Constraining the CKM angle γ

Sneha Malde University of Oxford 2nd June 2016

On behalf of the LHCb collaboration

Mystery

- The matter-anti asymmetry that is manifest in our universe is a mystery
- Requires a large source of CP violation

CP Violation and New Physics

- First Observation of CPV in 1964 in the Kaon system
- Observed in B decays in 2001
- To date only observed in the quark sector, but at levels far below that required to explain the universe
- There must be additional sources of CPV in New Physics models

CKM Matrix

$$\begin{pmatrix} u \\ c \\ t \end{pmatrix} \longleftrightarrow W^{\pm} \longrightarrow \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Unitarity triangle

- The CKM matrix is unitary, and reduces to three rotations and one phase.
- Wolfenstein parameterisation is commonly used where λ is the sine of the Cabibbo angle $\lambda{\approx}0.22$

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda \\ -\lambda & 1 - \lambda^2 / 2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 \\ -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Using the properties of unitary matrices

$$0 = 1 + \frac{V_{tb}^* V_{td}}{V_{cb}^* V_{cd}} + \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}$$

"Most open" triangle, others are possible

Sneha Malde

Is the triangle a triangle?

Sneha Malde

http://ckmfitter.in2p3.fr

Loop/Tree

- Loop processes more easily altered by the presence of New Physics
- Constraints on the apex currently more stringent from loop decay measurements
- Largest uncertainty is on γ, a process accessible at tree level
- Forms a SM benchmark*
- Theoretically clean uncertainty from observable to physics parameters ~10⁻⁷

*assuming no New Physics in tree decays

Indirect predictions

The unitary triangle is constructed using mixing and sin(2β) measurements and lattice QCD

arXiv:1602.04020 [Blanke, Buras]

(0,0)

 $\gamma = (62.7 \pm 2.1)^{\circ}$

Alternative approach from CKM fit excluding all direct measurements of $\boldsymbol{\gamma}$

$$\gamma = (66.9^{+0.94}_{-3.44})^{\circ}$$

Combination of all direct measurements (summer 2015)

$$\gamma = (73.2^{+6.3}_{-7.0})^{\circ}$$

Why is γ a key goal

- New Physics must provide a new source of CPV
- γ is the least well measured parameter of the CKM triangle
- Only angle easily accessible at tree-level
- Theoretically pristine
- Provides a SM benchmark against which other measurements can be compared
- With the advent of LHCb the ideal of degree level precision starts to become reality

$B \rightarrow DK$

 $b \rightarrow c$ (favoured)

Interference between these two decays possible if the D decay to a final state is accessible to both D flavours

Interference with CP eigenstates "GLW"

Interested in the rate of observing this decay in B⁻ vs. B⁺

Interested in the rate of observing this decay vs. one that is not affected by interference, e.g the Cabibbo favoured decay of the D⁰

Interference with CP eigenstates "GLW"

Sneha Malde

Interference with flavour specific "ADS"

 $\frac{\Gamma(B^{-} \to [\pi^{-}K^{+}]_{D}K^{-}) - \Gamma(B^{+} \to [\pi^{+}K^{-}]_{D}K^{+})}{\Gamma(B^{-} \to [\pi^{-}K^{+}]_{D}K^{-}) + \Gamma(B^{+} \to [\pi^{+}K^{-}]_{D}K^{+})} = A_{ADS} = \frac{1}{R_{ADS}} 2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin(\gamma)$ $\frac{\Gamma(B^{\pm} \to [\pi^{\pm}K^{\pm}]_{D}K^{\pm})}{\Gamma(B^{\pm} \to [K^{\pm}\pi^{\pm}]_{D}K^{\pm})} = R_{ADS} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)$

LHCb detector

Detector performance

- Allows identification of displaced tracks
- Reconstruction of secondary vertices
- Separation between hadron species crucial

Selection

Separate the topology of interest from random combinations

Use of multi-variate analysis techniques. Useful variables include:

Impact parameters

Flight distances from primary. (B travels a ~cm)

- Flight distances from B removes e.g B \rightarrow Kpipi bkgs
- Vertex quality
- Particle ID

Specific vetos against particular backgrounds

Sneha Malde

$B \rightarrow D[K\pi]h - CF$ control mode

Difference between the two modes only the ID of the bachelor hadron

PID performance \rightarrow low crossfeed.

