Measurements of the Standard Model Higgs boson with the ATLAS detector

Higgs boson discovery in 2012

- Observed significance: 5.9σ
- Dataset: 10.8 fb⁻¹
- Combination of three Higgs decays: $\gamma\gamma$, ZZ, and WW
- $\gamma\gamma$ strongest decay channel with 4.5 σ

3 am, 4. July 2012 in front of CERN main auditorium

Nobel prize in physics 2013

For Peter Higgs and Francois Englert

Role of the Higgs boson in the SM

Experimental Setup: The machine and data

The LHC collides protons for the experiments!

Year	CM energy	Integ. Lumi.	
2010-2011	7 TeV	4.6 fb ⁻¹	
2012	8 TeV	20.3 fb	
2015-2016	13 TeV	36.1 fb ⁻¹	Run 2
2015-2017	13 TeV	80 fb ⁻¹	

Higher CM energy + higher luminosity = more Higgs events

08.03.18

Higgs boson production in pp collisions

Η

Gluon-gluon fusion (ggF)

g

 \boldsymbol{q}

Higgs-Strahlung (VH) 08.03.18

Top fusion (ttH)

Cross sections and number of events:

m _H = 125 GeV	ggF	VBF	VH	ttH
σ(7 TeV)	16.8 pb	1.2 pb	0.9 pb	0.09 pb
σ(8 TeV)	21.4 pb	1.6 pb	1.1 pb	0.13 pb
σ(13 TeV)	48.5 pb	3.8 pb	2.3 pb	0.51 pb
N(7 TeV)	77k	6k	4k	0.5k
N(8 TeV)	434k	32k	23k	2.7k
N(13 TeV) 2015+2016	1751k	136k	81k	18k
N(13 TeV)	3882k	302k	180k	41k

Run 2 gives significant improvement in statistics!

Experimental setup: The ATLAS detector

Multi-purpose detector: Onion setup

- Inside to outside:
 - Tracker
 - Silicon (pixel, strips)
 - Transition radiation (Xenon gas, to differ between electrons and pions)
 - Sampling calorimeter
 - Electromagnetic (LAr, Lead)
 - Hadronic (Steel, scintillator)
 - Muon spectrometer (gas tubes)
- Two magnets:
 - Solenoid surrounding tracker, 2T magnetic field
 - Toroid for muon spectrometer, 0.5T magnetic field

Which objects are available for analysis?

• Vertex

• Reconstructed with tracks, super-important in times of up to 60 collisions

matching, and

Good resolution, vertex

- Electrons
- Photons
- Muons
- Jets
 - b-quark jets
 - Hadronically decaying au
- Neutrinos = Missing transverse energy

reconstruction efficiency Low resolution and reco. efficiency, only partly vertex

matched

Typical LHC pp collisions

- QCD production absolutely dominant at the LHC
- Single boson (W,Z) production already 5 orders of magnitude lower
 - Leptons and missing transverse energy can appear here
- Top-quark and diboson cross sections still larger than Higgs boson cross sections

Advantageous to have leptons or photons in the final state of the Higgs decay to have a chance against the backgrounds!

• Main Higgs decays are very inconvenient for measurements at the LHC ZZ CC bb: only for VH production and ttH production → Lepton from W/Z or top-decay gg 6.0% 9.0%

- gg and cc decays difficult
- → WW: di-lepton mode → reduces BR again Resolution bad due to two neutrinos in the final state, many backgrounds
 - $\tau\tau$: τ leptonic or hadronic decays, low efficiency and resolution
- High mass resolution channels
- \rightarrow ZZ \rightarrow IIII: low BR, great mass resolution
- $\rightarrow \gamma \gamma$: good mass resolution and efficiency

We extract only a fraction of the Higgs boson events produced by the LHC. Analyses ongoing in most decay modes! Combination important!

WW

21.0%

Higgs boson decays – Measuring as many Higgs events as possible

Higgs branching ratio (BR) others 3.0% 3.0% bb 57.0%

Test of the Standard Model Higgs boson

- Couplings of the Higgs boson to other particles
 - Accessible via production and decay modes
- Mass of the Higgs boson: 125.09 ± 0.24 GeV
- Spin/CP properties of the Higgs boson: Spin 0 / CP even favoured
- Higgs boson kinematics
 - Transverse momentum, rapidity
 - H+jets production
 - Properties of the jets in events with Higgs
- New physics could be hiding
 - Make sure results are not too SM dependent

Highlights from Run 2 on the couplings

Evidence for top fusion production Submitted to PRD (ATLAS) Evidence for VH(H→bb) JHEP 12 (2017) 024 (ATLAS) Accepted by PLB (CMS)

Observation of $H \rightarrow \tau \tau$ Accepted by PLB (CMS)

