and Greek site aligned
 - GNGS transfer line could be re-used
 - ORCA could be redeployed in Greece or Italy

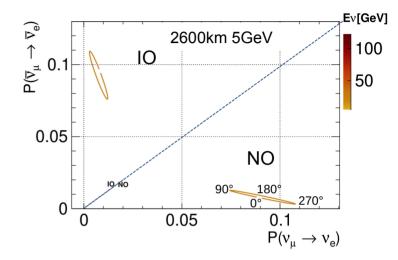

Nuclear Instruments and Methods in Physics Research A 383 (1996) 277–290 Design studies for a long base-line neutrino beam

A.E.	Ball ^{a,*} ,	S.	Katsanevas ^b , N.	. Vassilopoulos ^{6,1}
------	-----------------------	----	------------------------------	--------------------------------

Place	λ	ϕ	A_z	α	Distance
CERN	6.0732	46.2442	-	-	-
Gran Sasso	13.5744	42.4525	122.502	3.283	731 km
Nestor	21.3500	36.3500	124.1775	8.526	1676 km

Table 1: Absolute coordinates (λ, ϕ) and azimuth and declination angles (A_z, α) in degrees, of Gran Sasso and Nestor w.r.t CERN

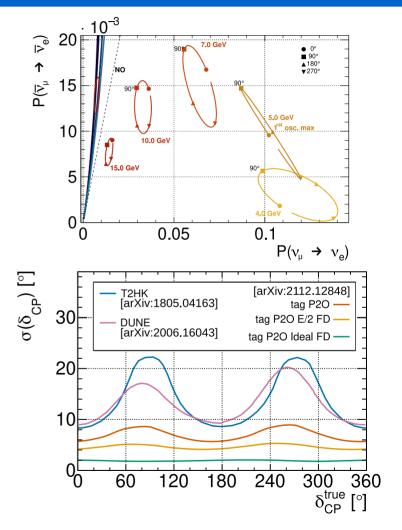
18-19/01/2023


Mathieu PERRIN-TERRIN (CPPM)

Case Study TagP2O

- Letter of interest Eur. Phys. J. C (2019) 79:758
- U70 beam power assumed to be upgraded from ~90kW to 450 kW, in the context of the OMEGA projet
- Event rates and δCP sensitivity without tagging

Experiment	T2HK	DUNE	P2O	
1-st max $\nu_{\mu} \rightarrow \nu_{e}$	0.6 GeV	2.4 GeV	5 GeV	
Detector	HyperK	DUNE	ORCA	Super-ORCA
Fiducial mass	186 kt	40 kt	8000 kt	4000 kt
Beam power	1300 kW	1070 kW	450 kW	450 kW
v_e events per year (NO)	230	250	3500	3400
$\bar{\nu}_e$ events per year (IO)	165	110	1200	1100
CPV sensitivity ($\delta_{CP} = \pi/2$)	8σ	7σ	2σ	6σ
1σ error on δ_{CP} ($\delta_{CP} = \pi/2$)	22°	16°	53°	16°
1σ error on δ_{CP} ($\delta_{CP} = 0$)	7°	8°	32°	10°


- **TagP2O** used as case study
 - 1st oscillation max at 5GeV
 - Excellent energy resolution
- Multiple ellipses can be accessed:
 - some are more circular
 - apsides not always reached at 90 or 270°
- → Better and more stable resolution
 - With ORCA: 14-25 ° precision in 1 year (i.e. DUNE/HK)
 6-8° precision in 10 years
 - With a detector twice as dense
 4-5° in 10 years
 - 2° if e/µ identification is perfect (10 years)

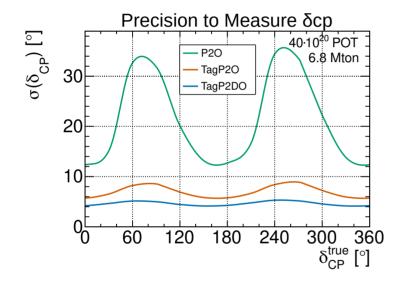
- **TagP2O** used as case study
 - 1st oscillation max at 5GeV
 - Excellent energy resolution
- Multiple ellipses can be accessed:
 - some are more circular
 - apsides not always reached at 90 or 270°
- → Better and more stable resolution
 - With ORCA: 14-25 ° precision in 1 year (i.e. DUNE/HK)
 6-8° precision in 10 years
 - With a detector twice as dense
 4-5° in 10 years
 - 2° if e/µ identification is perfect (10 years)

