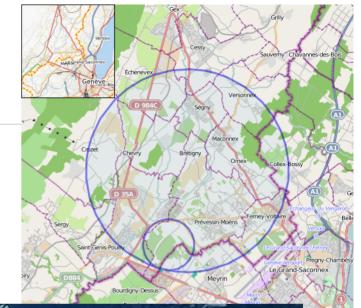


A CP violation measurement of $\mathrm{B}_{_{\mathrm{s}}}$ mesons at ATLAS and the LHC

Adam Barton ATLAS Collaboration


The LHC

The large hadron collider is the world's largest and highest energy synchrotron collider in the world.

It is built and run by CERN (the European/Everyone Organization for Nuclear Research)

It can collide protons at energies of 14 TeV, (currently running at 13TeV

It is located in a 27 kilometer tunnel under Geneva near the Jura mountains.

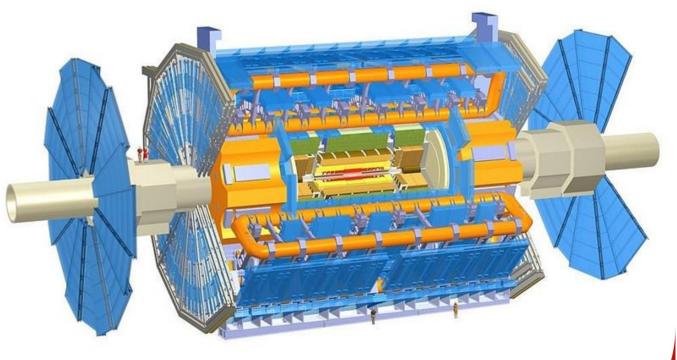
The ATLAS (A Toroidal LHC ApparatuS) detector

ATLAS is a 45 by 50 metres in

Muon Spectrometer:

- (1) Monitored Drift Tube
- (2) Thin Gap Chamber

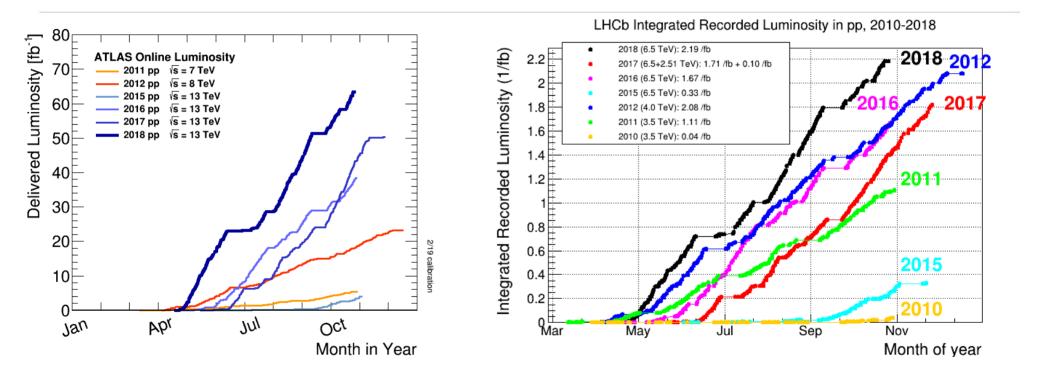
Magnet system:


- (3) End-Cap Toroid Magnet
- (4) Barrel Toroid Magnet

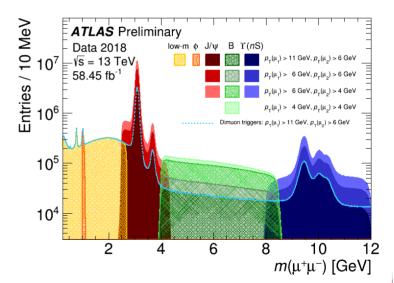
Inner Detector:

- (5) Transition Radiation Tracker
- (6) Semi-Conductor Tracker
- (7) Pixel Detector

Calorimeters:

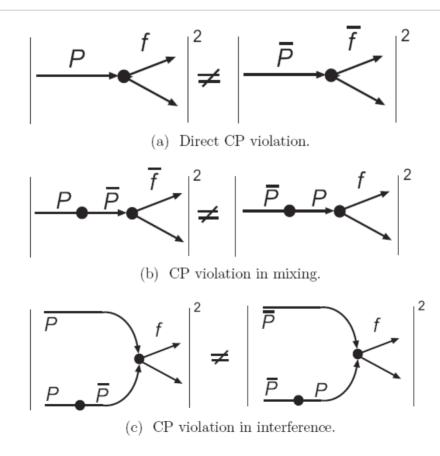

(8) Electromagnetic Calorimeter(9) Hadronic Calorimeter

At the start of run 2 (2015) an insertable B-layer was installed to give better vertex and lifetime resolution


Data Collection

B-physics and Light-States

- ATLAS B-physics and Light-States programme:
 - Comprehensive measurements across a variety of decay modes:
 - Precise property measurements including CPV (Bs->J/ $\psi \phi$)
 - Cross-section measurements including Quarkonium
 - Rare decay processes; e.g FCNC $B_{(s,d)} \rightarrow \mu \mu$
 - Spectroscopy, exotic states (e.g pentaquarks)
 - Charged lepton flavour violation ($\tau \rightarrow 3\mu$)
- Typically rely on low-pT di-muon signatures.


Introduction to the CP violation

- Charge Parity (CP) symmetries mean that particle interactions should produce matter and antimatter in equal quantities
- In 1967 Soviet Nuclear Physicist Andrei Sakharov proposed CP violation:
 - Since the observed universe seems devoid of stable antimatter there must be baryon number violating transitions in particle physics.
 - CP has to be violated otherwise there would be equal amounts of anti matter
 - CP violations must occur during interactions and not in thermal equilibrium

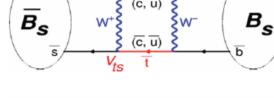
3 Types of CP violation

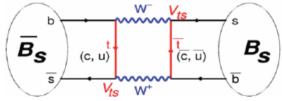
Exclusive decay chain

• While φ_s can be accessed a number of ways the easiest way at ATLAS is through the exclusive decay $B_s \rightarrow J/\psi \varphi$ where

$$- J/\psi
ightarrow \mu^+\mu^-$$
 selected nicely from the muon system

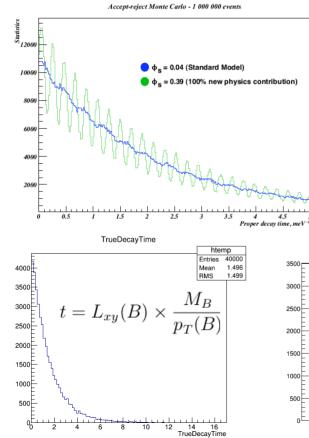
 $- \ensuremath{\, \to \, } \ensuremath{\, K^+ \, } \ensuremath{\, K^- \, } \ensuremath{\, {\rm ATLAS \, has \, no \, particle \, ID \, so \, this \, is \, difficult \, to \, isolate}$