B->D*h where a π^0 or photon isn't reconstructed sits to the left

Extremely low level of combinatoric

Control mode constrains the shapes of bkgs

Control mode also used to measure the B[±] production asymmetry. Detection asymmetries calibrated from other data.

Results also extracted for $B \rightarrow D\pi$ mode, interference level expected to be ~ magnitude smaller

Statistical uncertainty dominant Description of background is the leading systematic uncertainty

$B \rightarrow D(\pi\pi)h$

$$A_{K}^{\pi\pi} = 0.128 \pm 0.037 \pm 0.012$$

Asymmetry same direction as KK Combined observation of CP violation

5σ

$B \rightarrow D[\pi K]h$

Comparison of results

Multi-body flavour specific D decays

Measurements of coherence factor

Interference between mixing and decay

Strong phase and coherence factor determined from time-dependent decay rates.

$$R(t) \approx (r_D^{K3\pi})^2 - r_D^{K3\pi} \kappa_D^{K3\pi} \cdot (y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi}) \frac{t}{\tau} + \frac{x^2 + y^2}{4} \left(\frac{t}{\tau}\right)$$

Measurements with CLEO data

- Study $\psi(3770) \rightarrow D^0 \overline{D^0}$ decays
- Key: C= -1 for $\psi(3770)$ at threshold
- Strong decay, C is conserved
- Hence the decays of D⁰ and D⁰ are quantum correlated
- This provides the interference to access the phase information
- Study rates where one D meson decays to K3π and the other to either a flavour specific state or CP eigenstate.
- Rates are dependent on the kappa and strong phase
- Measurement at CLEO sensitive to different phasespace to LHCb mixing method
- Strong phase measurements in other decay modes follow same principles

Results $D \rightarrow K3\pi$

$$A_{K}^{\pi K \pi \pi} = -0.313 \pm 0.102 \pm 0.038$$

 κ =0.32^{+0.12}_{-0.08} Sensitivity despite relatively low coherence

Multi-body self conjugate D decays "quasi-GLW"

Results $D \rightarrow 4\pi$

$$A_K^{\pi\pi\pi\pi} = 0.100 \pm 0.034 \pm 0.018$$

First use of this mode -possible due to measurements from CLEO

Self-conjugate D decays using Dalitz plot "GGSZ"

Dalitz Plot encodes all the kinematic information of the decay

Each point on the Dalitz plot represents a different value of $r_{\rm D}$ and $\delta_{\rm D}$

Value of F_{+} for certain self conjugate decays would be ~0.5

Hence inclusive treatment looses most of the sensitivity to

Two methods for accessing the D decay information

- D dalitz plot from B decay will be a superposition of D⁰ and D⁰ ٠
- It will differ between B⁺ and B⁻ •
- Differences are related to $r_{\rm B} \delta_{\rm B}$ and γ ٠ Two ways to deal with the varying r_D , δ_D

Use CLEO data to measure average values of r_{D} and δ_{D} in bins

Loss in statistical precision

Direct phase information, uncertainties on which are easily propagated

 r_{D} and δ_{D} determined from an amplitude model determined from flavour tagged decays

No interference, no direct access to phase information

Systematic uncertainties due to model hard to quantify

PRD 82 (2010) 112006

Model-independent GGSZ analysis

- Bin definition designed to minimise statistical loss ~ 90% of sensitivity remains
- Reduces to a counting experiment in bins of Dalitz Plot
- F_i determined from $B^0 \rightarrow D^* \mu v$ decays (flavour tagged)
- c_i and s_i external inputs from CLEO
- Arbitrary normalisation h_b means that insensitive to production asymmetries

