Evidence for the production of three massive vector bosons with ATLAS

Ulla Blumenschein, Queen Mary University of London

- Introduction
- Past measurements of 4-boson couplings
- Evidence for production of 3 heavy gauge bosons

Ulla Blumenschein, Particle Physics Seminar at Warwick

Introduction: Theory and motivation

Ulla Blumenschein, Particle Physics Seminar at Warwick

Electroweak gauge fields

→ Lagrangian of free gauge fields:

$$\mathcal{L}^{EW}_{gauge} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

with:

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

$$F^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + g_{w}\epsilon_{abc}W^{b}_{\mu}W^{c}_{\nu}$$

$$W/Z \text{ bosons carry}_{EM \text{ and/or weak charges}}$$

$$[\sigma_{a}, \sigma_{b}] = \sigma_{ab}$$

$$\left[\frac{\sigma_a}{2}, \frac{\sigma_b}{2}\right] = i\epsilon_{abc}\frac{\sigma_c}{2}$$

Ulla Blumenschein, Particle Physics Seminar at Warwick

Electroweak gauge fields

 $W^{-\iota}$

 W^+

→ Lagrangian of free gauge fields:

$$\mathcal{L}^{EW}_{gauge} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

with:

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \qquad F^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} - g_{w}\epsilon_{abc}W^{b}_{\mu}W^{c}_{\nu}$$

Leads to triple and quartic gauge boson couplings:

$$\mathcal{L}_{gauge}^{EW} = -\frac{1}{4} \begin{bmatrix} (W_{\mu\nu}^{-})^{\dagger} W^{-\mu\nu} + (W_{\mu\nu}^{+})^{\dagger} W^{+\mu\nu} + Z_{\mu\nu} Z^{\mu\nu} + A_{\mu\nu} A^{\mu\nu} \end{bmatrix} \\ -ig_{w} \begin{bmatrix} (\cos\theta_{w} Z^{\mu} + \sin\theta_{w} A^{\mu}) (W_{\mu\nu}^{-} W^{+\nu} - W_{\mu\nu}^{+} W^{-\nu}) & \text{TGC} \\ + (\cos\theta_{w} Z_{\mu\nu} + \sin\theta_{w} A_{\mu\nu}) W^{+\mu} W^{-\nu} \end{bmatrix} \\ -\frac{g_{w}^{2}}{2} \begin{bmatrix} 2\cos^{2}\theta_{w} (W_{\mu}^{+} W^{-\mu} Z_{\nu} Z^{\nu} - W_{\mu}^{+} W^{-\nu} Z_{\nu} Z^{\mu}) \\ + 2\sin^{2}\theta_{w} (W_{\mu}^{+} W^{-\mu} A_{\nu} A^{\nu} - W_{\mu}^{+} W^{-\nu} A_{\nu} A^{\mu}) \\ + 2\cos\theta_{w} \sin\theta_{w} (2W_{\mu}^{+} W^{-\mu} Z_{\nu} A^{\nu} - W_{\mu}^{+} W^{-\nu} Z_{\nu} A^{\mu} - W_{\mu}^{+} W^{-\nu} A_{\nu} Z^{\mu} \\ -W_{\mu}^{+} W^{+\mu} W_{\nu}^{-} W^{-\nu} + W_{\mu}^{+} W^{-\mu} W_{\nu}^{-} W^{+\nu} \end{bmatrix}$$

JIIa Blumenschein, Particle Physics Seminar at Warwick

24/10/19

e⁺

 Z^{β}

SM Lagrangian

$$\mathcal{L}_{SM} = i\Psi_i \gamma^{\mu} \mathbf{D}_{\mu} \Psi_i - \frac{1}{4} V^j_{\mu\nu} V^{\mu\nu}_{\nu} + [\mathbf{D}_{\mu} \Phi]^2 - V(\Phi^* \Phi) - \mathcal{L}_{Yukawa}$$

Gauge boson kinematics and interaction: Triple and Quartic Gauge Coupling

Higgs kinematics and gauge boson coupling

Ulla Blumenschein, Particle Physics Seminar at Warwick

New physics at large energy scales

Fermi theory of weak interaction, 1933: Effective Field Theory

Effective coupling parameter G_F , related to new physics at a scale m_W which was not accessible in 1933