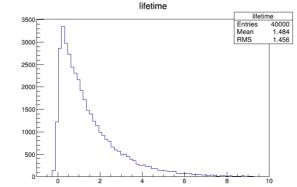


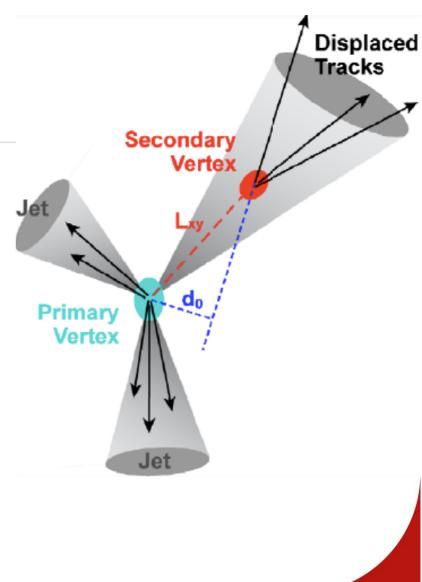

CP Violation in neutral B_s system

Mixing of flavour eigenstates are governed by:

$$i\frac{d}{dt}\left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right) = H\left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right) \equiv \underbrace{\left[\left(\begin{array}{c}M_{0} & M_{12}\\M_{12}^{*} & M_{0}\end{array}\right) - \frac{i}{2}\underbrace{\left(\begin{array}{c}\Gamma_{0} & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma_{0}\end{array}\right)}_{\text{decay matrix}}\right] \left(\begin{array}{c}B_{s}^{0}(t)\\\overline{B}_{s}^{0}(t)\end{array}\right)$$
The mass eigenstates

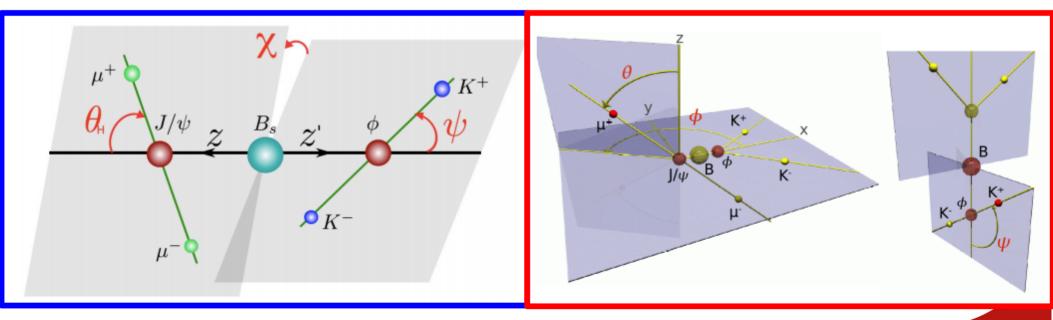

$$\frac{|B_s^H\rangle = p |B_s^0\rangle - q |B_s^0\rangle}{|B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle}$$



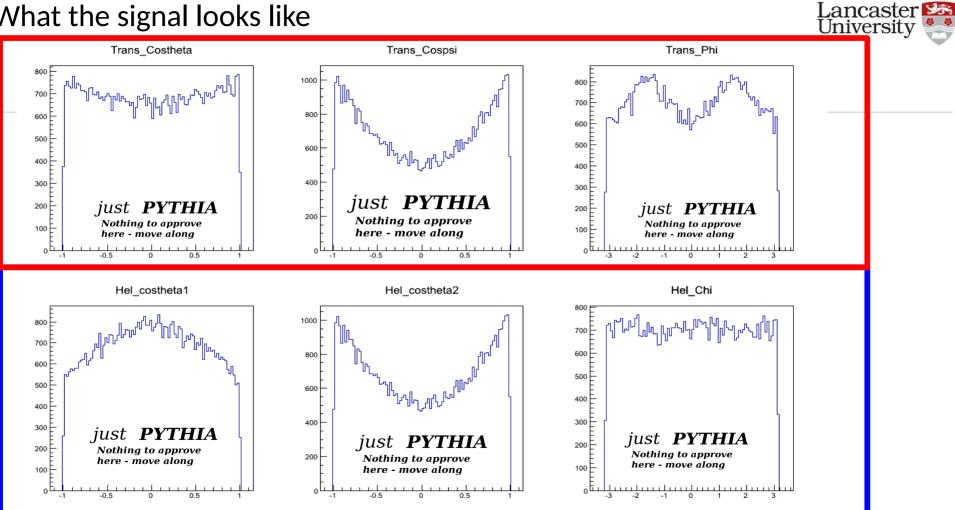


- $\Delta m_{\rm S} = m_{\rm H} m_{\rm L} \approx 2|M_{12}|$
- $\phi_s^{sM}=arg(-M_{12}/\Gamma_{12}) \approx -0.04$ CP violating phase
- Γ is the average lifetime of the two states $(\Gamma_L + \Gamma_H)/2$
- $\Delta\Gamma = \Gamma_L \Gamma_H \approx 2 |\Gamma_{12}| \cos(2 \phi_S^{SM})$ Can be considered the difference of the two lifetime states

Measuring a particle lifetime



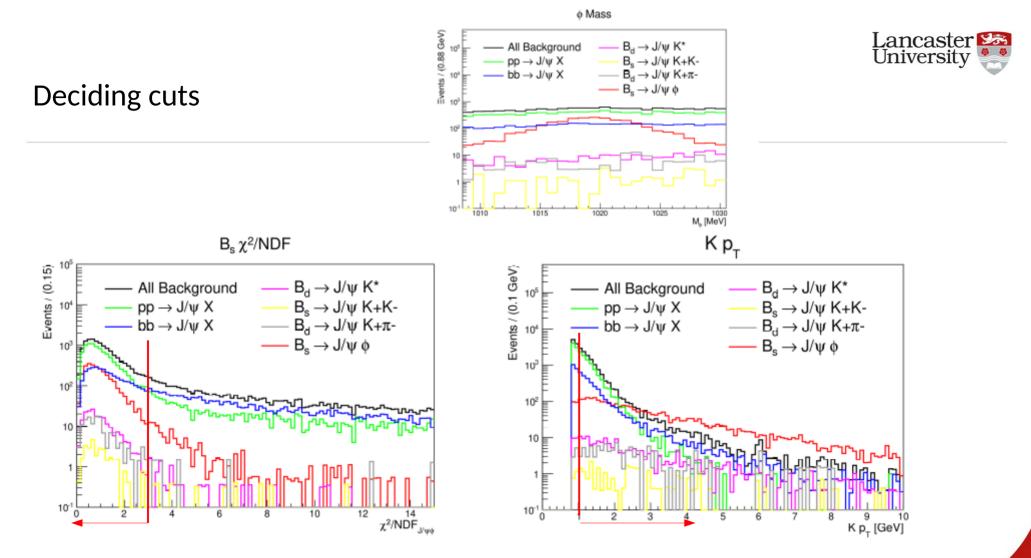
Angular Systems for $Bs \rightarrow J/\psi \varphi$