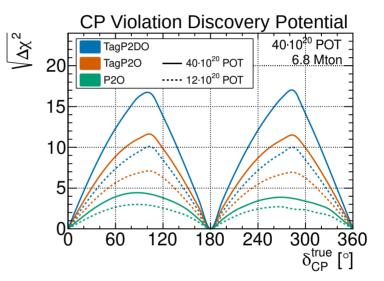
- **TagP2O** used as case study
 - 1st oscillation max at 5GeV
 - Excellent energy resolution
- Multiple ellipses can be accessed:
 - some are more circular
 - apsides not always reached at 90 or 270°
- → Better and more stable resolution
 - With ORCA: 14-25 ° precision in 1 year (i.e. DUNE/HK)
 6-8° precision in 10 years
 - With a detector twice as dense
 4-5° in 10 years
 - **2°** if e/µ identification is perfect (10 years)

Summary and Conclusions

• **CP violation**: the next major discovery in neutrino physics?

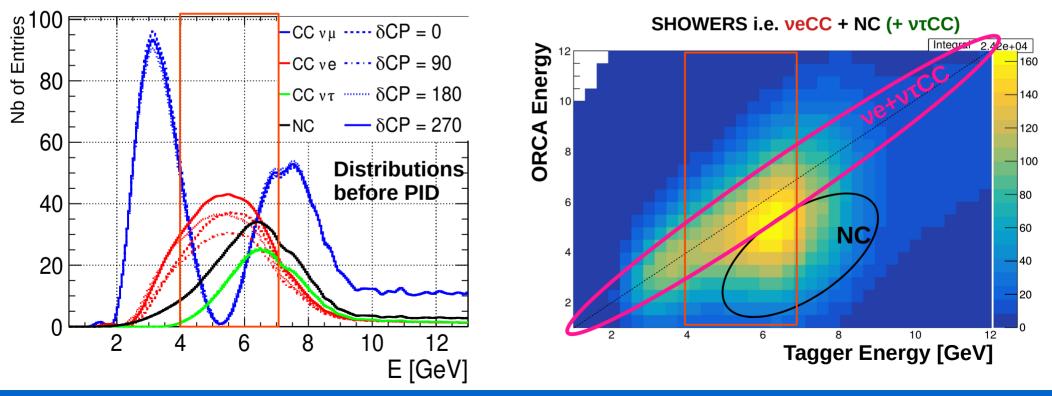
- Knowledge on **cross-section and flux** must be improved for DUNE and T2HK
- **New methods** needed to fully address the CPV question beyond DUNE and TH2K
- Neutrino Tagging


use **v** production mechanism (in complement to v interaction)


- Experimental **Proof of Concept** on going at NA62
- Tagging @ **SBL**:

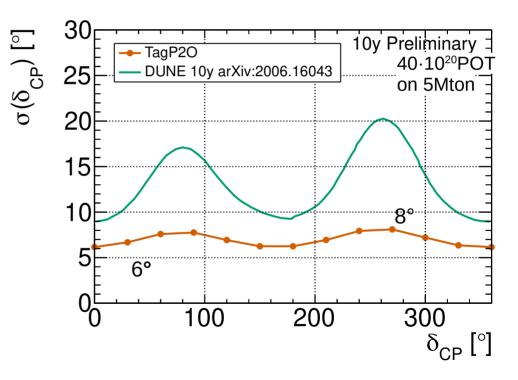
unique facility to refine cross-section (ve, vµ) and interaction model

- Tagging @ LBL using MegaTon scale Natural Water Cerenkov Detector
 - Large neutrino sample of the best quality (E reso<1%) reduced systematics
 - δ_{CP} precision of **few degrees** are accessible