B→D[Kshh]K (GGSZ)

 $K_s\pi\pi$ and K_sKK decay modes (not shown) used

$$\gamma = (62^{+15}_{-14})^{\circ}$$

Interplay between different modes

- ADS/GLW/q-GLW observables have non trivial trigonometic relations.
- Single solution selected by the GGSZ modes
- No single mode dominates → necessary to follow all paths

Other B modes

- Favoured and suppressed decay both color suppressed
- $r_B \sim 0.3 \rightarrow$ Larger interference
- K* → K⁺π⁻, charge of kaon tags flavour of B at decay no need for time dependent analysis
- Yields at LHCb becoming viable for analysis
- ADS/GLW analysis already performed on full Run 1 dataset

Selection of $B^0 \rightarrow DK^*$

- Yields ~ 90 in $K_s \pi \pi$ and 10 in $K_s KK$
 - Twice yield of B factories
- Irreducible Bs backgrounds
- Width of K*(892) means nonresonant Kπ decays can contribute to signal peak
- Coherence factor dependent on selection
- M(K*) <50 MeV/c²;
- |cos(K helicity angle)|>0.4

GGSZ analysis

- Modified binning used for $K_s\pi\pi$ better for low yield channels
- K_sKK split into 2 bins low yields expected

Sneha Malde

Dalitz Plot efficiency

$$egin{aligned} N^+_{\pm i} &= n_+ \left[F_{\mp i} + (x_+^2 + y_+^2) F_{\pm i} + 2\kappa \sqrt{F_{+i} F_{-i}} (x_+ c_{\pm i} - y_+ s_{\pm i})
ight] \ N^-_{\pm i} &= n_- \left[F_{\pm i} + (x_-^2 + y_-^2) F_{\mp i} + 2\kappa \sqrt{F_{+i} F_{-i}} (x_- c_{\pm i} + y_- s_{\pm i})
ight] \end{aligned}$$

- Variation of efficiency on DP must be taken into account
- $B^0 \rightarrow D^*[D^0\pi] \mu\nu X$ used to determine Fi
- Small corrections required to take care of selection differences between control and signal decay
- Determined from simulation

Determining observables

- Simultaneous fit to all bins to determine x, y
- Signal/background shapes fixed from first fit.
- Very few signal events per bin
- Model dependent fit also perfomed
 - r_{D} and δ_{D} given by BaBar 2010 amplitude model

Results

- Good agreement between methods
- Uncertainties from c_i and s_i are ~0.02 for x and ~0.05 for y.
- Both methods give $\sigma(\gamma)=20^{\circ}$

38

$B^0 \rightarrow DK\pi$ Dalitz plot analysis

- $B^0 \rightarrow DK^*$, $D \rightarrow CP+$, $K^* \rightarrow K\pi$ restricts the data to the K* resonance
- There is sensitivity to γ from the full B⁰ \rightarrow DK π decay in any K π resonance
- Amplitude fit of $B^0 \rightarrow DK\pi$ decay exploits interference between different resonant contributions
- Complex amplitudes of the DK* determined relative to flavour-specific D₂^{*}K
- γ measured from amplitudes and not rates → more information than standard GLW analysis
- New method of measuring γ

$B^0 \rightarrow DK\pi$ Dalitz plot analysis

Favoured ($D^0 \rightarrow K^+\pi^-$) mode:

$$A(m^{2}(D\pi), m^{2}(K\pi)) = \sum_{j=1}^{N} c_{j} F_{j}(m^{2}(D\pi), m^{2}(K\pi))$$

CP sensitive ($D^0 \rightarrow KK, \pi\pi$) modes:

$$c_j \longrightarrow \left\{ \begin{array}{cc} c_j & \text{for a } D\pi^- \text{ resonance} \,, \\ c_j \left[1 + x_{\pm,\,j} + i y_{\pm,\,j} \right] & \text{for a } K^+\pi^- \text{ resonance} \,, \end{array} \right.$$