• You can access the key physical variables for this decay using one of 2 angular definitions

Helicity Basis

Transversity Basis

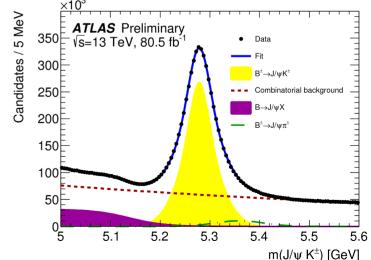
What the signal looks like



Provisional MC Generation – no cuts applied so no acceptance effects

ATLAS Publications

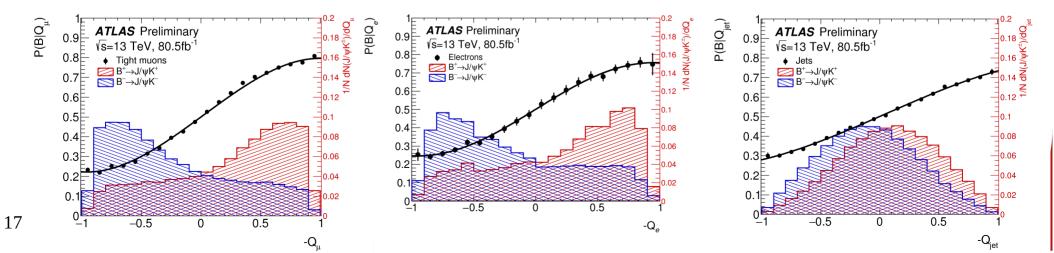
- Time dependent untagged ϕ_s and $\Delta\Gamma_s$ from $B_s \rightarrow J/\psi \phi$ JHEP 1212 (2012) 072 02-AUG-12
- Time dependent flavour-tagged φs and ΔΓs from B_s→J/ψφ at 7 TeV Phys. Rev.
 D. 90, 052007 (2014) 05-JUL-14
- Time dependent flavour-tagged ϕ_s and $\Delta\Gamma_s$ from $B_s \rightarrow J/\psi\phi$ in Run 1 JHEP 08 (2016) 147 13-JAN-16
- Measurement of the CP violation phase ϕ_s in $B_s \rightarrow J/\psi \varphi$ decays in ATLAS at 13 TeV 23 Mar 2019 (Conf-Note going to publication)
- Next paper will include all Run-2 data.


ATLAS-CONF-2019-009

- This analysis follows are previous measurement using 19.2 fb⁻¹ of √s=7 TeV and 8 TeV ("run 1")
- The new analysis uses datasets from 2015 to 2017 with √s=13 TeV totalling 80.5 fb⁻¹.
- Full decay reconstruction using inner detector and muon detectors, no K/pi separation:
 - − J/ ψ selection − di-muon vertex $\chi 2/_{NDF}$ <10, J/ ψ invariant mass windows width 0.27 ... 0.48 GeV (barrel → endcap)
 - ϕ selection $p_T(K^{\pm}) > 1$ GeV, Invariant mass window 22 MeV
 - B candidates 4-track vertex $\chi 2/_{NDF}$ <3, (5.15 5.65) GeV, no proper decay time cut.

Flavour Tagging

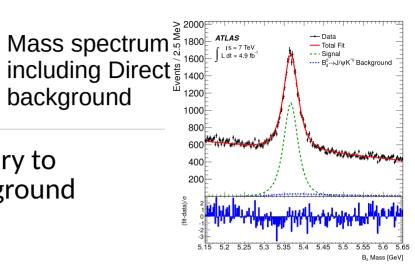
- The analysis gains precision with tagging information. We use opposite-side tagging (OST).
- We use 4 tagging methods: "Tight" muons, electrons, Low-p_T muons, Jet
- Charge of p_{T} -weighted tracks in a cone around the opposite primary object, used to build per-candidate B_s tag probability.
- Calibrated from $B^+ \rightarrow J/\psi K^+$ sample

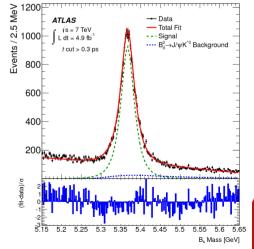


Tagging: weighted sum of charge in a cone

_	Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]
$\sum_{i}^{N \text{ tracks}} q_i \cdot (p_{\mathrm{T}i})^{\kappa}$	Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
$\Delta_i \qquad q_i (P1i)$	Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
$\sum_{i}^{N \text{ tracks}} (p_{\mathrm{T}i})^{\kappa}$	Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Δ_i (P1i) ^r	Jet	5.54 ± 0.01	20.4 ± 0.1	0.231 ± 0.005
	Total	14.74 ± 0.02	33.4 ± 0.1	1.65 ± 0.01

In events where multiple methods are available the highest dilution is selected.


Symmetries:
$$\begin{cases} \{\phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}\} \to \{\pi - \phi_s, -\Delta\Gamma_s, \pi - \delta_{\perp}, 2\pi - \delta_{\parallel}\} \\ \{\phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}, \delta_S\} \to \{-\phi_s, \Delta\Gamma_s, \pi - \delta_{\perp}, -\delta_{\parallel}, -\delta_S\} \end{cases} (untagged fit only)$$


Signal Likelihood

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$		
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$	CP +1	The solution with a negative
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$	CP +1	$\Delta\Gamma_{\rm s}$ is excluded using another
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$	CP -1	LHCb measurement which
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ }$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$		determines the $\Delta\Gamma_s$ to be
	$(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$		Interfer	0
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$	ence	positive
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$		terms	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$	terns	
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$			
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$		
8	$\alpha A_{S}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$	S-	
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	5	wave	
9	$\frac{1}{2}\alpha A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$	term	
	$\left[(1 - \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$		S	
10	$\alpha A_0(0) A_S(0) [\frac{1}{2} (e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t}) \sin \delta_S \sin \phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$		
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$			

Background description

- To make a precision measurement it is necessary to either exclude or accurately describe the background
- The different backgrounds present are:
- Direct $pp \rightarrow J/\psi$ background
- Misreconstructed complete decays such as $B_d \rightarrow J/\psi K^*$ and $\Lambda_b \rightarrow J/\psi \Lambda^*(Kp)$
- Miscellaneous combinatorics from $bb \rightarrow J/\psi X$

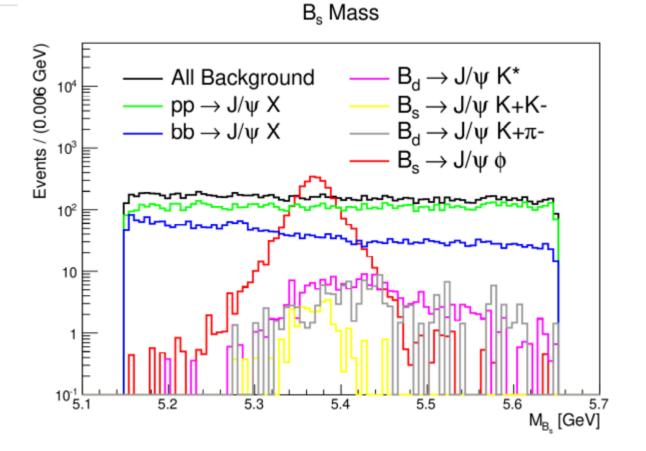
Mass spectrum excluding direct background by lifetime cut