Cross section diverges at high energies and does not explain observed parity violation

Today's relation at low energies:

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2}$$

Ulla Blumenschein, Particle Physics Seminar at Warwick

SM +EFT

Gauge boson kinematics and interaction: Triple and Quartic Gauge Coupling

+

+

Ulla Blumenschein, Particle Physics Seminar at Warwick

24/10/19

8

Measuring interactions of four gauge bosons: 1) Vector Boson Scattering

Ulla Blumenschein, Particle Physics Seminar at Warwick

Example: VBS ssWW (8TeV)

ll+2jets, large m(jj), large $\Delta y(jj)$, lepton centrality

Ulla Blumenschein, Particle Physics Seminar at Warwick

q'q W^+ W α_5 **ATLAS** 20.3 fb⁻¹, √s = 8 TeV 0.6 $pp \rightarrow W^{\pm} W^{\pm} jj$ 0.4 K-matrix unitarization 0.2 -0.2 confidence regions 68% CL -0.495% CL - expected 95% CL -0.6--- expected 95% CL PRL 113, 141803 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 α_{A}

24/10/19

10

Example: VBS ssWW (8TeV)

w+

w+

II+2jets, large m(jj), large $\Delta y(jj)$, lepton centrality WZ and jets backgrounds

Ulla Blumenschein, Particle Physics Seminar at Warwick

24/10/19

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

w+

w+

 $\mathscr{M}_{Gauge} = -g^2 \frac{\checkmark s}{4M_W^2} + \mathscr{O}(s^0) \quad \mathscr{M}_H = g_{HWW}^2 \frac{\backsim s}{M_W^4} + \mathscr{O}(s^0)$

w+

w+

VVV, VVVV A,Z

 α_5

0.6

0.4

0.2F

-0.4

-0.6

-0.2 confidence regions

95% CL

- expected 95% CL

--- expected 95% CL PRL 113, 141803

w+

w+

w+

Higgs

w+

ATLAS

20.3 fb⁻¹, vs = 8 TeV

K-matrix unitarization

 α_{A}

 $pp \rightarrow W^{\pm} W^{\pm} jj$

w+

w+

h

Example: VBS ssWW (13TeV)

Two jets with large dijet mass (and large η separation) Fit of m(jj) (and m(II)) SR, use WZ CR

Meanwhile observations by both CMS and ATLAS: CMS: Phys. Rev. Lett. 123 (2019) 161801, ATLAS: Phys. Rev. Lett. 123 (2019) 161801

Ulla Blumenschein, Particle Physics Seminar at Warwick

24/10/19

12

Example: exclusive WW production, 8TeV

Here: Phys. Rev. D 94 (2016) 032011 CMS paper: JHEP 07 (2013) 116

> Difficult to extract due to vertex isolation but extremely sensitive to new physics

Example: VBS $Z \gamma$ production

Measuring interactions of four gauge bosons: 2) Tri-Boson production

Ulla Blumenschein, Particle Physics Seminar at Warwick

First Triboson measurements: W $\gamma \gamma$

	$\sigma^{\rm fid}$ [fb]	$\sigma^{\rm MCFM}$ [fb]
Inclusive $(N_{\text{jet}} \ge 0)$		
$\mu u\gamma\gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)	
$e u\gamma\gamma$	4.3 $^{+1.8}_{-1.6}$ (stat.) $^{+1.9}_{-1.8}$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
$\ell u\gamma\gamma$	6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	
Exclusive $(N_{jet} = 0)$		
$\mu u\gamma\gamma$	$3.5 \pm 0.9 \text{ (stat.)} ^{+1.1}_{-1.0} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$	
$e u\gamma\gamma$	$1.9 \ ^{+1.4}_{-1.1}$ (stat.) $\ ^{+1.1}_{-1.2}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20
$\ell u \gamma \gamma$	2.9 $^{+0.8}_{-0.7}$ (stat.) $^{+1.0}_{-0.9}$ (syst.) ± 0.1 (lumi.)	