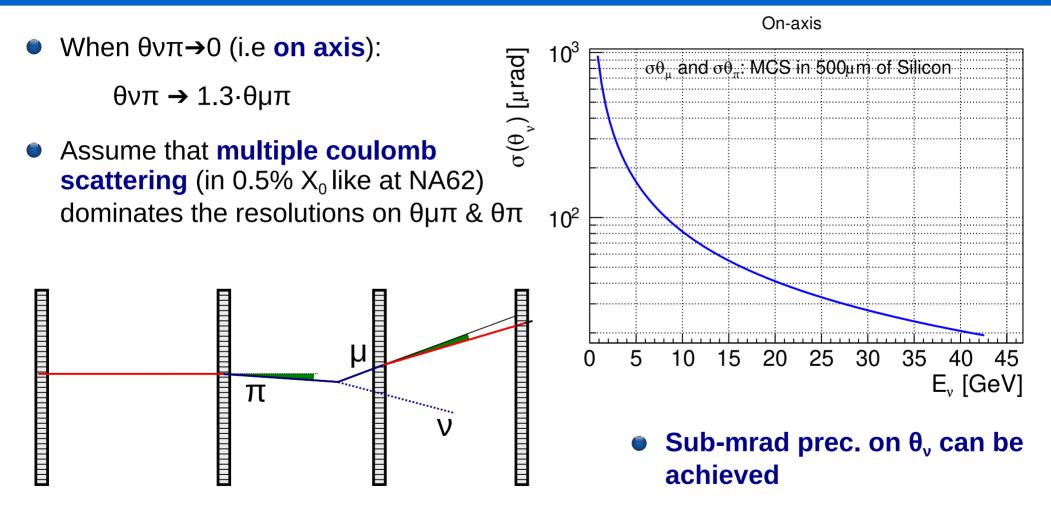
How to measure δ_{CP} with P2O

- δ_{CP} measured using ve-CC energy distribution around 5GeV (1rst osc max)
 - ORCA threshold ~3.5GeV
 - NC pollution in ve-CC reduced comparing visible energy vs tag-energy


48 / 45

Precision to $\delta_{_{CP}}$ at P2O

Systematics on oscillation parameters, cross section & normalisation (free)


θ13 ± 0.15°	ντ ±10%
θ23 ± 2°	NC ± 5%
$\Delta m^2 31 \pm 5e - 3eV^2$	νe=νμ ± 5%

- Conservative estimates: no PID improvement with respect to atmospheric v was considered
- δ_{CP} precision **stable** over all values
- <8° precision can be achieved!</p>

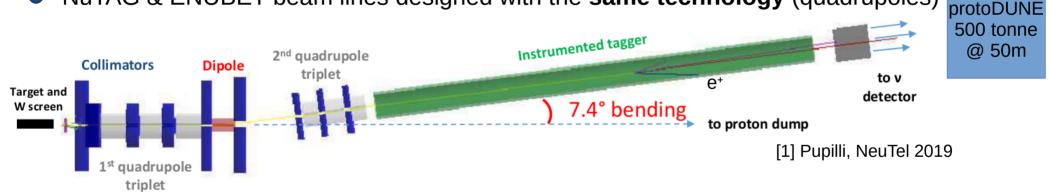
CHALLENGE 2: MATCHING

Is 1mard v ang. resolution achievable? YES

v_{a} energy control: Kaon to ve association

- Assumptions on the beam content, based on ENUBET
 - Getting 9×10¹⁹ POT in 2.5 years needs 5×10¹³ protons per pulse
 - The neutrino detector (protoDUNE e.g.) has time resolution 1ns
 - For any interaction in protoDUNE the nb of in time π 's and K's in the beam are
- 200 π's: 5e13 × 4.13e-3 × 1e-9
 π's can be identified & vetoed based on TOF+kinematics
 - **17 K's** : 5e13 × 0.34e-3 × 1e-9
 - Undecayed K (~50%) can be vetoed
 - Kµ2 and K2 π can be reconstructed and vetoed
 - The association is possible for 90% of the cases

^a 5e13 ppp and 3000 p per day 30 days a month 8 months per year over 2.5 year gives 9×10^{19} POT



Mathieu PERRIN-TERRIN (CPPM)

ENUBET

ENUBET: monitored beam to measure ν x-section at energies of few GeV

- N(e⁺) = N(K⁺ $\rightarrow \pi^0 e^+ \nu_e$) = N(ν_e), so by counting the e⁺'s, one counts the ν_e 's
- Narrow band beam (NBB) (10% at 8.5GeV) allows to limit the Ev spread to 20%
- NuTAG & ENUBET beam lines designed with the same technology (quadrupoles)

ENUBET (mature) design offers estimates for what could be achieved for a tagged SBL

- Nb assumes: 5×10¹³ ppp, 10²⁰ POT*, with protoDUNE as detector
- Beam particle rate is ~MHz/mm² at pipe end (<<10-100MHz/mm²)

$N(\nu_{e})$	104 / 1020 POT
N(ν _µ)	10 ⁶ / 10 ²⁰ POT

* this is similar to CNGS intensity