This analysis

$$x_{\pm} = r_{B^0} \cos(\delta_{B^0} \pm \gamma)$$
$$y_{\pm} = r_{B^0} \sin(\delta_{B^0} \pm \gamma)$$

 $x_{\pm} = r_{R^0} \cos(\delta_{R^0} \pm \gamma)$

GLW:

Larger phasespace \rightarrow higher combinatorics

- Larger phasespace of the K π system leads to high combinatorics and larger amounts of physics bkgs.
- To avoid the need to cut hard data is divided into bin of NN output.
- Maximises the statistical sensitivity of the data

Signal yields

Data shown with NN bins combined weighted according to S/(S+B)

339+/-22 D→KK 168+/-19 D→ππ

Dalitz Plot fit

Fit projections of the D \rightarrow KK and D \rightarrow $\pi\pi$ samples combined Only results from K*(892) used

Fit Results

B⁰ combination

- Due to low statistics the $B^0 \rightarrow DK\pi$ unable to select a single solution
- In combination with the GGSZ and previous ADS analysis start to constrain the parameters of interest

Combining results -LHCb inputs

	LHCb measurement	Type/ Dataset	Reference	
	B ⁺ →DK ⁺ D→2h,4h	ADS/(q-)GLW (3fb ⁻¹)	arXiv:1603.08993	
	$B^0 \rightarrow DK\pi$	Dalitz (3fb ⁻¹)	arXiv: 1602.03455	
	B ⁰ →DK* D→Ksππ	GGSZ MD (3fb ⁻¹)	arXiv: 1605.01082	
	B⁺→DK⁺ D→hhπ⁰	ADS/q-GLW (3fb ⁻¹)	PRD 91(2015) 112014	
	B⁺→DKππ, D→2h	ADS/GLW (3fb ⁻¹)	PRD 92 (2015) 112005	
	B⁰→DK* D→2h	ADS (3fb ⁻¹)	PRD 90 (2014) 112002	
	B⁺→DK D→K _s hh	GGSZ MI (3fb ⁻¹)	JHEP 10 (2014) 097	
	B ⁺ →DK, D→KsKπ	ADS (3fb ⁻¹)	PLB 733 (2014) 36	
	$B_s \rightarrow D_s K, D_s \rightarrow hhh$	Time dep (1fb ⁻¹)	JHEP 11 (2014) 060	

Results discussed today, new or updated since last combination (2014)

New results from 2015

Other $B \rightarrow DK$ 'like' results completed in 2014

Combing results-other inputs

Parameters	Source	Reference
Charm mixing and CPV in D \rightarrow hh	HFAG	
к, δ _D : D→K3π, D→Kππ ⁰	LHCb & CLEO data	PLB 757 (2016) 520
κ, δ _D : D→K _s Kπ	CLEO	PRD 85 (2012) 092016
CP fraction D \rightarrow 4 π , D \rightarrow hh π^0	CLEO data	PLB 747 (2015) 9
c _i , s _i for D→K _s hh	CLEO	PRD 82 (2010) 112006
Constraint on ϕ_s	LHCb	PRL 114 (2015) 041801

Combination results

- Frequentist combination using 'plugin' method. 71 observables and 32 parameters.
- Only $B \rightarrow DK$ like results included
- D-mixing taken into account
- Improved precision compared to last combination by ~20%
- Good agreement with B factory results
- Bayesian interpretation is consistent

Sneha Malde

elle: $\gamma = (73^{+15}_{-14})^{\circ}$

Contribution from different methods

Demonstrates the need to pursue all methods

Contribution from different modes

Outlook and conclusion

- Run 1 target of 8 degree precision attained
- Wider variety of B and D modes now being pursued.
- 2015 data increased yields by ~ 20%
- 2016 data keenly looked forward too
- Current measurements all statistically dominated – no showstoppers forseen

On target to reach degree level precision

If nature is kind, this precision will allow for observation of New Physics