Test of Higgs boson kinematics - $p_{\rm T}$

Measuring Higgs boson kinematics

- Measured differential cross sections in a fiducial phase space
 - Reduces dependence on the SM
 - Phase space different for each Higgs decay

Example with an experimentally difficult decay mode: H→WW, 8 TeV, 20.3 fb⁻¹

- Measure template cross sections in simple fiducial phase spaces
 - More model dependent, but easy to combine

Example with an experimentally easier decay mode: $H \rightarrow \gamma \gamma$, 13 TeV, 36.1 fb⁻¹

08.03.18

Measuring kinematic distributions of the Higgs boson in $H \rightarrow WW$

- Distributions
 - $d\sigma/dn_i$, $d\sigma/dp_T(j_1)$ to test higher order QCD
 - dσ/dp_{T,H}
 - $d\sigma/d|y_{\parallel}|$ to test PDFs
- Focus on gluon fusion production mode
- Leptonic (e, μ) decay of the W only
- Jet-binned analysis
 - 0 jets: WW production
 - 1 jet: WW and top-quark production
 - ≥2 jets: Top-quark production

Path to differential measurements

Selection of WW \rightarrow evµv events

- Require large missing transverse momentum → suppress QCD/DY background
- Require exactly 2 opposite sign leptons → suppress other diboson
- Lepton isolation, $p_T(l_2)>15$ GeV → suppress misidentified leptons
- $m_{\tau\tau} < (m_7 25 \text{ GeV})$ \rightarrow suppress Z $\rightarrow \tau\tau$ production
- veto events with b-quark jets → suppress top-quark production

Selection of Higgs events

- Spin correlation of the two leptons
 - Spin 0 Higgs \rightarrow leptons close together $\rightarrow \Delta \phi(I,I)$ and m(II)
- Transverse mass: m_T(II MET)
 - Enrich in Higgs events by window cut

Composition of the signal regions

Signal fraction at best 12%.

Normalize background as much as we can with data to keep uncertainties small.

Background estimation

Define CR by reverting a selection criteria. Close kinematics to the signal region and high purity are advantageous. Total of 10 control regions in the analysis.

WW control region: High m_{II} events

Top control region: Require b-quark jet

Other VV control region: Require 2 same sign leptons

Estimation of mis-identified leptons

- Mis-identification probability ~10⁻⁴ \rightarrow sizeable contribution of W+jets
- Define anti-ID leptons and apply the fake factor method:

Measured distributions

- Distributions integrated over the 3 signal regions
- Signal statistics still limited
 - no more than three bins per distribution
- To extract the signal distribution, the normalized background is subtracted
 - This could be improved in the future

21

Correction for detector effects

- Theorist cannot compare their prediction to our measured distributions.
- Correct the distributions for efficiencies and resolutions of the measured objects using MC.
- Results quoted in a fiducial region (selection cuts applied on truth objects)

Results and uncertainties: p_T of Higgs boson

systematics dominated	st	at. = s	yst.	statistics dominated
		1		
Total	47%	37%	77%	
Detector corrections	<1%	3%	3%	
Theory (signal)	14%	1%	6%	
Theory (other backgrounds)	6%	8%	14%	1
Theory (top)	4%	7%	25%	
Exp. other Theory (WW)	170 31%	$\frac{4\%}{17\%}$	$\frac{4\%}{13\%}$	1
Exp. $p_{\rm T}^{\rm mas}$	9%	8% 407	7%	
Exp. leptons	7%	6%	7%	
Exp. b-tag	2%	4%	8%	
Exp. JES	6%	10%	17%	
Exp. JER	7%	4%	10%	
CR data statistical	13%	5%	18%]
MC statistical	4%	4%	10%	_
SR data statistical	22%	22%	60%	
Uncertainty in prediction	0.05	0.03	0.005	
Predicted $d\sigma/dp_T^H$ [fb/GeV] (NNLOPS)	0.48	0.25	0.022	
Total uncertainty	0.29	0.15	0.027	
Statistical uncertainty	0.16	0.09	0.021	
$d\sigma/dp_T^H$ [fb/GeV]	0.61	0.39	0.034	
p_{T}^{H} [GeV]	[0, 20]	[20, 60]	[60, 300]	

Discussion of results

- High statistics gluon fusion bins already systematics dominated
 - In the long run $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ will be more precise (and already are)
- Low statistics bins are superior in sensitivity to $H \rightarrow ZZ$
 - Similar or better compared to $H \rightarrow \gamma \gamma$
 - Includes bins for high $p_{\rm T}$ Higgs boson and Higgs+jets production, sensitive to BSM heavy particles
 - Would be great to combined these bins

Fiducial and differential measurements are very complicated. Define binned measurements that can be easily combined!