Unbinned Maximum Likelihood Fit

 $\ln \mathcal{L} = \sum_{i=1}^{N} \begin{bmatrix} w_i \cdot \ln(f_{s} \cdot \mathcal{F}_{s}) & (m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{T_i}) \\ + f_{s} \cdot f_{B^0} \cdot \mathcal{F}_{B^0} & (m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{T_i}) \\ + f_{s} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_t} & (m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{T_i}) \\ + (1 - f_{s} \cdot (1 + f_{B^0} + f_{\Lambda_b})) \mathcal{F}_{bkg}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{T_i})) \}$

Measured variables:

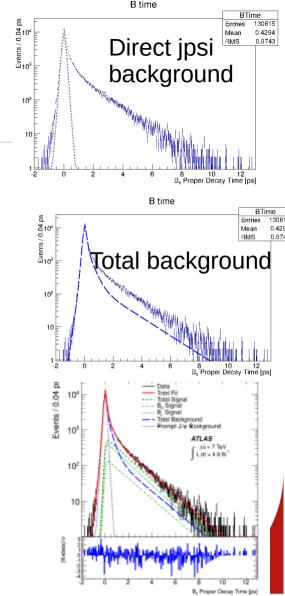
 B_{s} mass m_{i} B_{s} proper decay time t_{i} and its uncertainty σ_{ti} 3 angles $\Omega_{i}(\theta_{T}, \psi_{T}, \phi_{T})$ B_{s} momentum p_{T} B_{s} tag probability $p_{B|Q_{i}}$ tagging method M_{i} $B_d \rightarrow J/\psi K^*(K\Pi)$ and $\Lambda_b \rightarrow J/\psi \wedge^*(Kp)$ decay


reflections, derived from MC, PDG and the LHCb $\Lambda_b \rightarrow J/\Lambda Kp$ measurement; fixed shape and relative contribution in the fit

Combinatorial background description, derived from data sidebands; angular distribution described by spherical harmonics and fixed in the fit

Weights accounting for **proper decay time trigger efficiency** (muons track do reconstruction efficiency bias); estimated from MC

Background with Monte Carlo

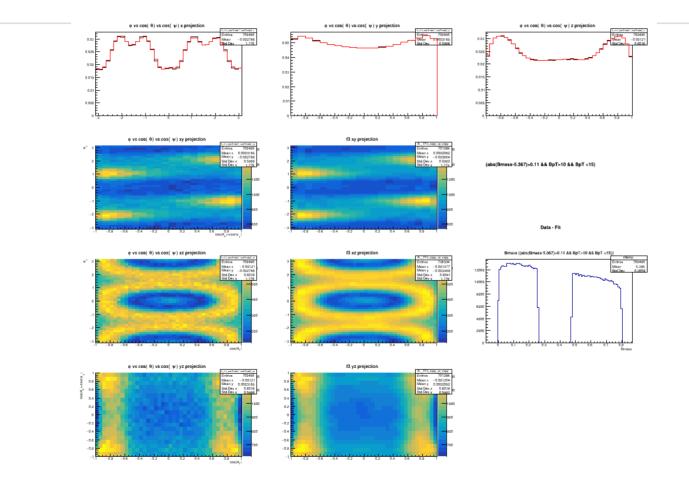


Background representation in the fit

- Time component of background:
 - Prompt background: delta function at 0, convoluted by Gauss percandidate resolution σ_{ti}
 - Two exponentials representing longer-lived backgrounds
 - Small negative exponential component for events with poor vertex resolution
- Background angular shapes

22

- Arise from detector and kinematic sculpting
- Described by empirical functions with parameters determined in the fit
- Background mass model linear function
- $B^0 \rightarrow J/\psi K^{*0}$ and $\Lambda b \rightarrow J/\psi \Lambda^*(Kp)$ contamination treated separately
 - fractions are determined from MC
 - mass, angular shapes from MC
 - used in PDF but no free parameters of fit

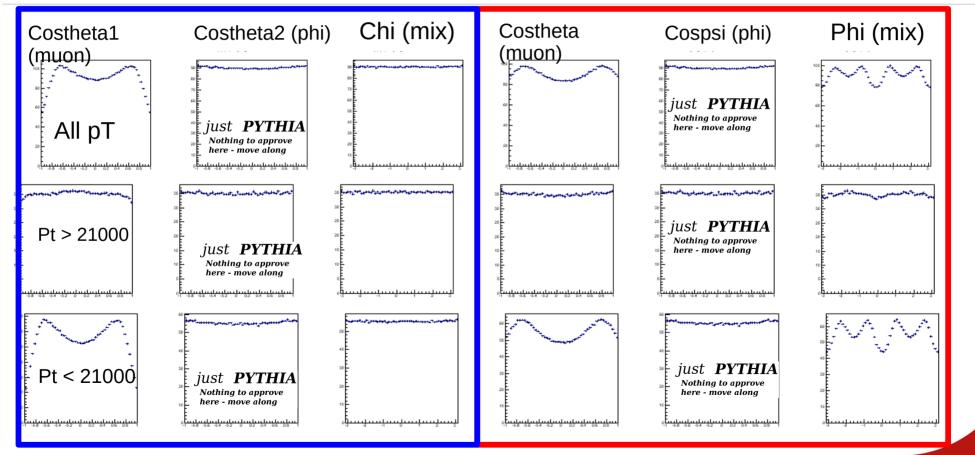

Angular Background

- The angular component of the background is shaped by detector and acceptance effects producing a non-trivial 3D shape that is also pT dependent
- The mass side bands are taken and a Legendre polynomial function is used to fit the shape. The resulting parameters are fixed and used in the main fit.
- The dedicated backgrounds are simulated with monte carlo, their shaping applied and also fit by spherical harmonics

$$\begin{split} Y_{l}^{m}(\theta_{T}) &= \sqrt{(2l+1)/(4\pi)}\sqrt{(l-m)!/(l+m)!}P_{l}^{|m|}(\cos\theta_{T}) \\ P_{k}(x) &= \frac{1}{2^{k}k!}\frac{d^{k}}{dx^{k}}(x^{2}-1)^{k} \\ \mathscr{P}_{b}(\theta_{T},\psi_{T},\phi_{T}) &= \sum_{k=0}^{14}\sum_{l=0}^{14}\sum_{m=-l}^{l} \begin{cases} a_{k,l,m}\sqrt{2}Y_{l}^{m}(\theta_{T})\cos(m\phi_{T})P_{k}(\cos\psi_{T}) & \text{where } m > 0 \\ a_{k,l,m}\sqrt{2}Y_{l}^{-m}(\theta_{T})\sin(m\phi_{T})P_{k}(\cos\psi_{T}) & \text{where } m < 0 \\ a_{k,l,m}\sqrt{2}Y_{l}^{0}(\theta_{T})P_{k}(\cos\psi_{T}) & \text{where } m = 0 \end{cases} \end{split}$$