QGC in SM and BSM

Backgrounds: W γ j, Wjj jets $\rightarrow \gamma$

Here: Phys. Rev. Lett. 115, 031802 (2015) CMS paper: JHEP 10 (2017) 072

Ulla Blumenschein, Particle Physics Seminar at Warwick

ATLAS

16

First Triboson measurements: $Z \gamma \gamma$

Here: Phys. Rev. D 93, 112002 (2016) CMS paper: JHEP 10 (2017) 072

Ulla Blumenschein, Particle Physics Seminar at Warwick

24/10/19

Production of 3 massive vector bosons

Ulla Blumenschein, Particle Physics Seminar at Warwick

Production of 3 heavy gauge bosons

Simulation:

- VVV: Sherpa 2.2.2
- WH \rightarrow WWW* Powheg+Pythia8
- WH -> WZZ*, ZH \rightarrow ZWW*: Pythia8

Total cross section:

WWW: 0.50 pb, WWZ: 0.29 pb uncertainty: 10%

Ulla Blumenschein, Particle Physics Seminar at Warwick

Production of 3 heavy gauge bosons

- WWW \rightarrow I[±]v+I[±]v+qq or Iv+Iv+Iv no SFOS: reject backgrounds with Z
- WWZ \rightarrow lv+qq+ll or ev+ev+ll / μ v+ μ v+ll / ev+ μ v+ll
- WZZ \rightarrow Iv+qq+II or qq+II+II

Here: arXiv:1903.10415, subm to PLB CMS: search for WWW in 2015/16 data: PRD 100 (2019) 012004

Ulla Blumenschein, Particle Physics Seminar at Warwick

Here: arXiv:1903.10415, subm to PLB CMS: search for WWW in 2015/16 data: PRD 100 (2019) 012004

Ulla Blumenschein, Particle Physics Seminar at Warwick

24/10/19

21

Production of 3 heavy gauge bosons **I**[±]**v**+**I**[±]**v**+**qq** or **Iv**+**Iv**+**Iv** no SFOS: reject backgrounds with Z WWW WWZ → lv+qq+ll or ev+ev+II / µv+µv+II / ev+µv+II WZZ \rightarrow lv+qq+ll or qq+ll+ll 3) 4)

→ Signatures:

- 1) WWW \rightarrow II+2jets:
- 2) WWW → 3I:

- **2SS leptons+2jets**, binned in m(jj)
- 1 inclusive bin
- 3) WVZ \rightarrow 3I+jets 3 BDTs: 3I+1/2/3jets:
- 4) WVZ → 4I (+jets): 3 BDTs: Z + SF II off-shell / on-shell / Z+DF II

nearly no WZ/ZZ bkg

 \rightarrow Combined fit of all channels: 186 bins

Data set used: 2015+2016+2017: 80/fb

Here: arXiv:1903.10415, subm to PLB CMS: search for WWW in 2015/16 data: PRD 100 (2019) 012004

Ulla Blumenschein, Particle Physics Seminar at Warwick

WWW selection

	$WWW \rightarrow \ell \nu \ell \nu q q$	$WWW \rightarrow \ell \nu \ell \nu \ell \nu$		
Lepton	Two leptons with $p_{\rm T}$ >	Three leptons with p_T >		
	27(20) GeV and one same-sign	27(20,20) GeV and no same-		
	lepton pair	flavour opposite-sign lepton pairs		
$m_{\ell\ell}$	$40 < m_{\ell\ell} < 400 \text{ GeV}$	_		
Jets	At least two jets with p_T >	_		
	$30(20) GeV$ and $ \eta < 2.5$			
mii	$m_{i,i} < 300 \text{GeV}$	_		
$\Delta \tilde{\eta}_{ii}$	$ \Delta \tilde{\eta}_{jj} < 1.5$	-		
$E_{T}^{m \bar{s} s}$	$E_T^{m_{\overline{2}}} > 55 \text{ GeV} \text{ (only for } ee)$	_		
Z boson veto	$m_{ee} < 80 \text{ GeV} \text{ or } m_{ee} > 100$	GeV (only for ee and µee)		
Lepton veto	No additional lepton with $p_T > 7 \text{ GeV}$ and $ \eta < 2.5$			
b-jet veto	No <i>b</i> -jets with $p_{T} > 25 \text{ GeV}$ and $ n < 2.5$			