Combination of the Run 1 results

- Measuring the inclusive production cross section
- Extracting the signal strength $\mu = \sigma_{\text{measured}} / \sigma_{\text{theory}}$

Great for combination, can be extracted for all analyses.

Extrapolated to the full phase space (model dependence) Divide by theory cross section (uncertainties!) No kinematic information of Higgs boson production.

Idea of "simplified template cross sections"

- Choose simple fiducial regions
 - For which theory uncertainties can evolve with time
 - Where BSM physics is most likely to appear
- Template with different regions defined for each production mode
- Can still be combined between different decay channels
- Some assumptions on the SM still present

Closer look at the gluon fusion regions

= 0-jet

- Simple fiducial regions for gluon fusion
- Split in number of jets
- Bin in p_T of the Higgs
- BSM bin for $p_{T,H} > 200 \text{ GeV}$

First results: Analysis in $H \rightarrow \gamma \gamma$ with 36.1 fb⁻¹

- Good photon reconstruction efficiency >84%, good energy resolution \approx 1.5% on m_{$\nu\nu$}
- Allows to reconstruct narrow mass peak to identify and fit for Higgs events.

Selection

- 2 photons, $p_T > 25$ GeV, $|\eta| < 2.37$, $E_{T, \gamma}/m_{\gamma\gamma} > 0.35$ (0.25)
- Photons fulfill tight identification criteria and are matched to the collision vertex
- m_{γγ} within [105, 160] GeV
- Total selection efficiency for signal 42%

Signal and background modelling

Signal modelled by double-sided Crystal Ball function

- Functional parameters determined with signal MC and fixed in data fit
- Variations allowed due to uncertainties (photon energy resolutions, scale, and mass of Higgs boson)

Background composition determined in 2D side-band method

- Background described by empirical functional form
- Number of degrees of freedom validated on data sidebands

Categorisation

- 31 orthogonal categories defined for production modes and kinematic bins
- 10 categories for gluon fusion
 - 9 to match the fiducial regions
 - 1 for sensitivity
- Fit performed per category

Category	Selection
ggH 2J BSM	$\geq 2 \text{ jets}, p_{\mathrm{T}}^{\gamma\gamma} \geq 200 \mathrm{GeV}$
m ggH~2J~High	$\geq 2 \text{ jets}, p_{\mathrm{T}}^{\dot{\gamma}\gamma} \in [120, 200] \mathrm{GeV}$
m ggH~2J~Med	$\geq 2 \text{ jets}, p_{\mathrm{T}}^{\gamma\gamma} \in [60, 120] \text{ GeV}$
ggH 2J Low	$\geq 2 \text{ jets}, p_{\mathrm{T}}^{\dot{\gamma}\gamma} \in [0, 60] \mathrm{GeV}$
m ggH~1J~BSM	$= 1 ext{ jet}, p_{\mathrm{T}}^{\gamma \hat{\gamma}} \geq 200 \mathrm{GeV}$
m ggH~1J~High	$= 1 \text{ jet}, p_{\mathrm{T}}^{\hat{\gamma}\gamma} \in [120, 200] \text{ GeV}$
m ggH~1J~Med	$= 1 \text{ jet}, p_{\mathrm{T}}^{\hat{\gamma}\gamma} \in [60, 120] \text{ GeV}$
ggH 1J Low	$= 1 ext{ jet}, p_{\mathrm{T}}^{\hat{\gamma}\gamma} \in [0, 60] ext{ GeV}$
m ggH~0J~Fwd	= 0 jets, one photon with $ \eta > 0.95$
ggH 0J Cen	= 0 jets, two photons with $ \eta \leq 0.95$

30

Results for cross section and signal strength

Process	Result	Uncertainty [fb]			SM prediction	
$(y_H < 2.5)$	[fb]	Total	Stat.	Exp.	Theo.	[fb]
ggH	82	$^{+19}_{-18}$	(± 16)	$^{+7}_{-6}$	$^{+5}_{-4}$	102^{+5}_{-7}
VBF	16	$^{+5}_{-4}$	(± 4)	± 2	$^{+3}_{-2}$	8.0 ± 0.2
VH	3	± 4	$\begin{pmatrix} +4\\ -3 \end{pmatrix}$	± 1	$^{+1}_{-0}$	4.5 ± 0.2
Тор	0.7	$^{+0.9}_{-0.7}$	$\binom{+0.8}{-0.7}$	$^{+0.2}_{-0.1}$	$^{+0.2}_{-0.0}$	1.3 ± 0.1

- Statistics is still largest source of uncertainty.
- Improvements since Run 1 also in the experimental and theoretical uncertainties.
- Total uncertainty order 15%
- Theoretical uncertainty order 6%

Results for simplified template cross sections

- Merge fiducial regions to achieve at least about 100% uncertainty per result.
- Dominated by statistical uncertainties
- Theoretical uncertainty much reduced compared to signal strength measurement
- Limit set on the BSM regions

 $H \rightarrow \gamma \gamma$ also measures differential cross sections with good sensitivity. Statistics dominated.