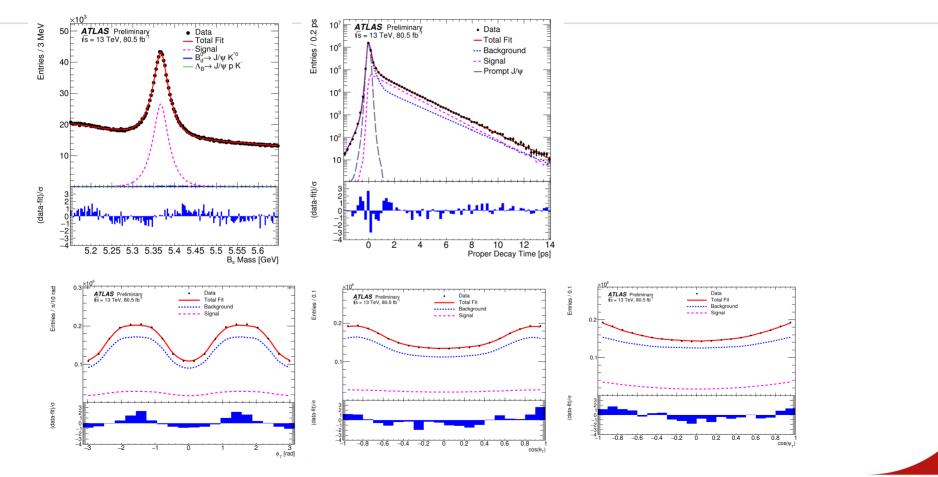
Angular Background

24


Kinematic Acceptance

- It is necessary to exclude (cut) low energy tracks to exclude large quantities of background.
 - The muon trigger applies at least a 4GeV cut on the muons (triggers vary according to the luminosity)
 - Kaon cuts are applied after reconstruction to reduce the background.
- This biases the angular distributions distorting the "true" distribution.
- This is attained by simulating a naïve level of physics so the angular distributions are flat, and then feeding these events through the detector simulator and applying the standard cuts.