WWW \rightarrow I[±]v+I[±]v+qq or Iv+Iv+Iv no SFOS: reject backgrounds with Z

Ulla Blumenschein, Particle Physics Seminar at Warwick

WWW: backgrounds

- Dominant WZ \rightarrow IvII+jets (II+2jets), Iv τ τ (III)
- \rightarrow from MC, Jet multiplicity reweighted
- Non-prompt: mostly from ttbar: sample with one fake lepton
 - fake factor from b-tagged CR
- Photon conversion in V γ jj: sample with photon-like electron fake factor from Z $\rightarrow \mu\mu\gamma$

Ulla Blumenschein, Particle Physics Seminar at Warwick

24/10/19

24

WWW: backgrounds

- Dominant WZ \rightarrow IvII+jets (II+2jets), Iv τ τ (III)
- \rightarrow from MC, Jet multiplicity reweighted
- Non-prompt: mostly from ttbar: sample with one fake lepton
 - fake factor from b-tagged CR
- Photon conversion in V γ jj: sample with photon-like electron fake factor from Z \rightarrow µµ γ

	ee	$e \mu$	μe	$\mu\mu$	$\mu ee + e \mu \mu$
WWW	9.9 ± 3.3	26 ± 9	23 ± 8	30 ± 10	15 ± 5
WZ	37.4 ± 2.2	121 ± 6	96 ± 5	119 ± 6	8.6 ± 0.5
ZZ	0.46 ± 0.05	5.11 ± 0.25	3.44 ± 0.18	4.12 ± 0.24	0.69 ± 0.03
Non-prompt	6.1 ± 3.0	35 ± 5	17 ± 9	37 ± 7	9.4 ± 1.5
γ conv.	20.9 ± 1.9	35.0 ± 3.1	76 ± 7	-	1.06 ± 0.11
Other	12.9 ± 1.0	25.7 ± 1.7	20.3 ± 1.3	25.3 ± 1.6	3.5 ± 0.4
Total	88 ± 4	249 ± 9	237 ± 10	216 ± 9	38 ± 4
Data	87	239	235	237	27

Ulla Blumenschein, Particle Physics Seminar at Warwick

WWW: II+2jets prefit distributions

WVZ selections

	$WVZ \rightarrow \ell \nu qq\ell \ell$	$WVZ \rightarrow \ell \nu \ell \nu \ell \ell / qq \ell \ell \ell \ell$		
Z boson	At least one OS lepton pair w	$ m_{\ell\ell} - 91.2 \text{GeV} < 10 \text{GeV}$		
Low mass veto	$m_{H} > 12 \text{ GeV}$ for any OS lepton pair			
b-jet veto	No b-jets with $p_T > 25$ GeV and $ \eta < 2.5$			
Leptons	One additional nominal lepton One additional OS lepto			
-		third and fourth lepton nominal		
H_{T}	$H_{\rm T} > 200 {\rm GeV}$	-		

WWZ	→ lv+qq+ll	or	ev+ev+ / µv+µv+ / ev+µv+
WZZ	→ lv+qq+ll	or	qq+ +

WVZ backgrounds

- All backgrounds estimated from MC
- Dominant: ZZ (4l channels), WZ (3l channels):
 → MC jet multiplicity reweighted

	46-DF	4ℓ-SF-Z	$4\ell\text{-}\mathrm{SF}\text{-}\mathrm{no}\mathrm{Z}$	3 <i>ĕ</i> -1j	3ℓ-2j	3ℓ-3j	$t\bar{t}Z$ CR
WVZ	9.6 ± 3.5	5.0 ± 1.8	10 ± 4	62 ± 23	85 ± 30	84 ± 30	-
WZ	1.11 ± 0.13	-	1.08 ± 0.14	2580 ± 80	1830 ± 60	1110 ± 50	5.7 ± 0.4
ZZ	6.7 ± 0.4	933 ± 28	310 ± 10	344 ± 12	182 ± 13	98 ± 12	0.58 ± 0.06
tīΖ	5.1 ± 0.5	0.55 ± 0.08	4.5 ± 0.5	7.6 ± 1.1	22.6 ± 2.5	82 ± 8	122 ± 9
tWZ	1.9 ± 0.4	0.23 ± 0.10	1.6 ± 0.4	4.2 ± 0.9	11.2 ± 2.2	20 ± 4	10.3 ± 0.8
Non-prompt	-	-	0.18 ± 0.12	130 ± 50	77 ± 28	59 ± 24	0.47 ± 0.18
γ conv.	-	-	-	42 ± 8	32 ± 7	9.6 ± 3.4	0.4 ± 0.6
Other	0.4 ± 0.4	1.8 ± 1.1	1.0 ± 0.7	200 ± 15	182 ± 16	120 ± 10	24.4 ± 2.5
Total	24.8 ± 3.5	941 ± 27	329 ± 10	3370 ± 70	2430 ± 40	1580 ± 40	160 ± 10
Data	28	912	360	3351	2438	1572	170

