

Measuring the neutrino CP phase and mass ordering

Andy Chappell 07 March 2019

Outline

- Introduction to the T2K experiment
- CP phase:
 - T2K measurement
 - Comparison to expected sensitivity
 - Feldman-Cousins critical value behaviour
- Mass ordering:
 - Frequentist properties of the mass ordering posterior probability
 - Mass ordering sensitivity

3-flavour neutrino oscillations

- θ₂₃ and Δm²₃₂ via disappearance channel
- θ₁₃ and δ_{CP} via appearance channel
- Mass ordering

The T2K experiment

- Long baseline neutrino oscillation experiment in Japan
 - ν_{μ} beam produced at J-PARC, Tokai
 - Near detectors at J-PARC, 280m downstream of target
 - Super-Kamiokande (SK) far detector, 295km downstream of target in Kamioka
 - Off-axis beam produces energy spectrum peaked at 0.6 GeV
- Precision measurements of ν_{μ} disappearance
- Originally designed to discover ν_e appearance
- Currently searching for CP-violation

Neutrino beamline

- Three horn magnets focus π to produce ν-mode or ν̄-mode beam
- Delivered 3.16 × 10²¹ total protons on target (POT)

Analysis approach

- Neutrino flux model
 - Simulation and NA61 and T2K replica target data on π and K yields
- Neutrino cross-section model
 - Simulation and external data on $\nu/e/h$ interactions
- Detector model
 - Simulation and calibration and test beam data
- Make predictions at ND280 and SK
 - Parametrise cross-section and flux model
 - Constrain cross-section and flux by tuning ND280 prediction to observation
- Extract oscillation physics
 - Perform simultaneous fits of the 5 SK samples to measure oscillation parameters

ND280 data fit

ND280 data fit

PRELIMINARY

Group	Pre-fit Error (%)	Post-fit error (%)	
$ u_{\mu} $ sample	14.66	5.12	
$ar u_\mu$ sample	12.52	4.45	
ν_e sample	16.85	8.81	
$ar{ u}_e$ sample	14.41	7.13	
ν_e sample with decay electron	21.75	18.38	

Super-Kamiokande far detector

- 50kt water Cherenkov detector
- Inner detector instrumented with 11000 PMTs for 40% photo coverage
- Excellent ν_e/ν_µ separation and good reconstruction at T2K energy

(a) μ -like ring

(b) e-like ring

Neutrino oscillation at SK

- 2.5° off-axis beam flattens neutrino energy versus parent pion energy
- Results in flux peak in the region of the oscillation maximum

SK data fits - FHC

FHC $1R\mu$

FHC 1Re

Sample	Asimov A	Data	
μ -like	272.4	243	
<i>e</i> -like	72.8	75	
$CC1\pi^+$ -like	6.9	15	

Asimov A: $\sin^2 \theta_{13} = 0.0212$, $\sin^2 \theta_{23} = 0.528$, $\delta_{CP} = -1.601$, $\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2 \text{ c}^{-4}$

Andy Chappell

SK data fits - RHC

RHC $1R\mu$

RHC 1Re

Sample	Asimov A	Data	
μ -like	139.5	140	
<i>e</i> -like	16.8	15	

SK event rates

	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = \pi$	Observed
$ u_{\mu} $ -like sample	272.4	272.1	272.4	272.8	243
ν_e -like sample	72.8	60.8	49.3	61.3	75
$ar{ u}_{\mu}$ -like sample	139.5	139.2	139.5	139.9	140
$\bar{\nu}_e$ -like sample	16.8	19.2	21.3	18.9	15
$\nu_e \operatorname{CC1}\pi^+$ -like sample	6.9	6.0	4.8	5.7	15

•
$$\sin^2 \theta_{12} = 0.307$$

•
$$\Delta m_{21}^2 = 7.530 \times 10^{-5} \text{ eV}^2 \text{ c}^{-4}$$

• $\sin^2 \theta_{23} = 0.528$

•
$$\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2 \text{ c}^{-4}$$

- $\sin^2 \theta_{13} = 2.12 \times 10^{-2}$
- Normal ordering

δ_{CP}

• CP conservation is rejected at 2σ

Comparison of δ v mass ordering with sensitivity

■ Approximately 5% of toys are more extreme than our data

• 25% of toys exclude CP conservation at 2σ (both $\delta_{CP} = 0$ and $\delta_{CP} = \pi$)

FC critical value variation

- $\bullet \ \Delta \chi^2 = \chi^2_{\rm true} \chi^2_{\rm min}$
- \blacksquare Normal ordering has lower critical values for $\delta < 0$
- \blacksquare Inverted ordering has lower critical values for $\delta > 0$
- Differences between FC and gaussian approx critical values

Degeneracy in δ and mass order

- \blacksquare Bi-event plot clearly shows $\delta/{\rm mass}$ order degeneracy
- $\Delta \chi^2 = \chi^2_{true} \chi^2_{min}$ allows better fits from wrong mass ordering
- This increases $\Delta \chi^2$ values
- Disallowing fits in the wrong ordering (right plot) lowers critical values and causes convergence of critical values in the two true mass orderings

Physical boundary effects

- ν_e ($\bar{\nu}_e$) event rate reaches a maximum (minimum) at $\delta = -\pi/2(+\pi/2)$
- Fluctuations to higher ν_e event rates can't find lower χ^2 beyond physical boundary
- Toys pileup at the physical boundary (right plot)
- This decreases $\Delta \chi^2$ values (left plot)

Degeneracy between $\delta = 0$ and $\delta = \pi$

- \blacksquare Significant degeneracy between $\delta=0$ and $\delta=\pi$
- Fits around $\pm\pi$ evident at lower confidence levels \rightarrow increases $\Delta\chi^2$
- Lack of sensitivity to separate 0 and π means Δχ² = χ²₀ χ²_π is not large enough to populate the tail of the Δχ² distribution
- Effect disappears at higher confidence levels

Summary of critical value behaviour

- Mass ordering is discrete, acts like an additional degree of freedom, raising critical values
- Physical boundaries lower critical values below gaussian approximation.

Frequentist properties of mass ordering posterior

- Determine the expected posterior probability distribution for the mass ordering using the Feldman-Cousins toys
- Likelihood for hypothesized hierarchy determined by averaging over the likelihoods for 101 bins of δ_{CP}
- Posterior probability is then $P_{\text{post}} = \frac{L_{NO}}{L_{NO}+L_{IO}}$

Mass ordering posterior - $\delta_{CP} = -\pi/2$

 \blacksquare For 95% threshold, rate of true hypothesis rejection \sim 6% of rate of false hypothesis rejection

Mass ordering posterior - $\delta_{CP} = 0$

No sensitivity to determine the mass ordering

FC summary plot

- An alternative means of presenting Feldman-Cousins information; both δ and the mass ordering in a single plot
- Use Feldman-Cousins toys to compute distributions of $\Delta \chi^2 = \chi^2_{NH} \chi^2_{IH}$ at each true point of δ and mass ordering

Example distributions for true $\delta=0$

Blue and red lines represent 2σ intervals for true NO and true IO respectively

FC summary plot

• 2σ intervals

• Intervals offset in δ_{CP} for readability

Conclusion

- T2K has seen a hint of CP violation, with exclusion of conservation at 2σ and a best-fit near the maximally CP violating value of $-\pi/2$
- While T2K has limited sensitivity to the mass ordering, the best-fit for δ is in the region where the ability to reject the inverted mass ordering is greatest