What Acceptances look like (mu4mu4) Helicity


Transversity

26

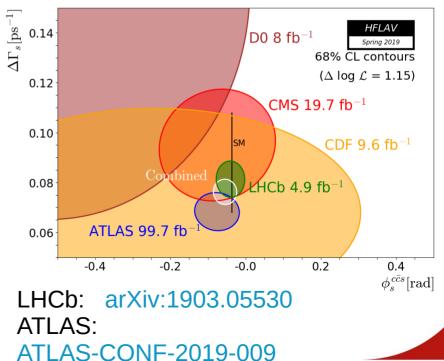
Fit Projections

Systematic Uncertainties

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
Tagging 1.7×10^{-2} 0.4×10^{-3} 0.3×10^{-3} 0.2×10^{-3} 0.2×10^{-3} 2.3×10^{-3} 1.9×10^{-2} 2.2×10^{-3} 3.3×10^{-2} 1.4×10^{-2} 2.2×10^{-3} 2.4×10^{-3} 3.3×10^{-2} 1.4×10^{-2} 2.2×10^{-3} 2.4×10^{-3} 3.3×10^{-2} 2.4×10^{-3} 3.4×10^{-2} 2.5×10^{-3} 3.1×10^{-3} <		ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
Acceptance 0.7×10^{-3} $<10^{-4}$ $<10^{-4}$ 0.8×10^{-3} 0.7×10^{-3} 2.4×10^{-3} 3.3×10^{-2} 1.4×10^{-2} 2.6×10^{-1} ID alignment 0.7×10^{-3} 0.1×10^{-3} 0.5×10^{-3} $<10^{-4}$ $<10^{-4}$ $<10^{-4}$ 1.0×10^{-2} 7.2×10^{-3} $<10^{-4}$ S-wave phase 0.2×10^{-3} $<10^{-4}$ $<10^{-4}$ 0.3×10^{-3} $<10^{-4}$ 0.3×10^{-3} 1.1×10^{-2} 2.1×10^{-2} 8.3×10^{-3} Background angles mod: 0.1×10^{-3} 0.1×10^{-3} 0.1×10^{-3} 0.7×10^{-3} 0.2×10^{-3} 8.5×10^{-2} 1.4×10^{-2} 8.3×10^{-3} Background angles mod: 0.8×10^{-3} 0.1×10^{-3} 0.7×10^{-3} 0.2×10^{-3} 8.5×10^{-2} 1.9×10^{-1} 1.8×10^{-1} Choice of fit function 1.8×10^{-3} 0.8×10^{-3} 0.1×10^{-3} 0.7×10^{-3} 0.2×10^{-3} 1.2×10^{-3} 1.5×10^{-3} 1.0×10^{-2} 2.1×10^{-1} Choice of mass interval 0.4×10^{-3} 0.1×10^{-3} 0.1×10^{-3} 0.3×10^{-3} 0.3×10^{-3} 1.3×10^{-3} 1.4×10^{-3} 1.0×10^{-2} 2.3×10^{-2} 2.1×10^{-3} Dedicated backgrounds: B_0^2 B_0^2 <	_	[rad]	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]
Acceptance 0.7×10^{-3} $<10^{-4}$ $<10^{-4}$ 0.8×10^{-3} 0.7×10^{-3} 2.4×10^{-3} 3.3×10^{-2} 1.4×10^{-2} 2.6×10^{-4} ID alignment 0.7×10^{-3} 0.1×10^{-3} 0.5×10^{-3} $<10^{-4}$ $<10^{-4}$ $<10^{-4}$ 1.0×10^{-2} 7.2×10^{-3} $<10^{-4}$ S-wave phase 0.2×10^{-3} $<10^{-4}$ $<10^{-4}$ 0.3×10^{-3} $<10^{-4}$ 0.3×10^{-3} 1.1×10^{-2} 2.1×10^{-2} 8.3×10^{-3} Background angles mod: 0.1×10^{-3} 0										
ID alignment 0.7×10^{-3} 0.1×10^{-3} 0.5×10^{-3} $<10^{-4}$ $<10^{-4}$ $<10^{-4}$ $<10 \times 10^{-2}$ 7.2×10^{-3} $<10^{-4}$ S-wave phase 0.2×10^{-3} $<10^{-4}$ $<10^{-4}$ 0.3×10^{-3} $<10^{-4}$ 0.3×10^{-3} 1.1×10^{-2} 2.1×10^{-2} 8.3×10^{-3} Background angles mod:Choice of fit function 1.8×10^{-3} 0.8×10^{-3} $<10^{-4}$ 1.4×10^{-3} 0.7×10^{-3} 0.2×10^{-3} 8.5×10^{-2} 1.9×10^{-1} 1.8×10^{-3} Choice of fit function 1.8×10^{-3} 0.8×10^{-3} $<10^{-4}$ 0.4×10^{-3} 0.7×10^{-3} 0.2×10^{-3} 8.5×10^{-2} 1.9×10^{-1} 1.8×10^{-3} Choice of mass interval 0.4×10^{-3} 0.5×10^{-3} 0.1×10^{-3} 0.3×10^{-3} 0.3×10^{-3} 1.2×10^{-3} 1.5×10^{-3} 7.2×10^{-3} 1.0×10^{-2} Dedicated backgrounds: B_d^0 2.3×10^{-3} 1.1×10^{-3} 0.1×10^{-3} 0.3×10^{-3} 0.3×10^{-3} 1.4×10^{-3} 1.0×10^{-2} 2.3×10^{-3} B_d^0 2.3×10^{-3} 1.1×10^{-3} 0.1×10^{-3} 0.5×10^{-3} 0.5×10^{-3} 1.4×10^{-3} 1.0×10^{-2} 2.3×10^{-2} B_d^0 2.3×10^{-3} 1.1×10^{-3} 0.2×10^{-3} 0.5×10^{-3} 1.4×10^{-3} 1.4×10^{-2} 2.9×10^{-2} 0.4×10^{-2} B_d^0 1.6×10^{-3} 0.4×10^{-3} 0.2×10^{-3} <td>Tagging</td> <td>1.7×10^{-2}</td> <td>0.4×10^{-3}</td> <td>0.3×10^{-3}</td> <td>0.2×10^{-3}</td> <td>0.2×10^{-3}</td> <td>2.3×10^{-3}</td> <td>1.9×10^{-2}</td> <td>2.2×10^{-2}</td> <td>2.2×10^{-3}</td>	Tagging	1.7×10^{-2}	0.4×10^{-3}	0.3×10^{-3}	0.2×10^{-3}	0.2×10^{-3}	2.3×10^{-3}	1.9×10^{-2}	2.2×10^{-2}	2.2×10^{-3}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Acceptance	0.7×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	0.8×10^{-3}	0.7×10^{-3}	2.4×10^{-3}	3.3×10^{-2}	1.4×10^{-2}	2.6×10^{-3}
Background angles mod:Choice of fit function 1.8×10^{-3} 0.8×10^{-3} $<10^{-4}$ 1.4×10^{-3} 0.7×10^{-3} 0.2×10^{-3} 8.5×10^{-2} 1.9×10^{-1} 1.8×10^{-1} Choice of p_{T} bins 1.3×10^{-3} 0.5×10^{-3} $<10^{-4}$ 0.4×10^{-3} 0.5×10^{-3} 1.2×10^{-3} 1.5×10^{-3} 7.2×10^{-3} 1.0×10^{-2} Choice of mass inter 1 0.4×10^{-3} 0.1×10^{-3} 0.1×10^{-3} 0.3×10^{-3} 0.3×10^{-3} 1.3×10^{-3} 4.4×10^{-3} 7.4×10^{-3} 2.3×10^{-3} Dedicated backgrounds: B_d^0 2.3×10^{-3} 1.1×10^{-3} $<10^{-4}$ 0.2×10^{-3} 3.1×10^{-3} 1.0×10^{-2} 2.3×10^{-2} 2.1×10^{-3} A_b 1.6×10^{-3} 0.4×10^{-3} 0.2×10^{-3} 0.5×10^{-3} 1.4×10^{-3} 1.0×10^{-2} 2.9×10^{-2} 0.8×10^{-2} Fit model:Time res. sig frac 1.4×10^{-3} 1.1×10^{-3} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 1.2×10^{-2} 3.0×10^{-2} 0.4×10^{-3} Time res. p_T bins 3.3×10^{-3} 1.4×10^{-3} 0.1×10^{-2} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 1.2×10^{-2} 3.0×10^{-2} 0.4×10^{-3}	ID alignment	0.7×10^{-3}	0.1×10^{-3}	0.5×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	$< 10^{-4}$	1.0×10^{-2}	7.2×10^{-3}	$< 10^{-4}$
$ \begin{array}{c} \text{Choice of fit function} \\ \text{Choice of fit function} \\ \text{Choice of } p_{\text{T}} \text{ bins} \\ 1.3 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.1 \times 10^{-3} \\ 0.3 \times 10^{-3} \\ 0.3 \times 10^{-3} \\ 0.3 \times 10^{-3} \\ 1.3 \times 10^{-3} \\ 1.3 \times 10^{-3} \\ 1.4 \times 10^{-3} \\ 1.0 \times 10^{-2} \\ 2.3 \times 10^{-2} \\ 2.3 \times 10^{-2} \\ 2.3 \times 10^{-2} \\ 2.1 \times 10^{-3} \\ 0.4 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 0.3 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 1.2 \times 10^{-3} \\ 1.2 \times 10^{-3} \\ 1.4 \times 10^{-2} \\ 2.9 \times 10^{-2} \\ 2.3 \times 10^{-2} \\ 2.3 \times 10^{-2} \\ 0.4 \times 10^{-3} \\ 0.4 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 1.2 \times 10^{-3} \\ 1.4 \times 10^{-2} \\ 2.9 \times 10^{-2} \\ 0.4 \times 10^{-3} \\ 1.4 \times 10^{-3} \\ 0.1 \times 10^{-2} \\ < 10^{-4} \\ < 10^{-4} \\ 