WVZ backgrounds

- All backgrounds estimated from MC
- Dominant: ZZ (4I channels), WZ (3I channels):
 - → MC jet multiplicity reweighted
- ttZ: CR without HT cut, 3I+4jets (at least 2b tags), added to fit (1bin)
- Non-prompt: WZ+jets, Z+jets: validated in region w/o HT cut, low pt(I3)

Ulla Blumenschein, Particle Physics Seminar at Warwick

24/10/19

6

5

Data

WZ

WtZ

1/2 Stat. uncert.

ttZ CR

WVV

Other

≥7

Number of jets

tīZ

(1 bin in fit)

29

WVZ BDTs

Variable	3 <i>ℓ</i> -1j	3 <i>l</i> -2j	3 <i>l</i> -3j	4ℓ DF	4ℓ SF on-shell	4ℓ SF off-shell
$p_T(\ell_1)$	×	×				
$p_T(\ell_2)$	×	×	×			
$p_T(\ell_3)$	×	×	×			
Sum of $p_T(\ell)$	×	×	×			
$m_{\ell_1 \ell_2}$	×	×				
$m_{\ell_1 \ell_3}$	×	×				
$m_{\ell_2 \ell_3}$	×	×				
$m_{\ell\ell}$ of best Z					×	×
$m_{\ell\ell}$ of other leptons				×	×	×
$m_{3\ell}$	×	×	×			
$m_{4\ell}$				×	×	×
Sum of lepton charges	×	×	×			
$p_T(j_1)$	×	×				
$p_T(j_2)$		×	×			
Sum of $p_T(j)$			×			
Number of jets			×	×	×	×
mjjja		×				
$m_T(W_\ell)$		×				
m_{jj} of best W			×			
Smallest m _{jj}			×			
E_{T}^{mas}		×	×	×	×	×
$H_{\rm T}$	×	×			×	×
Leptonic H_T				×		
Hadronic H_T				×		
Invariant mass of all						
leptons, jets and E_T^{miss}	×		×			
Invariant mass of the						
best Z leptons and j_1	×					

1 BDT per signal region

Ulla Blumenschein, Particle Physics Seminar at Warwick

WVZ BDTs

Ulla Blumenschein, Particle Physics Seminar at Warwick

31

WVZ prefit distributions: 3I +jets

WVZ prefit distributions: 41 channels

Ulla Blumenschein, Particle Physics Seminar at Warwick

Global fit

- Profile LLH: 186 bins in 12 regions
- Common signal strength µ fitted for all VVV processes
- Simulated backgrounds: 10%-40% normalisation uncertainty priors
- Shape uncertainties: alternate samples, fac/ren scale uncertainties
- Stat & syst uncertainties on data-driven backgrounds
- Experimental uncertainties on signal & background samples
- Signal shape uncertainties: fac/ren scale, PDF, matching

... additional WWW-only (incl WZ CR) and WWZ-only fits

Ulla Blumenschein, Particle Physics Seminar at Warwick

Global fit: uncertainties

Uncertainty source	$\Delta \mu_{WVV}$		
Data-driven	+0.14	-0.14	
Theory	+0.15	-0.13	
Instrumental	+0.12	-0.09	
MC stat. uncertainty	+0.06	-0.04	
Generators	+0.04	-0.03	
Total systematic uncertainty	+0.30	-0.27	

Largest post-fit impact on μ :

- non-prompt background
- WZ/ZZ shape (constrained in fit)
- VVV modeling

Ulla Blumenschein, Particle Physics Seminar at Warwick

35

Global fit: summary

Ulla Blumenschein, Particle Physics Seminar at Warwick

Global fit: post-fit distributions WWW

24/10/19

Global fit: post-fit distributions WVZ

24/10/19

Signal strength

10⁵

10⁴

 10^{3}

10²

10

2

-25

1.5

ATLAS

√s = 13 TeV, 79.8 fb⁻¹

Events / bin

Data / Bkgd

Signal strength compatible with SM expectation

Data stat unc and syst unc At the same level Events sorted according to S/B of the final discriminant \rightarrow accumulation of data in bins with high S/B

-1.5

Ulla Blumenschein, Particle Physics Seminar at Warwick

24/10/19

-1

log_(S/B)

Data

VVV (µ=1.38)

Background

/// Bkgd. Unc.