Combination with $H \rightarrow ZZ \rightarrow 4I$

 $H \rightarrow ZZ \rightarrow 4l$ analysis uses also Uncertainty Measurement region Result Total Stat. Syst. 36.1 fb⁻¹ of 2015+2016 data $^{+3.1}_{-2.4}$ pb +25/-22% +7.3+6.6 29.7 $gg \rightarrow H$ (0-jet) -6.4-6.0 $^{+1.7}_{-1.8}$ pb >100% (+4.4)+4.8 -4.5 $gg \rightarrow H (1\text{-jet}, p_T^H < 60 \text{ GeV})$ 4.4 $^{+0.7}_{-0.5}$ pb (+2.7)+61/-52% Gluon $gg \rightarrow H (1\text{-jet}, 60 \le p_T^H < 120 \text{ GeV})$ $^{+2.8}_{-2.4}$ 4.6 fusion $\binom{+1.0}{-0.9}$ $^{+0.3}_{-0.2}$ pb $^{+1.1}_{-0.9}$ +69/-56% $gg \rightarrow H (1\text{-jet}, 120 \le p_T^H < 200 \text{ GeV})$ 1.6 $^{+1.9}_{-1.4}$ pb (+4.3) $gg \rightarrow H (\geq 2$ -jet, $p_T^H < 200$ GeV or VBF-like) +4.7 -4.2 +44/-40% 10.6 $gg \to H \ (\geq 1 \text{-jet}, p_T^H \geq 200 \text{ GeV})$ merged +0.9 -0.7 $\binom{+0.8}{-0.7}$ $^{+0.3}_{-0.2}$ pb 1.9 +47/-37% $+ \, qq \rightarrow H qq \; (p_T^j \geq 200 \; {\rm GeV})$ BSM $^{+1.5}_{-1.4}$ pb +44/-36% $\leftarrow qq \rightarrow Hqq (p_T^j < 200 \text{ GeV})$ $\binom{+4.0}{-3.2}$ 9.8 +4.3 -3.5 Vector boson

fusion

Interpretation of the template cross sections

Effective field theory approach

- Probe for deviations from the SM physics using an effective field theory approach at a large new physics scale $\Lambda >> E_{exp,} m_{H}$
- Particle content and symmetries as in the SM

59 independent dim-6 operators if flavour universality. 2499 parameters for a generic flavour structure.

Leading deformations of the SM

 $\mathcal{L}^{\text{eff}} = \mathcal{L}_{\text{SM}} + \left| \sum \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} \right| + \sum \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)}$

Can include cross-sections, template cross sections, even differential cross sections and test for deviations Can combine different fields of SM measurements

Interpretation of the template cross sections

 Different template cross section regions are sensitive to different dim-6 operators

Interpretation of the template cross sections

- Proof of concept performed
- Most stringent constraints on the effective couplings to photons and gluons
- Main point to improve is the theoretical EFT model which still misses physics components

Conclusion

- New Run 2 data is great for SM Higgs boson investigations
 - Huge increase in statistics
 - Understanding of the detector improves with time
 - Caveat: large number of pile-up collisions
- Statistics allows us to measure kinematic properties of the Higgs boson
 - More to come with the full Run 2 dataset
- Measurement done per Higgs decay mode
 - Several Higgs decay modes have similar sensitivity
 →Combination makes still sense and is worth the effort
 - Improvements on the way we combine are underway to make results less modeldependent

Thank you for your attention!

BACK-UP

BSM interpretation in Run 1

- Coupling strength (κ-framework)
- Coupling modifier κ_i and κ_f

 $\sigma(i \to H \to f) = \kappa_i^2 \sigma_i^{\rm SM} \frac{\kappa_f^2 \Gamma_f^{\rm SM}}{\kappa_H^2 \Gamma_H^{\rm SM}}$

Not a full theory description. Higgs physics only. Can not use measured distributions to extract constraints No combination with other SM measurements (top, electroweak)

New physics via heavy particles

- Assumption: Higgs couplings to SM particles are described by the SM
- New heavy BSM particles enter via loops in the production
- Sensitivity via ggH production and $H \rightarrow \gamma \gamma$
- Compatibility of data with SM @82%

Couplings to Bosons and Fermions

- Assumption: No new particle in the loop
- Parameterization of coupling modifier with the particle mass
- Good compatibility with the SM

08.03.18

Do global fits for EFT operators to the measurements

- Include differential distributions
 - Include experimental data from other processes

Include more data with EFT approach