0.5 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 1.2 \times 10^{-2} \\ 5.2 \times 10^{-3} \\ 1.1 \times 10^{-2} \\ 1.1 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 0.1 \times 10^{-2} \\ < 10^{-4} \\ < 10^{-4} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 1.2 \times 10^{-2} \\ 5.2 \times 10^{-3} \\ 1.1 \times 10^{-2} \\ 1.1 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 1.4 \times 10^{-3} \\ 0.1 \times 10^{-2} \\ < 10^{-4} \\ < 10^{-4} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 1.2 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 1.2 \times 10^{-2} \\ 0.4 \times 10^{-2} \\ 0.4 \times 10^{-3} \\ 0.4 \times 10^{-2} \\ 0.4 \times 10^{-3} \\ 0.4 \times 10^{-3} \\ 0.1 \times 10^{-2} \\ < 10^{-4} \\ < 10^{-4} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 0.5 \times 10^{-3$	S-wave phase	0.2×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	0.3×10^{-3}	$< 10^{-4}$	0.3×10^{-3}	1.1×10^{-2}	2.1×10^{-2}	8.3×10^{-3}
$\begin{array}{c} \text{Choice of } p_{\mathrm{T}} \text{ bins} \\ \text{Choice of mass interval} \\ \text{Dedicated backgrounds:} \\ B_{d}^{0} \\ \text{A}_{b} \\ \text{Fit model:} \\ \text{Time res. sig frac} \\ \text{Time res. } p_{\mathrm{T}} \text{ bins} \\ 3.3 \times 10^{-3} \\ 1.4 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 0.1 \times 10^{-3} \\ 0.3 \times 10^{-3} \\ 0.3 \times 10^{-3} \\ 0.3 \times 10^{-3} \\ 1.3 \times 10^{-3} \\ 1.3 \times 10^{-3} \\ 1.4 \times 10^{-3} \\ 1.0 \times 10^{-2} \\ 2.3 \times 10^{-2} \\ 2.3 \times 10^{-2} \\ 2.1 \times 10^{-3} \\ 0.1 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 1.2 \times 10^{-3} \\ 1.4 \times 10^{-3} \\ 1.4 \times 10^{-2} \\ 2.9 \times 10^{-2} \\ 0.4 \times 10^{-3} \\ 0.1 \times 10^{-2} \\ 0.4 \times 10^{-3} \\ 1.4 \times 10^{-3} \\ 0.1 \times 10^{-2} \\ < 10^{-4} \\ < 10^{-4} \\ 0.5 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 1.2 \times 10^{-2} \\ 3.0 \times 10^{-2} \\ 0.4 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 0.1 \times 10^{-2} \\ < 10^{-4} \\ < 10^{-4} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-$	Background angles mod	:								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Choice of fit function	1.8×10^{-3}	0.8×10^{-3}	$< 10^{-4}$	1.4×10^{-3}	0.7×10^{-3}	0.2×10^{-3}	8.5×10^{-2}	1.9×10^{-1}	1.8×10^{-3}
Dedicated backgrounds: B_d^0 2.3×10^{-3} 1.1×10^{-3} $<10^{-4}$ 0.2×10^{-3} 3.1×10^{-3} 1.0×10^{-2} 2.3×10^{-2} 2.1×10^{-3} Λ_b 1.6×10^{-3} 0.4×10^{-3} 0.2×10^{-3} 3.1×10^{-3} 1.4×10^{-3} 1.0×10^{-2} 2.3×10^{-2} 2.1×10^{-3} Fit model: 1.6×10^{-3} 1.1×10^{-3} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 1.2×10^{-2} 3.0×10^{-2} 0.4×10^{-3} Time res. sig frac 1.4×10^{-3} 1.1×10^{-3} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 1.2×10^{-2} 3.0×10^{-2} 0.4×10^{-3} Time res. $p_{\rm T}$ bins 3.3×10^{-3} 1.4×10^{-3} 0.1×10^{-2} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 0.2×10^{-2} 0.4×10^{-3} Time res. $p_{\rm T}$ bins 3.3×10^{-3} 0.1×10^{-2} $<10^{-4}$ $<10^{-4}$ 0.5×10^{-3} 0.2×10^{-3} 5.2×10^{-3} 1.1×10^{-3}	Choice of $p_{\rm T}$ bins	1.3×10^{-3}	0.5×10^{-3}	$< 10^{-4}$	0.4×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.5×10^{-3}	7.2×10^{-3}	1.0×10^{-3}
$B_d^0 = \begin{array}{ccccccccccccccccccccccccccccccccccc$	Choice of mass intervi	1 0.4 $\times 10^{-3}$	0.1×10^{-3}	0.1×10^{-3}	0.3×10^{-3}	0.3×10^{-3}	1.3×10^{-3}	4.4×10^{-3}	7.4×10^{-3}	2.3×10^{-3}
$\begin{array}{c} \Lambda_{b} \\ \text{Fit model:} \\ \text{Time res. sig frac} \\ \text{Time res. } p_{\text{T}} \text{ bins} \end{array} \begin{array}{c} 1.6 \times 10^{-3} \\ 0.4 \times 10^{-3} \\ 3.3 \times 10^{-3} \end{array} \begin{array}{c} 0.2 \times 10^{-3} \\ 0.2 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 0.6 \times 10^{-3} \\ 0.5 \times 10^{-$	Dedicated backgrounds:									
Fit model: 1.4×10^{-3} 1.1×10^{-3} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 1.2×10^{-2} 3.0×10^{-2} 0.4×10^{-3} Time res. p_T bins 3.3×10^{-3} 1.4×10^{-3} 0.1×10^{-2} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 1.2×10^{-2} 3.0×10^{-2} 0.4×10^{-3}	B_d^0	2.3×10^{-3}	1.1×10^{-3}	$< 10^{-4}$	0.2×10^{-3}	3.1×10^{-3}	1.4×10^{-3}	1.0×10^{-2}	2.3×10^{-2}	2.1×10^{-3}
Time res. sig frac 1.4×10^{-3} 1.1×10^{-3} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 1.2×10^{-2} 3.0×10^{-2} 0.4×10^{-3} Time res. p_T bins 3.3×10^{-3} 1.4×10^{-3} 0.1×10^{-2} $<10^{-4}$ 0.5×10^{-3} 0.6×10^{-3} 1.2×10^{-2} 3.0×10^{-2} 0.4×10^{-3}	Λ_b	1.6×10^{-3}	0.4×10^{-3}	0.2×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.8×10^{-3}	1.4×10^{-2}	2.9×10^{-2}	0.8×10^{-3}
Time res. p_T bins 3.3×10^{-3} 1.4×10^{-3} 0.1×10^{-2} $< 10^{-4}$ 0.5×10^{-3} 6.2×10^{-3} 5.2×10^{-3} 1.1×10^{-3}	Fit model:									
	Time res. sig frac	1.4×10^{-3}	1.1×10^{-3}	$< 10^{-4}$	0.5×10^{-3}	0.6×10^{-3}	0.6×10^{-3}	1.2×10^{-2}	3.0×10^{-2}	0.4×10^{-3}
Tetal 1.8×10^{-2} 0.2×10^{-2} 0.1×10^{-2} 0.2×10^{-2} 0.4×10^{-2} 0.4×10^{-2} 0.7×10^{-2} 2.0×10^{-1} 0.1×10^{-2}	Time res. $p_{\rm T}$ bins	3.3×10^{-3}	1.4×10^{-3}	0.1×10^{-2}	$< 10^{-4}$	$< 10^{-4}$	0.5×10^{-3}	6.2×10^{-3}	5.2×10^{-3}	1.1×10^{-3}
Tetal 1.8×10^{-2} 0.2×10^{-2} 0.1×10^{-2} 0.2×10^{-2} 0.4×10^{-2} 0.4×10^{-2} 0.7×10^{-2} 2.0×10^{-1} 0.1×10^{-2}										
10ta 1.8 × 10 0.2 × 10 0.1 × 10 0.2 × 10 0.4 × 10 0.4 × 10 9.7 × 10 2.0 × 10 0.1 × 10	Total	1.8×10^{-2}	0.2×10^{-2}	0.1×10^{-2}	0.2×10^{-2}	0.4×10^{-2}	0.4×10^{-2}	9.7×10^{-2}	2.0×10^{-1}	0.1×10^{-1}