-0.5

Significance

First evidence for the joint production of 3 heavy gauge bosons

Decov channel	Significance		
Decay channel	Observed	Expected	
WWW combined	3.2σ	2.4σ	
$WWW \rightarrow \ell \nu \ell \nu q q$	4.0σ	1.7σ	
$WWW \rightarrow \ell \nu \ell \nu \ell \nu$	1.0σ	2.0σ	
WVZ combined	3.2σ	2.0σ	
$WVZ \rightarrow \ell \nu q q \ell \ell$	0.5σ	1.0σ	
$WVZ \rightarrow \ell \nu \ell \nu \ell \ell / q q \ell \ell \ell \ell$	3.5σ	1.8σ	
WVV combined	4.1σ	3.1 <i>o</i>	

Fiducial cross sections

Fitted signal strengths from individual WWW and WWZ fits are converted into fiducial cross sections using the theoretical NLO cross sections from the signal samples.

Assuming SM cross section for WZZ.

Post-fit uncertainties from fit except signal normalisation.

$$\sigma_{WWW} = 0.65^{+0.16}_{-0.15} (\text{stat.})^{+0.16}_{-0.14} (\text{syst.}) \text{ pb}$$

$$\sigma_{WWZ} = 0.55 \pm 0.14 \,(\text{stat.})^{+0.15}_{-0.13} \,(\text{syst.}) \,\text{pb}$$

Stat and syst uncertainties contribute equally

Expected σ WWW: 0.50 ± 0.05 pb, σ WWZ: 0.29±0.03 pb

Ulla Blumenschein, Particle Physics Seminar at Warwick

Summary

- ◆ First evidence for the production of 3 heavy gauge bosons.
- Dominated by WWW and WWZ channels.
- ◆ Most sensitive channels: WWW: ss II+2jets, WVZ: Z+DF lepton pair
- Dominant backgrounds form WZ and ZZ
- Dominant syst uncertainties from WZ/ZZ shapes and non-promt bkg
- Currently equal contributions from stat and syst uncertainty
- → Expect improvement using the full Run2 data set of 139/fb

Parametrizing new physics

EFT approach

$$\mathcal{L}^{ ext{eff.}} = \mathcal{L}^{ ext{SM}} + \sum_i rac{c_6^i}{\Lambda^2} \mathcal{O}_6^i + \sum_i rac{c_8^i}{\Lambda^4} \mathcal{O}_8^i + \cdots$$

 Λ : scale of new physics SM: $\Lambda \rightarrow oo$

Fermi theory of the 21st century

Only applicable for scales $<<\Lambda$

Example: Operators for WWV:

CP conserving:

$$\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$$

 $\mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$

 $\mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger} \tilde{W}^{\mu\nu} (D_{\nu}\Phi)$

In practice, we constrain ci/Λ^2

C/P violating:

→ Observes the symmetries of the Standard Model
 → Higher dimensional terms are automatically suppressed by 1/Λ²
 → Perturbative expansion in 1/Λ² possible, renormalizable

Ulla Blumenschein, Particle Physics Seminar at Warwick

Parametrizing new physics

Quartic Gauge couplings:

- Dim6 and Dim8 operators
- Dim 6 operators already constrained by TGC constraints
- Independent: Dim8 operators:

 $\begin{array}{l} O_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right] \\ O_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\mu} \Phi \right] \\ O_{S,2} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\nu} \Phi)^{\dagger} D^{\mu} \Phi \right] \\ O_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ O_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ O_{M,3} = \left[\hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ O_{M,3} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times \hat{B}^{\beta\nu} \\ O_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times \hat{B}^{\beta\mu} (+h.c.) \\ O_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right] \\ O_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right] \end{array} \right] \times \hat{B}^{\beta\mu} (+h.c.)$

Ulla Blumenschein, Particle Physics Seminar at Warwick

Boson scattering