Uncertainty in the calibration of the B_s-tag probability; MC statistical uncertainty included in fit stat. error Alternative detector acceptance fit-functions and binning determined from MC Radial expansion uncertainties determined from their effect on tracks d₀ in the data Background angles model (fixed in UML fit) extracted from data with varying sidebands size and binning Uncertainties of relative fraction; fit-model and P-wave contribution Uncertainties of relative fraction; fit-model and contributions from Λb→J/ψΛ* decays Toy-MC studies; pulls of the default fit model, default fit on toy-data generated with modified PDFs

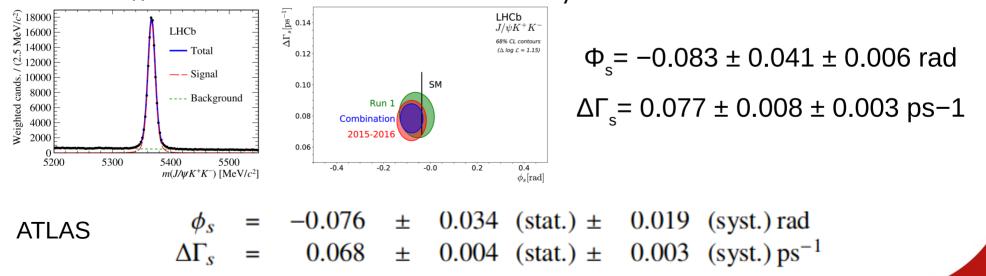
Result of the CPV Bs $\rightarrow J/\psi \phi$ Study


Parameter	Value	Statistical	Systematic			S_ ^{_1}	-					
		uncertainty	uncertainty			ΔΓ _s [ps ^{-†}]	14 - ATLAS	Preliminary 8, and 13 TeV	7 and 13 Te\	8 TeV, 19.2 fb / 80 5 fb ⁻¹	-1 _	
ϕ_s [rad]	-0.068	0.038	0.018			⊲ 0. ⁻	- 68% Cl	contours	— Combi	ned 19.2 + 80	.5 fb ⁻¹	
$\Delta\Gamma_s[\mathrm{ps}^{-1}]$	0.067	0.005	0.002			0.	12-		— SM pre	ediction	-	
$\Gamma_s[ps^{-1}]$	0.669	0.001	0.001			C	_).1⊢				-	
$ A_{ }(0) ^2$	0.219	0.002	0.002				-	\sim			-	
$ A_0(0) ^2$	0.517	0.001	0.004			0.0	08-				-	
$ A_{S}(0) ^{2}$	0.046	0.003	0.004				-		\mathcal{T}		-	
δ_{\perp} [rad]	2.946	0.101	0.097			0.0	06				-	
δ_{\parallel} [rad]	3.267	0.082	0.201				-0.4	-0.2	0	0.2	0.4	
$\delta_{\perp} - \delta_S$ [rad]	-0.220	0.037	0.010		ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\parallel}	δ [rad] δ_{\perp}	$\delta_{\perp} - \delta_S$
				ϕ_s	-0.111	0.038	0.000	-0.008	-0.015	0.019	-0.001	-0.011
F	it cor	relation	h	$\frac{\varphi_S}{\Delta\Gamma}$	1	-0.563	0.092	0.097	0.042	0.036	0.011	0.009
			·	Γ_s		1	-0.139	-0.040	0.103	-0.105	-0.041	0.016
r	natri>	C:		$ A_{ }(0) ^2$			1	-0.349	-0.216	0.571	0.223	-0.035
				$ A_0(0) ^2$				1	0.299	-0.129	-0.056	0.051
				$ A_{S}(0) ^{2}$					1	-0.408	-0.175	0.164
				δ_{\parallel}						1	0.392	-0.041
9				δ_{\perp}							1	0.052

Combination with 7 TeV and 8 TeV results

• We present a combined result (BLUE) of this result with our previous "run-1" result.

Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
ϕ_s [rad]	-0.076	0.034	0.019
$\Delta\Gamma_s[\mathrm{ps}^{-1}]$	0.068	0.004	0.003
$\Gamma_s[ps^{-1}]$	0.669	0.001	0.001
$ A_{ }(0) ^2$	0.220	0.002	0.002
$ A_0(0) ^2$	0.517	0.001	0.004
$ A_{S} ^{2}$	0.043	0.004	0.004
δ_{\perp} [rad]	3.075	0.096	0.091
δ_{\parallel} [rad]	3.295	0.079	0.202
$\delta_{\perp} - \delta_S$ [rad]	-0.216	0.037	0.010



LHCb - 2019

31

- LHCb have recently released an updated result.
- LHCb has particle ID hardware allowing them to significantly reduce background, but cannot record as much luminosity reducing statistics
- Resulting in a worse statistical error but better systematic error.

Data

Total fit

Signal fit Background fit

_>⁷⁰⁰⁰

66000

stud 5000

4000

3000

2000

1000

15 µm

5 25

CMS

53

5.35

5.4

J/wK⁺K⁻ invariant mass [GeV]

Data Total fit Signal fit Background fit

 B_s^0 proper decay length [cm]

5.45

19.7 fb⁻¹ (8 TeV)

CMS central value

Standard Model

68% CI

90% CI

95% CL

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

CMS

0.2

CMS

sd 0.18

_____0.16

0.14

0.12

0.1 0.08

0.06

0.04

19.7 fb⁻¹ (8 TeV

CMS - 2015

- CMS have a measurement from 2015 using run-1 data.
- CMS has a similar strategy to ATLAS but cut out the direct pp background.

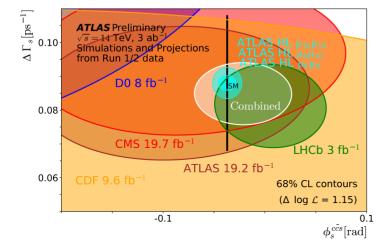
CMS

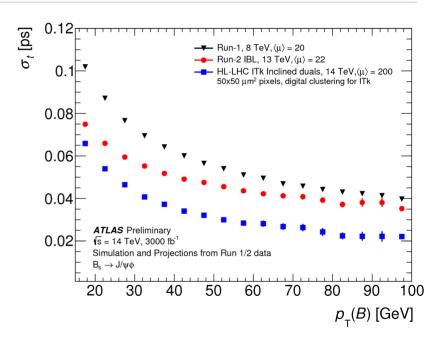
$$\varphi_{s} = -0.075 \pm 0.097 \text{ (stat)} \pm 0.031 \text{ (syst) rad}$$

$$\Delta\Gamma_{s} = 0.095 \pm 0.013 \text{ (stat)} \pm 0.007 \text{ (syst) ps}^{-1}$$

$$\Delta\Gamma_{s} = -0.076 \pm 0.034 \text{ (stat.)} \pm 0.019 \text{ (syst.) rad}$$

$$\Delta\Gamma_{s} = 0.068 \pm 0.004 \text{ (stat.)} \pm 0.003 \text{ (syst.) ps}^{-1}$$




Detector Improvements

• In run-2 IBL improves time resolution \rightarrow improved ϕ_s

33

 We estimate φ_s for future analyses give various muon threshold scenarios.

ATL-PHYS-PUB-2018-041

Summary

- ATLAS' measurement is compatible with the standard model and other experiments.
- ATLAS remains competitive with other experiments